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Morse matchings on polytopes

R M GREEN

JACOB T HARPER

We show how to construct homology bases for certain CW complexes in terms of
discrete Morse theory and cellular homology. We apply this technique to study certain
subcomplexes of the half cube polytope studied in previous works. This involves
constructing explicit complete acyclic Morse matchings on the face lattice of the
half cube; this procedure may be of independent interest for other highly symmetric
polytopes.

52B11

1 Introduction

As a graph, the n–dimensional hypercube is bipartite and connected. This induces
a partition of its vertex set V D Vn D f˙1gn into two pieces, V e [V o D V e

n [V o
n ,

where V e
n (respectively, V o

n ) consists of those vertices whose coordinates contain an
even (respectively, odd) number of occurrences of �1. We define the half cube, �n ,
to be the convex hull of the 2n�1 points in V e

n . Using V o
n in place of V e

n in this
construction gives rise to an isometric copy of the half cube.

In a previous work [11], the first author classified the faces of the half cube and explained
how they assemble naturally into a regular CW complex, Cn , which is homeomorphic
to a ball (see Theorem 4.2). Furthermore, for each 3� k � n, there is an interesting
subcomplex Cn;k of Cn obtained by deleting the interiors of all the half cube shaped
faces of dimension l � k . We also showed in [11, Theorem 3.3.2] that the reduced
homology of Cn;k is free over Z and concentrated in degree k � 1.

The Coxeter group W .Dn/ acts naturally on the .k�1/–st homology of Cn;k , and the
first author computed the character of this representation (over C ) in [12, Theorem 4.4].
The group W .Dn/ has two parabolic subgroups that are isomorphic to the symmetric
group Sn , so the homology representations become Sn –modules by restriction. We
showed in [12, Theorem 4.7] that the resulting representations of Sn are equivalent
to the representation of Sn on the .k � 2/–nd homology of the complement of the
k –equal real hyperplane arrangement.
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2430 R M Green and Jacob T Harper

If k D n � 1, the complex Cn;k is the boundary complex of the half cube, and is
therefore shellable by a well-known result of Bruggesser and Mani [5]. If k < n� 1,
then the fact that Cn;k has nonzero .k�1/–st homology is an obstruction to shellability,
which means that we cannot use the machinery of shellability to produce a homology
basis for Cn;k .

The first main result of this paper (Theorem 3.7) shows how to use cellular homology
and discrete Morse theory to construct an explicit integral homology basis for certain
kinds of regular CW complexes, of which the complexes Cn;k are motivating examples.
In order to apply the theorem to a CW complex Y , one starts with a complete acyclic
Morse matching V of a CW complex X that contains Y as a subcomplex. Under
certain mild additional hypotheses, which are satisfied by Cn;k , the theorem produces
an explicit set of boundaries in X that induce a homology basis for Y .

In Section 4, we construct a complete acyclic matching on the face lattice of the half
cube, augmented by the empty face. Complexes for which such a complete acyclic
matching exists are called “collapsible”, and it is a consequence of the shellability of
the boundary complex of a polytope that the face lattice of any polytope always has
such a matching; see Kalai [14, Theorem 20.5.6]. Our motivation is to construct an
explicit matching that works for half cubes of arbitrary dimension n � 4. We prove
in Theorem 5.8 that this is a complete acyclic matching on the faces of the half cube
(together with the empty face).

Let bn;k be the .k � 1/–st Betti number of the subcomplex Cn;k . The numbers bn;k

appear in Sloane’s online encyclopedia [18, Sequence A119258]. Various explicit
expressions for these numbers are given by Shattuck and Waldhauser in [17], some
of which are sums of products of positive integers. One of these appears in the work
of Björner and Welker [4], who study the numbers bn;k in the context of hyperplane
arrangements. They prove that

(1) bn;k D

nX
iDk

�
n

i

��
i � 1

k � 1

�
:

There is a representation theoretic explanation for this: the terms in the sum correspond
to the dimensions of the irreducible constituents of the representation of the Coxeter
group W .Dn/ on the reduced homology of Cn;k ; this was shown in [12].

Another formula for bn;k is

(2) bn;k D

nX
iD1

2i�k

�
i � 1

k � 1

�
I
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this is a straightforward generalization of a result of Barcelo and Smith [2], who study
the case k D 3 in the context of combinatorial homotopy theory (“A–theory”). In
Theorem 6.2, we construct an explicit homology basis for Cn;k in terms of cellular
homology; this basis has the property that when it is enumerated in the obvious way,
we recover Equation (2).

We believe that the quest for explicit Morse matchings on the face lattices of polytopes
is an aesthetically pleasing goal in its own right, similar to the discovery of an explicit
shelling order on the faces of a polytope. It would be interesting to find such matchings
for other polytopes. For some, such as the hypercube and the simplex, this is a fairly
easy exercise. Others, such as the hypersimplex, present about the same level of
difficulty as the half cube; this is described in the second author’s thesis [13] and will
be published separately. It would be very interesting to have such a description for the
permutahedron, some of whose subcomplexes are known to have important topological
properties; see Björner [3, Theorem 2.4].

2 Discrete Morse theory for CW complexes

Since the CW complexes we consider in this paper are all finite, we may define them
as follows.

Definition 2.1 A CW complex is an ordered triple .X;E; ˆ/, where X is a Hausdorff
space, E is a family of cells in X , and fˆe W e 2Eg is a family of maps, such that

(i) X D
S
fe W e 2Eg is a disjoint union;

(ii) for each k –cell e 2E , the map ˆe W .D
k ;Sk�1/! .e[X .k�1/;X .k�1// is a

relative homeomorphism.

