The $\boldsymbol{D}(\mathbf{2})$-problem for dihedral groups of order $\mathbf{4 n}$

Seamus O'Shea

We give a full solution in terms of k-invariants of the $D(2)$-problem for $D_{4 n}$, assuming that $\boldsymbol{Z}\left[D_{4 n}\right]$ satisfies torsion-free cancellation.

57M05; 55P15

1 Introduction

The following question was first posed by Wall in [12]:
\boldsymbol{D} (2)-problem. Let X be a finite connected 3-dimensional CW-complex, with universal cover \widetilde{X}, such that

$$
H_{3}(\tilde{X} ; \boldsymbol{Z})=H^{3}(X ; \mathcal{B})=0
$$

for all coefficient systems \mathcal{B} on X. Is it true that X is homotopy equivalent to a finite 2-dimensional CW-complex?

The $D(2)$-problem is parametrized by the fundamental group of X; we say that the $D(2)$-property holds for a finitely presented group G if the above question is answered in the affirmative for every X with $\pi_{1}(X) \cong G$.

We shall be concerned with the $D(2)$-problem for $D_{4 n}$, the dihedral group of order $4 n$. Johnson [7] has shown that the $D(2)$-property holds for the groups $D_{4 n+2}$ for any $n \geq 1$; however his result relies on the fact that $D_{4 n+2}$ has periodic cohomology, a property not shared by $D_{4 n}$. Mannan [9] has shown that the $D(2)$-property holds for D_{8}. We say that torsion-free cancellation holds for a group ring $\boldsymbol{Z}[G]$ if

$$
X \oplus M \cong X \oplus N \Rightarrow M \cong N
$$

for any $\boldsymbol{Z}[G]$-lattices X, M and N. We shall show:

Theorem 1.1 Suppose that $\boldsymbol{Z}\left[D_{4 n}\right]$ satisfies torsion-free cancellation. Then the $D(2)-$ property holds for $D_{4 n}$.

The calculations of Swan [11] and Endo and Miyata [3] show that torsion-free cancellation holds for $\boldsymbol{Z}\left[D_{4 p}\right]$ when p is prime and $3 \leq p \leq 31, p=47,179$ or 19379. To date the only finite nonabelian, nonperiodic groups for which the $D(2)$-property is known to hold are those of the form $D_{4 p}$, where p is prime.

Let G be a group and set $\Lambda=Z[G]$. Any finite 2-dimensional CW-complex K with $\pi_{1}(K)=G$ gives rise to an exact sequence of Λ-modules

$$
\begin{equation*}
0 \rightarrow \pi_{2}(K) \rightarrow C_{2}(K) \xrightarrow{\partial_{2}} C_{1}(K) \xrightarrow{\partial_{1}} C_{0}(K) \rightarrow \boldsymbol{Z} \rightarrow 0, \tag{1}
\end{equation*}
$$

where $C_{r}(K)=H_{r}\left(\tilde{K}_{r}, \tilde{K}_{r-1} ; \boldsymbol{Z}\right)$ is the free Λ-module with basis the r-cells of K. By an algebraic 2-complex over a group G, we mean an exact sequence of right Λ-modules of the form

$$
\begin{equation*}
0 \rightarrow J \rightarrow F_{2} \xrightarrow{\partial_{2}} F_{1} \xrightarrow{\partial_{1}} F_{0} \xrightarrow{\varepsilon} \boldsymbol{Z} \rightarrow 0, \tag{2}
\end{equation*}
$$

where each F_{i} is finitely generated free. An algebraic 2-complex is said to be geometrically realizable if it is homotopy equivalent to a 2 -complex of type (1). If every algebraic 2 -complex over a group G is geometrically realizable we say that the realization property holds for G. The following result is due to Johnson [7] and Mannan [10]:

Theorem 1.2 Let G be a finitely presented group. Then the $D(2)$-property holds for G if and only if the realization property holds for G.

