

Virtual amalgamation of relatively quasiconvex subgroups

EDUARDO MARTÍNEZ-PEDROZA Alessandro Sisto

For relatively hyperbolic groups, we investigate conditions guaranteeing that the subgroup generated by two relatively quasiconvex subgroups Q_1 and Q_2 is relatively quasiconvex and isomorphic to $Q_1 * Q_1 \cap Q_2 Q_2$. The main theorem extends results for quasiconvex subgroups of word-hyperbolic groups, and results for discrete subgroups of isometries of hyperbolic spaces. An application on separability of double cosets of quasiconvex subgroups is included.

20F65, 20F67

1 Introduction

This paper continues the work started by the first author in [10] motivated by the following question:

Problem 1 Suppose G is a relatively hyperbolic group and Q_1 and Q_2 are relatively quasiconvex subgroups of G. Investigate conditions guaranteeing that the natural homomorphism

$$Q_1 * q_1 \cap q_2 Q_2 \longrightarrow G$$

is injective and that its image $\langle Q_1 \cup Q_2 \rangle$ is relatively quasiconvex.

Let G be a group hyperbolic relative to a finite collection of subgroups \mathbb{P} , and let dist be a proper left invariant metric on G.

Definition 1 Two subgroups Q and R of G have *compatible parabolic subgroups* if for any maximal parabolic subgroup P of G either $Q \cap P < R \cap P$ or $R \cap P < Q \cap P$.

Theorem 2 For any pair of relatively quasiconvex subgroups Q and R of G with compatible parabolic subgroups, and any finite index subgroup H of $Q \cap R$, there is a constant $M = M(Q, R, H, \text{dist}) \ge 0$ with the following property. Suppose that Q' < Q and R' < R are subgroups such that:

(1)
$$H = Q' \cap R';$$

(2) dist $(1, g) \ge M$ for any g in $Q' \setminus Q' \cap R'$ or $R' \setminus Q' \cap R'$.

Published: 27 October 2012

Then the subgroup $\langle Q' \cup R' \rangle$ of *G* satisfies:

(1) The natural homomorphism

 $Q' *_{Q' \cap R'} R' \longrightarrow \langle Q' \cup R' \rangle$

is an isomorphism.

(2) If Q' and R' are relatively quasiconvex, then so is $\langle Q' \cup R' \rangle$.

Theorem 2 extends results by Gitik [6, Theorem 1] for word-hyperbolic groups and by the first author [10, Theorem 1.1] for relatively hyperbolic groups. Yang recently obtained a similar combination results requiring stronger conditions [14]. His results include a combination result for HNN extensions and some applications to subgroup separability.

Definition 3 Two subgroups Q and R of a group G can be *virtually amalgamated* if there are finite index subgroups Q' < Q and R' < R such that the natural map $Q' *_{Q' \cap R'} R' \longrightarrow G$ is injective.

Let Q and R be relatively quasiconvex subgroups of G with compatible parabolic subgroups and let $M = M(Q, R, Q \cap R)$ be the constant provided by Theorem 2. If $Q \cap R$ is a separable subgroup of G, then there is a finite index subgroup G' of Gcontaining $Q \cap R$ such that dist(1, g) > M for every $g \in G$ with $g \notin Q \cap R$. In this case, the subgroups $Q' = G' \cap Q$ and $R' = G' \cap R$ satisfy the hypothesis of Theorem 2; hence they have a quasiconvex virtual amalgam.

Corollary 4 (Virtual Quasiconvex Amalgam Theorem) Let Q and R be quasiconvex subgroups of G with compatible parabolic subgroups, and suppose that $Q \cap R$ is separable. Then Q and R can be virtually amalgamated in G.

It is known that many (relatively) hyperbolic groups have the property that all quasiconvex or all finitely generated subgroups are separable; see Agol, Long and Reid [2], Long and Reid [8; 9], Wise [12; 13], and Agol, Groves and Manning [1]. Still, it is a natural question to ask whether the corollary above holds under the hypothesis that Gis residually finite.

A special case of the Virtual Quasiconvex Amalgam Theorem is the following by Baker and Cooper [3, Theorem 5.3].