A subcomplex of the CW complex .X;E; ˆ/ is a triple .jE0j;E0; ˆ0/, where E0 �E ,

jE0j WD
[
fe W e 2E0g �X;

ˆ0 D fˆe W e 2E0g and Imˆe � jE
0j for every e 2E0 .

The complexes considered here have the property that the maps ˆe (regarded as
mapping to their images) are all homeomorphisms. Such CW complexes are called
regular.

An oriented CW complex is a CW complex together with a choice of orientation for
each cell.

For more on finite regular CW complexes, see Rotman [16, Section 8].
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2432 R M Green and Jacob T Harper

Cellular homology is a version of singular homology that is particularly convenient in
the context of regular CW complexes. For our purposes, it is convenient to describe
cellular homology in terms of intersection numbers as follows. If en

˛ is an n–cell
and en�1

ˇ
is an .n� 1/–cell of the same CW complex X , then the incidence number

Œen
˛ W e

n�1
ˇ

� is defined by Geoghegan in [10, Section 2.5] as the degree of a certain map.
It follows that the incidence number is an integer. A key property for our purposes is
the following.

Proposition 2.2 If X is an oriented regular CW complex then the intersection number
Œen
˛ W e

n�1
ˇ

� is equal to ˙1 if en�1
ˇ

is a face of en
˛ , and is equal to 0 otherwise.

Proof This is [10, Proposition 5.3.10].

To define the cellular homology of a CW complex X over a ring R, we introduce, for
each integer n� 0, the n–chains of X . This is the free R–module with a basis indexed
by all the n–cells, en

˛ ; by abuse of notation, we will identify the basis elements with the
cells, having fixed once and for all on an orientation for each cell. The boundary map
@D @nW Cn.X IR/!Cn�1.X IR/ is then defined to be the R–module homomorphism
for which

@.en
˛/D

X
ˇ

Œen
˛ W e

n�1
ˇ �en�1

ˇ :

It can be shown that @ ı @ D 0. The homology of the complex C� is the cellular
homology of X over R. It is convenient for some purposes to introduce a unique
.�1/–cell e�1

˛ ; this gives rise to reduced cellular homology.

Discrete Morse theory, which was introduced by Forman [8], is a combinatorial tech-
nique for computing the homology of CW complexes. By building on work of Chari [7],
Forman later produced a version of discrete Morse theory based on acyclic matchings
in Hasse diagrams [9]. This version of the theory plays a key role in computing the
homology of Cn;k .

Definition 2.3 Let K be a finite regular CW complex. A discrete vector field on K

is a collection of pairs of cells .K1;K2/ such that

(i) K1 is a face of K2 of codimension 1;

(ii) every cell of K lies in at most one such pair.

We call a cell of K paired if it lies in (a unique) one of the above pairs, and unpaired
otherwise. If .K1;K2/ is a pair of the matching as above, we say that K1 is an upward
matching face and that K2 is a downward matching face.
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Morse matchings on polytopes 2433

If V is a discrete vector field on a regular CW complex K , we define a V –path to be
a sequence of cells

˛0; ˇ0; ˛1; ˇ1; ˛2; : : : ; ˇr ; ˛rC1

such that for each i D 0; : : : ; r ,

(a) each of ˛i and ˛iC1 is a codimension 1 face of ˇi ;

(b) each .˛i ; ˇi/ belongs to V ;

(c) ˛i ¤ ˛iC1 for all 0� i � r .

If r � 0, we call the V –path nontrivial, and if ˛0 D ˛rC1 , we call the V –path closed.
Note that all the faces ˛i have the same dimension, p say, and all the faces ˇi have
dimension pC 1.

Let P be the set of cells of K , together with the empty cell ∅, which we consider to
be a cell of dimension �1. Denote the set of k –cells of K by Pk . The set P becomes
a partially ordered set under inclusion. Let H be the Hasse diagram of this partial
order. We regard H as a directed graph, in which all edges point towards cells of larger
dimension.

Suppose now that V is a discrete vector field on K . We define H.V / to be the directed
graph obtained from H by reversing the direction of an arrow if and only if it joins
two cells K1 �K2 for which .K1;K2/ is one of the pairs of V . If the graph H.V /

has no directed cycles, we call V an acyclic (partial) matching of the Hasse diagram
of K . If all cells of K are paired, we call the matching V complete.

A

B

C

ABC
AB BC

AC ∅

A B C

AB AC BC

ABC

Example 2.4 The diagram shows a complete acyclic matching on the face lattice of
the triangle with vertices fA;B;C g; note that we have written AB instead of fA;Bg
for brevity. Specifically, the acyclic matching consists of the pairs˚

.∅; fAg/; .fBg; fA;Bg/; .fC g; fA;C g/; .fB;C g; fA;B;C g/
	
:
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2434 R M Green and Jacob T Harper

Theorem 2.5 (Forman) Let V be a discrete vector field on a regular CW complex K .

(i) There are no nontrivial closed V –paths if and only if V is an acyclic matching
of the Hasse diagram of K .

(ii) Suppose that V is an acyclic partial matching of the Hasse diagram of K in
which the empty set is unpaired. Let up denote the number of unpaired p–cells.
Then K is homotopic to a CW complex with exactly up cells of dimension p

for each p � 0.