We are grateful to the referee for pointing out a paper of Latiolais [8], in which it is proved that the homotopy type of a CW-complex with fundamental group $D_{4 n}$ is determined by the Euler characteristic. This result was extended by Hambleton and Kreck [6] to include those complexes whose fundamental groups are finite subgroups of $\mathrm{SO}(3)$. Latiolais achieves this by realizing all values of the Browning obstruction group (see Browning [1], Gruenberg [4], Gutierrez and Latiolais [5]); combining this realization with Theorem 1.2, it seems possible to give a proof of Theorem 1.1 without assuming torsion-free cancellation.

We begin by briefly recalling the classification of algebraic complexes in terms of k-invariants - for a full treatment, see Johnson [7] Chapter 6]. Fix a finite group G and put $\Lambda=\boldsymbol{Z}[G]$. Let $\mathcal{P}=\left(0 \rightarrow J \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow \boldsymbol{Z} \rightarrow 0\right)$ be an algebraic 2-complex over G and let $\mathcal{E}=\left(0 \rightarrow J \rightarrow E_{2} \rightarrow E_{1} \rightarrow E_{0} \rightarrow \boldsymbol{Z} \rightarrow 0\right) \in \operatorname{Ext}_{\Lambda}^{3}(\boldsymbol{Z}, J)$ be an arbitrary extension of \boldsymbol{Z} by J. Then by the universal property of projective
modules, there exists a commutative diagram:

We may extend α_{+}thus:

Then $\widetilde{\alpha}$ is unique up to congruence modulo $|G|$ and we have a well-defined map $\kappa: \operatorname{End}_{\Lambda} J \rightarrow \boldsymbol{Z} /|G|$ given by $\kappa\left(\alpha_{+}\right)=\widetilde{\alpha}$. The k-invariant of the transition $\alpha: \mathcal{P} \rightarrow \mathcal{E}$ is defined to be $k(\mathcal{P} \rightarrow \mathcal{E})=\kappa\left(\alpha_{+}\right)$. Given $\alpha \in \operatorname{End}_{\Lambda} J$ we have a k-invariant $k\left(\mathcal{P} \rightarrow \alpha_{*}(\mathcal{P})\right)=\kappa(\alpha) k(\mathcal{P} \rightarrow \mathcal{P})=\kappa(\alpha)$, where $\alpha_{*}(\mathcal{P})$ is the pushout extension. Since $\kappa(\alpha)$ is a unit if α is an isomorphism, this induces a mapping

$$
\operatorname{Aut}_{\Lambda} J \rightarrow(\boldsymbol{Z} /|G|)^{*}
$$

called the Swan map, which is independent of the choice of algebraic complex in which J appears. We have (see Johnson [7, Theorems 54.6 and 54.7]):

Theorem 1.3 Suppose that the Swan map Aut $J \rightarrow(\boldsymbol{Z} /|G|)^{*}$ is surjective. Then for each $n \geq 0$ there is, up to chain homotopy equivalence, a unique algebraic 2-complex of the form

$$
0 \rightarrow J \oplus \Lambda^{n} \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow \boldsymbol{Z} \rightarrow 0
$$

2 The Swan map for $D_{2 n}$

For any n the group $D_{2 n}$ may be described by the presentation

$$
\left\langle x, y \mid x^{n}, y^{2}, y^{-1} x y x\right\rangle
$$

Write $\Lambda=\boldsymbol{Z}\left[D_{2 n}\right]$ and $\Sigma=1+x+x^{2}+\cdots+x^{n-1}$. Applying the Cayley complex construction to this presentation gives the following 2-complex:

$$
\begin{equation*}
0 \rightarrow J \rightarrow \Lambda^{3} \xrightarrow{\partial_{2}} \Lambda^{2} \xrightarrow{\partial_{1}} \Lambda \xrightarrow{\varepsilon} \boldsymbol{Z} \rightarrow 0, \tag{3}
\end{equation*}
$$

where ε is the augmentation map, $\partial_{1}=(x-1, y-1)$ and $\partial_{2}=\left(\begin{array}{ccc}\Sigma & 0 & 1+y x \\ 0 & 1+y & x-1\end{array}\right)$. The following proposition is easily verified:

