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Dirac operators and symmetries
of quasitoric manifolds

MICHAEL WIEMELER

We establish a vanishing result for indices of certain twisted Dirac operators on
Spinc –manifolds with nonabelian Lie group actions. We apply this result to study
nonabelian symmetries of quasitoric manifolds. We give upper bounds for the degree
of symmetry of these manifolds.

57S15, 57S25, 58J20

1 Introduction

A quasitoric manifold is a 2n–dimensional manifold with a well-behaved action of an
n–dimensional torus such that the orbit space is an n–dimensional simple polytope.
Quasitoric manifolds were introduced by Davis and Januszkiewicz [6] as topological
generalizations of nonsingular projective toric varieties.

In this paper we study the degree of symmetry of quasitoric manifolds and give upper
bounds in various situations. For example we show that CPn is the most symmetric
2n–dimensional quasitoric manifold. Moreover, we construct infinitely many quasitoric
manifolds of dimension 2nD 4k , k > 0, that do not admit an action of a semisimple
compact connected Lie group.

For a smooth manifold M , the degree of symmetry N.M / of M is defined to be
the maximum of the dimensions of those compact Lie groups that act smoothly and
effectively on M .

Similarly one defines the semisimple symmetry degree Nss.M / of M as

Nss.M /Dmax
�

dim G

ˇ̌̌̌
G compact semisimple Lie group,
G acts smoothly and effectively on M

�
and the torus symmetry degree T .M / of M to be the maximum of the dimensions of
those compact tori that act smoothly and effectively on M .

It is well known that, for an n–dimensional manifold M , N.M /� n.nC 1/=2 with
equality holding if and only if M D Sn or M DRPn . Moreover, we have T .M /� n
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with equality holding if and only if M is a torus. If �.M / ¤ 0, then we have
T .M /� n=2.

A quasitoric manifold has positive Euler characteristic. Therefore the torus symmetry
degree of a quasitoric manifold is maximal in the class of manifolds with nonvanishing
Euler characteristic.

In this paper we show that CPn has maximal degree of symmetry among the quasitoric
manifolds of dimension 2n, ie N.M /<N.CPn/Dn2C2n for all quasitoric manifolds
M ¤CPn with dim M D 2n (see Theorem 8.1).

Moreover, we generalize a vanishing result for indices of certain twisted Dirac operators
on Spinc –manifolds with Pin.2/–action found by Dessai [7] to manifolds with actions
of more general groups (see Theorem 2.4). This generalization allows us to prove that
if a 2n–dimensional Spinc –manifold M with �.M /¤ 0 admits such a twisted Dirac
operator with nonvanishing index then its degree of symmetry is bounded from above
by 3n with equality holding if and only if M D

Qn
iD1 S2 (see Corollary 2.14). We

show that a 2n–dimensional quasitoric manifold whose orbit polytope admits a facet
coloring with n colors is an example of such a manifold. Hence, we get:

Theorem 1.1 (Corollary 5.4) If M is a 2n–dimensional quasitoric manifold whose
orbit polytope admits a facet coloring with n colors, then we have N.M /� 3n with
equality holding if and only if M D

Qn
iD1 S2 .

Moreover, we show that if a 2n–dimensional Spinc –manifold M admits a twisted
Dirac operator with nonvanishing index and an effective action of a nonabelian compact
connected Lie group G , then the order of the Weyl group of G divides the Euler
characteristic of M (see Corollary 2.12). This enables us to prove the following result.

Theorem 1.2 (Corollary 5.6, Corollary 5.8) Let n� 2. Then we have:

(1) If n is odd, then there are infinitely many quasitoric manifolds M of dimension
2n with Nss.M / � 3, ie the only semisimple simply connected compact Lie
group that can act almost effectively on M is SU.2/.

(2) If n is even, then there are infinitely many quasitoric manifolds of dimension 2n

on which no semisimple compact connected Lie group can act effectively.

We also study those 2n–dimensional quasitoric manifolds whose orbit polytopes admit
facet colorings with n colors and have relatively many nonabelian symmetries. For
these manifolds we have the following theorem.
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Theorem 1.3 (Theorem 6.2, Theorem 7.2) Let M be a 2n–dimensional quasitoric
manifold whose orbit polytope admits a facet coloring with n colors. Assume that one
of the following two conditions holds:

(1) There is an action of a compact Lie group on M such that dim M=G � 1.

(2) We have N.M /� 3n� 4.

Then M is the total space of a fiber bundle over
Q

S2 .

By considering twisted Dirac operators we can also prove the following theorem:

Theorem 1.4 (Corollary 4.6) Let M be a Spin–manifold with p1.M /D 0, G an
exceptional Lie group or G D Spin.2l C 1/ or G D Sp.l/ with l D 1; 3; 6 or l � 15

and T a maximal torus of G . If the Witten genus of M does not vanish, then we have
Nss.M �

Qk
iD1G=T /D k dim G .

If more generally G is a semisimple compact connected Lie group with maximal torus
T , then we still get upper bounds for the semisimple symmetry degree of M �G=T .
But we do not get the exact value of Nss.M �G=T / in the more general setting. It
should be noted here, that it has been shown by Hauschild [11] that the semisimple
symmetry degree of G=T is equal to dim G if G is a semisimple compact connected Lie
group with maximal torus T . So Theorem 1.4 may be viewed as a partial generalization
of his result.

This paper is organized as follows. In Sections 2 and 3 we discuss indices of twisted
Dirac operators on Spinc –manifolds. Then we prove Theorem 1.4 in Section 4. In
Section 5 we apply the results of the previous sections to show that there are quasitoric
manifolds with low semisimple symmetry degree. In Sections 6 and 7 we study those
quasitoric manifolds that have a nonvanishing index and have relatively many nonabelian
symmetries. In Section 8 we show that CPn is the most symmetric quasitoric manifold
in dimension 2n. That section is independent of the other sections. In an appendix we
prove some technical details that are needed in Section 2.
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2 Twisted Dirac operators and nonabelian Lie group actions

The purpose of this section is to generalize some results of Dessai [7] to a class of
nonabelian compact nonconnected Lie groups.

We begin with a review of some well known facts about Spinc –manifolds and the
results of Dessai [7; 8]. For more background information about the group Spinc.k/

and Spinc –structures on manifolds see for example Atiyah, Bott and Shapiro [1],
Petrie [16] and Hattori [9].

An orientable manifold M has a Spinc –structure if and only if the second Stiefel–
Whitney class w2.M / of M is the mod 2–reduction of an integral class c2H 2.M IZ/.
Associated to a Spinc –structure on M there is a complex line bundle. We denote
the first Chern class of this line bundle by cc

1
.M /. Its mod 2–reduction is w2.M /

and we should note that any integral cohomology class whose mod 2–reduction is
w2.M / may be realized as the first Chern class of a line bundle associated to some
Spinc –structure on M .

Let M be a 2n–dimensional Spinc –manifold on which S1 acts smoothly. We say
that the S1 –action on M lifts into the Spinc –structure P if there is a S1 –action on
P that commutes with the Spinc.2n/–action on P such that the projection P !M

is S1 –equivariant.

Lemma 2.1 The S1 –action on M lifts into the Spinc –structure if and only if it lifts
to an action on the line bundle associated to the Spinc –structure.

Proof If the S1 –action lifts to an action on the Spinc –structure P of M , then it also
lifts into the associated line bundle P �Spinc C .

Now assume that the S1 –action on M lifts into the associated line bundle of P . Let
Q be the oriented orthogonal frame bundle of M . Then the S1 –action lifts into Q.
Moreover, by Petrie [16, pages 127–128], the action on M lifts into P if and only if
the action on Q lifts into the S1 –bundle

�W P �! P=S1
DQ:

Now we consider the Serre spectral sequence for the fibration Q!QS1 ! BS1 . By
Hattori and Yoshida [10, Corollary 1.3], the S1 –action lifts into � if and only if

d2c1.�/D 0 and d3c1.�/D 0:

Because H�.BS1IZ/ is concentrated in even degrees, this holds if and only if
d2c1.�/D 0.
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Let � 0 be the S1 –bundle over Q associated to the pullback of the line bundle associated
to P . Then the S1 –action on Q lifts into � 0 . Since � 0 D �2 , we have 2d2c1.�/ D

d2c1.�
0/D 0. Because E

2;1
2
DH 2.BS1IH 1.QIZ// is torsion-free, it follows that

the S1 –action lifts into P .