Corollary 5 Let *G* be a geometrically finite subgroup of $isom(\mathbb{H}^n)$, and let *Q* and *R* be geometrically finite subgroups of *G* with compatible parabolic subgroups. Suppose $Q \cap R$ is separable in *G*. Then *Q* and *R* have a geometrically finite virtual amalgam.

Separability of quasiconvex subgroups and double cosets of quasiconvex subgroups is of interest in the construction of actions on special cube complexes [13]. The machinery we use to prove the main result also gives the following.

Corollary 6 (Double cosets are separable) Let G be a relatively hyperbolic group such that all its quasiconvex subgroups are separable. If Q and R are quasiconvex subgroups with compatible parabolic subgroups then the double coset QR is separable.

Acknowledgments We would like to thank Wen-yuan Yang for corrections on an earlier version of the paper, and for pointing out Corollary 6. We also thank the referee for insightful comments and corrections. Martínez-Pedroza is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

2 Preliminaries

2.1 Gromov-hyperbolic spaces

Let (X, dist) be a proper and geodesic δ -hyperbolic space. Recall that a (λ, μ) quasigeodesic is a curve $\gamma: [a, b] \to X$ parameterized by arc length such that

$$|x - y|/\lambda - \mu \le \operatorname{dist}(\gamma(x), \gamma(y)) \le \lambda |x - y| + \mu$$

for all $x, y \in [a, b]$. The curve γ is a *k*-local (λ, μ) -quasigeodesic if the above condition is required only for $x, y \in [a, b]$ such that $|x - y| \le k$.

Lemma 7 Coornaert, Delzant and Papadopoulos [5, Chapter 3, Theorem 1.2] (Morse Lemma) For each λ, μ, δ there exists k > 0 with the following property. In a δ -hyperbolic geodesic space, any (λ, μ) -quasigeodesic at k-Hausdorff distance from the geodesic between its endpoints.

Lemma 8 [5, Chapter 3, Theorem 1.4] For each λ, μ, δ there exist k, λ', μ' so that any k-local (λ, μ) -quasigeodesic in a δ -hyperbolic geodesic space is a (λ', μ') -quasigeodesic.

Fix a basepoint $x_0 \in X$. If G is a subgroup of Isom(X), we identify each element g of G with the point gx_0 of X. For $g_1, g_2 \in G$ denote by $\text{dist}(g_1, g_2)$ the distance $\text{dist}(g_1x_0, g_2x_0)$. Since X is a proper space, if G is a discrete subgroup of Isom(X), this is a proper and left invariant pseudometric on G.

Lemma 9 [10, Lemma 4.2] (Bounded Intersection) Let G be a discrete subgroup of isom(X), let Q and R be subgroups of G, and let $\mu > 0$ be a real number. Then there is a constant $M = M(Q, R, \mu) \ge 0$ so that

 $Q \cap \mathcal{N}_{\mu}(R) \subset \mathcal{N}_{M}(Q \cap R).$

2.2 Relatively quasiconvex subgroups

We follow the approach to relatively hyperbolic groups as developed by Hruska [7].

Definition 10 (Relative Hyperbolicity) A group *G* is *relatively hyperbolic with respect to a finite collection of subgroups* \mathbb{P} if *G* acts properly discontinuously and by isometries on a proper and geodesic δ -hyperbolic space *X* with the following property: *X* has a *G*-equivariant collection of pairwise disjoint horoballs whose union is an open set *U*, *G* acts cocompactly on $X \setminus U$, and \mathbb{P} is a set of representatives of the conjugacy classes of parabolic subgroups of *G*.

Throughout the rest of the paper, *G* is a relatively hyperbolic group acting on a proper and geodesic δ -hyperbolic space *X* with a *G*-equivariant collection of horoballs satisfying all conditions of Definition 10. As before, we fix a basepoint $x_0 \in X \setminus U$, identify each element *g* of *G* with $gx_0 \in X$ and let $dist(g_1, g_2)$ denote $dist(g_1x_0, g_2x_0)$ for $g_1, g_2 \in G$.

Lemma 11 Bowditch [4, Lemma 6.4] (Cocompact actions of parabolic subgroups on thick horospheres) Let *B* be a horoball of *X* with *G*-stabilizer *P*. For any M > 0, *P* acts cocompactly on $\mathcal{N}_M(B) \cap (X \setminus U)$.