Proposition 2.1 Fix n and let k be any odd integer with $3 \leq k \leq n-1$. If we write $m=(k-1) / 2$ then the following diagram commutes:

where $\partial_{1}=(x-1, y-1), \partial_{2}=\left(\begin{array}{ccc}\Sigma & 0 & 1+y x \\ 0 & 1+y & x-1\end{array}\right)$,

$$
\begin{aligned}
& \alpha_{0}=\left(1+x^{-1}+\cdots+x^{-m}+x^{-1} y+\cdots+x^{-m} y\right) \\
& \alpha_{1}=\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right), \quad \alpha_{2}=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$a=1+x^{-1}+\cdots+x^{-m}-x^{-2} y-\cdots-x^{-m-1} y$ and $\theta=\left.\alpha_{2}\right|_{J}$.
Consider the commutative diagram above as a diagram of (free) \mathbf{Z}-modules and \boldsymbol{Z}-linear maps; taking determinants we have:

Proposition 2.2 $\quad k \operatorname{det} \theta \operatorname{det} \alpha_{1}=\operatorname{det} \alpha_{2} \operatorname{det} \alpha_{0}$.
Proof Let v denote the restriction of α_{0} to $\operatorname{ker} \varepsilon$ and let u denote the restriction of α_{1} to $\operatorname{ker} \partial_{1}$. Then $v(\operatorname{ker} \varepsilon) \subset \operatorname{ker} \varepsilon, u\left(\operatorname{ker} \partial_{1}\right) \subset \operatorname{ker} \partial_{1}$ and we have an commutative diagram:

Considered as a diagram of (free) \boldsymbol{Z}-modules, both exact sequences split, and so there exists α_{1}^{\prime} such that

commutes with the obvious maps, and where $\operatorname{det} \alpha_{1}^{\prime}=\operatorname{det} \alpha_{1}$. Therefore we have $\operatorname{det} \alpha_{1}^{\prime}=\operatorname{det}\left(\begin{array}{ll}u & w \\ 0 & v\end{array}\right)=\operatorname{det} u \operatorname{det} v$. Similarly

$$
\operatorname{det} \alpha_{2}=\operatorname{det} \theta \operatorname{det} u \quad \text { and } \quad \operatorname{det} \alpha_{0}=\operatorname{det} v \operatorname{det} k=k \operatorname{det} v
$$

Thus

$$
\operatorname{det} \alpha_{2} \operatorname{det} \alpha_{0}=\operatorname{det} \theta \operatorname{det} u \operatorname{det}(v) k=k \operatorname{det} \theta \operatorname{det} \alpha_{1}
$$

as required.

Now, any Λ-homomorphism is a Λ-isomorphism if and only if it is an isomorphism as a \boldsymbol{Z}-linear map. Thus, in order to show that $[k]$ is in the image of the Swan map, it suffices to show that $\operatorname{det} \theta= \pm 1$.

Proposition 2.3 Suppose that k is coprime to $2 n$. Then $\operatorname{det} \alpha_{0}= \pm k$.

Proof Let $M\left(\alpha_{0}\right)$ be the matrix of the Λ-linear map given by $x \mapsto \alpha_{0} x$ with respect to the Z-basis $\left\{1, x, \ldots, x^{n-1}, y, \ldots, x^{n-1} y\right\}$, with the elements of Λ being interpreted as columns. Notice that $M\left(\alpha_{0}\right)=\left(\begin{array}{cc}A & B \\ B & A\end{array}\right)$ where $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$ are $n \times n$ matrices. We know that $a_{i, 1}=1$ if α_{0} contains an x^{i-1} term and $\alpha_{i, 1}=0$ otherwise. Thus

$$
a_{i, 1}= \begin{cases}1 & \text { if } i \in\{1, n-m+1, n-m+2, \ldots, n\} \\ 0 & \text { otherwise }\end{cases}
$$