Proof Part (i) is [9, Theorem 6.2] and part (ii) is [9, Theorem 6.3].

3 Homology bases for subcomplexes

The main result of Section 3 is Theorem 3.7, which describes explicit homology bases
of certain subcomplexes Y of a collapsible complex X ; in other words, a complex X

that can be equipped with a complete acyclic Morse matching. Our motivating example
is where the complex X is the boundary complex of a polytope, together with its
interior and the empty face. However, the result applies more generally: any polytope
is collapsible, but it is not the case that every collapsible complex is a polytope; indeed,
there are examples of collapsible complexes that are not even homeomorphic to balls
(see Adiprasito and Benedetti [1, Section 4.3]).

Definition 3.1 Let K be a finite regular oriented CW complex and let V be an acyclic
partial matching on K . Recall that P i is the set of i –cells of K . For each k , let
Vk D V \ .Pk �PkC1/. Define

dV;k D fK 2 PkC1
W .K1;K/ 2 Vk for some K1 2 Pk

g;

eV;k D fK 2 Pk
W .K;K2/ 2 Vk for some K2 2 PkC1

g:

Let DV;k.X IR/ (respectively, EV;k.X IR/) be the free R–module on dV;k (respec-
tively, eV;k ). Let @V;k W DV;k.X IR/!EV;k.X IR/ be the R–module homomorphism
defined by

@V;k.e
kC1
˛ /D

X
ˇ2eV;k

ŒekC1
˛ W ek

ˇ �e
k
ˇ

for each ekC1
˛ .

If e; e0 2 eV;k , we write e0 � e if both .e; d/ 2 Vk for some d 2 dV;k and e0 lies in
the boundary of d . Let �e;k be the relation on eV;k given by the reflexive, transitive
extension of �.

Algebraic & Geometric Topology, Volume 12 (2012)
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Lemma 3.2 In the notation of Definition 3.1, �e;k is a partial order on eV;k .

Proof It suffices to show that �e;k is antisymmetric. Suppose for a contradiction that
this is not the case; this implies that there is a sequence

e1 � e2 � � � � � ek � ekC1 D e1

with k � 2 and ei ¤ eiC1 for all i . Let d1; : : : ; dkC1 be the unique elements of dV;k

for which .ei ; di/ 2 Vk . It then follows that

e1; d1; e2; d2; : : : ; ek ; dk ; e1

is a nontrivial closed V –path, which is the required contradiction.

Proposition 3.3 Maintain the notation of Definition 3.1, and define

N D jdV;k j D jeV;k j:

Denote the elements of dV;k by d1; : : : ; dN in an arbitrary (but fixed) order, and denote
by ei the element of eV;k paired with di . Let �e;k be the partial order on eV;k defined
in Lemma 3.2, and let �d;k be the order on dV;k induced by the matching V .

(i) The matrix of the linear transformation @V;k relative to dV;k and eV;k is trian-
gular with respect to �d;k and �e;k with all the diagonal entries equal to ˙1.
In particular, @V;k is an isomorphism of R–modules.

(ii) Suppose that there exists a c with 1 � c � N such that whenever we have
i � c < j , ej is not a face of di . Then if dp appears with nonzero coefficient
in some d 2DV;k for some p > c , then eq appears with nonzero coefficient in
@.d/ for some q > c .

Proof Let .e; d/ 2 Vk . It follows from the definitions of the partial orders that

@V;k.d/D
X
ˇ2eV;k
ˇ�e

�ˇˇ:

It follows from Proposition 2.2 that �ˇ 2 f�1; 0;C1g for all ˇ , and also that �e ¤ 0.
This completes the proof of the first assertion of (i), and the second assertion of (i) is
immediate from the first.
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2436 R M Green and Jacob T Harper

We now turn to (ii); write

d D

NX
iD1

�idi :

Let I be the set of all p with c < p �N satisfying the hypotheses of (ii), and let l be
a �d;k –maximal element of I . It follows from the definitions that el appears with
nonzero coefficient in @.dl/. If 1� i � c , then the definition of c shows that el appears
with zero coefficient in @.di/, whereas if c < i � N , then el can only appear with
nonzero coefficient in @.di/ if el �e;k ei , by the definition of @.di/ and Proposition 2.2.
The maximality hypothesis on l then shows that the only term in the expression

@.d/D

NX
iD1

�i@.di/

that contributes a coefficient of el is the term @.dl/. Setting q D l completes the
proof.

Lemma 3.4 Maintain the notation of Definition 3.1, and suppose that there are no
unpaired k –cells. Suppose also that e D

P
˛2Pk�˛e˛ is a k –cycle; that is, @.e/D 0.

(i) If e ¤ 0, then there exists ˛ 2 Pk with �˛ ¤ 0 such that e˛ is an upward
matching face.

(ii) If eD
P
˛2Pk �˛e˛ and e0D

P
˛2Pk �˛e˛ are two k –cycles with the property

that �˛ D �˛ whenever e˛ is an upward matching face, then e D e0 .

Proof Suppose that e ¤ 0, but that �˛ D 0 for every upward matching face e˛ 2 Pk .
It follows that

e D
X

˛2dV;k�1

�˛e˛:

Since e ¤ 0, Proposition 3.3(i) shows that @V;k�1.e/¤ 0. The definitions of @ and
@V;k�1 then show that @.e/ ¤ 0. This is a contradiction, and (i) follows. Part (ii)
follows from (i) by considering the cycle e� e0 .

