Inequivalent handlebody-knots with homeomorphic complements

Jung Hoon Lee
Sangyop Lee

Abstract

We distinguish the handlebody-knots $5_{1}, 6_{4}$ and $5_{2}, 6_{13}$ in the table, due to Ishii et al, of irreducible handlebody-knots up to six crossings. Furthermore, we construct two infinite families of handlebody-knots, each containing one of the pairs $5_{1}, 6_{4}$ and $5_{2}, 6_{13}$, and show that any two handlebody-knots in each family have homeomorphic complements but they are not equivalent.

57M50

1 Introduction

Given a knot in S^{3}, its regular neighborhood is a knotted solid torus. Conversely, an embedded solid torus in S^{3} uniquely determines a knot. Thus we may regard an embedded solid torus as a knot in S^{3}. Instead of an embedded solid torus in S^{3}, consider an embedded handlebody. We may regard it as a kind of a knot. Following Ishii, Kishimoto, Moriuchi and Suzuki [3], we say that a handlebody embedded in S^{3} is a handlebody-knot.

Throughout this paper, by a handlebody-knot we will mean a genus two handlebody embedded in S^{3}. A handcuff graph or a θ-curve Γ in a handlebody-knot H is called a spine if H is a regular neighborhood of Γ. The spine of H is not uniquely determined, but any two spines are related by a finite sequence of isotopies and IH-moves (see Ishii [2]), where an IH-move is a local move on a spatial trivalent graph depicted in Figure 1.

Figure 1

Two handlebody-knots H_{1} and H_{2} are said to be equivalent if there exists an isotopy of S^{3} that takes H_{1} to H_{2}, or equivalently if there exists an orientation-preserving automorphism h of S^{3} such that $h\left(H_{1}\right)=H_{2}$. A handlebody-knot H is reducible if there exists a 2 -sphere S in S^{3} such that $S \cap H$ is a disk separating H into two solid tori. Otherwise, it is irreducible. Note that H is irreducible if $S^{3}-\operatorname{int}(H)$ is ∂-irreducible.

As done for knots, we can use regular diagrams of spines of a handlebody-knot to define the crossing number of the handlebody-knot. Ishii, Kishimoto, Moriuchi and Suzuki recently give a table of handlebody-knots such that any irreducible handlebody-knot with six or fewer crossings or its mirror image is equivalent to one of the handlebodyknots in the table. See [3, Table 1]. By using some invariants, they distinguish all handlebody-knots in their table except only for the two pairs $\left(5_{1}, 6_{4}\right)$ and $\left(5_{2}, 6_{13}\right)$. See Figure 2.

Figure 2
Consider the handcuff graphs Φ_{n}, Ψ_{n} in S^{3}, shown in Figure 3, where a rectangle labeled by an integer n denotes a vertical right-handed twist of two strings with $2 n$ crossings. Let V_{n} and W_{n} denote regular neighborhoods of Φ_{n} and Ψ_{n}, respectively. Put $X_{n}=S^{3}-\operatorname{int}\left(V_{n}\right)$ and $Y_{n}=S^{3}-\operatorname{int}\left(W_{n}\right)$.

Let $\Theta_{n}=\Phi_{n}$ or Ψ_{n}, and let $Z_{n}=X_{n}$ or Y_{n} correspondingly. The handcuff graph Θ_{n} consists of two vertices and three edges, two forming loops and one connecting the two loops. One of the two loops bounds a disk intersecting the vertical twist in two points.

Figure 3

By twisting along the disk, one can transform Θ_{n} into Θ_{m} for any other integer m. This shows that Z_{n} is homeomorphic to Z_{m}.

For any submanifold M of S^{3}, denote by M^{*} the mirror image of M. We say that M is amphicheiral if an isotopy of S^{3} takes M to M^{*}. The main result of the present paper is the following.

Theorem 1.1 Let n and m be distinct integers.
(1) No two of $V_{n}, V_{n}^{*}, V_{m}, V_{m}^{*}$ are equivalent.
(2) No two of $W_{n}, W_{n}^{*}, W_{m}, W_{m}^{*}$ are equivalent.

In particular, V_{n} and W_{n} are not amphicheiral for each integer n.

By calculating fundamental groups, one can show that X_{0} and Y_{0} are not homeomorphic. This implies that V_{n} and W_{m} are not equivalent for any integers n and m.

It is a celebrated result of Gordon and Luecke that if two knots in S^{3} have homeomorphic complements then the homeomorphism between the two complements extends to an automorphism of S^{3} [1]. In contrast, Motto [5] showed that handlebody-knots are not determined by their complements. We remark that our infinite families of inequivalent handlebody-knots are also of this type.

We can now distinguish the handlebody-knots $5_{1}, 6_{4}$, and $5_{2}, 6_{13}$ in the table due to Ishii et al.

Corollary 1.2 (1) No two of $5_{1}, 5_{1}^{*}, 6_{4}, 6_{4}^{*}$ are equivalent.
(2) No two of $5_{2}, 5_{2}^{*}, 6_{13}, 6_{13}^{*}$ are equivalent.

In particular, $5_{1}, 5_{2}, 6_{4}, 6_{13}$ are not amphicheiral.

Proof The sequences of pictures in Figure 4(a),(b) show that V_{0} and V_{-1} are respectively equivalent to 5_{1} and 6_{4}, and the sequences of pictures in Figure 4(c),(d) show that W_{0} and W_{1} are respectively equivalent to 5_{2} and 6_{13}^{*}. Hence the result immediately follows from Theorem 1.1.

Figure 4
Some figures in this paper are best viewed in color; readers confused by figures in a black-and-white version are recommended to view the electronic version.

2 Curves in the boundary of a genus two handlebody

A properly embedded disk in a 3 -manifold M is essential if it is not isotopic to a disk in ∂M. A properly embedded compact surface in M, which is neither a disk nor a sphere, is essential if it is incompressible and is not ∂-parallel. Given a set $\left\{c_{1}, \ldots, c_{n}\right\}$ of disjoint simple loops in $\partial M, M\left[c_{1} \cup \cdots \cup c_{n}\right]$ will denote the 3 -manifold obtained by attaching 2 -handles to M along disjoint neighborhoods of c_{1}, \ldots, c_{n}.

Throughout this section, H will denote a genus two handlebody. A simple loop in ∂H is called a primitive curve if there exists a disk in H, called a dual disk, that intersects the loop in a single point.