If the S1 –action on M lifts into the Spinc –structure, then we have an S1 –equivariant
Spinc –Dirac operator @c . Its S1 –equivariant index is an element of the representation
ring of S1 and is defined as

indS1.@c/D ker @c � coker @c 2R.S1/:

Let V be a S1 –equivariant complex vector bundle over M and W an even-dimensional
S1 –equivariant Spin vector bundle over M . With this data we build a power series
R 2KS1.M /ŒŒq�� defined by

RD

1O
kD1

Sqk . zTM ˝R C/˝ƒ�1.V
�/˝

1O
kD1

ƒ�qk . zV ˝R C/

˝�.W /˝

1O
kD1

ƒqn. zW ˝R C/:

Here q is a formal variable, zE denotes the reduced vector bundle E � dim E , �.W /

is the full complex spinor bundle associated to the Spin–vector bundle W , and ƒt

(respectively St ) denotes the exterior (respectively symmetric) power operation. The
tensor products are, if not indicated otherwise, taken over the complex numbers.

After extending indS1 to power series we may define:

Definition 2.2 Let 'c.M IV;W /S1 be the S1 –equivariant index of the Spinc –Dirac
operator twisted with R:

'c.M IV;W /S1 D indS1.@c ˝R/ 2R.S1/ŒŒq��:

We denote by 'c.M IV;W / the nonequivariant version of this index:

'c.M IV;W /D ind.@c ˝R/ 2 ZŒŒq��:

The Atiyah–Singer index theorem [2] allows us to calculate

'c.M IV;W /D
˝
ecc

1
.M /=2 ch.R/ yA.M /; ŒM �

˛
:

Here we have
ch.R/DQ1.TM /Q2.V /Q3.W /;
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with

Q1.TM /D ch
� 1O

kD1

Sqk

�eTM ˝R C
��
D

Y
i

1Y
kD1

.1� qk/2

.1� exi qk/.1� e�xi qk/
;

Q2.V /D ch
�
ƒ�1.V

�/˝

1O
kD1

ƒ�qk . zV ˝R C/

�

D

Y
i

.1� e�vi /

1Y
kD1

.1� evi qk/.1� e�vi qk/

.1� qk/2
;

Q3.W /D ch
�
�.W /˝

1O
kD1

ƒqn. zW ˝R C/

�

D

Y
i

.ewi=2C e�wi=2/

1Y
kD1

.1C ewi qk/.1C e�wi qk/

.1C qk/2
:

Here ˙xi (respectively vi and ˙wi ) denote the formal roots of TM (respectively V

and W ). If cc
1
.M /D c1.V /, then we have

ecc
1
.M /=2Q2.V /D e.V /

1
yA.V /

Y
i

1Y
kD1

.1� evi qk/.1� e�vi qk/

.1� qk/2
D e.V /Q02.V /:

Note that if M is a Spin–manifold, then there is a canonical Spinc –structure on
M . With this Spinc –structure 'c.M I 0;TM / is equal to the elliptic genus of M .
Moreover, 'c.M I 0; 0/ is the Witten genus of M .

Dessai [8, Theorem 3.2] proved the following:

Theorem 2.3 Assume that the equivariant Pontrjagin class pS1

1
.V CW �TM / re-

stricted to M S1

is equal to ��S1.Ix2/ modulo torsion, where �S1 W BS1�M S1

!BS1

is the projection on the first factor, x 2H 2.BS1IZ/ is a generator and I is an integer.
Assume, moreover, that cc

1
.M / and c1.V / are equal modulo torsion. If I < 0, then

'c.M IV;W /S1 vanishes identically.

Let G be a compact Lie group such that:

(1) There is an exact sequence of Lie groups

1 �! T �!G �!W .G/ �! 1;

where T is a torus and W .G/ a finite group.
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(2) If condition (1) holds, then G acts by conjugation on T . Since T is abelian this
action factors through W .G/. We assume that this action of W .G/ is nontrivial
on T .

An action of G on a manifold M is called nice if G acts almost effectively on M and
if the induced action on H�.M IZ/ is trivial.

For nice G –actions on Spinc –manifolds we have the following vanishing result.

Theorem 2.4 Let M be a Spinc –manifold on which G acts nicely such that M G¤∅.
Let V and W be sums of complex line bundles over M such that W is Spin,
c1.V /D cc

1
.M / modulo torsion and p1.V CW �TM /D 0 modulo torsion. Assume

that b1.M /D 0 or that the G –action on M extends to an action of a simply connected
compact Lie group. Then 'c.M IV;W / vanishes.

Remark 2.5 Theorem 2.4 is a generalization of [7, Theorem 4.4].

Before we prove Theorem 2.4 we state three lemmas about the equivariant cohomology
of G –manifolds that are needed in the proof.

Lemma 2.6 Let M be a nice G –manifold such that M G ¤∅ and b1.M /D 0. Then

0 �!H 2.BGIZ/ �!H 2
G.M IZ/ �!H 2.M IZ/ �! 0

is exact.

Proof We consider the Serre spectral sequence for the fibration M !MG ! BG .
Because the G –action on M is nice we have

E
p;q
2
DH p.BGIH q.M IZ//:

Since b1.M /D 0, we have E
1;1
1 D 0. Therefore we have an exact sequence

0 �!E2;0
1 �!H 2

G.M IZ/ �!E0;2
1 �! 0:

Because M G ¤∅, H�.BGIZ/!H�
G
.M IZ/ is injective. Hence, we have

H�.BGIZ/DE
�;0
2
DE�;01

and the differentials dr W E
��r;r�1
r !E

�;0
r vanish.

It remains to show that E
0;2
1 DE

0;2
2
DH 2.M IZ/. That is equivalent to dr W E

0;2
r !

E
r;3�r
r vanishing for all r .

Now we have E
2;1
2
D 0 because b1.M / D 0. Therefore d2 vanishes. Since there

are G–fixed points in M , d3 vanishes. The differentials dr , r > 3, vanish because
E

r;3�r
r D 0 for r > 3. Therefore the statement follows.
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Lemma 2.7 Let M be a nice G–manifold. If the G–action on M extends to an
action of a simply connected compact Lie group yG , then the natural map

H 2
yG
.M IZ/ �!H 2.M IZ/

is an isomorphism. Moreover, H 2
G
.M IZ/!H 2.M IZ/ is surjective.

Proof Since B yG is three-connected the first statement follows from an inspection
of the Serre spectral sequence for the fibration M !M yG ! B yG as in the proof of
Lemma 2.6. Then the second statement follows because H 2

yG
.M IZ/! H 2.M IZ/

factors through H 2
G
.M IZ/.

Lemma 2.8 Assume that T W .G/ is finite or equivalently that dim.LT /W .G/ D 0 or
dim.LT �/W .G/ D 0. Let M be a nice G –manifold, then

H 4.BGIQ/ �!H 4
G.M IQ/ �!H 4.M IQ/

is exact.

Proof Because dim.LT �/W .G/ D 0, we have by Borel [3, Proposition 20.4]

H i.BGIQ/D 0

for i D 1; 2; 3. Therefore from the Serre spectral sequence of the fibration M !

MG! BG we get an exact sequence

0 �!E4;0
1 �!H 4

G.M IQ/ �!E0;4
1 �! 0:

Since H 4.BGIQ/ surjects to E
4;0
1 and E

0;4
1 injects into H 4.M IQ/, the statement

follows.

Now we are ready to prove Theorem 2.4 in two special cases. The general case will
follow from these special cases.

Lemma 2.9 Assume that T W .G/ is finite. Then Theorem 2.4 holds.

Proof Let V D
L

Li and W D
L

L0i with Li , L0i line bundles. By Lemmas 2.6, 2.7
and [10, Corollary 1.2], the G–action on M lifts into each line bundle Li , L0i .
Therefore pG

1
.V CW �TM / is well defined. Moreover, by Lemma 2.1, the action of

every S1 � T �G lifts into the Spinc –structure on M .