Lemma 3.5 Maintain the notation of Definition 3.1, and suppose that there are no
unpaired k –cells. Then the set

f@.d/ W d 2 dV;kg

is an irredundantly described free R–basis for the k –cycles over R, ker.@k/.
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Proof Let e be a k –cycle. Since there are no unpaired k –cells, we may write

e D
X

˛2dV;k�1

�˛e˛C
X
ˇ2eV;k

�ˇeˇ:

By Proposition 3.3(i), there exists a unique element

f D
X

2dV;k

� e

such that @V;k.f /D
P
ˇ�ˇeˇ . It follows that for each ˇ2 eV;k , the coefficient of eˇ in

the k –cycle @.f / is �ˇ . Applying Lemma 3.4(ii) to the cycles e and @.f / then shows
that @.f /D e , and it follows that the set in the statement is an R–spanning set for the
cycles. The freeness assertion follows by another application of Proposition 3.3(i).

Lemma 3.6 Let B be a free abelian group on n generators, and let A be an abelian
group generated by fa1; a2; : : : ; ang. If there is a surjective group homomorphism
�W A! B , then � is an isomorphism and fa1; a2; : : : ; ang is a free basis for A.

Proof Since A is generated by n elements, it is naturally a homomorphic image  .X /
of a free abelian group X on n generators; it follows that B D �. .X // is also a
quotient of X .

It follows (for example by using the fact that Q is a flat Z–module) that if

0! C !X ! B! 0

is a short exact sequence of abelian groups, then rank.X /D rank.B/C rank.C /. The
hypotheses force rank.C /D 0 in this case, but since every subgroup of X is torsion-
free, we must have C D 0 and � ı is an isomorphism. It follows that  is injective
and is an isomorphism, which completes the proof.

Theorem 3.7 Let X be a finite regular CW complex with a .�1/–dimensional cell,
and suppose V is an acyclic matching on X . Let Y be a CW subcomplex of X and
let VY be the acyclic partial matching on Y obtained by discarding all pairs of the
matching V that do not entirely lie within Y . Let KY be the set of unpaired cells in
VY and let KX be the set of cells of XnY that were paired with the elements of KY

in the original matching V . Suppose

(a) V has no unpaired cells,

(b) the topological boundary of each cell of KX lies entirely within Y .
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Then

(i) the image in Hk.Y IR/ of the set

BY;k D f@.k/ W k 2KX \PkC1
g

is an R–spanning set for Hk.Y IR/;

(ii) if Hk.Y IZ/ is free over Z of rank jKX j, then the image of BY;k is a free
Z–basis for Hk.Y IZ/.

Proof To prove (i), we need to show that the map @ induces a surjective map from BY;k

to Hk.Y IR/. Let y be a k –cycle of Y ; we may regard y as a k –cycle of X by
extension. Number the elements of eV;k as e1; e2; : : : ; eN in such a way that

eV;k \Y D fe1; e2; : : : ; ecg

for some 1� c �N . Since Y is a subcomplex of X , we may choose the numbering
so that

dV;k \Y D fdbC1; dbC2; : : : ; dcg

for some 0� b � c ; it follows that

KX \X .kC1/
D fd1; d2; : : : ; dbg:

Hypothesis (b) shows that if ej is a face of di for 1� i � b , then we must have j � c .
The same is true if we have b < i � c , because Y is a subcomplex of X . It follows
that if i � c < j , then ej is not a face of di .

Lemma 3.5 and hypothesis (a) show that there exists x 2DV;k such that @.x/D y ; let
us write

x D

NX
iD1

�idi :

The previous paragraph and Proposition 3.3(ii) show that we must have �iD0 whenever
i > c ; that is, we have

x D

cX
iD1

�idi :

If we define

x0 D

bX
iD1

�idi ;

it follows by hypothesis (b) that @.x0/ is a cycle in Y . If b < i � c then di lies in Y ;
this means that @.di/ is a boundary in Y and that @.x/ and @.x0/ correspond to the
same homology class in Hk.Y IR/. This proves part (i).
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In the special case RD Z, we note that the Z–spanning set given in (i) has cardinal-
ity jKX j. Part (ii) then follows from Lemma 3.6.

Remark 3.8 The hypotheses of Theorem 3.7 together with Theorem 2.5(ii) show
that X must be contractible.

4 The half cube

An n–dimensional (Euclidean) polytope …n is a bounded subset of Rn obtained by
intersecting finitely many closed half-spaces associated to hyperplanes. We will assume
the set of hyperplanes is taken to be minimal. The part of …n that lies in one of the
hyperplanes is called a facet and each facet is an .n� 1/–dimensional polytope. A
polytope is homeomorphic to an n–ball (which follows, for example, from Munkres [15,
Lemma 1.1]), and the boundary of the polytope, which is equal to the union of its
facets, is identified with the .n� 1/–sphere by this homeomorphism.

Iterating this construction gives rise to a set of k –dimensional polytopes …k (called
k –faces) for each 0� k � n. The elements of …0 are called vertices and the elements
of …1 are called edges. It is not hard to show that a polytope is the convex hull of its
set of vertices, and that the boundary of a polytope is precisely the union of its k –faces
for 0� k < n. What is less obvious, but still true (see Ziegler [19, Theorem 1.1]), is
that the convex hull of an arbitrary finite subset of Rn is a polytope in the above sense.
It follows that a polytope is determined by its vertex set, and we write ….V / for the
polytope whose vertex set is V . Recalling the vertex sets Vn , V e

n and V o
n from the

Introduction, we see that ….Vn/ is an n–dimensional hypercube, and the half cube �n

is (by definition) ….V e
n /.