Lemma 2.1 Let c_{1}, c_{2} be two disjoint nonisotopic primitive curves in ∂H. If there are two disjoint nonisotopic essential disks D_{1}, D_{2} of H each of which is a common dual disk of c_{1} and c_{2}, then the fundamental group of $H\left[c_{1} \cup c_{2}\right]$ is either the infinite cyclic group or the cyclic group of order 2 .

Proof The two disks D_{1}, D_{2} cut H into a 3-ball B and $c_{1} \cup c_{2}$ into four arcs. Let D_{i}^{+}, D_{i}^{-}be the copies of D_{i} on ∂B for $i=1,2$. There are two cases; the four arcs together with the four disks $D_{1}^{ \pm}, D_{2}^{ \pm}$form two cycles of length 2 or a single cycle of length 4. See Figure 5. One easily sees that the fundamental group of $H\left[c_{1} \cup c_{2}\right]$ is the infinite cyclic group in the first case and it is the cyclic group of order 2 in the latter case.

An element x of the free group F of rank 2 is called a primitive element if there exists an element $y \in F$ such that x, y generate F.

Lemma 2.2 Let A be an essential separating annulus in H. Let c_{1}, c_{2} be two essential simple loops in ∂H which are disjoint from ∂A. Suppose that A separates c_{1} and c_{2}. Then one of c_{1} and c_{2} represents a proper power of a primitive element of the free group $\pi_{1}(H)$.

Proof By Kobayashi [4, Lemma 3.2(i)], A cuts H into a solid torus H_{1} and a genus two handlebody H_{2}. Since A separates c_{1} and c_{2}, we may assume $c_{1} \subset H_{1}$ and $c_{2} \subset H_{2}$. Let A_{i} be the copy of A in ∂H_{i} for $i=1,2$. Then the core of A_{1} is parallel to c_{1} in ∂H_{1}, and the core of A_{2} represents a primitive element of the free group $\pi_{1}\left(H_{2}\right)$.

If c_{1} were a meridian curve of H_{1} then A would be compressible in H. If c_{1} were homotopic to the core of H_{1} then A would be ∂-parallel in H. Hence c_{1} is homotopic in H_{1} to $n(\geq 2)$ times around the core of H_{1}.

Figure 5
Let x be a generator of the infinite cyclic group $\pi_{1}\left(H_{1}\right)$, and let y, z be two elements generating the free group $\pi_{1}\left(H_{2}\right)$. Here, we may assume that x^{n} is represented by the core of A_{1} (or c_{1}) and y is represented by the core of A_{2}. By the Van Kampen's theorem, $\pi_{1}(H)$ has three generators x, y, z and one relation $x^{n}=y$. Thus $\pi_{1}(H)$ is the free group on x and z, and c_{1} represents x^{n} in the group $\pi_{1}(H)$.

Lemma 2.3 Let c_{1}, c_{2} be two simple loops in ∂H which are not contractible in H. Suppose that there exists a properly embedded disk D in $H-c_{1} \cup c_{2}$ which splits H into two solid tori, each containing one of c_{1} and c_{2}. Then any such disk is isotopic to D in $H-c_{1} \cup c_{2}$.

Proof Let E be a properly embedded disk in $H-c_{1} \cup c_{2}$ which splits H into two solid tori H_{1} and H_{2} with $c_{i} \subset H_{i}$ for each $i=1$, 2 . Suppose that E is not isotopic to D in $H-c_{1} \cup c_{2}$.

If E is disjoint from D then D and E are parallel in H, that is, they cut off a 1 -handle $D \times I$ from H. Since neither c_{1} nor c_{2} is contractible in $H, \partial D \times I$ does not meet any of c_{1} and c_{2}. This means that $D \times I$ is, in fact, the parallelism between D and E in $H-c_{1} \cup c_{2}$. This contradicts our assumption on E.

We may assume that the intersection $D \cap E$ is transverse and minimal up to isotopy of E. Then a standard disk swapping argument shows that $D \cap E$ has no circle
components. An arc component of $D \cap E$, outermost in D, cuts off a subdisk of D. Surgery on E along the subdisk yields two disks, both of which are disjoint from $c_{1} \cup c_{2}$. Let E^{\prime} be any of these disks. Then E^{\prime} lies in a solid torus H_{i} for some $i=1,2$. By the minimality of $|D \cap E|, E^{\prime}$ is parallel in $H-c_{1} \cup c_{2}$ to neither E nor a disk in ∂H. Hence E^{\prime} is a meridian disk of the solid torus H_{i}, cutting it into a 3-ball in which c_{i} lies. This implies that c_{i} is contractible in H, a contradiction.

$3 V_{n}$ and $V_{m}(n \neq m)$ are not equivalent

Consider Φ_{0}. The drawings in Figure 4(a) depict an isotopy from V_{0} to 5_{1}, showing that there exists a properly embedded nonseparating annulus A_{0} in X_{0} as shown in Figure 6(a). Cutting X_{0} along A_{0} gives a new compact 3-manifold U as shown in Figure 6(b), where the two loops in ∂U are the cores of the two copies A_{0}^{+}and A_{0}^{-} of A_{0} in ∂U. Let $c^{ \pm}$be the loops. After an isotopy, U becomes the complement of a standardly embedded genus two handlebody in S^{3} (see Figure 7), so U itself is a genus two handlebody.

Figure 6
Let $C=c^{+} \cup c^{-}$. Take three essential nonseparating disks X, Y, Z in U as shown in Figure 8(a). These three disks divide U into two $3-$ balls $B^{ \pm}$and C into arcs. See Figure 8(b). Let $X^{ \pm}, Y^{ \pm}, Z^{ \pm}$be copies of X, Y, Z in $\partial B^{ \pm}$. Then $C^{ \pm}=C \cap B^{ \pm}$ consists of five arcs, two connecting $X^{ \pm}$and $Y^{ \pm}$, two connecting $X^{ \pm}$and $Z^{ \pm}$, and one connecting $Y^{ \pm}$and $Z^{ \pm}$. Set $\Delta=X \cup Y \cup Z$ and $\Delta^{ \pm}=X^{ \pm} \cup Y^{ \pm} \cup Z^{ \pm}$. Then $\partial B^{ \pm}-\left(\Delta^{ \pm} \cup C^{ \pm}\right)$is a union of (open) disks.

