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Normalizers of parabolic subgroups of Coxeter groups

DANIEL ALLCOCK

We improve a bound of Borcherds on the virtual cohomological dimension of the
nonreflection part of the normalizer of a parabolic subgroup of a Coxeter group.
Our bound is in terms of the types of the components of the corresponding Coxeter
subdiagram rather than the number of nodes. A consequence is an extension of
Brink’s result that the nonreflection part of a reflection centralizer is free. Namely,
the nonreflection part of the normalizer of parabolic subgroup of type D5 or Am odd

is either free or has a free subgroup of index 2 .

20F55

Suppose … is a Coxeter diagram, J is a subdiagram and WJ �W… is the corresponding
inclusion of Coxeter groups. The normalizer NW…

.WJ / has been described in detail by
Borcherds [2] and Brink and Howlett [4]. Such normalizers have significant applications
to working out the automorphism groups of Lorentzian lattices and K3 surfaces; see [2]
and its references. NW…

.WJ / falls into 3 pieces: WJ itself, another Coxeter group W�

and a group �� of diagram automorphisms of W� . The last two groups are called the
“reflection” and “nonreflection” parts of the normalizer. Borcherds bounded the virtual
cohomological dimension of �� by jJ j. Our Theorems 1, 3 and 4 give stronger bounds,
in terms of the types of the components of J rather than the number of nodes. There are
choices involved in the definition of W� and �� , and our bound in Theorem 3 applies
regardless of how these choices are made (Theorem 1 is a special case). Theorem 4
improves this bound when W� is “maximal”. In this case, when J DD5 or Am odd ,
�� turns out to either be free or have an index 2 subgroup that is free. This extends
Brink’s result [3] that �� is free when J DA1 .

The author is grateful to the Clay Mathematics Institute, the Japan Society for the
Promotion of Science, and Kyoto University for their support and hospitality.

We follow the notation of Borcherds [2] and refer to Humphreys [5] for general
information about Coxeter groups. Suppose .W…;…/ is a Coxeter system, which
is to say that W… is a Coxeter group and … is a standard set of generators. The
Coxeter diagram is the graph whose nodes are …, with an edge between si ; sj 2…

labeled by the order mij of sisj , when mij > 2. W… acts isometrically on a real
inner product space V… with basis (the simple roots) … and inner products defined in
terms of the mij . The (open) Tits cone K is an open convex subset of V �

…
on which
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W… acts properly discontinuously with fundamental chamber C… . (Our C… and K

are “missing” the faces corresponding to infinite parabolic subgroups of W… .) The
standard generators act on V �

…
by reflections across the hyperplanes containing the

facets of C… , and they also act on V… by reflections. For a root ˛ (ie, a W…–image
of a simple root) we write ˛? for ˛ ’s mirror, meaning the fixed-point set in K of the
reflection associated to ˛ .

Now let J �… be a spherical subdiagram, ie, one corresponding to a finite subgroup
of W… , and let Wmin be the group generated by the reflections in W… that act trivially
on VJ � V… . This is the “reflection” part of NW…

.WJ /, or rather the strictest possible
interpretation of this idea. It corresponds to Borcherds’ W� in the case that the
groups he calls �… and �J are trivial; see the discussion after Lemma 2. Let J? WDT
˛2J ˛

? , pick a component C ımin of the complement of Wmin ’s mirrors in J? , and
define Cmin as its closure (in J? ). By definition, Wmin is a Coxeter group, and the
general theory of these groups shows that Cmin is a chamber for it. The “nonreflection”
part of NW…

.WJ / means the subgroup �min of W… preserving J (regarded as a set
of roots) and sending Cmin to itself. The reason for the first condition is to discard
the trivial part of NW…

.WJ /, namely WJ itself. That is, WminW�min is a complement
to WJ in NW…

.WJ /. We write �_min for the subgroup of �min acting trivially on J

(equivalently, on VJ ). The reason for passing to this (finite-index) subgroup is that
�min often contains torsion and therefore has infinite cohomological dimension for
boring reasons.