Similarly

$$
b_{i, 1}= \begin{cases}1 & \text { if } i \in\{n-m+1, n-m+2, \ldots, n\} \\ 0 & \text { otherwise }\end{cases}
$$

The other columns of A and B are obtained by cyclically permuting the first column; let $\sigma_{+}, \sigma_{-}:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be the permutations given by $\sigma_{+}(i)=i+1 \bmod n$ and $\sigma_{-}(i)=i-1 \bmod n$. We now have

$$
a_{i, j}=a_{\sigma_{-}^{j-1}(i), 1} \quad \text { and } \quad b_{i, j}=b_{\sigma_{+}^{j-1}(i), 1}
$$

Now label the columns of $M\left(\alpha_{0}\right)$ by $v_{1}, \ldots, v_{2 n}$. Let N be the matrix with columns $v_{1}^{\prime}, \ldots, v_{2 n}^{\prime}$ where $v_{i}^{\prime}=v_{i}$ for $1 \leq i \leq n$ and $v_{n+i}^{\prime}=v_{n+i}-v_{n+1-i}$ for $1 \leq i \leq n$. For example, if $n=4$ and $k=3$ (so that $m=1$), we would have:

$$
M\left(\alpha_{0}\right)=\left(\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) ; \quad N=\left(\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

If $N=\left(\begin{array}{cc}A & C \\ B & D\end{array}\right)$ for matrices $C=\left(c_{i, j}\right)$ and $D=\left(d_{i, j}\right)$ then $c_{i, j}=b_{i, j}-a_{i, n+1-j}$ and $d_{i, j}=a_{i, j}-b_{i, n+1-j}$. Now,

$$
a_{i, n}=a_{\sigma_{-}^{n-1}(i), 1}= \begin{cases}1 & \text { if } \in\{n-m, n-m+1, \ldots, n\} \\ 0 & \text { otherwise }\end{cases}
$$

and so

$$
c_{i, 1}= \begin{cases}-1 & \text { if } i=n-m \\ 0 & \text { otherwise }\end{cases}
$$

Similarly,

$$
d_{i, 1}= \begin{cases}1 & \text { if } i=n-m+1 \\ 0 & \text { otherwise }\end{cases}
$$

We also have

$$
c_{i, j}=c_{\sigma_{+}^{j-1}(i), 1} \quad \text { and } \quad d_{i, j}=d_{\sigma_{-}^{j-1}(i), 1}
$$

There is precisely one -1 appearing in the i-th row of C; fix i, j such that $c_{i, j}=-1$. Then $c_{\sigma_{+}^{j-1}(i), 1}=-1 \Rightarrow \sigma_{+}^{j-1}(i)=n-m \Rightarrow j=\sigma_{-}^{i-1}(n-m)$. The row of D containing +1 in the j-th position is the k-th, where

$$
\begin{aligned}
d_{k, \sigma_{-}(n-m)}=1 & \Rightarrow d_{\sigma_{-}^{-i-1}(n-m)-1}^{\sigma^{i-1}(k), 1} \\
& \Rightarrow \sigma_{-}^{\sigma_{-}^{i-1}(n-m)-1}(k)=n-m+1 \\
& \Rightarrow k-\sigma_{-}^{i-1}(n-m)+1=n-m+1 \quad \bmod n \\
& \Rightarrow k-n+m+i=n-m+1 \quad \bmod n \\
& \Rightarrow k=n-2 m-i+1 \quad \bmod n \\
& \Rightarrow k=\sigma_{-}^{i-1}(n-2 m)
\end{aligned}
$$