Lemma 3.1 U does not contain an essential disk or annulus or a properly embedded Möbius band which is disjoint from C.

Figure 7

Figure 8

Proof Assume for contradiction that U contains such a surface F.
First, suppose that F is a disk. The intersection $F \cap \Delta$ may be assumed to be transverse and minimal among all essential disks of U that are disjoint from C. Note that $F \cap \Delta \neq \varnothing$, since otherwise F would be properly embedded in either B^{+}or B^{-}with $\partial F \cap\left(\Delta^{ \pm} \cup C^{ \pm}\right)=\varnothing$ and hence F would be parallel to a disk in ∂U. By the minimality of $|F \cap \Delta|, F$ has no circle components of intersection with Δ. An arc component of intersection, outermost in F, cuts off a disk F^{\prime} from F. Any two disks in $\Delta^{ \pm}$are joined by an arc in $C^{ \pm}$, so the arc $F^{\prime} \cap \partial U$ together with an arc in $\partial \Delta$ bounds a disk in ∂U that is disjoint from C. This disk could be used to reduce $|F \cap \Delta|$, contradicting the minimality assumption. Hence F is not a disk.

The fundamental group $\pi_{1}(U)$ is a free group generated by two elements x and y, where x and y are respectively represented by the cores of the 1 -handles $N(X)$ and $N(Y)$, attached to the 3-ball $N(Z)$. See Figure 8(b). The two loops c^{+} and c^{-}represent two group elements x and $x y x y^{-1} x^{-1} y^{-1}$. Hence the 3 -manifold
$Q=U\left[c^{+} \cup c^{-}\right]$has a trivial fundamental group, so it is a 3-ball. Since F is disjoint from C, F is properly embedded in Q. No Möbius bands can be properly embedded in a 3-ball, so F must be an annulus. Since every properly embedded annulus in a 3 -ball is separating, F must be separating in U. Splitting U along F, we get a solid torus U_{1} and a genus two handlebody U_{2}, where the core of the copy of F in ∂U_{1} winds the solid torus U_{1} at least two times in the longitudinal direction. See [4, Lemma 3.2(i)].

Neither x nor $x y x y^{-1} x^{-1} y^{-1}$ is a proper power of a primitive element of the group $\pi_{1}(U)$. Thus it follows from Lemma 2.2 that the two loops c^{+}and c^{-}are not separated by F. Since c^{+}and c^{-}are not parallel in ∂U, they are contained in U_{2}. Hence F splits Q into U_{1} and $U_{2}\left[c^{+} \cup c^{-}\right]$. In particular, F cuts off the solid torus U_{1} from the 3-ball Q so that the core of the copy of F in ∂U_{1} is homotopic to at least two times around the core of U_{1}. This is impossible.

Lemma 3.2 A_{0} is incompressible and ∂-incompressible in X_{0}.
Proof Since each of c^{+}and c^{-}represents a nontrivial element of the free group $\pi_{1}(U), A_{0}$ is incompressible. Suppose that A_{0} is ∂-compressible. Then there exists a properly embedded disk D in U intersecting C in a single point. We may assume that D intersects c^{+}. Then the frontier of a neighborhood of $D \cup c^{+}$in U is an essential separating disk in U that is disjoint from C, contradicting Lemma 3.1. Hence A_{0} is ∂-incompressible.

Lemma $3.3 X_{0}$ is irreducible and ∂-irreducible. Hence X_{n} is irreducible and $\partial-$ irreducible for any integer n.

Proof It is clear that X_{0} is irreducible. If X_{0} is $\partial-$ reducible then any compressing disk for ∂X_{0} can be isotoped to be disjoint from A_{0}. Then it lies in U as an essential disk disjoint from $c^{+} \cup c^{-}$. This contradicts Lemma 3.1.

Since X_{n} is ∂-irreducible, V_{n} is an irreducible handlebody-knot.

Lemma 3.4 A_{0} is a unique properly embedded nonseparating annulus in X_{0} up to isotopy.

Proof Let A be a properly embedded nonseparating annulus in X_{0} that is not isotopic to A_{0}. The ∂-irreducibility of X_{0} implies that A is incompressible and ∂-incompressible.

We may assume that A had been chosen to intersect A_{0} transversely and minimally among all properly embedded nonseparating annuli in X_{0}. Note that A must intersect A_{0}, otherwise A would survive in U and be incompressible, so by Lemma 3.1 A would be parallel to either A_{0}^{+}or A_{0}^{-}in U and hence be parallel to A_{0} in X_{0}, contradicting the choice of A.

Suppose that there are circle components of $A \cap A_{0}$ that are inessential on both A and A_{0}. Let α be a circle component of $A \cap A_{0}$ that is innermost on A_{0} among all such circle components. Then α bounds a disk D in A and a disk D_{0} in A_{0}. Note that the interior of D_{0} is disjoint from A, since otherwise an innermost component of $A \cap D_{0}$ on D_{0} would bound a compressing disk for A. We now obtain a new nonseparating annulus $(A-D) \cup D_{0}$, which is properly embedded in X_{0} and can be isotoped so as to intersect A_{0} transversely with fewer components of intersection. This contradicts the choice of A. Hence each circle component of $A \cap A_{0}$, if it exists, is essential on at least one of A and A_{0}. Suppose that there are circle components of $A \cap A_{0}$ that are essential on one of the annuli A and A_{0}, and inessential on the other annulus. Let β be a circle component of $A \cap A_{0}$ that is innermost on (say) A among all such circle components (the argument for the case $\beta \subset A_{0}$ is similar). Then β bounds a disk E in A. Since no circle components of $A \cap A_{0}$ are inessential on both A and A_{0}, the interior of E misses A_{0} by the choice of β. This implies that E is a compressing disk for A_{0}, a contradiction. We conclude that all circle components of $A \cap A_{0}$, if they exist, are essential on both A and A_{0}.

A similar argument, using an outermost arc component of intersection instead of an innermost circle component and using the ∂-incompressibility of $A \cup A_{0}$ instead of the incompressibility, shows that all arc components of $A \cap A_{0}$, if they exist, are essential on both A and A_{0}. Thus all the components of $A \cap A_{0}$ are either circles or arcs.