Theorem 1 �_min acts freely on a contractible cell complex of dimension at most

(1) #A1C #Dm>4C #E6C #I2.5/C 2.#Am>1C #D4/;

where #Xm means the number of components of J isomorphic to a given Coxeter
diagram Xm . In particular, the cohomological dimension of �_min is at most (1).

Borcherds’ result [2, Theorem 4.1] has jJ j in place of (1), but treats a more general
group �� , of which �min is a special case. The more general case follows from this
one, in Theorem 3 below.

Proof First we prove for x 2 C ımin that its stabilizer �_min;x is trivial. The W…–
stabilizer of x is some W…–conjugate Wx of a spherical parabolic subgroup of W… .
So Wx acts on V… as a finite Coxeter group. It is well-known that any vector stabilizer
in such an action is generated by reflections, so the subgroup Wx;J fixing J pointwise
is generated by reflections. Observe that any reflection in Wx;J lies in Wmin . Since x

lies in the interior C ımin of Cmin , it is fixed by no reflection in Wmin , so there can be no
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reflection in Wx;J , so Wx;J D 1. It is easy to see that Wx;J contains �_min;x , so we
have proven that �_min acts freely on C ımin .

The component C ımin is contractible because it is convex, and it obviously admits an
equivariant deformation-retraction to its dual complex. So it suffices to show that the
dual complex has dimension at most (1). Suppose � � J? is a face of a chamber
of W… , with codimension in J? larger than (1); we must show � \ C ımin D ∅.
For some w 2 W… , w� is a face of C… whose corresponding set of simple roots
I 0 �… contains J 0 WDw.J /Š J . By the codimension hypothesis on � , jI 0j� jJ 0j is
more than (1). Applying the lemma below to J 0 and I 0 , we see that WI 0 contains a
reflection r fixing J 0 pointwise. Since r 2WI 0 , its mirror contains w� . So w�1rw

is a reflection fixing J pointwise (so it lies in Wmin ), whose mirror contains � . Since
C ımin is a component of the complement of the mirrors of Wmin , it is disjoint from � ,
as desired.

Lemma 2 If J lies in a spherical Coxeter diagram I �… whose cardinality exceeds
that of J by more than (1), then WI contains a reflection fixing J pointwise.

Remark Equality in (1) holds when I extends the Am , Dm , E6 and I2.5/ compo-
nents of J by A1! A2 , Am>1!DmC2 , D4! E6 , Dm>4!DmC1 , E6! E7

and I2.5/!H3 . One can check in these cases that the conclusion of the lemma fails.

Proof We may suppose I D…, by discarding the rest of …. Working one component
at a time, it suffices to prove the lemma under the additional hypothesis that … is
connected. We now consider the various possibilities for …, and suppose W… contains
no reflections fixing VJ pointwise. That is, we assume WminD 1. In each case we will
show that j…j � jJ j is at most (1).

The …D An case is a model for the rest. Suppose the component of J nearest one
end of … has type Am and does not contain that end. Then it must be adjacent to that
end (since WminD 1), so together with the end it forms an AmC1 . We conjugate by the
long word in W .AmC1/, which exchanges the two Am diagrams in AmC1 and fixes
the roots in the other components of J . The result is that we may suppose without loss
that J contains that end of …. Repeating the argument to move the other components
of J toward that end, we may suppose that there is exactly one node of … between any
two consecutive components of J . And the other end of … is either in J or adjacent
to it. It is now clear that j…j � jJ j is the number of components of J , or one less than
this. Since every component of J has type A, j…j � jJ j is at most (1). This finishes
the proof in the …DAn case.