Let the rows of N be labelled by $w_{1}, \ldots, w_{2 n}$. Put $w_{i}^{\prime}=w_{i}$ for $n+1 \leq i \leq 2 n$ and $w_{i}^{\prime}=w_{i}+w_{n+\sigma_{-}^{i-1}(n-2 m)}$ for $1 \leq i \leq n$. If we let P be the matrix with rows $w_{1}^{\prime}, \ldots, w_{2 n}^{\prime}$ then by the preceding argument P is of the form $P=\left(\begin{array}{cc}E & 0 \\ B & D\end{array}\right)$. Here D is a permutation matrix, and so we have $\operatorname{det} M\left(\alpha_{0}\right)= \pm \operatorname{det} E$. In the case $n=4$, $k=3$ we have:

$$
E=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

If $E=\left(e_{i, j}\right)$, then

$$
e_{i, j}=a_{i, j}+b_{\sigma_{-}^{i-1}(n-2 m), j}
$$

Consider

$$
\begin{aligned}
e_{i, j}-e_{\sigma_{\underline{j-1}}(i), 1} & =a_{i, j}+b_{\sigma_{-}^{i-1}(n-2 m), j}-a_{\sigma_{\underline{j-1}(i), 1}}-b_{\sigma_{\underline{\sigma}-1}^{j-1}(i)-1(n-2 m), 1} \\
& =b_{\sigma_{+}^{j-1}\left(\sigma_{-}^{i-1}(n-2 m)\right), 1}-b_{\sigma_{-}^{\sigma-\frac{j}{i}(i)-1}(n-2 m), 1}
\end{aligned}
$$

where we have cancelled the a terms. Now,

$$
\begin{aligned}
\sigma_{-}^{\sigma_{-}^{j-1}(i)-1}(n-2 m)=n-2 m-\sigma_{-}^{j-1}(i)+1 & =n-2 m-(i-j+1)+1 \quad \bmod n \\
& =n-2 m+j-i \quad \bmod n
\end{aligned}
$$

However,

$$
\begin{aligned}
\sigma_{+}^{j-1}\left(\sigma_{-}^{i-1}(n-2 m)\right)=\sigma_{-}^{i-1}(n-2 m)+j-1 & =n-2 m-i+1+j-1 \quad \bmod n \\
& =n-2 m+j-i \quad \bmod n
\end{aligned}
$$

so the b terms also cancel, and we can conclude that $e_{i, j}=e_{\sigma_{\underline{j-1}(i), 1}}$.
Consider the first column of E : we know that

$$
b_{\sigma_{-}^{i-1}(n-2 m), 1}= \begin{cases}1 & \text { if } \sigma_{-}^{i-1}(n-2 m) \in\{n-m+1, n-m+2, \ldots, n\} \\ 0 & \text { otherwise }\end{cases}
$$

However,

$$
\sigma_{-}^{i-1}(n-2 m) \in\{n-m+1, \ldots, n\} \Longleftrightarrow[n-2 m-i+1] \in\{[n-m+1], \ldots,[n]\}
$$

where [] represents class modulo n. This is equivalent to

$$
[-i] \in\{[2 m-1],[2 m-2], \ldots,[m]\}
$$

or $i \in\{n-2 m+1, n-2 m+2, \ldots, n-m\}$. Comparing this with the $a_{i, 1}$ s, we see that

$$
e_{i, 1}= \begin{cases}1 & \text { if } i \in\{1, n-2 m+1, \ldots, n\} \\ 0 & \text { otherwise }\end{cases}
$$

so that E has $2 m+1=k 1 \mathrm{~s}$ in each column. We may cyclically permute the rows of E to form a new matrix $F=\left(f_{i, j}\right)$ with $f_{i, j}=f_{\sigma \underline{j-1}(i), 1}$ and

$$
f_{i, 1}= \begin{cases}1 & \text { if } 1 \leq i \leq k \\ 0 & \text { otherwise }\end{cases}
$$