First, suppose that they are all circles. Take an annulus cut off from A by an outermost component of $A \cap A_{0}$ in A, and surger A_{0} along this annulus. The resulting surface is a union of two annuli disjoint from A_{0}. Let A_{0}^{\prime} be any one of these two annuli. Since one boundary circle of A_{0}^{\prime} is isotopic to that of A_{0} (or A), A_{0}^{\prime} must be incompressible in X_{0} and hence in U. By Lemma 3.1, A_{0}^{\prime} must be ∂-parallel in U, which implies that A_{0}^{\prime} is either $\partial-$ parallel in X_{0} or parallel to A_{0}. In any case, we can reduce $\left|A \cap A_{0}\right|$, giving a contradiction.

Now suppose that all components of $A \cap A_{0}$ are arcs that are essential on both A and A_{0}. The arcs divide A into rectangles R_{1}, \ldots, R_{n}, where $n=\left|A \cap A_{0}\right|$. Consider $R=R_{1}$. We may regard R as a properly embedded disk in U whose boundary intersects $C=c^{+} \cup c^{-}$in two points. There are two cases; ∂R intersects each of c^{+} and c^{-}in a single point, or ∂R intersects only one of c^{+}and c^{-}, say, c^{+}. In the
former case, each of c^{+}and c^{-}is a primitive curve in U, that is, it is a generator of the free group $\pi_{1}(U)$ of rank two, but it is easy to see from Figure 8(b) that one of c^{+} and c^{-}is not a generator.
In the latter case, the two points in $\partial R \cap c^{+}$split c^{+}into two arcs a_{1} and a_{2}. Let $S_{i}(i=1,2)$ be a properly embedded surface in U obtained from R by attaching a band along a_{i} and then pushing the interior of the resulting surface into the interior of U. Note that S_{i} is disjoint from C for each $i=1,2$. The two ends of a_{i} must lie on the same side of R (then S_{i} is an annulus), otherwise S_{i} would be a Möbius band, contradicting Lemma 3.1.

If R were ∂-parallel in U then we could reduce $\left|A \cap A_{0}\right|$. Thus R is an essential disk in U. First, suppose that R is a nonseparating disk in U. Consider any S_{i} and recall that S_{i} is obtained from the nonseparating disk R by attaching a band. Any such annulus has boundary circles which are not mutually parallel in ∂U and at least one of which is essential in ∂U. Since the two boundary circles of S_{i} are not mutually parallel in $\partial U, S_{i}$ is not ∂-parallel in U. Since at least one boundary circle of S_{i} is essential in $\partial U, S_{i}$ is incompressible in U, otherwise a compression of S_{i} would yield an essential disk in U disjoint from C, contradicting Lemma 3.1. Hence S_{i} is an essential annulus. This contradicts Lemma 3.1 again.

Suppose that R is an essential separating disk in U. Then R splits U into two solid tori U_{1} and U_{2}, where S_{i} can be pushed into U_{i}. If the core of some S_{i} winds U_{i} at least two times in the longitudinal direction, then S_{i} is an essential annulus in U, contradicting Lemma 3.1. Thus the core of each S_{i} is homotopic to the core of U_{i}. This implies that $c^{+}=a_{1} \cup a_{2}$ is a primitive curve in U. Since c^{-}does not intersect $R \cup c^{+}$, c^{-}is also a primitive curve in U. See Figure 9. This contradicts our observation that one of c^{+}and c^{-}is not a primitive curve in U.

Figure 9

Lemma 3.5 V_{0} is not amphicheiral.

Proof Assume that there exists an orientation-preserving automorphism h of S^{3} that takes V_{0} to V_{0}^{*} (and then X_{0} to $\left.X_{0}^{*}\right)$. Take a regular neighborhood $N\left(A_{0}\right)$ of the nonseparating annulus A_{0} in X_{0}. Put $A_{h}=h\left(A_{0}\right)$ and $N\left(A_{h}\right)=h\left(N\left(A_{0}\right)\right)$. Then $\tilde{V}_{h}=V_{0}^{*} \cup N\left(A_{h}\right)$ is the image of $\tilde{V}_{0}=V_{0} \cup N\left(A_{0}\right)$ under the automorphism h. The frontier of $N\left(A_{0}\right)$ in X_{0} consists of two annuli whose cores c^{+}and c^{-}run along $\partial \widetilde{V}_{0}$ as shown in Figure 6(b), where U in the figure may be considered as the closed complement of \widetilde{V}_{0}. Each core $c^{ \pm}$bounds a disk $D^{ \pm}$in \widetilde{V}_{0}. Let $c_{h}^{ \pm}=h\left(c^{ \pm}\right)$ and $D_{h}^{ \pm}=h\left(D^{ \pm}\right)$. Then $c_{h}^{ \pm}$are the cores of the frontier annuli of $N\left(A_{h}\right)$ in X_{0}^{*} and they bound disks $D_{h}^{ \pm}$.

Note that A_{h} is a properly embedded nonseparating annulus in X_{0}^{*}. By Lemma 3.4 A_{0}^{*} is a unique properly embedded nonseparating annulus in X_{0}^{*} up to isotopy. Hence A_{h} and A_{0}^{*} are isotopic in X_{0}^{*}.
Note that $\operatorname{cl}\left(\tilde{V}_{0}-N\left(D^{ \pm}\right)\right)$is an embedded solid torus in S^{3}. The core of the solid torus is either the unknot or the right-handed trefoil according to the choice of the disks D^{+}and D^{-}. We may assume that the core is the unknot for D^{-}and the right-handed trefoil for D^{+}. See Figure 10. Similarly, $\operatorname{cl}\left(\tilde{V}_{h}-N\left(D_{h}^{ \pm}\right)\right)$is a solid torus embedded in S^{3} whose core is either the unknot or the left-handed trefoil. The orientation-preserving automorphism h takes $\operatorname{cl}\left(\tilde{V}_{0}-N\left(D^{+}\right)\right)$to $\operatorname{cl}\left(\tilde{V}_{h}-N\left(D_{h}^{+}\right)\right)$or $\operatorname{cl}\left(\tilde{V}_{h}-N\left(D_{h}^{-}\right)\right)$. This implies that the right-handed trefoil is equivalent to the unknot or the left-handed trefoil, both of which are impossible.