By Theorem 2.3, it is sufficient to show that, for S1 ,! T ,!G ,

pS1

1 .V CW �TM /D �.S1;G/�pG
1 .V CW �TM /D a��

S1.x
2/;
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with a2Q, a< 0, and x 2H 2.BS1IZ/ a generator. Here �.S1;G/�W H�
G
.M IQ/!

H�
S1.M IQ/ is the map induced by the inclusion S1 ,!G and ��

S1 W H
�.BS1IQ/!

H�
S1.M IQ/ is the natural map.

By Lemma 2.8, there is an ˛ 2 H 4.BGIQ/ with ��
G
.˛/ D pG

1
.V CW � TM /.

Therefore we have

pS1

1 .V CW �TM /D ��
S1�.S

1;G/�˛ D a��
S1.x

2/

with a 2 Q. It remains to show that a < 0. We restrict pS1

1
.V CW � TM / to a

G –fixed point y . Then we have

pS1

1 .V CW �TM /jy D
X

˛2
i C

X
ˇ2

i �

X
 2

i ;

where ˛i is the weight of the S1 –representation on the fiber of Li over y , ˇi is the
weight of the S1 –representation on the fiber of L0i over y and the i are the weights
of the S1 –representation TyM .

The representations on the fibers of Li ;L
0
i are restrictions of one-dimensional G–

representations to S1 . Because .LT �/W .G/ D 0, all such representations are trivial.
Therefore aD�

P
 2

i < 0 follows, because S1 acts nontrivially on M .

Lemma 2.10 Assume that W .G/ is cyclic. Then Theorem 2.4 holds.

Proof We show that G has a subgroup satisfying the assumptions of Lemma 2.9.
Then the statement follows from that lemma.

By Lemma A.2, there are two W .G/–invariant subtori T1 and T2 of T such that:

� W .G/ acts trivially on T1 .

� T
W .G/
2

is finite.

� T is generated by T1 and T2 .

Let g 2 G be a preimage of a generator of W .G/. Then we have g#W .G/ 2 T . Let
t12T1 and t22T2 such that g#W .G/D t1t2 . Moreover, let t 2T1 such that t1D t#W .G/ .
Then gt�1 is another preimage of the generator of W .G/ and .gt�1/#W .G/ 2 T2 .

Let G0 be the subgroup of G generated by gt�1 and T2 . Then there is an exact
sequence

1 �! T2 �!G0 �!W .G/ �! 1:

Therefore G0 satisfies the assumptions of Lemma 2.9.
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In the situation of Theorem 2.4, there is always a cyclic subgroup W .H / of W .G/

which acts nontrivially on T . If H is the preimage of W .H / under the map G !

W .G/, then Theorem 2.4 follows from Lemma 2.10 applied to the restricted action of
H on M .

From Theorem 2.4 we get the following corollaries about actions of compact connected
nonabelian Lie groups on Spinc –manifolds.

Corollary 2.11 Let G be a compact connected nonabelian Lie group and M a Spinc –
manifold with 'c.M IV;W /¤ 0 and V , W as in Theorem 2.4. Assume that G acts
almost effectively on M and that T is a maximal torus of G . Then, for all x 2M T ,
Gx D T holds.

Proof Let zG D G0 � T0 be a covering group of G with G0 a semisimple simply
connected compact Lie group and T0 a torus. Then we have zGx DG0x �T0 . We will
show that G0x is a maximal torus of G0 . From this the statement follows. Since, for
each compact connected nonabelian Lie group H , there is a group homomorphism
Pin.2/!H with finite kernel, G00x D T 0 is a maximal torus of G0 by Theorem 2.4.

Assume that G0x ¤ T 0 . Then there is an exact sequence

1 �! T 0 �!G0x �!G0x=T 0 �! 1

and we have G0x=T 0 � NG0T
0=T 0 . Therefore G0x=T 0 acts nontrivially on T 0 . But

this is a contradiction to Theorem 2.4.

Corollary 2.12 Let M and G as in Corollary 2.11. Then #W .G/ j �.M /.

Proof We have �.M/D�.M T /, where T is a maximal torus of G . By Corollary 2.11,
W .G/ acts freely on M T . Therefore we get

�.M /D #W .G/ ��.M T =W .G//:

The following two corollaries give upper bounds for the degree of symmetry of a
Spinc –manifold which admits a twisted Dirac operator with nonzero index.

Corollary 2.13 Let M be a 2n–dimensional Spinc –manifold with 'c.M IV;W /¤0

and V , W as in Theorem 2.4 and G be a compact connected Lie group with

(1) dim G � rank G > 2n, or

(2) dim G � rank G D 2n and rank G < T .M /.

Then there is no effective action of G on M .
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Proof Let zG D G0 � T0 be a covering group of G with G0 a semisimple simply
connected compact Lie group and T0 a torus. Let x 2M . Then by Theorem 2.4 the
identity component of G0x must be a torus. Therefore dim Gx � rank G . Moreover,
there is an embedding of G=Gx in M . In case (1) this is impossible.

In case (2) we have, by dimension reasons, that M D G=H and H has maximal
rank in G . By Corollary 2.11, H must be a maximal torus of G . Moreover, G is
semisimple because it acts effectively on M . The torus symmetry degree of G=H was
calculated by Hauschild [11, Theorem 3.3]. It is equal to rank G , which contradicts
our assumption that rank G < T .M /.

Note that, if G is a compact Lie group which acts effectively on a manifold M as in
the above corollary, then the rank of G is bounded from above by the torus symmetry
degree of M . Therefore we have N.M /� 2nCT .M /. If the Euler characteristic of
M is nonzero, we have T .M /� n, so that we get the following corollary.

Corollary 2.14 Let M be a 2n–dimensional Spinc –manifold with �.M / ¤ 0 and
'c.M IV;W /¤0 with V , W as in Theorem 2.4 and G a compact connected Lie group
which acts effectively on M . Then dim G � 3n. If dim G D 3n, then M D

Q
S2 .

Proof By the discussion above, we only have to prove the second statement.

If dim GD 3n, then we must have rank GD n and M DG=T , where T is a maximal
torus of G . Therefore G is semisimple. Because for a simple Lie group G0 we have
dim G0 � 3 rank G0 with equality holding if and only if G0 is a quotient of SU.2/,
we see that G has a covering group of the form

Q
SU.2/. Therefore the statement

follows.

3 Products and connected sums

In this section we discuss the calculation of the indices 'c.M IV;W / for the case
where M is a connected sum or a product of Spinc –manifolds. The formulas derived
here will be used in our applications of the results of the previous section in Sections 4
and 5.

For cartesian products of Spinc –manifolds we have the following lemma.

Lemma 3.1 Let M1;M2 be even-dimensional Spinc –manifolds, Vi !Mi complex
vector bundles and Wi ! Mi , i D 1; 2, Spin vector bundles. Then M1 �M2 is
naturally a Spinc –manifold and

'c.M1 �M2Ip
�
1V1˚p�2V2;p

�
1W1˚p�2W2/D '

c.M1IV1;W1/'
c.M2IV2;W2/;
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where pi W M1 �M2!Mi , i D 1; 2, are the projections.

Proof Let Qi 2H dim Mi .Mi IQ/ŒŒq�� be the degree dim Mi part of

ecc
1
.Mi /=2 ch.R/ yA.Mi/ 2H�.Mi IQ/ŒŒq��;

i D 1; 2. Then we have

'c.M1 �M2Ip
�
1V1˚p�2V2;p

�
1W1˚p�2W2/

D hp�1Q1p�2Q2; ŒM1 �M2�i

D hQ1; ŒM1�i hQ2; ŒM2�i

D 'c.M1IV1;W1/ '
c.M2IV2;W2/:

The connected sum of two Spinc –manifolds is again a Spinc –manifold. For these
manifolds we have the following lemma.

Lemma 3.2 Let M1;M2 be Spinc –manifolds of the same even dimension greater or
equal to four, Vi!Mi , i D 1; 2, complex vector bundles which are sums of complex
line bundles and Wi !Mi , i D 1; 2, Spin–bundles which are sums of complex line
bundles such that

(3-1) c1.Vi/D cc
1.Mi/ and p1.Vi CWi �TMi/D 0:

Then M1 # M2 has a Spinc –structure, such that cc
1
.M1 # M2/D cc

1
.M1/C cc

1
.M2/.