The matrix F is the circulant matrix associated to the row vector $\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ with $v_{i}=1$ for $0 \leq i \leq k-1$ and $v_{i}=0$ for $k-1 \leq i \leq n-1$. The determinant of
F is given by the well-known formula (see for example [2]):

$$
\operatorname{det} F=\prod_{i=0}^{n-1} \sum_{j=0}^{n-1} \zeta^{i j} v_{j}
$$

where ζ is a primitive n-th root of unity. Write $\lambda_{i}=\sum_{j=0}^{n-1} \zeta^{i j} v_{j}$; clearly $\lambda_{0}=k$. However, for each $i \geq 1$, we have

$$
\lambda_{i}=\sum_{j=0}^{k-1}\left(\zeta^{i}\right)^{j}=\frac{\zeta^{i k}-1}{\zeta^{i}-1}
$$

and hence

$$
\operatorname{det} F=k \prod_{i=1}^{n-1} \frac{\zeta^{i k}-1}{\zeta^{i}-1}
$$

We note that since k is coprime to n, the sets $\left\{\zeta^{i k} \mid i \in\{1,2, \ldots, n-1\}\right\}$ and $\left\{\zeta^{i} \mid i \in\{1,2, \ldots, n-1\}\right\}$ coincide, and hence $\operatorname{det} \alpha_{0}= \pm \operatorname{det} F= \pm k$.

Proposition 2.4 $\operatorname{det} \alpha_{1}=\operatorname{det} \alpha_{2} \neq 0$.
Proof The following commutes:

where

$$
\alpha_{2}^{\prime}=\left(\begin{array}{ccc}
m+1-m y & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and θ^{\prime} is the restriction of α_{2}^{\prime} to J. We proceed to calculate $\operatorname{det} \alpha_{2}^{\prime}=\operatorname{det}(m+1-m y)$. If we represent $(m+1-m y)$ with respect to the basis $\left\{1, x, \ldots, x^{n-1}, y, \ldots, x^{n-1} y\right\}$, then we form the matrix:

$$
M=\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)
$$

Here A is diagonal with each diagonal entry equal to $m+1$, and B is equal to $-m$ times the permutation matrix associated to $\left(\begin{array}{cccc}1 & 2 & 3 & \ldots \\ 1 & n & n-1 & \ldots\end{array}\right)$. Label the rows of M by $v_{1}, \ldots, v_{2 n}$ and let N be the matrix with rows $v_{1}^{\prime}, \ldots, v_{2 n}^{\prime}$, where $v_{1}^{\prime}=v_{1}+v_{n+1}$, $v_{i}^{\prime}=v_{i}+v_{2 n-i+2}$ for $2 \leq i \leq n$, and $v_{i}^{\prime}=v_{i}$ for $n+1 \leq i \leq 2 n$. Now label the columns of M by $w_{1}, \ldots, w_{2 n}$ and let L be the matrix with columns $w_{1}^{\prime}, \ldots, w_{2 n}^{\prime}$
where $w_{i}^{\prime}=w_{i}$ for $1 \leq i \leq n, w_{n+1}^{\prime}=w_{n+1}-w_{1}$ and $w_{n+i}^{\prime}=w_{n+1}-w_{n-i+2}$ for $2 \leq i \leq n$. For example, if $n=4$ and $k=3$ (so that $m=1$) we have:
$N=\left(\begin{array}{rrrrrrrr}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 2 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 2\end{array}\right) ; \quad L=\left(\begin{array}{rrrrrrrr}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 3 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 3 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 3\end{array}\right)$
It is easy to see that L is lower triangular with n diagonal entries equal to 1 and n diagonal entries equal to $2 m+1=k$. Then $\operatorname{det} \alpha_{2}^{\prime}=\operatorname{det}(m+1-m y)=\operatorname{det} L=k^{n}$. Using $k \operatorname{det} \theta^{\prime} \operatorname{det} \alpha_{1}=\operatorname{det} \alpha_{0} \operatorname{det} \alpha_{2}^{\prime}= \pm k^{n+1}$ we see that $\operatorname{det} \alpha_{1}=\operatorname{det} \alpha_{2} \neq 0$.

Therefore by Propositions 2.2, 2.3 and 2.4.

Proposition 2.5 If $3 \leq k \leq n-1$ is coprime to $2 n$ then $\operatorname{det} \theta= \pm 1$ and so θ is an isomorphism. Thus [k] is in the image of the Swan map.