The dimension of a face is the dimension of its affine hull. An automorphism of a
polytope is an isometry of its affine hull that fixes the polytope setwise. The interior of
a face refers to its interior with respect to the induced topology on its affine hull.

The Coxeter group W .Dn/ is a subgroup of the group of geometric automorphisms
of the half cube �n , and is the full automorphism group if n > 4. It can be defined
in terms of fs1; s10 ; s2; s3; : : : ; sn�1g (the Coxeter generators) subject to the defining
relations

s2
i D 1I

.sisj /
3
D 1 if fi; j g D fk; kC 1g for some 1� k < n� 1 or fi; j g D f10; 2gI

.sisj /
2
D 1 otherwise.
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In particular, the Coxeter generators are involutions. The group W .Dn/ acts on the set
Vn : the .n� 1/ generators si act by permuting the coordinates by the transposition
.i; i C 1/, and the generator s10 acts by the transposition .1; 2/ followed by a sign
change on the first and second coordinates. The group W .Dn/ has order 2n�1n!, and
acts on Vn by the subgroup of signed permutations that effect an even number of sign
changes. This induces an action of W .Dn/ on Rn by orthogonal transformations fixing
the half cube setwise.

Definition 4.1 Let n� 4 be an integer, and let nD f1; 2; : : : ; ng.

Let v0 2 V o
n and S � n. We define the subset K.v0;S/ of V e

n by the condition that
v 2 K.v0;S/ if and only if there exists i 2 S such that v and v0 differ only in the
i –th coordinate. We will call faces of the form ….K.v0;S// simplex shaped. The
dimension of such a face is jS j � 1.

Let v 2 V e
n and let S � n. We define the subset L.v;S/ of V e

n by the condition that
v0 2L.v;S/ if and only if for all i 62 S , v and v0 agree in the i –th coordinate. The
set S is characterized as the set of coordinates at which not all points of L.v;S/ agree.
We will call faces of the form ….L.v;S// half cube shaped. The dimension of such a
face is jS j.

We call the set S in a face of the form ….K.v0;S// or ….L.v;S// the mask of the
face.

The k –faces of the half cube were classified in [11].

Theorem 4.2 The k –faces of �n for k � n are as follows:

(i) 2n�1 0–faces (vertices) given by the elements of V e
n ;

(ii) 2n�2
�
n
2

�
1–faces ….K.v0;S//, where v0 2 V o

n and jS j D 2;

(iii) 2n�1
�
n
3

�
simplex shaped 2–faces ….K.v0;S//, where v0 2 V o

n and jS j D 3;

(iv) 2n�1
�

n
kC1

�
simplex shaped k –faces ….K.v0;S//, where v02V o

n and jS jDkC1

for 3� k < n;

(v) 2n�k
�

n
k

�
half cube shaped k –faces ….L.v;S//, where v 2 V e

n and jS j D k for
3� k � n.

Furthermore, two faces are conjugate under the action of W .Dn/ if and only if they
have the same dimension and the same shape.

Proof The classification of the k –faces is given by the first author in [11, Theorem
2.3.6], and the classification of the orbits under the action of W .Dn/ is given in [11,
Theorem 4.2.3(ii)].
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The unique n–face in (v) above corresponds to the interior of the polytope. The k –faces
assemble naturally into a regular CW complex, Cn .

Remark 4.3 The proof of Theorem 4.2 given in [11] is not optimal. A shorter proof
of this result can be obtained by using Casselman’s theorem [6, Theorem 3.1], which
Casselman attributes to Satake and Borel–Tits. The latter result gives an explicit set of
W .Dn/–orbit representatives of the k –faces of the half cube for each k .

In order to describe a complete acyclic matching on the faces of the half cube, it will
be helpful to parametrize the faces in terms of certain sequences.

Definition 4.4 We denote a coordinate of C1 by the digit 0, and a coordinate of �1

by the digit 1. A face of type ….K.v0;S// is denoted by replacing the digits in v0

corresponding to coordinates in S by underlined symbols. A face of type ….L.v;S//
is denoted by replacing the digits in v corresponding to S by asterisks. This notation
is ambiguous for the 1–dimensional faces; we consider them to be faces of type
….K.v0;S// in which the symbol associated to the rightmost coordinate in S is a 0.

Example 4.5 (i) The vertex .�1;�1;�1;C1;�1;C1;C1/ corresponds to the
sequence 1110100.

(ii) The simplex shaped face ….K.v0;S// with

v0 D .C1;�1;�1;C1;�1;C1;C1/

and S D f1; 3; 6; 7g is denoted by the sequence 0110100. By toggling each
coordinate in S in turn, we find the set of vertices of this face; these vertices
correspond to the sequences 1110100, 0100100, 0110110, 0110101.

(iii) The half cube shaped face 010��1�010 is the convex hull of the 22 points
obtained by filling in the asterisks with 0s and 1s in such a way that the total
number of 1s is even, ie, 0100011010, 0100110010, 0101010010, 0101111010.
This face is equal to ….L.v;S//, where v is any of the four points corresponding
to the sequences listed, and S D f4; 5; 7g.