If dim V1 > dim V2 , then there are vector bundles V !M1 # M2 , W !M1 # M2

which are sums of complex line bundles satisfying (3-1) such that

'c.M1 # M2IV;W /D 2dimC W2'c.M1IV1;W1/:

If dim V1 D dim V2 , then the same holds with

'c.M1 # M2IV;W /D 2dimC W2'c.M1IV1;W1/C 2dimC W1'c.M2IV2;W2/:

Proof Let Vi D
Lki

jD1
Lji and Wi D

Lk0
i

jD1
L0ji for i D 1; 2. Then the Lji ;L

0
ji

extend uniquely to vector bundles over M1 #M2 , such that the restriction to Mk , k¤ i

is trivial. We denote these extensions also by Lji ;L
0
ji .

Let

V D

maxfk1;k2gM
jD1

Lj1˝Lj2 and W D

2M
iD1

kiM
jD1

L0ji ;

where Lji is the trivial complex line bundle for j > ki .
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The cohomology ring of M1 # M2 with coefficients in a ring R is isomorphic to

(3-2) H�.M1IR/�H�.M2IR/=I;

where I is the ideal generated by .1;�1/ and .�1;��2/. Here �i denotes the orientation
class of Mi . Moreover, for the characteristic classes of M1 # M2 we have

wi.M1 # M2/D wi.M1/Cwi.M2/;

pi.M1 # M2/D pi.M1/Cpi.M2/; for i > 0:

Therefore there is a Spinc–structure on M1#M2 with cc
1
.M1#M2/Dcc

1
.M1/Ccc

1
.M2/.

For the vector bundles V and W defined above, we have

c1.V /D c1.V1/C c1.V2/D cc
1.M1/C cc

1.M2/D cc
1.M1 # M2/;

p1.V /D

k1X
jD1

c1.Lj1/
2
C

k2X
jD1

c1.Lj2/
2
D p1.V1/Cp1.V2/;

p1.W /D p1.W1/Cp1.W2/:

Therefore we have p1.V CW �TM1 # M2/D 0.

Now we have, assuming dim V1 � dim V2 ,

'c.M1 # M2IV;W /

D
˝
e.V /Q02.V /Q3.W /Q1.TM1 # M2/ yA.M1 # M2/; ŒM1 # M2�

˛
D

�
e

� k1M
iDk2C1

Lj1

��
e

� k2M
iD1

Lj1

�
C e

� k2M
iD1

Lj2

��
�Q02.V /Q3.W /Q1.TM1 # M2/ yA.M1 # M2/; ŒM1 # M2�

�
:

It follows from (3-2) that for i > 0 the i–th Pontrjagin class of W is given by
pi.W1/Cpi.W2/. A similar statement holds for the Chern classes of V .

Since 2� dimC W Q0
2
.V /Q3.W /Q1.TM / yA.M / is a power series with constant term

one in the Pontrjagin classes of V , W and TM whose coefficients do not depend on
V , W and TM , it follows that, for i > 0,

2� dimC W
�
Q02.V /Q3.W /Q1.TM1 # M2/ yA.M1 # M2/

�
i

D 2� dimC W1
�
Q02.V1/Q3.W1/Q1.TM1/ yA.M1/

�
i

C 2� dimC W2
�
Q02.V2/Q3.W2/Q1.TM2/ yA.M2/

�
i
:

Here .Q0
2
.V /Q3.W /Q1.TM//i denotes the degree 4i part of Q0

2
.V /Q3.W /Q1.TM/.
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Now the statement follows from (3-2).

4 Two vanishing results for the Witten genus

In this section we prove vanishing results for the Witten genus of a Spin–manifold M

with p1.M /D 0 such that a product M �M 0 admits an action of a compact connected
semisimple Lie group of high rank.

Our first result is as follows.

Theorem 4.1 Let M be a Spin–manifold such that p1.M / is torsion. Moreover, let
M 0 be a 2n–dimensional Spinc –manifold such that there are x1; : : : ;xn 2H 2.M 0IZ/
with

(1)
Pn

iD1 xi D cc
1
.M 0/ modulo torsion,

(2)
Pn

iD1 x2
i D p1.M

0/ modulo torsion,

(3) h
Qn

iD1 xi ; ŒM
0�i ¤ 0.

If there is an almost effective action of a semisimple simply connected compact Lie
group G on M �M 0 such that rank G > rankhx1; : : : ;xni, then the Witten genus
'c.M I 0; 0/ of M vanishes.

Proof Let Li , i D 1; : : : ; n, be the line bundle over M 0 with c1.Li/ D xi . By
Lemma 2.7, the natural map ��W H 2

G
.M �M 0IZ/!H 2.M �M 0IZ/ is an isomor-

phism.

Therefore by [10, Corollary 1.2] the G–action on M �M 0 lifts into p0�.Li/, i D

1; : : : ; n. Here p0W M �M 0!M 0 is the projection. Moreover, by the above cited
corollary and Lemma 2.1, the action of every S1 �G lifts into the Spinc –structure on
M �M 0 induced by the Spin–structure on M and the Spinc –structure on M 0 .

By Lemma 3.1, we have

'c

�
M �M 0

I

nM
iD1

p0�Li ; 0

�
D 'c.M I 0; 0/ 'c

�
M 0
I

nM
iD1

Li ; 0

�
:

By condition (3), we have

'c

�
M 0
I

nM
iD1

Li ; 0

�
D

�
Q1.TM 0/

nY
iD1

xiQ
0
2

� nM
iD1

Li

�
yA.M 0/; ŒM 0�

�

D

� nY
iD1

xi ; ŒM
0�

�
¤ 0:
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Hence, 'c.M I 0; 0/ vanishes if and only if 'c.M �M 0I
Ln

iD1 p0�Li ; 0/ vanishes.

Let T be a maximal torus of G . If there are no T –fixed points in M �M 0 , then
the Lefschetz fixed point formula implies that this index vanishes. Therefore we may
assume that there is a T –fixed point y 2 .M �M 0/T .

As in the proof of Lemma 2.8 one proves that

H 4.BGIQ/ �!H 4
G.M �M 0

IQ/ �!H 4.M �M 0
IQ/

is exact. Therefore there is an v 2H 4.BGIQ/ such that

pT
1

� nM
iD1

p0�Li �T .M �M 0/

�
D ��T �.T;G/

�v:

By Theorem 2.3, it is sufficient to show that there is a homomorphism S1 ,! T such
that �.S1;T /��.T;G/�v D ax2 , where x 2H 2.BS1IZ/ is a generator and a 2 Z,
a< 0.

We have

�.T;G/�v D pT
1

� nM
iD1

p0�Li �T .M �M 0/

�ˇ̌̌̌
y

D

nX
iD1

a2
i �

X
v2

i ;

where ai 2 H 2.BT IZ/, i D 1; : : : ; n, are the weights of the T –representations
p0�Li jy and vi 2H 2.BT IZ/ are the weights of the T –representation Ty.M �M 0/.

Since rank T > rankhx1; : : : ;xni and

ai D
�
�.T;G/�.��/�1p0�.xi/

�ˇ̌
y

for i D 1; : : : ; n;

there is a homomorphism S1 ,! T such that �.S1;T /�ai D 0 for i D 1; : : : ; n.

For this S1 we have �.S1;T /�v D ax2 with a 2 Z, a< 0, because the G –action is
almost effective.

We will see later in Lemma 5.3 that those 2n–dimensional quasitoric manifolds whose
orbit polytopes admit facet colorings with n colors are examples of manifolds which
satisfy the assumptions on M 0 in the above theorem. Other examples of such manifolds
are given by those manifolds whose tangent bundle is isomorphic to a sum of complex
line bundles and which have nonzero Euler characteristic. In particular, homogeneous
spaces of the form H=T with H a semisimple compact connected Lie group and T

a maximal torus of H are examples of such manifolds. Since in this case we have
b2.H=T /D rank H we get the following corollary.
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Corollary 4.2 Let M be a Spin–manifold with p1.M / D 0 and H a semisimple
compact connected Lie group. If there is an almost effective action of a semisimple
compact connected Lie group G on M �H=T such that rank G > rank H , then the
Witten genus of M vanishes.

As an application of Corollary 4.2 we give a new proof for a theorem of Hauschild.