Figure 10
Recall that twisting $V_{0} n$ times along the shaded disk in Figure 11(a) defines a homeomorphism $\sigma_{k}: X_{0} \rightarrow X_{k}$. By Lemma 3.4, $A_{k}=\sigma_{k}\left(A_{0}\right)$ is up to isotopy a unique nonseparating annulus in X_{k}. Note that $A_{k} \subset S^{3}$ is an unknotted annulus with k full twists and its boundary is the ($2,2 k$)-torus link (if $k= \pm 1$, the boundary is the Hopf link). See Figure 11(b).

Figure 11
Let c_{k}, d_{k} be the two loop edges of Φ_{k} and e_{k} the nonloop edge. Then V_{k} is a union of two solid tori $V_{k, 1}=N\left(c_{k}\right), V_{k, 2}=N\left(d_{k}\right)$, and a 1-handle $H_{k}=$ $\operatorname{cl}\left(N\left(e_{k}\right)-V_{k, 1} \cup V_{k, 2}\right)$. It may be assumed that $V_{k, 1}$ contains the boundary of the shaded disk in Figure 11(a). Each boundary component of A_{k} is not contractible in V_{k} if $k \neq 0$, and a cocore disk D_{k} for the 1 -handle H_{k} splits V_{k} into two solid tori, isotopic to $V_{k, 1}$ and $V_{k, 2}$, each of which contains one boundary component of A_{k}. Let $\partial_{i} A_{k}(i=1,2)$ denote the boundary component of A_{k} lying in $V_{k, i}$. See Figure 11(b).

Lemma 3.6 There exists an orientation-preserving automorphism of the pair $\left(S^{3}, V_{-1}\right)$ which interchanges $V_{-1,1}$ and $V_{-1,2}$.

Proof Figure 4(b) allows us to regard V_{-1} as 6_{4}. It is easy to see that an involution on $\left(S^{3}, 6_{4}\right)$ is defined by rotating 6_{4} through π about a vertical axis. The involution is the desired automorphism.

Proof of Theorem 1.1(1) First, assume that V_{n} is amphicheiral for some nonzero integer n (V_{0} is not amphicheiral by Lemma 3.5), that is, there is an orientationpreserving homeomorphism of pairs $\left(S^{3}, V_{n}\right) \rightarrow\left(S^{3}, V_{n}^{*}\right)$. Note that A_{n} and A_{n}^{*} are up to isotopy unique nonseparating annuli in X_{n} and X_{n}^{*}, respectively. Hence composing with an orientation-preserving automorphism of the pair (S^{3}, V_{n}^{*}), if necessary, we may assume that the homeomorphism takes A_{n} to A_{n}^{*}. In other words, A_{n} and A_{n}^{*} are isotopic in S^{3}. However, one of the annuli A_{n} and A_{n}^{*} has righthanded $|n|$ full twists and the other left-handed $|n|$ full twists, so they cannot be isotopic. This gives a contradiction. Therefore V_{n} is not equivalent to its mirror image for any integer n.

Let n, m be distinct integers, and assume that there is a homeomorphism of pairs $h:\left(S^{3}, V_{n}\right) \rightarrow\left(S^{3}, V_{m}\right)$, where h may or may not preserve the orientation of S^{3}.

Similarly as above, we may assume that $h\left(A_{n}\right)=A_{m}$. Then $h\left(\partial A_{n}\right)=\partial A_{m}$, which means that h takes a $(2,2 n)$-torus link to a $(2,2 m)$-torus link. Hence $m=n$ or $m=-n$. The former contradicts the assumption that n and m are distinct. If $n=0$ then h must preserve the orientation of S^{3} by Lemma 3.5, so h is isotopic to the identity of S^{3} and we have nothing to prove. Hence we may assume that $m=-n$ and $n \neq 0$. Since the twists of A_{n} and A_{-n} are reversed, h must be orientation-reversing.

By Lemma $2.3 D_{ \pm n}$, a cocore disk of the 1-handle $H_{ \pm n}$ in $V_{ \pm n}$, is up to isotopy a unique essential separating disk in $V_{ \pm n}$ which separates the two boundary components of $A_{ \pm n}$, so it may be assumed up to isotopy of V_{-n} that $h\left(D_{n}\right)=D_{-n}$ and moreover $h\left(H_{n}\right)=H_{-n}$. This implies that h takes each solid torus $V_{n, i}(i=1,2)$ to one of the two solid tori $V_{-n, 1}$ and $V_{-n, 2}$. Note that $\partial_{1} A_{ \pm n}$ is homotopic to $\pm n$ times the core of $V_{ \pm n, 1}$, while $\partial_{2} A_{ \pm n}$ is homotopic to the core of $V_{ \pm n, 2}$. Hence when $|n| \geq 2$, $h\left(\partial_{i} A_{n}\right)=\partial_{i} A_{-n}$ for each $i=1$, 2, which implies $h\left(V_{n, i}\right)=V_{-n, i}$. When $|n|=1$, by composing h with an orientation-preserving automorphism of the pair $\left(S^{3}, V_{-1}\right)$ given in Lemma 3.6 we may assume that $h\left(V_{n, i}\right)=V_{-n, i}$ for each $i=1,2$. In particular, we may always assume that c_{n}, the core of $V_{n, 1}$, is mapped by h onto c_{-n}, the core of $V_{-n, 1}$. Consider the composition

$$
\left(S^{3}, V_{n}\right) \xrightarrow{h}\left(S^{3}, V_{-n}\right) \xrightarrow{r}\left(S^{3}, V_{-n}^{*}\right),
$$

where r is a reflection. See Figure 12. Let f be the restriction of the composition $r \circ h$ onto the pair $\left(S^{3}-V_{n, 1}, V_{n}-V_{n, 1}\right)$. Then $f:\left(S^{3}-V_{n, 1}, V_{n}-V_{n, 1}\right) \rightarrow$ $\left(S^{3}-V_{-n, 1}^{*}, V_{-n}^{*}-V_{-n, 1}^{*}\right)$ is an orientation-preserving homeomorphism of pairs.