(iv) The convex hull of the pair of vertices 1110100 and 0100100 is a 1–dimensional
face. This could potentially be denoted either by 1100100 or by 0110100, but
only the first of these is correct according to Definition 4.4.
Similarly, the convex hull of the pair of vertices 0110110 and 0110101 is denoted
by 0110100, rather than 0110111.
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We may now describe an explicit matching on the faces of the half cube, together with
the empty face, ∅. Let F be one of these faces, let S be its mask, and let x be the
sequence associated to F by Definition 4.4. We denote the face matched with F by F 0 ,
and the sequence associated with F 0 by y.

(1) If F is a half cube shaped face with dim.F /� 3, and x contains a 1 to the right
of S , then y is obtained by replacing the rightmost 1 in x with a �.

(2) If F is a half cube shaped face with dim.F /� 4, and there is no 1 in x to the
right of S , then y is obtained by replacing the rightmost � in S with a 1.

(3) If F is a simplex shaped face with dim.F /� 2, and the rightmost 1 in x is not
underlined, then y is obtained by underlining the rightmost 1 in x.

(4) If F is a simplex shaped face with dim.F / � 3, and the rightmost 1 in x is
underlined, then y is obtained by replacing the rightmost 1 with a 1.

(5) If F is a triangle (a simplex shaped face with dim.F /D 2), and the rightmost
1 in x is underlined, and the entries in S (reading left to right) are 011 or 111,
then y is obtained by replacing these three entries in by �.

(6) If F is a half cube shaped face with dim.F /D 3, and there is no 1 to the right
of S in x, then y is obtained from x by replacing the rightmost two � in x by
1, and replacing the leftmost � in x by 0 or by 1, in such a way that the total
number of 1s in y is odd.

(7) If F is an edge and the rightmost 1 in F is not underlined, then y is obtained
from x by underlining the rightmost 1.

(8) If F is a triangle and the rightmost 1 in x is underlined, and it is not the case
that the rightmost two entries in S are equal to 11, then y is obtained from x
by replacing the rightmost 1 with a 1.

(9) If F is a vertex and x contains at least two 1s, then y is obtained from x by
replacing the rightmost 1 in x by 0 and the second rightmost 1 in x by 1.

(10) If F is an edge and the rightmost 1 in F is underlined, then y is obtained from
x by replacing both underlined entries by nonunderlined 1s.

(11) The empty face ∅ is matched with the vertex 00 � � � 0.

Example 4.6 (i) The faces 0��1�10 and 0��1��0 are matched by rules (1)
and (2).

(ii) The faces 0011100 and 0011100 are matched by rules (3) and (4).

(iii) The faces 0111101 and 0�1�10� are matched by rules (5) and (6).

(iv) The faces 0110100 and 0110100 are matched by rules (7) and (8).

(v) The faces 1110010 and 1110000 are matched by rules (9) and (10).
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Lemma 4.7 Every face (including the empty face) of the half cube �n is matched to
another face by one, and only one, of rules (1)–(11) above. Furthermore, the smaller
face in each pair of matched faces is a codimension 1 face of the larger of the pair.

Proof This is a case analysis based on the classification of Theorem 4.2. Let F be
a (possibly empty) face of �n , and let x and S be the corresponding sequence and
mask, respectively.

The sequences corresponding to vertices all contain an even number of 1s. If this
number is zero, then the vertex is matched to ∅ by (11); otherwise, the vertex is
matched to an edge by (9). Notice that if rule (9) is applied, the resulting sequence
satisfies the conditions of Definition 4.4.

The sequences corresponding to edges all contain an odd total number of 1s, and have
rightmost underlined entry equal to 0 by Definition 4.4. In particular, there must be
at least one 1 (underlined or otherwise) in the sequence. If the rightmost 1 is not
underlined, then F is matched to a triangle by (7); otherwise, F is matched to a vertex
by (10). Notice that rule (10) in this case will produce a vertex with an even number
of 1s, as required.

If F is a triangle, then x contains an odd (and thus nonzero) number of 1s, some of
which may be underlined. If the rightmost 1 is not underlined, then F is matched to a
3–simplex by (3). If the rightmost 1 is underlined and the two rightmost underlined
symbols are both 1s, then F is matched to a 3–half cube by (5); otherwise, F is
matched to an edge by (8). If rule (8) is applied, the rightmost underlined symbol in
the resulting edge cannot be a 1, or rule (5) would have applied instead; this satisfies
the requirements of Definition 4.4.

If F is a simplex of dimension at least 3, then x contains an odd number of 1s; in
particular, there is at least one occurrence of 1. If the rightmost such occurrence is
not underlined, then F is matched to a simplex of dimension one larger by (3); if
the rightmost such occurrence is not underlined, then F is matched to a simplex of
dimension one less by (4).

If F is a half cube, and there is a 1 in x to the right of S , then F is matched to a
higher dimensional half cube by (1). Suppose there is no such 1. If F has dimension
at least 4 (respectively, dimension equal to 3), then F is matched to a half cube of
dimension one lower by (2) (respectively, (6)).

Lemma 4.8 Let F1 and F2 be faces of �n . Rule (1) (respectively, (3), (5), (7), (9))
sends face F1 to the face F2 if and only if rule (2) (respectively, (4), (6), (8), (10))
sends F2 to F1 .
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Proof It is immediate from the definitions that rules (1) and (2) are inverses of each
other, restricted to the appropriate domain and codomain. The same is true for rules (3)
and (4).