Lemma 12 (Parabolic approximation) Let Q be a subgroup of G and let $\mu > 0$ be a real number. There is a constant $M = M(Q, \mu)$ with the following property. If P is a maximal parabolic subgroup of G stabilizing a horoball B, and $\{1,q\} \subset Q \cap \mathcal{N}_{\mu}(B)$ then there is $p \in Q \cap P$ such that dist(p,q) < M.

Proof By Lemma 11, dist $(q, P) < M_1$ for some constant $M_1 = M_1(Q, P)$. Then Lemma 9 implies that dist $(q, Q \cap P) < M_2$ where $M_2 = N(Q, P, M_1)$. Since *B* is a horoball at distance less than μ from 1, there are only finitely many possibilities for *B* and hence for the subgroup *P*. Let *M* the maximum of all $N(Q, P, \mu)$ among the possible *P*.

Definition 13 (Relatively quasiconvex subgroup) A subgroup Q of G is *relatively* quasiconvex if there is $\mu \ge 0$ such that for any geodesic c in X with endpoints in Q, $c \cap (X \setminus U) \subset N_{\mu}(Q)$.

The choice of horoballs turns out not to make a difference.

Proposition 14 [7] If *Q* is relatively quasiconvex in *G* then for any $L \ge 0$ there is $\mu \ge 0$ such that for any geodesic *c* in *X* with endpoints in *Q*, $c \cap \mathcal{N}_L(X \setminus U) \subset \mathcal{N}_\mu(Q)$.

3 A lemma on Gromov's inner product

Let Q and R be relatively quasiconvex subgroups with compatible parabolic subgroups, and let H be a finite index subgroup of $Q \cap R$.

Let Q' and R' be subgroups of Q and R respectively such that $Q' \cap R' = H$. Let $g \in Q'R'$ (or $g \in R'Q'$) such that $g \notin H$. Suppose g = qr (or g = rq) with $q \in Q'$, $r \in R'$ and such that dist(1, q) + dist(1, r) is minimal among all such products.

Lemma 15 Suppose that there exists $a \in H$ and a point p at distance at most A from the geodesic segment [1, g] so that $dist(p, qa) \leq B$. Then

$$\operatorname{dist}(1,q) + \operatorname{dist}(1,r) \le \operatorname{dist}(1,g) + 2A + 2B.$$

Proof Let $p' \in [1, g]$ be such that dist(p, p') < A. Then

$$dist(1, qa) + dist(1, a^{-1}r) \le dist(1, p') + dist(p', qa) + dist(qa, p') + dist(p', g)$$
$$\le dist(1, g) + 2A + 2B.$$

Since g can be written as $(qa)(a^{-1}r)$, the minimality assumption implies dist(1, q) + dist $(1, r) \le$ dist(1, g) + 2A + 2B.

Lemma 16 (Gromov's inner product is bounded) There is a constant K = K(Q, R, H) with the following property:

$$\operatorname{dist}(1,q) + \operatorname{dist}(1,r) \le \operatorname{dist}(1,g) + K.$$

Proof Constants which depend only on Q, R, H and δ are denoted by M_i , the index counts positive increments of the constant during the proof. Suppose g = qr, the other case being symmetric. The constant K of the statement corresponds to M_{13} .

Consider a triangle Δ with vertices 1, q, g. Let $p \in [1, q]$ be a center of Δ , if the δ -neighborhood of p intersects all sides of Δ .

Suppose that $p \in X \setminus U$. Then dist(p, Q), dist $(p, qR) \leq M_1$ by relative quasiconvexity of Q and R. By Lemma 9, there exists $a \in Q \cap R$ so that dist $(p, qa) \leq M_2$. Since H

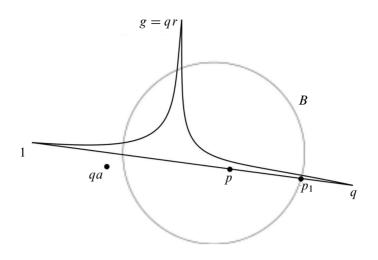


Figure 1

is a finite index subgroup of $Q \cap R$, there is $b \in H$ such that $dist(p,qb) \le M_3$. By Lemma 15, $dist(1,q) + dist(1,r) \le dist(1,g) + 2M_3 + 2\delta$.