Clearly $[-1]$ is in the image of the Swan map and so:

Corollary 2.6 The Swan map Aut $J \rightarrow(\boldsymbol{Z} / 2 n)^{*}$ is surjective for each $D_{2 n}$.

Mannan [9] has previously shown that the Swan map is surjective for $D_{2^{n}}$.

3 The $D(2)$-property for $Z\left[D_{4 n}\right]$

We now restrict to the case $D_{4 n}$. An application of Schanuel's lemma shows that the module J appearing in (2) is determined up to stable equivalence; that is, if $0 \rightarrow J \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow \boldsymbol{Z} \rightarrow 0$ and $0 \rightarrow J^{\prime} \rightarrow F_{2}^{\prime} \rightarrow F_{1}^{\prime} \rightarrow F_{0}^{\prime} \rightarrow \boldsymbol{Z} \rightarrow 0$ are two algebraic 2-complexes, we have $J \oplus \Lambda^{n} \cong J^{\prime} \oplus \Lambda^{m}$ for some n, m. Write $\Omega_{3}(\boldsymbol{Z})$ for the class of modules J^{\prime} appearing in an algebraic 2-complex over $D_{4 n}$. Now take $J=\operatorname{ker} \partial_{2}$ in (3), the following proposition is due to Mannan [9]:

Proposition 3.1 J has minimal \boldsymbol{Z}-rank in $\Omega_{3}(\boldsymbol{Z})$.

Let Γ be an order over a Dedekind domain R. We say that torsion-free cancellation holds for Γ if $X \oplus M \cong X \oplus N \Longrightarrow M \cong N$ for lattices X, M and N over Γ (so that X, M and N are finitely generated as Γ-modules and torsion-free over R). There are very few finite groups G for which $\Gamma=\boldsymbol{Z}[G]$ has torsion-free cancellation; if G is nonabelian then the only possible candidates are A_{4}, A_{5}, S_{4} and $D_{2 n}$ for certain values of n. Clearly we have:

Proposition 3.2 Suppose that $\boldsymbol{Z}\left[D_{4 n}\right]$ has torsion-free cancellation. Then every $J^{\prime} \in \Omega_{3}(\boldsymbol{Z})$ is of the form $J^{\prime} \cong J \oplus \Lambda^{m}$ for some $m \geq 0$.

For a finite group G, the integral group ring $\boldsymbol{Z}[G]$ is a \boldsymbol{Z}-order in the semisimple algebra $\mathbf{Q}[G]$; we may choose a maximal \boldsymbol{Z}-order Γ in $\mathbf{Q}[G]$ containing $\boldsymbol{Z}[G]$, and define $D(\boldsymbol{Z}[G])=\operatorname{ker}\left(\widetilde{K}_{0}(\boldsymbol{Z}[G]) \rightarrow \widetilde{K}_{0}(\Gamma)\right)$. A necessary condition for $\boldsymbol{Z}[G]$ to possess torsion-free cancellation is $D(\boldsymbol{Z}[G])=0$. The following is due to Swan [11]:

Theorem 3.3 Let p be a prime. Then $D_{4 p}$ satisfies torsion-free cancellation if and only if $D\left(\boldsymbol{Z}\left[D_{4 p}\right]\right)=0$.

Endo and Miyata [3] calculate the order of $D\left(\boldsymbol{Z}\left[D_{2 n}\right]\right)$ for various values of n. In particular they show $D\left(\boldsymbol{Z}\left[D_{4 p}\right]\right)=0$ for prime p when $3 \leq p \leq 31, p=47$, 179 or 19379. However, there do exist values of n for which $D\left(\boldsymbol{Z}\left[D_{4 n}\right]\right) \neq 0$, for example $n=37$. Moreover, results of Swan show that $D\left(\boldsymbol{Z}\left[D_{4 n}\right]\right)=0$ is not a sufficient condition for torsion-free cancellation to hold. For example, $D\left(\boldsymbol{Z}\left[D_{2^{n}}\right]\right)=0$ for all n, yet torsion-free cancellation fails when $n \geq 7$ (see [11, Theorem 8.1]). Of course, although values of n exist for which $\boldsymbol{Z}\left[D_{4 n}\right]$ does not have torsion-free cancellation, it may still be the case that cancellation of finitely generated free modules holds within $\Omega_{3}(\boldsymbol{Z})$ for such n.