Corollary 4.3 [11, Theorem 9] Let H be a semisimple compact connected Lie group
with maximal torus T . Then we have Nss.H=T /D dim H .

Proof Let G be a semisimple compact connected Lie group which acts effectively
on H=T . Since the tangent bundle of H=T splits as a sum of complex line bundles
and �.H=T /¤ 0, there is a twisted Dirac operator with nonvanishing index on H=T .
Therefore, by the first case in Corollary 2.13, we have

dim G � rank G � dim H=T D dim H � rank H:

By Corollary 4.2 applied in the case M Dpt , we see that rank G � rank H . Therefore
it follows that dim G � dim H . Since there is an obvious action of H on H=T , the
statement follows.

Similarly to Theorem 4.1 we can prove the following vanishing result for actions of
simple compact connected Lie groups of high rank.

Theorem 4.4 Let M be a Spin–manifold such that p1.M / is torsion. Moreover, let
M 0 be a 2n–dimensional Spinc –manifold such that p1.M

0/ is torsion and there are
x1; : : : ;xn 2H 2.M 0IZ/ and 1D n1 < n2 < � � �< nkC1 D nC 1 with

(1)
Pn

iD1 xi D cc
1
.M 0/ modulo torsion,

(2)
PnjC1�1

iDnj
x2

i is torsion, for j D 1; : : : ; k ,

(3) h
Qn

iD1 xi ; ŒM
0�i ¤ 0.

If there is an almost effective action of a simple simply connected compact Lie group
G on M �M 0 such that rank G > rankhxnj

; : : : ;xnjC1�1i for all j D 1; : : : ; k , then
the Witten genus 'c.M I 0; 0/ of M vanishes.

Proof The relations between the G–equivariant and nonequivariant cohomology of
M �M 0 is as described in the proof of Theorem 4.1. We consider the same index
'c.M �M 0I

Ln
iD1 p0�Li ; 0/ as in the proof of that theorem. It vanishes if and only

if the Witten genus of M vanishes.
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Let T be a maximal torus of G . We may assume that there is a T –fixed point y in
M �M 0 .

As in the proof of Theorem 4.1 one sees that there is an v 2 H 4.BGIQ/ such that
pT

1
.
Ln

iD1 p0�Li �T .M �M 0//D ��
T
�.T;G/�v . By Theorem 2.3, it is sufficient to

show that there is a homomorphism S1 ,! T such that �.S1;T /��.T;G/�v D ax2 ,
where x 2H 2.BS1IZ/ is a generator and a 2 Z, a< 0.

We have

�.T;G/�v D pT
1

� nM
iD1

p0�Li �T .M �M 0/

�ˇ̌̌̌
y

D

nX
iD1

a2
i �

X
v2

i ;

where ai 2 H 2.BT IZ/, i D 1; : : : ; n, are the weights of the T –representations
p0�Li jy and vi 2H 2.BT IZ/ are the weights of the T –representation Ty.M �M 0/.

We will show that the ai , i D 1; : : : ; n, vanish.

Let 1� j � k . Since H 4.BGIQ/!H 4
G
.M �M 0IQ/!H 4.M �M 0IQ/ is exact,

there is an v0j 2H 4.BGIQ/ such that

pT
1

�njC1�1M
iDnj

p0�Li

�
D ��T �.T;G/

�v0j :

Therefore we have
njC1�1X

iDnj

a2
i D pT

1

�njC1�1M
iDnj

p0�Li

�ˇ̌̌̌
y

D �.T;G/�v0j :

Therefore
PnjC1�1

iDnj
a2

i is invariant under the action of the Weyl group W .G/ of G on
H 4.BT IQ/.

Because dim T > rankhxnj
; : : : ;xnjC1�1i and ai D .�.T;G/

�.��/�1p0�.xi//jy , there
is an S1 � T such that �.S1;T /�ai D 0 for nj � i � njC1�1. Since

PnjC1�1

iDnj
a2

i 2

H 4.BT IQ/ is W .G/–invariant, it follows that, for all w 2W .G/,

0D �.wS1w�1;T /�
njC1�1X

iDnj

a2
i D

njC1�1X
iDnj

.�.wS1w�1;T /�ai/
2:

Since H�.BS1IZ/DZŒx�, this implies that �.wS1w�1;T /�ai D 0 for all nj � i �

njC1 � 1. Because G is simple, there are no nontrivial W .G/–invariant subtori in
T . Therefore we have T D hwS1w�1Iw 2 W .G/i. Hence, all ai 2 H 2.BT IZ/,
i D nj ; : : : ; njC1� 1, j D 1; : : : ; k , vanish.
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Hence, �.S1;T /��.T;G/�v D ax2 with a < 0 for all nontrivial homomorphisms
S1 ,! T .

Examples of those manifolds which satisfy the assumptions on M 0 in the above
theorem are manifolds with nonvanishing Euler characteristic whose tangent bundle
is isomorphic to a direct sum of complex line bundles L1; : : : ;Ln such that there are
1D n1 < n2 < � � �< nkC1 D nC 1 with p1.

LnjC1�1

iDnj
Li/D 0 for all j D 1; : : : ; k .

If H is a simple compact connected Lie group with maximal torus T , then all Pontrjagin
classes of H=T are torsion. Therefore we get the following corollary.

Corollary 4.5 Let M be a Spin–manifold with p1.M /D 0 and H1; : : : ;Hk be sim-
ple compact connected Lie groups with maximal tori T1; : : : ;Tk . If there is an almost
effective action of a simple compact connected Lie group G on M �

Qk
iD1Hi=Ti such

that rank G > rank Hi for all i D 1; : : : ; k , then the Witten genus of M vanishes.

The Corollaries 4.2 and 4.5 can be used to find an upper bound for the semisimple
symmetry degree of M �H=T , where M is a Spin–manifold with p1.M /D 0 and
nonvanishing Witten genus and H is a semisimple compact Lie group with maximal
torus T . To give this upper bound we need the following constants. For l � 1 let

˛l Dmax
�

dim G

rank G

ˇ̌̌̌
G a simple compact Lie group with rank G � l

�
:

The values of the ˛l are listed in Table 1.

l ˛l Gl

1 3 Spin.3/
2 7 G2

3 7 Spin.7/;Sp.3/
4 13 F4

5 13 none
6 13 E6;Spin.13/;Sp.6/
7 19 E7

8 31 E8

9� l � 14 31 none
l � 15 2l C 1 Spin.2l C 1/;Sp.l/

Table 1: The values of ˛l and the simply connected compact simple Lie
groups Gl of rank l with dim Gl D ˛l � l
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Corollary 4.6 Let M be a Spin–manifold with p1.M / D 0, such that the Witten
genus of M does not vanish and H1; : : : ;Hk simple compact connected Lie groups
with maximal tori T1; : : : ;Tk . Then we have

kX
iD1

dim Hi �Nss

�
M �

kY
iD1

Hi=Ti

�
� ˛l

kX
iD1

rank Hi ;

where l D maxfrank Hi j i D 1; : : : ; kg. If all Hi have the same rank and each Hi

has one of the groups listed in Table 1 as a covering group, then equality holds in both
inequalities.

Proof Let G be a compact simply connected semisimple Lie group which acts
almost effectively on M �

Qk
iD1Hi=Ti . Then, by Corollary 4.2, we have rank G �Pk

iD1 rank Hi . By Corollary 4.5, all simple factors of G must have rank smaller or
equal to l . Therefore we have

dim G � ˛l rank G � ˛l

kX
iD1

rank Hi :

Hence, Nss.M �
Qk

iD1 Hi=Ti/� ˛l

Pk
iD1 rank Hi follows.

Since there is an obvious
Qk

iD1 Hi –action on M �
Qk

iD1 Hi=Ti , the other inequality
follows.

If all Hi have the same rank l and each Hi has one of the groups listed in Table 1 as
a covering group, then

Pk
iD1 dim Hi D ˛l

Pk
iD1 rank Hi . Therefore we get equality

in this case.

Remark 4.7 Our methods to prove Corollary 4.6 break down if we consider the
stabilization of M with a homogeneous space H=K , where K is a closed subgroup
of H which is not a maximal torus.

If K has not maximal rank in H , then there is a fixed-point-free torus action on
M �H=K . Therefore all indices 'c.M �H=KIV;W / vanish by the Lefschetz
fixed point formula. If K is nonabelian and has maximal rank in H , then all indices
'c.M �H=KIV;W / vanish by Corollary 2.11.