Suppose instead that p is in a horoball B, whose stabilizer is P. We can assume $dist(q, B) \leq M_8$. Indeed, let p_1 be the entrance point of the geodesic [q, 1] in B; then $dist(p_1, Q) < M_4$ by quasiconvexity of Q. Notice that $dist(p_1, [q, g])$ is at most 2δ since p is a center of Δ and $p_1 \in [q, p]$ (consider a triangle with vertices p, q, p' for $p' \in [q, g]$ so that $d(p, p') \leq \delta$). By quasiconvexity of R, there is $p_2 \in [q, g]$ such that $dist(p_1, p_2)$, $dist(p_2, qR) < M_5$. Lemma 9 implies there is $a \in Q \cap R$ such that $dist(qa, p_1)$, $dist(qa, p_2) < M_6$. Since H is a finite index subgroup of $Q \cap R$, there is $b \in H$ such that $dist(qb, p_1)$, $dist(qb, p_2) < M_7$. Since g can be written as $(qb)(b^{-1}r)$, by minimality we have

$$dist(1, p_1) + dist(p_1, q) + dist(q, p_2) + dist(p_2, g)$$

= dist(1, q) + dist(1, g)
 \leq dist(1, qb) + dist(1, b⁻¹r)
= dist(1, p_1) + dist(p_1, qb) + dist(qb, p_2) + dist(p_2, g),

and therefore

$$2 \operatorname{dist}(q, B) = 2 \operatorname{dist}(p_1, q)$$

$$\leq \operatorname{dist}(p_1, q) + \operatorname{dist}(q, p_2) + \operatorname{dist}(p_1, p_2)$$

$$\leq \operatorname{dist}(p_1, qb) + \operatorname{dist}(qb, p_2) + \operatorname{dist}(p_1, p_2)$$

$$\leq 2M_8.$$

Since Q and R have compatible parabolic subgroups, assume $Q \cap q^{-1} Pq \leq R \cap q^{-1} Pq$, the other case being symmetric. By quasiconvexity of Q, there is $q_1 \in Q$ at distance M_9 from the entrance point of [1,q] in B. In particular, the distance from q_1 to [1,g] is at most M_{10} . Applying the parabolic approximation lemma to $\{1,q^{-1}q_1\} \subset Q \cap \mathcal{N}_{M_{10}}(q^{-1}B)$, there is an element $a \in Q \cap q^{-1}Pq$ such that $\operatorname{dist}(qa,q_1) \leq M_{11}$. Since $Q \cap q^{-1}Pq \leq R \cap q^{-1}Pq$ it follows that $a \in Q \cap R$. Since H is finite index in $Q \cap R$, by increasing the constant we can assume that $a \in H$ and $\operatorname{dist}(qa,q_1) \leq M_{12}$. Then Lemma 15 implies

$$\operatorname{dist}(1,q) + \operatorname{dist}(1,r) \le \operatorname{dist}(1,g) + M_{13}.$$

4 Proof of Theorem 2

Let Q and R be relatively quasiconvex subgroups with compatible parabolic subgroups, and let H be a finite index subgroups of $Q \cap R$.

Let K = K(Q, R, H) be the constant of Lemma 16. Let M be large enough so that $M > k, \lambda' \mu'$ where k, λ' and μ' are as in Lemma 8 for $\lambda = 1, \mu = K$.

Let Q' and R' be subgroups satisfying the hypothesis of the theorem, in particular $Q' \cap R' = H$. Consider $1 \neq g \in Q' *_{Q' \cap R'} R'$ and suppose that $g \notin Q' \cap R'$. Then $g = g_1 \dots g_n$ where the g_i 's are alternatively elements of $Q' \setminus Q' \cap R'$ and $R' \setminus Q' \cap R'$. Moreover, assume that this product is *minimal* in the sense that $\sum \text{dist}(1, g_i)$ is minimal among all such products describing g.

Lemma 17 For each *i*, let $h_i = g_1 \dots g_i$. Then the concatenation $\alpha = \alpha_1 \cdots \alpha_{n-1}$ of geodesics α_i from h_i to h_{i+1} is an *M*-local (1, K)-quasigeodesic.