Figure 12

Note that $\left(S^{3}, V_{n}\right)$ is obtained from $\left(S^{3}, V_{0}\right)$ by $1 / n$-surgery on c_{0}. Also, $\left(S^{3}, V_{-n}^{*}\right)$ is obtained from $\left(S^{3}, V_{0}^{*}\right)$ by $1 / n$-surgery on c_{0}^{*}. These two surgeries define two
orientation-preserving homeomorphisms of pairs as follows:

$$
\begin{aligned}
& \left(S^{3}-V_{0,1}, V_{0}-V_{0,1}\right) \xrightarrow{g}\left(S^{3}-V_{n, 1}, V_{n}-V_{n, 1}\right), \\
& \left(S^{3}-V_{0,1}^{*}, V_{0}^{*}-V_{0,1}^{*}\right) \xrightarrow{g^{*}}\left(S^{3}-V_{-n, 1}^{*}, V_{-n}^{*}-V_{-n, 1}^{*}\right) .
\end{aligned}
$$

For example, twisting n times along the shaded disk in Figure 11(a) defines g. The composition $\left(g^{*}\right)^{-1} \circ f \circ g$ is an orientation-preserving homeomorphism from $\left(S^{3}-V_{0,1}, V_{0}-V_{0,1}\right)$ to $\left(S^{3}-V_{0,1}^{*}, V_{0}^{*}-V_{0,1}^{*}\right)$. Note that the composition takes a meridian of c_{0} to a meridian of c_{0}^{*}. Hence $\left(g^{*}\right)^{-1} \circ f \circ g$ extends to an orientationpreserving homeomorphism of pairs from $\left(S^{3}, V_{0}\right)$ to $\left(S^{3}, V_{0}^{*}\right)$. This contradicts Lemma 3.5.

$4 \boldsymbol{W}_{\boldsymbol{n}}$ and $\boldsymbol{W}_{\boldsymbol{m}}(\boldsymbol{n} \neq \boldsymbol{m})$ are not equivalent

Consider Ψ_{0}. An isotopy of S^{3} gives the pictures in Figure 13, showing that there exists a nonseparating annulus A_{0} in Y_{0}. Cutting Y_{0} along A_{0} gives a genus two handlebody U. Let $A_{0}^{ \pm}$be the two copies of A_{0} in ∂U and $c^{ \pm}$the cores of $A_{0}^{ \pm}$. See Figure 14(a) for $c^{ \pm}$, where U is the outside of the standardly embedded genus two surface and Y_{0} can be recovered by gluing the annulus neighborhoods $A_{0}^{ \pm}$of $c^{ \pm}$ in the manner indicated in the figure. An external view of $\left(U, c^{ \pm}\right)$is illustrated in Figure 14(b), that is, U is the inside of the standardly embedded genus two surface in the figure.

Figure 13
Lemma 4.1 U does not contain an essential disk or a properly embedded nonseparating annulus disjoint from $c^{+} \cup c^{-}$.

Proof First, note that both $c^{ \pm}$are primitive curves in U, so $U\left[c^{ \pm}\right]$are solid tori. Also, it is easy to see that the fundamental group of $U\left[c^{+} \cup c^{-}\right]$is cyclic with order 3 . Assume that there exists an essential disk D in U disjoint from $c^{+} \cup c^{-}$. If D is a nonseparating disk in U then it is also nonseparating in $U\left[c^{+} \cup c^{-}\right]$and hence

Figure 14
the fundamental group of $U\left[c^{+} \cup c^{-}\right]$contains an element of infinite order, contradicting the observation above. Hence D separates U into two solid tori U^{+} and U^{-}. Since U does not contain a nonseparating disk disjoint from $c^{+} \cup c^{-}$, both U^{+}and U^{-}intersect $c^{+} \cup c^{-}$and hence we may assume that $c^{ \pm} \subset U^{ \pm}$. Then $\mathbb{Z}_{3} \cong \pi_{1}\left(U\left[c^{+} \cup c^{-}\right]\right) \cong \pi_{1}\left(U^{+}\left[c^{+}\right]\right) * \pi_{1}\left(U^{-}\left[c^{-}\right]\right)$, so either $\pi_{1}\left(U^{+}\left[c^{+}\right]\right) \cong \mathbb{Z}_{3}$, $\pi_{1}\left(U^{-}\left[c^{-}\right]\right)=1$ or $\pi_{1}\left(U^{+}\left[c^{+}\right]\right)=1, \pi_{1}\left(U^{-}\left[c^{-}\right]\right) \cong \mathbb{Z}_{3}$. In the first case, since $U\left[c^{+}\right]$is the union of $U^{+}\left[c^{+}\right]$and U^{-}along the disk D, its fundamental group is $\pi_{1}\left(U\left[c^{+}\right]\right) \cong \pi_{1}\left(U^{+}\left[c^{+}\right]\right) * \pi_{1}\left(U^{-}\right) \cong \mathbb{Z}_{3} * \mathbb{Z}$. This contradicts our observation that $U\left[c^{+}\right]$is a solid torus. In the latter case, we get a contradiction in a similar way. Therefore we conclude that U does not contain an essential disk disjoint from $c^{+} \cup c^{-}$.

Assume that there exists a properly embedded nonseparating annulus A in U which is disjoint from $c^{+} \cup c^{-}$. Since A is disjoint from $c^{+} \cup c^{-}, A$ survives in $U\left[c^{+} \cup c^{-}\right]$ as a properly embedded nonseparating annulus. Capping off the boundary sphere of $U\left[c^{+} \cup c^{-}\right]$with a 3 -ball, we get a $3-$ manifold without boundary, in which A extends to a nonseparating sphere. But the fundamental group of the 3 -manifold is the cyclic group of order 3 and hence the 3 -manifold cannot contain a nonseparating sphere, a contradiction.

Lemma 4.2 Let $D_{0} \subset U$ be the disk illustrated in Figure 15. Then up to isotopy D_{0} is a unique properly embedded disk in U which is commonly dual to c^{+}and c^{-}.

Proof Let D be a common dual disk of c^{+}and c^{-}that is not isotopic to D_{0}. We may assume that D intersects D_{0} transversely and the intersection $D \cap D_{0}$ is minimal among all such disks. If D were disjoint from D_{0}, then by Lemma 2.1 $\pi_{1}\left(U\left[c^{+} \cup c^{-}\right]\right) \cong \mathbb{Z}$ or \mathbb{Z}_{2}, contradicting the fact that $\pi_{1}\left(U\left[c^{+} \cup c^{-}\right]\right) \cong \mathbb{Z}_{3}$.