If torsion-free cancellation holds for $D_{4 n}$ then, by Theorem 1.3, Corollary 2.6 and Proposition 3.2, up to congruence, the only algebraic 2-complexes over $D_{4 n}$ are of the form

$$
\mathcal{E}_{m}=\left(0 \rightarrow J \oplus \Lambda^{m} \rightarrow \Lambda^{3} \oplus \Lambda^{m} \xrightarrow{\partial_{2} \pi_{1}} \Lambda^{2} \xrightarrow{\partial_{1}} \Lambda \rightarrow \boldsymbol{Z} \rightarrow 0\right),
$$

where $\pi_{1}: \Lambda^{3} \oplus \Lambda^{m} \rightarrow \Lambda^{3}$ denotes projection onto the first factor. If a pair of algebraic 2-complexes are congruent then they are homotopy equivalent (see Johnson [7, page 182]), and so the \mathcal{E}_{m} represent all homotopy classes of algebraic 2-complexes over $D_{4 n}$. However, \mathcal{E}_{m} is geometrically realized by the Cayley complex arising from the presentation

$$
\mathcal{G}_{m}=\left\langle x, y \mid x^{2 n}, y^{2}, y^{-1} x y x, 1, \ldots, 1\right\rangle,
$$

where there are m trivial relators added to the standard presentation for $D_{4 n}$. Therefore every homotopy class of algebraic 2-complex over $D_{4 n}$ is geometrically realized and hence by Theorem 1.2 we have proved Theorem 1.1. By Theorems 1.1 and 3.3 we have:

Corollary 3.4 Let p be a prime and suppose that $D\left(\boldsymbol{Z}\left[D_{4 p}\right]\right)=0$. Then the $D(2)-$ property holds for $D_{4 p}$.

References

[1] W J Browning, Homotopy types of certain finite CW-complexes with finite fundamental group, PhD thesis, Cornell University (1978) MR2628267 Available at http:// tinyurl.com/d5gtflx
[2] P J Davis, Circulant matrices, Wiley-Interscience, New York (1979) MR543191
[3] S Endô, T Miyata, On the class groups of dihedral groups, J. Algebra 63 (1980) 548-573 MR570730
[4] K W Gruenberg, Homotopy classes of truncated projective resolutions, Comment. Math. Helv. 68 (1993) 579-598 MR1241473
[5] M Gutierrez, M P Latiolais, Partial homotopy type of finite two-complexes, Math. Z. 207 (1991) 359-378 MR1115169
[6] I Hambleton, M Kreck, Cancellation of lattices and finite two-complexes, J. Reine Angew. Math. 442 (1993) 91-109 MR1234837
[7] F E A Johnson, Stable modules and the D(2)-problem. London Math. Soc. Lect. Note Series 301, Cambridge Univ. Press (2003) MR2012779
[8] MP Latiolais, When homology equivalence implies homotopy equivalence for $2-$ complexes. J. Pure Appl. Algebra 76 (1991) 155-165 MR1145864
[9] W H Mannan, The $D(2)$ property for D_{8}, Algebr. Geom. Topol. 7 (2007) 517-528 MR2308955
[10] W H Mannan, Realizing algebraic 2-complexes by cell complexes. Math. Proc. Cambridge Philos. Soc. 146 (2009) 671-673 MR2496351
[11] R G Swan, Torsion free cancellation over orders, Illinois J. Math. 32 (1988) 329-360 MR947032
[12] C T C Wall, Finiteness conditions for CW-complexes, Ann. of Math. 81 (1965) 56-69 MR0171284

Department of Mathematics, University College London

Gower Street, London, WC1E 6BT, United Kingdom
s.o'shea@ucl.ac.uk

Received: 29 March 2012 Revised: 17 August 2012