If … D Bn D Cn then we begin by shifting any type A components of J as far as
possible from the double bond. If J has no Bm then J contains one end of the double
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bond, and we get j…j � jJ j equal to the number of components of J , all of which
have type A. If J has a Bm then the node after it (if there is one) must be adjacent to
some type A component of J . This is because W .BmC1/ contains a reflection acting
trivially on VBm

. This is easy to see in the model of W .BmC1/ as the isometry group
of ZmC1 . It follows that j…j � jJ j is the number of components of J of type A.

In the …DDn>3 case, one can use the shifting trick to reduce to one of the cases

(2)

where the filled nodes are those in J and the dashes indicate a chain of nodes with no
two consecutive unfilled nodes. (Except for the dashes on the left in the last 3 diagrams,
which indicate chains of filled nodes.) In every case we get

j…j � jJ j � #A1C #Dm�4C 2 #Am>1:

The most interesting case is An�2!Dn , at the top left.

We will treat the case …DE8 and leave the similar E6 and E7 cases to the reader. If
J has a D4 , D5 or E6 component, then it must also have a type A component, and
then j…j� jJ j � 2 #D4C#D5C#Am�1 , as desired. J cannot be D6 or E7 , because
then Wmin would contain the reflection in the lowest root of E8 , which extends E8 to
the affine diagram zE8 . So we may suppose J ’s components have type A. In order
for j…j � jJ j to exceed (1), we must have J DAm�5 , A3A1 , A2A1 or Am�3

1
. But

none of these cases can occur, because in each of them we may shift J ’s components
around so that some node of … is not joined to J .

The remaining cases are …DF4 , H3 , H4 and I2 , the last case including G2D I2.6/.
The facts required to treat these cases are that if J D B2 or B3 in …D F4 then Wmin

contains a reflection, and similarly in the J D H3 � H4 D … case. The first fact
is visible inside a B3 or B4 root system inside F4 . To see the second, observe that
the root stabilizer in H4 contains Coxeter groups of types A2 and I2.5/, visible in
the centralizers of the two end reflections of H4 (which are conjugate). So the root
stabilizer can only be W .H3/, which is to say that the H3 root system is orthogonal
to a root.

The greater generality obtained by Borcherds is the following. Let �… be a group of
diagram automorphisms of …, acting on V… and K in the obvious way. The goal
is to understand NW…W�…

.WJ /. Again we discard the boring part of this normalizer
by passing to the subgroup W 0

J
preserving the set of roots J �…. Let W� be any
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subgroup of W 0
J

which contains Wmin and is generated by elements which act on J?

by reflections. We define C ı� , C� and �� as for C ımin , Cmin and �min , and define �_�
as the subgroup of ��\W… acting trivially on J . (Borcherds left �_� unnamed and
defined W� in terms of auxiliary groups R E �J � Aut J ; his W� has the properties
assumed here.) The inclusion Wmin �W� is the source of the subscript “min”, but
note that Cmin and �min are larger than C� and �� . We can now recover Borcherds’
result [2, Theorem 4.1] with our (1) in place of jJ j.

Theorem 3 Theorem 1 holds with �_min replaced by �_� .

Proof The freeness of the action follows from the same argument. (This is why �_�
is defined as a subgroup of ��\W… rather than just �� .) The essential point for the
rest of the proof is that W� contains Wmin , so the decomposition of J? into chambers
of W� refines that of Wmin . This shows C ı� � C ımin . So the dual complex of C ı� has
dimension at most that of C ımin , and we can apply Theorem 1.

The point of considering W� rather than Wmin is that it is larger and so �� will be
smaller than �min . This is good since the nonreflection part is more mysterious than
the reflection part. So it is natural to define Wmax by setting �… D 1 and taking W�

as large as possible, ie, Wmax is the subgroup of W 0
J

generated by the transformations
which act on J? by reflections.

This is the largest possible “universal” W� , although a larger W� is possible if …
admits suitable diagram automorphisms. For example, �… might contain elements
acting on C… by reflections. I don’t know other examples, although probably there are
some.