By the minimality of $\left|D \cap D_{0}\right|$, the intersection $D \cap D_{0}$ has no circle components. An outermost arc of intersection in D_{0} cuts off a subdisk from D_{0} which intersects $c^{+} \cup c^{-}$ in at most one point. Surgery on D along the subdisk produces two disks D_{1}, D_{2}.

Figure 15
One of these disks, say, D_{1} intersects $c^{+} \cup c^{-}$in at most two points. Note that D_{1} is essential in U, otherwise $\left|D \cap D_{0}\right|$ could be reduced. By Lemma 4.1 D_{1} cannot be disjoint from $c^{+} \cup c^{-}$. If D_{1} had exactly one point of intersection with $c^{+} \cup c^{-}$ then there would exist an essential (separating) disk in U disjoint from $c^{+} \cup c^{-}$, contradicting Lemma 4.1. Hence D_{1} intersects $c^{+} \cup c^{-}$in two points, and so does the other disk D_{2}. One of the two disks D_{1} and D_{2} is a common dual disk of c^{+}and c^{-}, and the other intersects one of c^{+}and c^{-}in two points. The former disk contradicts the minimality of $\left|D \cap D_{0}\right|$.

Lemma 4.3 A_{0} is incompressible and ∂-incompressible in Y_{0}.
Proof One sees from Figure 14 (b) that both $c^{ \pm}$are primitive curves in U, so A_{0} is incompressible. Suppose that A_{0} is ∂-compressible. Let D be a ∂-compressing disk for A_{0}. Then D is an essential disk in U which intersects $c^{+} \cup c^{-}$in a single point. We may assume that D intersects c^{+}but not c^{-}. Then c^{+}becomes a longitudinal curve of the solid torus $U\left[c^{-}\right]$, since D, a meridian disk of $U\left[c^{-}\right]$, intersects c^{+}in a single point. This implies that $U\left[c^{+} \cup c^{-}\right]$is a 3-ball. But in the proof of Lemma 4.1 we already observed that the fundamental group of $U\left[c^{+} \cup c^{-}\right]$is the cyclic group of order 3 .

Lemma 4.4 Y_{0} is irreducible and ∂-irreducible. Hence Y_{n} is irreducible and $\partial-$ irreducible for any integer n.

Proof The same argument as in the proof of Lemma 3.3 applies here by using Lemma 4.1 instead of Lemma 3.1.

Since Y_{n} is ∂-irreducible, W_{n} is an irreducible handlebody-knot.
Lemma 4.5 A_{0} is a unique properly embedded nonseparating annulus in Y_{0} up to isotopy.

Proof Let A be a properly embedded nonseparating annulus in Y_{0} which is not isotopic to A_{0}. The ∂-irreducibility of Y_{0} implies that A is incompressible and ∂-incompressible.
The intersection $A \cap A_{0}$ may be assumed to be transverse and minimal up to isotopy. Suppose that the intersection is empty. Then A lies in U and is disjoint from $c^{+} \cup c^{-}$. Also, A is incompressible and not ∂-parallel in U, since otherwise A would be compressible in Y_{0} or parallel to A_{0} or an annulus in ∂Y_{0}. By Lemma 4.1 A is separating in U. Since A is nonseparating in Y_{0}, A must separate c^{+}and c^{-}. It follows from Lemma 2.2 that one of c^{+}and c^{-}represents a proper power of a primitive element of $\pi_{1}(U)$, contradicting the fact that both $c^{ \pm}$are primitive curves in U. Hence $A \cap A_{0}$ is not empty.
The same argument as in the third and fourth paragraphs in the proof of Lemma 3.4 applies to show that all the components of $A \cap A_{0}$ are essential on both A and A_{0} and that they are all either circles or arcs. First, suppose that they are all circles. Then surgery on A_{0} along an annulus cut off from A by an outermost component of $A \cap A_{0}$ in A yields two properly embedded annuli A_{1}, A_{2} in Y_{0} which are disjoint from A_{0}. Each annulus $A_{i}(i=1,2)$ is not isotopic to A_{0} by the minimality assumption on $\left|A \cap A_{0}\right|$. Since we already observed that any nonseparating annulus in Y_{0} which is not isotopic to A_{0} cannot be disjoint from A_{0}, each A_{i} is separating in Y_{0}. This implies that A_{0} is separating in Y_{0}, a contradiction.
Now suppose all the components of $A \cap A_{0}$ are arcs that are essential on both A and A_{0}. Then the arcs cut A into rectangles R_{1}, \ldots, R_{n}. Each rectangle R_{i} can be considered as a properly embedded disk in U, which is essential by the minimality of $A \cap A_{0}$. Also, each ∂R_{i} intersects $c^{+} \cup c^{-}$in two points. There are two possibilities for the intersection of each ∂R_{i} with $c^{+} \cup c^{-}$; for each i, either ∂R_{i} intersects each of c^{+}and c^{-}in a single point or ∂R_{i} intersects one of c^{+}and c^{-}in two points and misses the other.
Suppose that some R_{i} intersects one of the cores c^{+}and c^{-}in two points. Note that each arc of $A \cap A_{0}$ has two copies in ∂U, one in A_{0}^{+}and the other in A_{0}^{-}. This implies that some $R_{j}(j \neq i)$ intersects the other core in two points. See Figure 16(a). We may assume that R_{i} has two points of intersection with c^{+}(and then R_{j} has two points of intersection with c^{-}). Then R_{i} is disjoint from c^{-}, implying that R_{i} is a properly embedded disk in the solid torus $U\left[c^{-}\right]$. Also, c^{+}is a simple loop in $\partial U\left[c^{-}\right]$ intersecting R_{i} in two points. Since a 2 -handle addition on $U\left[c^{-}\right]$along c^{+}results in the 3 -manifold $U\left[c^{+} \cup c^{-}\right]$with $\pi_{1}\left(U\left[c^{+} \cup c^{-}\right]\right) \cong \mathbb{Z}_{3}, R_{i}$ must be ∂-parallel in $U\left[c^{-}\right]$. This implies that R_{i} is separating in U. Similarly, R_{j} is separating in U. Since any two disjoint separating essential disks in a genus two handlebody are parallel, R_{i} and R_{j} are parallel in U. Since R_{j} is disjoint from c^{+}, R_{i} can be isotoped to be disjoint from c^{+}(and still from c^{-}). This contradicts Lemma 4.1.