Proof By the choice of Q' and R' each segment α_i has length at least M. Let $x \in [h_{i-1}, h_i]$ and $y \in [h_i, h_{i+1}]$. By Lemma 16, we have

$$dist(h_{i-1}, x) + dist(x, y) + dist(y, h_{i+1}) \ge dist(h_{i-1}, h_{i+1})$$

$$\ge dist(h_{i-1}, h_i) + dist(h_i, h_{i+1}) - K$$

$$= dist(h_{i-1}, x) + dist(x, h_i) + dist(h_i, y) + dist(y, h_{i+1}) - K.$$

Therefore $dist(x, y) + K \ge dist(x, h_i) + dist(h_i, y)$.

Since M > k, Lemma 8 implies that α is a (λ', μ') -quasigeodesic. Since $M > \lambda' \mu'$, it follows that α has different endpoints. Therefore we have shown that the map $Q' * Q' \cap R' \to G$ is injective.

Algebraic & Geometric Topology, Volume 12 (2012)

It is left to prove that if Q' and R' are relatively quasiconvex, then $\langle Q', R' \rangle$ is relatively quasiconvex. Let $g \in \langle Q \cap R \rangle$ and let γ be a geodesic from 1 to g. Since H is quasiconvex, if $g \in H$ then $\gamma \cap (X \setminus U)$ is uniformly close to H and hence to $\langle Q \cap R \rangle$. Suppose that $g \notin H$. By Lemma 7 (Morse Lemma), any (λ', μ') -quasigeodesic is at Hausdorff distance at most L from any geodesic between its endpoints. In particular, $\gamma \cap (X \setminus U) \subseteq \mathcal{N}_L(\alpha) \cap (X \setminus U)$ where α is the quasigeodesic constructed above. It is enough to show that $\alpha \cap \mathcal{N}_L(X \setminus U)$ is contained in $\mathcal{N}_\mu(\langle Q' \cup R' \rangle)$. Let $p \in \alpha \cap \mathcal{N}_L(X \setminus U)$ and let i be so that $p \in [h_i, h_{i+1}] \cap N_L(X \setminus U)$. Assume $g_{i+1} \in Q'$, the other case being symmetric. As Q' is relatively quasiconvex and in view of Proposition 14, there is a constant μ so that $p \in \mathcal{N}_\mu(h_iQ') \subseteq \mathcal{N}_\mu(\langle Q' \cup R' \rangle)$ (as $h_i \in \langle Q' \cup R' \rangle$).

5 Separability of double cosets

We now show Corollary 6. Suppose that all quasiconvex subgroups of G are separable. Let Q and R be quasiconvex subgroups with compatible parabolic subgroups. Let $g \in G$ and suppose that $g \notin QR$. We follow an argument described in Minasyan [11] and Yang [14].

Let $K = K(Q, R, Q \cap R)$ be the constant of Lemma 16. As in the proof of Theorem 2, let M be large enough so that $M > k, \lambda' \mu'$ where k, λ' and μ' are as in Lemma 8 for $\lambda = 1, \mu = K$. In addition, assume that

(1)
$$M > \lambda' \operatorname{dist}(1, g) + \lambda' \mu'.$$

Lemma 18 There are finite index subgroups Q' and R' of Q and R respectively such that $g \notin Q(Q', R')R$.

Proof Since $Q \cap R$ is separable, there are finite index subgroups Q' and R' of Q and R respectively, such that $Q' \cap R' = Q \cap R$ and dist $(1, f) \ge 2M$ for any f in $Q' \setminus Q' \cap R'$ or $R' \setminus Q' \cap R'$. By Theorem 2 $\langle Q' \cup R' \rangle$ is a quasiconvex subgroup of G isomorphic to $Q' *_{Q \cap R} R'$.

Suppose that $g \in Q\langle Q', R' \rangle R$. Since $g \notin QR$ it follows that $g = g_1 \dots g_{2n}$ where $g_1 \in Q$, $g_{2n} \in R$, $g_{2i+1} \in Q' \setminus Q \cap R$, $g_{2i} \in R' \setminus Q \cap R$, and $n \ge 2$. Assume that this product is minimal in the sense that $\sum \text{dist}(1, g_i)$ is minimal among all such products describing g.