We define C ımax , Cmax , �max and �_max as above. The next theorem follows from
Lemma 5 in exactly the same way that Theorem 1 follows from Lemma 2.

Theorem 4 The dimension of the dual complex of C ımax , hence the cohomological
dimension of �_max , is bounded above by

(3) #D5C #Am oddC 2 #Am even:

Remarks (i) If J has no Am or D5 component then �_max D 1 and �max is finite.
This is Borcherds’ [2, Example 5.6].

(ii) If J D D5 or Am odd then �_max � NW…
.WJ / is free. Also, since jAut J j � 2,

�_max has index 1 or 2 in �max . Therefore the nonreflection part �max of NW…
.WJ /

has a free subgroup of index 1 or 2.
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(iii) If J DA1 then �min D �
_

min D �max D �
_

max has cohomological dimension � 1.
This recovers Brink’s result [3] that �min is free.

(iv) If J DAm even then the conclusion dim.dual of C ımin/� 2 suggests that �max is
often comprehensible, like the J DA6 example of [2, Example 5.4].

Lemma 5 If J lies in a spherical Coxeter diagram I �…, whose cardinality exceeds
that of J by more than (3), then WI contains an element preserving the set J of roots
and acting on J? by a reflection.

Proof This is essentially the same as for Lemma 2, using the following additional
ingredients. For example, when I D Dn one can use them to show that the fifth,
seventh, eighth and tenth cases of (2) are impossible, while the first can only occur
when n is even.

First, if J DE6 �E7 D I then WI contains the negation of VI , which we follow by
the long word in WJ to send �J back to J . The composition is the claimed element
of WI . The same argument applies if J D I2.5/�H3 D I .

Second, if J DAm odd �DmC2 D I as in the first diagram of (2), then consider the
long word in WI . It negates J and exchanges and negates the two simple roots in I�J .
Following this by the long word in WJ yields the claimed element of WI . (When m

is even, the long word in WI negates the simple roots in I � J without exchanging
them, so it doesn’t act on J? by a reflection.)

Third, if J D Dm�3 � DmC1 D I then consider the model of WI as the group
generated by permutations and evenly many negations of mC 1 coordinates, with WJ

the corresponding subgroup for the first m coordinates. Letting � be the negation of
the last two coordinates, and following it by the element of WJ sending �.J / back
to J , gives the claimed element of WI .

There is a nice geometrical interpretation of the freeness of �min in the case J DA1 ,
developed further in [1]. Namely, the natural map C ımin! C ımin=�min �K=W… D C…
is the universal cover of its image. The image is got by discarding all the codimension 2

faces of C… corresponding to even bonds in …, discarding all codimension 3 faces, and
taking the component corresponding to J . This identifies �min with the fundamental
group of J ’s component of the “odd” subgraph of … in a natural manner.

One can extend this picture to the case J ¤A1 , but complications arise. First, one must
take W� to be normal in W…W�… . Second, while C ı�! C ı�=�

_
� is a covering space,

the image C ı�=�� of C ı� in C… is the quotient of C ı�=�
_
� by the finite group ��=�_� .

Usually, C ı�! C ı�=�� is only an orbifold cover since �� often has torsion. The
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top-dimensional strata of C ı�=�
_
� correspond to the “associates” of the inclusion

J !… in the sense of [2; 4]. Suppose J 0 �… is (the image of) an associate and I 0

is a spherical diagram containing it. Then the face of C… corresponding to I 0 , minus
lower-dimensional faces, lies in C ı�=�� just if WI 0 contains no element preserving J 0 ,
acting on it in a manner constrained by the choice of W� , and acting on J 0? by a
reflection. From this perspective, Lemmas 2 and 5 amount to working out two cases of
Borcherds’ notion of “R–reflectivity”. The orbifold structure on C ı�=�� is essentially
the same information as Borcherds’ classifying category for �� .
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