Figure 16

Hence each ∂R_{i} intersects each c^{+}and c^{-}in a single point, that is, each R_{i} is commonly dual to c^{+}and c^{-}. By Lemma 4.2 all the rectangles R_{1}, \ldots, R_{n} are isotopic to the disk D_{0} in Figure 15 and hence they are mutually parallel in U. Let $a_{i}^{ \pm}=R_{i} \cap A_{0}^{ \pm}$for $i=1, \ldots, n$. We may assume that R_{1}, \ldots, R_{n} had been labeled so that $a_{1}^{+}, \ldots, a_{n}^{+}$appear in A_{0}^{+}successively along the orientation of c^{+}. Then $a_{1}^{-}, \ldots, a_{n}^{-}$appear in A_{0}^{-}successively along the reversed orientation of c^{-}, since the algebraic intersection number of ∂D_{0} with the two oriented loops $c^{+} \cup c^{-}$is zero. See Figure 16(b). In Y_{0}, the $\operatorname{arcs} a_{1}^{+}, \ldots, a_{n}^{+}$and the $\operatorname{arcs} a_{1}^{-}, \ldots, a_{n}^{-}$are identified in pair to form A. The identification defines a permutation σ of $\{1, \ldots, n\}$ such that a_{i}^{+}is identified with $a_{\sigma(i)}^{-}$. In fact, $\sigma(i) \equiv-i+k \bmod n$ for some integer k.

Suppose that n is odd. By replacing k with $k+n$, if necessary, we may assume that k is even. Then $\sigma(k / 2) \equiv-k / 2+k \equiv k / 2 \bmod n$. This implies $n=1$, otherwise we would obtain a disconnected surface from the rectangles R_{1}, \ldots, R_{n} by identifying a_{i}^{+}and $a_{\sigma(i)}^{-}(i=1, \ldots, n)$. Even if $n=1$, the identification produces a Möbius band because the two oriented loops c^{+}and c^{-}intersect oppositely with ∂R_{1}. This gives a contradiction.

Suppose that n is even. The complementary regions of $R_{1} \cup \cdots \cup R_{n}$ in U can be alternately colored black and white. If $\sigma(i) \equiv-i+k \bmod n$ for some odd integer k then black regions match with black regions and white regions match with white regions, implying that A is separating in Y_{0}. Hence k is even. Then $\sigma(k / 2) \equiv k / 2 \bmod n$, and two opposite sides a_{k}^{+}and a_{k}^{-}of R_{k} are identified to form a Möbius band. This is also impossible.

Proof of Theorem 1.1(2) Let $\partial_{1} A_{0}$ and $\partial_{2} A_{0}$ denote the two boundary components of A_{0} as shown in Figure 17. After an isotopy, the two loops appear in ∂Y_{0} as shown in the last drawing in the figure.

Figure 17

Recall that twisting $W_{0} n$ times along the shaded disk in Figure 18 defines a homeomorphism $\sigma_{n}: Y_{0} \rightarrow Y_{n}$. By Lemma 4.5, $A_{n}=\sigma_{n}\left(A_{0}\right)$ is a unique properly embedded nonseparating annulus in Y_{n} up to isotopy. Let $\partial_{i} A_{n}=\sigma_{n}\left(\partial_{i} A_{0}\right)$ for $i=1,2$. The core of A_{n} is an embedded circle in S^{3}, isotopic to any boundary component of A_{n} in S^{3} along a half of A_{n}. One easily sees that $\partial_{1} A_{n}$ is a ($3,3 n-1$)-torus knot, and so is the core.

Figure 18
Assume that W_{n} is amphicheiral. Then there is an orientation-preserving homeomorphism of pairs $\left(S^{3}, W_{n}\right) \rightarrow\left(S^{3}, W_{n}^{*}\right)$. Since A_{n} and A_{n}^{*} are respectively up to isotopy unique nonseparating annuli in Y_{n} and Y_{n}^{*} by Lemma 4.5, composing with
an orientation-preserving automorphism of the pair $\left(S^{3}, W_{n}^{*}\right)$, if necessary, we may assume that the homeomorphism takes A_{n} to A_{n}^{*}. This implies that A_{n} and A_{n}^{*} are isotopic in S^{3}. In particular, their cores are isotopic. The core of A_{n} is a ($3,3 n-1$)torus knot, while that of A_{n}^{*} is the mirror image of a ($3,3 n-1$)-torus knot. It is well known that every nontrivial torus knot is not amphicheiral. If $n \neq 0$ then a ($3,3 n-1$) torus knot is not the trivial knot, so it is not amphicheiral. Hence $n=0$. However, ∂A_{0} is a $(2,-6)$-torus link (see the first drawing in Figure 17), while ∂A_{0}^{*} is the mirror image of a $(2,-6)$-torus link. The two torus links are not isotopic, a contradiction. Hence W_{n} is not amphicheiral for any integer n.
Let n and m be distinct integers. Then neither of the $(3,3 n-1)$-torus knot and its mirror image is isotopic to the $(3,3 m-1)$-torus knot. Hence a similar argument as above shows that neither of W_{n} and W_{n}^{*} is equivalent to W_{m}.

Acknowledgements We would like to thank Atsushi Ishii, Kengo Kishimoto and Makoto Ozawa for their helpful conversations. The first author was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-0027989). The second author was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2010-0024630).

References

[1] C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371-415 MR965210
[2] A Ishii, Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8 (2008) 1403-1418 MR2443248
[3] A Ishii, K Kishimoto, H Moriuchi, M Suzuki, A table of genus two handlebody-knots up to six crossings, J. Knot Theory Ramifications 21 (2012) Art. ID 1250035, 9pp
[4] T Kobayashi, Structures of the Haken manifolds with Heegaard splittings of genus two, Osaka J. Math. 21 (1984) 437-455 MR752472
[5] M Motto, Inequivalent genus 2 handlebodies in S^{3} with homeomorphic complement, Topology Appl. 36 (1990) 283-290 MR1070707

Department of Mathematics and Inst. of Pure and Applied Math., Chonbuk National University Jeonju 561-756, Korea
Department of Mathematics, Chung-Ang University
221 Heukseok-dong, Dongjak-gu, Seoul 156-756, South Korea
junghoon@jbnu.ac.kr, sylee@cau.ac.kr
Received: 31 October 2011 Revised: 20 February 2012