For each *i*, let $h_i = g_1 \dots g_i$; let α_i be a geodesic from h_i to h_{i+1} . By the choice of Q' and R' each segment α_i has length at least 2M except α_1 and α_{2n-1} .

Notice that $g_2 \cdots g_{2n-1}$ represents an element of $Q' *_{Q \cap R} R'$ and such product is minimal in the sense of the previous section, so that by Lemma 17 the concatenation $\alpha_2 \cdots \alpha_{2n-1}$ is an *M*-local (1, K)-quasigeodesic. Minimality of $g_1 \ldots g_{2n}$ and Lemma 16 imply that the concatenations $\alpha_1 \alpha_2$ and $\alpha_{2n-1} \alpha_{2n}$ are *M*-local (1, K)-quasigeodesics. Since α_2 and α_{2n-1} have both length at least 2*M*, it follows that the concatenation $\alpha = \alpha_1 \cdots \alpha_{2n}$ an *M*-local (1, K)-quasigeodesic.

By Lemma 8, it follows that α is a (λ', μ') -quasigeodesic between 1 and g. It follows that dist $(1, g) \ge 4M/\lambda' - \mu'$; this is a contradiction with Equation (1) above. \Box

Since Q' and R' are of finite index, there are $q_1, \ldots, q_k \in Q$ and $r_1, \ldots, r_m \in R$ such that

$$Q\langle Q', R'\rangle R = \bigcup_{q_i, r_j} q_i \langle Q', R'\rangle r_j.$$

Since $\langle Q', R' \rangle$ is quasiconvex, it is closed in the profinite topology. It follows that $Q\langle Q', R' \rangle R$ is a finite union of closed sets. Therefore $Q\langle Q', R' \rangle R$ is a closed set in the profinite topology containing QR and such that $g \notin Q\langle Q', R' \rangle R$. Since g was an arbitrary element of $g \in G$ not in QR, it follows that QR is closed in the profinite topology of G.

References

- [1] I Agol, D Groves, J Manning, The virtual Haken conjecture arXiv: math.GT/1204.2810
- [2] I Agol, D D Long, A W Reid, The Bianchi groups are separable on geometrically finite subgroups, Ann. of Math. 153 (2001) 599–621 MR1836283
- [3] **M Baker**, **D Cooper**, *A combination theorem for convex hyperbolic manifolds, with applications to surfaces in 3–manifolds*, J. Topol. 1 (2008) 603–642 MR2417445
- [4] BH Bowditch, Relatively hyperbolic groups, Preprint, Southampton
- [5] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics 1441, Springer, Berlin (1990) MR1075994
- [6] R Gitik, *Ping-pong on negatively curved groups*, J. Algebra 217 (1999) 65–72 MR1700476
- [7] G C Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Alg. Geom. Topol. 10 (2010) 1807–1856 MR2684983
- [8] DD Long, AW Reid, The fundamental group of the double of the figure-eight knot exterior is GFERF, Bull. London Math. Soc. 33 (2001) 391–396 MR1832550
- D D Long, A W Reid, On subgroup separability in hyperbolic Coxeter groups, Geom. Dedicata 87 (2001) 245–260 MR1866851

- [10] E Martínez-Pedroza, Combination of quasiconvex subgroups of relatively hyperbolic groups, Groups Geom. Dyn. 3 (2009) 317–342 MR2486802
- [11] A Minasyan, Separable subsets of GFERF negatively curved groups, J. Algebra 304 (2006) 1090–1100 MR2264291
- [12] **DT Wise**, *Subgroup separability of the figure 8 knot group*, Topology 45 (2006) 421–463 MR2218750
- [13] D T Wise, Research announcement: the structure of groups with a quasiconvex hierarchy, Electron. Res. Announc. Math. Sci. 16 (2009) 44–55 MR2558631
- [14] W Yang, Combing fully quasiconvex subgroups and its applications arXiv: math.GT/1205.2994

Department of Mathematics and Statistics, Memorial University Saint John's, Newfoundland, Canada A1C 5S7

Mathematical Institute, University of Oxford 24-29 St GIles', Oxford OX1 3LB, UK

emartinezped@mun.ca, sisto@maths.ox.ac.uk

http://www.math.mun.ca/~emartinezped/,
http://people.maths.ox.ac.uk/sisto/

Received: 26 March 2012 Revised: 27 June 2012