Observe that if F is a 3–dimensional half cube shaped face, then F contains four
triangular faces. These are obtained by replacing the � in the mask of S by occurrences
of 1 or 0 in such a way that the total number of 1s and 1s in the resulting sequence is
odd. Precisely one of these four triangular faces has a mask of the form 011 or 111.
These observations imply that rules (5) and (6) are inverses of each other.

Note that if F is an edge, then Definition 4.4 requires the rightmost underlined symbol
in F to be a 0. If rule (7) is applicable to F , and S is the mask of the resulting
triangle, then the rightmost two entries in S will be 01. On the other hand, if rule (8)
is applicable to a triangle F 0 with mask S 0 , then the rightmost two entries in S will
be 01, and the rightmost underlined entry of the resulting edge will be 0. These
observations show that rules (7) and (8) are inverses of each other.

Observe that if F is an edge and the rightmost 1 in F is underlined, then the restrictions
of Definition 4.4 mean that this rightmost 1 is the leftmost of the two underlined symbols,
and furthermore, that the rightmost underlined symbol is a 0. Since F contains an odd
number of occurrences of 1 or 1, replacing both these entries with occurrences of 1

as in rule (10) will produce an even total number of 1s. Conversely, any vertex not
equal to 00 � � � 0 contains an even number of 1s; in particular, it contains at least two
occurrences. These observations show that rules (9) and (10) are inverses to each other,
which completes the proof.

The following result is an immediate consequence of Lemmas 4.7 and 4.8.

Proposition 4.9 Rules (1)–(11) define a complete matching on the set of faces of the
half cube �n , including the empty face.

5 Proof that the matching is acyclic

In Section 5, we will show that the complete matching of Proposition 4.9 is acyclic
in the sense of Section 2. In order to do this, it is convenient to introduce a certain
statistic on the faces of types (i)–(iv) in the classification of Theorem 4.2; we will call
such faces faces of type K .

Definition 5.1 Let F be a face of type K , and let s be the sequence associated to F

by Definition 4.4. Let S 0 � n be the (possibly empty) set of indices at which s has
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occurrences of 1 or 1. We define the total of F to be

t.F /D t.s/D
X
i2S 0

i:

We define the sequence u.s/D u.F / from s by replacing all occurrences of 0 (respec-
tively, 1) by 0 (respectively, 1).

It is immediate u.F /D u.F 0/ implies that t.F /D t.F 0/.

Example 5.2 If F is the face with sequence 01110101, then u.F /D 01110101 and
t.F /D 2C 3C 4C 6C 8D 23.

Remark 5.3 (i) In Definition 4.4, the sequence chosen to represent a given edge
is the one with the lower of the two possible totals.

(ii) In the context of rule (6) of the matching, there are four triangular faces of the
3–dimensional half cube; the one paired with the half cube is the one with the
highest total.

The following result is immediate from the classification of Theorem 4.2; it will often
be used in the sequel.

Lemma 5.4 (i) If ….K.v0;S// is a simplex shaped face of �n , then every face of
….K.v0;S// can be expressed in the form ….K.v0;S 0// for the same v0 , where
S 0 � S and SnS 0 is a singleton.

(ii) If ….L.v0;S// is a half cube shaped face of �n , then every half cube shaped
face of ….L.v0;S// can be expressed in the form ….L.v0;S 0// for the same v0 ,
where S 0 � S and SnS 0 is a singleton.

Remark 5.5 Some care must be taken in using Lemma 5.4(i) for faces of the form
….K.v0;T // when jT j D 2, because in this case, there are two possible choices for v0 .

Lemma 5.6 If
˛0; ˇ0; ˛1; ˇ1; ˛2; : : : ; ˇr ; ˛rC1 D ˛0

is a nontrivial closed V –path of faces of �n in which the faces ˛i have dimension 2,
then all the faces ˛i and ˇi are of the form ….K.v0;S// for the same v0 . In particular,
none of the ˇi is half cube shaped, and the sequences u.˛i/ and u.ˇi/ all coincide.

Proof If a face ˇi is a 3–dimensional half cube, it follows from Remark 5.3(ii) that
t.˛iC1/ < t.˛i/. In contrast, if ˇi is a 3–dimensional simplex, Lemma 5.4(i) shows
that u.˛i/D u.ˇi/D u.˛iC1/, which in turn implies that t.˛iC1/D t.˛i/. The two
conclusions in the statement now follow from the requirement that t.˛rC1/D t.˛0/.
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Lemma 5.7 If
˛0; ˇ0; ˛1; ˇ1; ˛2; : : : ; ˇr ; ˛rC1 D ˛0

is a nontrivial closed V –path of faces of �n in which the faces ˛i have dimension 1,
then all the sequences u.˛i/ and u.ˇi/ all coincide.

Proof It follows from Remark 5.5 and Remark 5.3(i) that we have t.˛iC1/ � t.˛i/

for 0 � i � r , with equality holding if and only if u.˛i/ D u.ˇi/ D u.˛iC1/. The
requirement that ˛rC1 D ˛0 forces equality to hold at every step, and the conclusion
follows from this.

Theorem 5.8 The matching described in Section 4 is a complete acyclic matching on
the faces of �n (together with the empty face).

Proof By Proposition 4.9, it is enough to show that the matching is acyclic. By
Theorem 2.5(i), this reduces to showing that there are no nontrivial closed V –paths.
Suppose for a contradiction that

˛0; ˇ0; ˛1; ˇ1; ˛2; : : : ; ˇr ; ˛rC1 D ˛0

is such a path. We will proceed by a case analysis based on dim.˛0/.