Therefore in both cases the starting point of the proofs of Theorems 4.1 and 4.4, namely
the existence of an index 'c.M �M 0IV;W / which vanishes if and only if the Witten
genus of M vanishes, does not hold in the case M 0 DH=K .
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5 Twisted Dirac operators and quasitoric manifolds

In this section we apply the results of the previous sections to the study of quasitoric
manifolds. We begin by recalling the definition of quasitoric manifolds and some of
their properties established by Davis and Januszkiewicz [6] (see also Buchstaber and
Panov [5]).

A smooth closed simply connected 2n–dimensional manifold M with a smooth action
of an n–dimensional torus T is called quasitoric if the following two conditions are
satisfied:

(1) The T –action on M is locally isomorphic to the standard action of T on Cn .

(2) The orbit space M=T is a simple convex n–dimensional polytope P .

We denote by F D fF1; : : : ;Fmg the set of facets of P . Then for each Fi 2 F,
Mi D �

�1.Fi/ is a closed connected submanifold of codimension two in M which is
fixed pointwise by a one-dimensional subtorus �.Fi/D�.Mi/ of T . Here � W M !P

denotes the orbit map. These Mi are called the characteristic submanifolds of M .

The cohomology ring of M is generated by elements of degree two u1; : : : ;um 2

H 2.M IZ/ such that

H�.M IZ/D ZŒu1; : : : ;um�=.I CJ /;

where I is the ideal generated by� kY
jD1

uij I

k\
jD1

Fij D∅
�

and J is generated by linear relations between the ui , which depend on the function
�W F!fone-dimensional subtori of T g. It should be noted that each ui is the Poincaré
dual of Mi .

The stable tangent bundle of M splits as a sum of complex line bundles L1; : : : ;Lm :

TM ˚R2m�2n
Š

mM
iD1

Li ;

such that c1.Li/D˙ui . In particular, a quasitoric manifold has always a stable almost
complex structure and therefore a Spinc –structure.

So the results of Section 2 might be used to find quasitoric manifolds with only a few
nonabelian symmetries. To do so, we have to find quasitoric manifolds M that admit
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vector bundles V !M and W !M which satisfy the assumptions of Theorem 2.4
such that 'c.M IV;W /¤ 0. In the following we say that M has a nonvanishing index
'c.M IV;W / if these assumptions are satisfied.

Now we turn to the construction of such quasitoric manifolds. Because the stable tangent
bundle of a quasitoric manifold M splits as a sum of line bundles

Lm
iD1Li it seems

to be natural to consider indices 'c.M IV;W / with V D
Lk

iD1Li , W D
Lm

iDkC1Li

and W a Spin–bundle. But we have the following result:

Theorem 5.1 Let M be quasitoric. Moreover, let M1; : : : ;Mm be the characteristic
submanifolds of M and Li !M the complex line bundles with c1.Li/D PD.Mi/.
Let

V D

kM
iD1

Li and W D

mM
iDkC1

Li

with c1.V /� c1.M / mod 2 and c1.W /� 0 mod 2. Let @c be the Dirac operator
for a Spinc –structure on M with cc

1
.M /D c1.V /. Then 'c.M IV;W /D 0.

Proof We have

'c.M IV;W /D
˝
ecc

1
.M /=2 ch.R/ yA.M /; ŒM �

˛
D
˝
e.V /Q1.TM /Q02.V /Q3.W / yA.V ˚W /; ŒM �

˛
D
˝
Q1.V /Q1.W /Q02.V /Q3.W / yA.V / yA.W /; ŒN �

˛
D
˝
Q1.W /Q3.W / yA.W /; ŒN �

˛
D 2m�n'c.N I 0;TN /D 0:

Here N is the intersection
Tk

iD1 Mi , which is a quasitoric Spin–manifold. N can
not be a point, since otherwise the first Chern classes of the summands of W form
a basis of H 2.M IZ/. Therefore W cannot be Spin if N is a point. The elliptic
genus 'c.N I 0;TN / of N vanishes, because there is an odd S1 –action on N (see
Hirzebruch and Slodowy [12, page 317]).

So we need another idea to construct quasitoric manifolds M which have nontrivial
indices 'c.M IV;W /. We will prove that those 2n–dimensional quasitoric manifolds
whose orbit polytopes admit facet colorings with n colors are such examples. Before we
do so we summarize some properties of n–dimensional polytopes and facet colorings.

A facet coloring with d colors of a simple n–dimensional polytope P is a map
f W F! f1; : : : ; dg such that f .Fi/¤ f .Fj / whenever Fi \Fj ¤ ∅ and Fi ¤ Fj .
Because in each vertex of P there meet n facets, one needs at least n colors to color P .
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The following description of simple n–dimensional polytopes which admit a coloring
with n colors is due to Joswig.

Theorem 5.2 [13, Theorem 16] Let P be a simple n–dimensional polytope. Then
the following statements are equivalent:

(1) P is even, ie each two-dimensional face of P has an even number of vertices.

(2) The graph which consists out of the vertices and edges of P is bipartite.

(3) The boundary complex @P� of the dual polytope of P is balanced, ie there is a
nondegenerate simplicial map @P�!�n�1 . Here �n�1 denotes the .n� 1/–
dimensional simplex.

(4) P admits a facet coloring with n colors.

Quasitoric manifolds whose orbit polytopes satisfy condition (3) in the above theorem
were described by Davis and Januszkiewicz [6, pages 425–426]. They show that this
is a very rich class of quasitoric manifolds. We should note that the n–dimensional
cube admits a facet coloring with n colors. Moreover, a simple polytope belongs to
this class if @P� is the barycentric subdivision of a convex polytope.

Now we construct a nonvanishing index 'c.M IV;W / on every 2n–dimensional
quasitoric manifold M whose orbit polytope admits a facet coloring with n colors.

Lemma 5.3 Let M be a quasitoric manifold of dimension 2n over the polytope P .
Assume that P admits a facet coloring with n colors. Then there is a Spinc –structure on
M and a complex vector bundle V which is a sum of line bundles with c1.V /D cc

1
.M /

and p1.M /D p1.V /, such that 'c.M IV; 0/ does not vanish.

Proof Let f W F! f1; : : : ; ng be a facet coloring of P with n colors.

Let V D
Ln

iD1 Lf �1.i/ , where Lf �1.i/ is the line bundle with

c1

�
Lf �1.i/

�
D

X
Fj2f �1.i/

˙uj :

Then we have c1.V /� c1.M / mod 2 and

p1.V /D

nX
iD1

� X
Fj2f �1.i/

˙uj

�2

D

nX
iD1

X
Fj2f �1.i/

u2
j D p1.M /:
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Consider a Spinc –structure on M with cc
1
.M /D c1.V / and assume that the associated

index 'c.M IV; 0/ vanishes. Then 'c.M IV; 0/ may be calculated as:

0D

�
Q1.TM /

nY
iD1

c1.Lf �1.i//Q
0
2.V /

yA.M /; ŒM �

�

D

� nY
iD1

c1.Lf �1.i//; ŒM �

�
:

Therefore we have

(5-1)
nY

iD1

X
Fj2f �1.i/

˙uj D 0:

Since the signs of the uj may be changed freely, we get, by considering different
Spinc –structures and summing up in Equation (5-1):

8.Fi1
; : : : ;Fin

/ 2 f �1.1/� � � � �f �1.n/;

nY
jD1

uij D 0:

But there is at least one tuple .Fi1
; : : : ;Fin

/ 2 F � � � � � F such that
Tn

jD1Fij is a
vertex of P . For this tuple we have

Qn
jD1uij ¤ 0. Moreover, because f is a coloring

with n colors, for each k 2 f1; : : : ; ng there is exactly one Fijk
with f .Fijk

/ D k .
Therefore we get a contradiction.

As a consequence of Lemma 5.3 and the corollaries at the end of Section 2 we get the
following corollaries.

Corollary 5.4 Let M be a 2n–dimensional quasitoric manifold. If the orbit polytope
of M admits a facet coloring with n colors, then we have N.M /� 3n with equality
holding if and only if M D

Q
S2 .

Proof This follows directly from Lemma 5.3 and Corollary 2.14.

Corollary 5.5 Let M be a quasitoric manifold over the n–dimensional cube. Then
the only simple simply connected compact Lie groups that can act almost effectively on
M are SU.2/ and Spin.5/.

Proof By Lemma 5.3, there is a twisted Dirac operator on M , whose index does not
vanish. By Corollary 2.12, the order of the Weyl group of a simple simply connected
compact Lie group, which acts on M , divides the Euler characteristic of M . Because
�.M /D 2n and SU.2/ and Spin.5/ are the only simple simply connected compact Lie
groups G with #W .G/ j2n (see Samelson [17, pages 74–84]), the statement follows.
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In the proof of the next corollary of Lemma 5.3 we construct quasitoric manifolds with
low semisimple symmetry degree.

Corollary 5.6 In each dimension greater or equal to four, there are infinitely many
quasitoric manifolds M with Nss.M /� 3.

Proof Let M1 be a four-dimensional quasitoric manifold over a polygon with 6k

vertices, k 2 N . Moreover, let M2 be a 2n–dimensional quasitoric manifold over
the n–cube. Then the orbit polytopes of M1 and M2 admit facet colorings with 2

and n colors, respectively. Therefore the orbit polytope of M1 �M2 admits a facet
coloring with nC 2 colors. Hence, by Lemma 5.3, there is a nonvanishing index
'c.M1 �M2IV; 0/ on M1 �M2 . By Lemma 3.2 applied in the case V1 D V2 D V

and W1 DW2 D 0, it follows that

M D .M1 �M2/ # .M1 �M2/

has a nonvanishing index. Because �.M / D 2 � 6k � 2n � 2 is not divisible by three
and four, it follows from Corollary 2.12 and [17, pages 74–84] that the only compact
simply connected semisimple Lie group that can act almost effectively on M is SU.2/.
Because connected sums of quasitoric manifolds are quasitoric, the statement follows.

The connected sum of two quasitoric manifolds is again a quasitoric manifold. Therefore
Lemma 5.3 and the following result may be used to construct more quasitoric manifolds
with nonvanishing indices.

Lemma 5.7 Let M1;M2 be quasitoric manifolds of dimension 2n� 4. Assume that
there are vector bundles V1!M1 and W1!M1 as in Lemma 3.2 and b2.M2/ �

dim V1 or M2 is a Spin–manifold.

Then there are sums of line bundles V;W over M1 # M2 and a Spinc –structure on
M1#M2 with c1.V /Dcc

1
.M1#M2/, c1.W /�0 mod 2, p1.VCW �TM1#M2/D0,

such that
'c.M1 # M2IV;W /D 2k'c.M1IV1;W1/

for some k � 0.

Proof Let Li !M2 , i D 1; : : : ;m, be line bundles such that the Chern classes of
the Li are the Poincaré duals of the characteristic submanifolds of M2 . Then we have
TM2˚R2m�2n Š

Lm
iD1 Li .
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We order the Li so that c1.L1/; : : : ; c1.Lb2.M2// form a basis of H 2.M2IZ/. There-
fore there are a1; : : : ; ab2.M / 2 f0; 1g such that

c1

� b2.M /M
iD1

aiLi

�
� c1.M2/ mod 2

and

W2 D

b2.M /M
iD1

.1� ai/Li ˚

mM
iDb2.M /C1

Li

is a Spin bundle. Consider a Spinc –structure on M2 such that

cc
1.M2/D c1

� b2.M /M
iD1

aiLi

�
:

By Theorem 5.1 we have 'c.M2IV2;W2/D 0, where V2D
Lb2.M /

iD1
aiLi . Therefore,

by Lemma 3.2, the statement follows.

In dimensions divisible by four we can use Lemma 5.7 to improve the results of
Corollary 5.6 and prove that there are quasitoric manifolds on which no semisimple
compact Lie group can act effectively.

Corollary 5.8 In dimensions 4k , k> 0, there are infinitely many quasitoric manifolds
M with Nss.M /D 0.

Proof Let M 0 be as in Lemma 5.3 with dim M 0 D 2nD 4k . Then, by an iterated
application of Lemma 5.7, there are nonvanishing indices 'c.M IV;W / on the manifold
M DM 0 # lCP2k with l 2N . Because connected sums of quasitoric manifolds are
quasitoric, M is quasitoric.

Since a bipartite regular graph has an even number of vertices, Theorem 5.2 gives that
the Euler characteristic of M 0 is even. Therefore �.M /D �.M 0/C l�.CPn/� 2l is
odd if l is odd. Because the order of the Weyl group of a semisimple compact connected
Lie group is even [17, pages 74–84], the statement follows from Corollary 2.12.

Remark 5.9 Nonsingular projective toric varieties are examples of quasitoric man-
ifolds. If, in the situation of the proof of Corollary 5.8, M 0 is such a variety, then
we can construct infinitely many nonsingular toric varieties M with Nss.M /D 0 by
blowing-up isolated fixed points in M 0 repeatedly, ie by taking connected sums with
several copies of CPn .
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6 Quasitoric manifolds admitting low cohomogeneity actions

In this section we study quasitoric manifolds which admit a cohomogeneity one or zero
action of a compact connected Lie group and have a nonzero index 'c.M IV;W /. To
do so we need the notion of spaces of q–type which was introduced by Hauschild [11].
A space of q–type is defined to be a topological space X satisfying the following
cohomological properties:

� The cohomology ring H�.X IQ/ is generated as a Q–algebra by elements of
degree two, ie H�.X IQ/DQŒx1; : : : ;xn�=I0 and deg xi D 2.

� The defining ideal I0 contains a definite quadratic form Q.

Examples of spaces of q–type are homogenous spaces of the form G=T where G is a
semisimple compact connected Lie group and T a maximal torus of G . Quasitoric
manifolds of q–type were studied by the author in [19].

For the proof of the main result of this section we need the following lemma.

Lemma 6.1 Let F ! E ! B be a fibration such that �1.B/ acts trivially on
H�.F IQ/. If F and B are spaces of q–type then E is a space of q–type.

Proof Because H�.F IQ/ and H�.BIQ/ are generated by their degree two parts, it
follows from the Serre spectral sequence that H�.EIQ/ is generated by its degree
two part. Let x1; : : : ;xm be a basis of H 2.F IQ/ and y1; : : : ;ym0 be a basis of
H 2.BIQ/. Then there is a basis X1; : : : ;Xm;Y1; : : : ;Ym0 of H 2.EIQ/ such that
��Xi D xi , i D 1; : : : ;m, and ��yi D Yi , i D 1; : : : ;m0 . Here �W F ! E is the
inclusion and � W E! B is the projection.

Let QF and QB be positive definite bilinear forms such that QF .x1; : : : ;xm/D 0 2

H 4.F IQ/ and QB.y1; : : : ;ym0/D 0 2H 4.BIQ/.

Then there are ˛11; : : : ; ˛mm0 2Q and ˇ1; : : : ; ˇm0 2Q such that for all � 2Q:

Q�.X1; : : : ;Xm;Y1; : : : ;Ym0/

DQF .X1; : : : ;Xm/C�QB.Y1; : : : ;Ym0/C
X
i;j

˛ij XiYj C

X
i

ˇiY
2
i

D 0 2H 4.EIQ/:

We claim that Q� is positive definite for sufficient large �. To see that it is sufficient to
show that for all a 2 SmCm0�1 �RmCm0 , Q�.a/ > 0. We may write aD 1xC2y ,
with x 2Rm , y 2Rm0 , kxk D kyk D 1 and  2

1
C  2

2
D 1.
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Because QF is positive definite and SmCm0�1 \Rm is compact, there is an � > 0

such that Q�.a/��QB.a/ > 0 for all 2 < � .

Because QB is positive definite and SmCm0�1\f2 � �g is compact, we may take �
sufficiently large such that

�min
˚
QB.a/

ˇ̌
a 2 SmCm0�1

\f2 � �g
	

> �min
˚
Q�.a/��QB.a/

ˇ̌
a 2 SmCm0�1

\f2 � �g
	
:

Therefore Q� is positive definite for sufficient large �.

Now we can prove the following theorem.

Theorem 6.2 Let M be a quasitoric manifold on which a compact connected Lie
group G acts such that dim M=G � 1. Assume that M has a nonvanishing index
'c.M IV;W / with V , W as in Theorem 2.4.