The fact that there is a unique face of dimension �1 rules out the possibility of
dim.˛0/D�1.

Suppose that dim.˛0/D 0. Each edge ˇi has exactly two vertices contained in it, and
they both appear in the path. It follows from Remark 5.3(i) that for all 0 � i � r ,
t.˛i/ < t.˛iC1/. This is incompatible with the condition ˛rC1D ˛0 , which completes
the proof in this case.

Suppose that dim.˛0/� 3 and that ˛0 is simplex shaped. It follows by rule (3) of the
matching and Lemma 5.4(i) that all the other faces in the path are simplex shaped, with
all the matched pairs being matched by rules (3) and (4). In particular, ˇ0 is obtained
by underlining the rightmost 1 in the sequence for ˛0 , and ˛1 is obtained from ˇ0 by
removing the underline from one of the other symbols. This means that the rightmost 1

in the sequence of ˛1 is still underlined, and ˛1 is not a candidate for input to rule (3).
This is a contradiction.

If ˛0 is a triangle, Lemma 5.6 shows that none of the ˇi is half cube shaped. In
particular, rules (5) and (6) do not play a role in the path, and we can apply the
argument of the above paragraph to obtain a contradiction.

If ˛0 is an edge, then all the matched pairs in the path are matched by rules (7)
and (8). By Lemma 5.7, the sequences u.˛i/ and u.ˇi/ all coincide. We can then
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copy the argument used above to deal with the case where ˛i is a simplex to obtain a
contradiction.

It remains to deal with the case where ˛0 is a half cube shaped face with dim.˛0/� 3.
If at least one of the ˛i is a simplex shaped face, then we may rotate the closed path
so that ˛i plays the role of ˛0 . This has already been dealt with above, so we may
assume that all the ˛i are half cube shaped, and that all faces in the path are matched
by rules (1) and (2).

It follows from rule (1) that ˇ0 is obtained by replacing the rightmost 1 by a � in the
sequence for ˛0 , and ˛1 is obtained from ˇ0 via Lemma 5.4(ii) by replacing one of
the other occurrences of � by 0 or 1. This means that ˛1 has no 1 to the right of the
rightmost �, and is not a candidate for input to rule (1). This is a contradiction and
completes the proof.

6 Homology bases for polytopal subcomplexes

In this section, we combine Theorem 5.8 with Theorem 3.7 to obtain an explicit
homology basis for Cn;k .

Lemma 6.1 Let n� 4 and let 3� k < n. Let X be the CW complex corresponding
to the faces of �n , including the empty face, let V be the complete acyclic matching
on X given in Theorem 5.8 and let Y be the subcomplex of X corresponding to Cn;k .
Then

(i) X and Y satisfy the hypotheses of Theorem 3.7;

(ii) the unmatched faces of Y are the .k � 1/–dimensional faces that are inputs to
rules (1) or (5) of the matching; these are paired with the k –dimensional half
cube shaped faces of X that are inputs to rules (2) or (6).

Proof We need to identify the faces of Y that are paired by V with faces in XnY .
An inspection of the matching rules in Section 4 shows that these faces are the faces
of Y of dimension k�1 satisfying the input conditions of rule (1) if k > 3, or rule (5)
if k D 3. The faces of XnY that are paired with these faces are k –dimensional half
cubes that satisfy the input conditions of rule (2) if k > 3, or rule (6) if k D 3; this
proves (ii).

The faces of a k –dimensional half cube shaped face are .k � 1/–dimensional, and
are either simplices or half cubes. All such faces are contained in Y . This shows that
condition (b) of Theorem 3.7 holds, and condition (a) holds by the completeness of the
matching V , completing the proof of (i).
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Theorem 6.2 Let n� 4 and 3< k < n, and let B be the set of k –dimensional half
cube shaped faces of �n whose sequences have no 1 to the right of the rightmost
occurrence of �.

(i) A basis for the .k � 1/–st homology of Cn;k is given by the images under the
boundary map of the faces in B .

(ii) The .k � 1/–st Betti number of Cn;k is given by

nX
iD1

2i�k

�
i � 1

k � 1

�
:

Proof The hypotheses of Theorem 3.7 are satisfied by Lemma 6.1(i). By Lemma 6.1(ii),
the set BY;k in Theorem 3.7 consists of the k –dimensional half cube shaped faces that
are inputs to rules (2) or (6), and the latter coincides with the set B by the definition of
the matching.

The .k � 1/–st reduced homology of Cn;k is free over Z by [11, Theorem 3.3.2].
Part (i) now follows from Theorem 3.7(ii).

For part (ii), notice that the faces of B all have sequences with precisely k occurrences
of �, and furthermore, they all end in �00 � � � 0. Let i denote the number of symbols
including and to the left of the rightmost �, so that the number of symbols in the
sequence �00 � � � 0 just mentioned is n� i C 1. To form the set of such sequences
for a fixed i , the leftmost i � 1 symbols must contain k � 1 occurrences of �; the
remaining i �k symbols can be independently chosen to be 0 or 1. (This number will
be zero unless i � k .) This gives a total of 2i�k

�
i�1
k�1

�
choices, and summing over all

possible i gives the result.

Remark 6.3 The basis of Theorem 6.2 can be used for explicit computations involving
the action of W .Dn/ on the integral homology of Cn;k . In this case, the incidence
numbers may be computed using the combinatorics of Coxeter groups. Note that
Theorem 6.2 also holds (somewhat trivially) in the case k D n.
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