Then M D
Q

S2 if dim M=G D 0 or M is a S2 –bundle with structure group a
maximal torus of G over

Q
S2 if dim M=G D 1.

Proof If dim M=G D 0 then M is a homogeneous space G=H . Because �.M /¤ 0,
H must have maximal rank in G . Therefore we may assume that G is semisimple.
Hence, it follows from Corollary 2.11 that H is a maximal torus of G . As in [19,
Section 3], one sees that M D

Q
S2 .

Now assume that dim M=G D 1. Because �.M /¤ 0, it follows from Corollary 2.11
that there is an orbit of type G=T with T a maximal torus of G . Because dim G=T is
even this must be a nonprincipal orbit. Hence, the orbit space M=G is homeomorphic
to the compact interval Œ0; 1� and there is exactly one other nonprincipal orbit. Let
S �G be a principal isotropy group. Then we may assume S � T . Moreover, T=S

is a sphere. Therefore S has codimension one in T .

Let KC be the isotropy group of the other nonprincipal orbit. Then KC=S is a sphere
and the identity component of KC is a torus by Theorem 2.4. Therefore there are two
cases:

� dim KC D dim S and KC=S D Z2 .

� KC is a maximal torus of G .

In the first case, we have by the Seifert–van Kampen theorem

�1.M /D �1.G=T /��1.G=S/ �1.G=K
C/D �1.G=K

C/=�1.G=S/D Z2
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because G=S !G=KC is a twofold covering. But M is simply connected because it
is quasitoric. So this case does not occur.

Now as in the remark before [19, Lemma 5.2] one sees that M is a S2 –bundle with
structure group T over G=T . By Lemma 6.1, M is a quasitoric manifold which is
of q–type. Therefore it follows from [19, Theorem 5.3] that M is a S2 –bundle overQ

S2 .

7 Quasitoric manifolds with nonvanishing indices and
N.M / � 3n � 4

By Corollary 2.14 the symmetry degree of a quasitoric manifold M with a nontrivial
index 'c.M IV;W / is bounded from above by 3n. In this section we classify those
2n–dimensional quasitoric manifolds which admit a twisted Dirac operator with a
nonvanishing index and have degree of symmetry greater or equal to 3n� 4.

For the statement of our first theorem we need the notion of a torus manifold. A torus
manifold is a 2n–dimensional closed connected orientable smooth manifold M with
an effective smooth action of an n–dimensional torus T , such that M T is nonempty.

Theorem 7.1 Let M be a 2n–dimensional quasitoric manifold with nonvanishing
index 'c.M IV;W / with V , W as in Theorem 2.4 and G be a compact connected Lie
group of rank n, which acts almost effectively on M . Then G has a covering group of
the form

Q
SU.2/�T l0 . Moreover, M is a fiber bundle with fiber a 2l0 –dimensional

torus manifold over
Q

S2 .

Proof M is a torus manifold with G–action in the sense of the author’s [18] and
H�.M IZ/ is generated by H 2.M IZ/. Therefore G has a covering group of the form
zG D

Q
i SU.li C 1/�T l0 by [18, Remark 2.9]. Let T be a maximal torus of G and

x 2M T . Then, by [18, Lemmas 3.1 and 3.4], we have

SU.li C 1/x D S.U.li/�U.1// or SU.li C 1/x D SU.li C 1/:

Therefore by Corollary 2.11, we have li D 1. Moreover, each factor SU.li C 1/ does
not have a fixed point in M . Therefore the second statement follows from an iterated
application of [18, Corollary 5.6].

The next theorem is the classification announced in the introduction of this section.

Theorem 7.2 Let M be a 2n–dimensional quasitoric manifold with nonvanishing
index 'c.M IV;W / with V , W as in Theorem 2.4. If N.M / � 3n� 4, then M is
diffeomorphic to one of the manifolds in the following list:
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N.M / M

3n
Q

S2

3n� 1 impossible
3n� 2 S2–bundle over

Q
S2

3n� 3 impossible
3n� 4 N –bundle over

Q
S2 with N a

quasitoric manifold, dim N D 4

Proof The statement about the quasitoric manifolds with N.M /D 3n follows from
Corollary 2.14.

Therefore assume that M is a 2n–dimensional quasitoric manifold with nonvanishing
index 'c.M IV;W / and G is a compact connected Lie group of dimension 3n� 1,
which acts effectively on M . Let T be a maximal torus of G .

Because, by Corollary 2.13,

(7-1) dim G � dim T � 2n;

we have dim T D n� 1 or dim T D n. If dim T D n, then dim G � dim T is odd,
which is impossible. But dim T D n� 1 is impossible by Corollary 2.13.

Let M , G , T as above. But with dim G D 3n � 2. By (7-1), we have dim T D

n� 2; n� 1; n. As in the first case one sees that dim T D n� 2; n� 1 are impossible.
If dim T D n, we see with Theorem 7.1 that M is a S2 –bundle over

Q
S2 .

Let M , G , T as above. But with dim G D 3n � 3. By (7-1), we have dim T D

n� 3; n� 2; n� 1; n. As above one sees that dim T D n� 3; n� 2; n are impossible.
Therefore we have dim T D n� 1. Because �.M /¤ 0, there is by Corollary 2.11 an
orbit of type G=T which has dimension 2n� 2.

Therefore the principal orbit type has dimension 2n� 2 or 2n� 1. In the first case the
principal orbit type is G=T and by Corollary 2.11 there is no exceptional or singular
orbit. Hence, M is a fiber bundle over a simply connected surface with fiber G=T

and structure group NGT=T . Since NGT=T is finite, we have M D S2 �G=T .
Therefore we have N.M /� 3C dim G D 3n.

Now assume that the principal orbit G=S has codimension one in M . Then, by
Theorem 6.2, M is a S2 –bundle with structure group a torus over

Qn�1
iD1 S2 . Therefore

we have N.M /� 3n� 2.

Now let M , G , T as above, but with dim G D 3n� 4. By (7-1), we have dim T D

n� 4; n� 3; n� 2; n� 1; n. As above one sees that dim T D n� 4; n� 3; n� 1 are
impossible. Therefore we have dim T D n� 2; n.

Algebraic & Geometric Topology, Volume 13 (2013)



306 Michael Wiemeler

At first assume that dim T D n. Then M is a torus manifold with G–action. By
Theorem 7.1 we have G D

Qk
iD1 SU.2/�T l0 with 3n� 4D 3kC l0 and nD kC l0 .

Therefore we have l0 D 2 and M is a fiber bundle with fiber a four-dimensional torus
manifold over

Qk
iD1 S2 . By [18, Lemma 5.17], the fiber of this bundle is simply

connected. Therefore it is quasitoric because every four-dimensional simply connected
torus manifold is quasitoric (see Orlik and Raymond [15, Section 5]).

Now assume that dim T D n� 2. Then we have dim G=T D 2n� 2. Therefore the
principal orbit type of the G–action on M has dimension 2n� 2 or 2n� 1. In both
cases one sees as in the case dim G D 3n� 3 that N.M /� 3n� 2.

8 Highly symmetric quasitoric manifolds

In this section we show that CPn is the most symmetric quasitoric manifold of dimension
2n. The main result of this section is the following theorem.

Theorem 8.1 Let M be a 2n–dimensional quasitoric manifold. Then we have

N.M /� n2
C 2n;

with equality only holding for M DCPn .

The proof of this theorem is subdivided into several lemmas. We prove it separately in
each dimension. We begin with dimensions 2n� 20.

Lemma 8.2 Let M be a quasitoric manifold of dimension 2n� 20 with M ¤CPn .
Then we have N.M /� n2C nC 1< n2C 2nDN.CPn/.

Proof It was shown by Ku, Mann, Sicks and Su [14, Theorem 1] that if H˛.M IQ/¤0

and M ¤CPn , then

N.M /� 1
2
˛.˛C 1/C 1

2
.2n�˛/.2n�˛C 1/:

The statement follows from this result applied in the cases ˛ D n or ˛ D n� 1.

Now we turn to the low dimensional case 2n� 8.

Lemma 8.3 Let M be a quasitoric manifold of dimension 2n, n�4, and G a compact
connected Lie group which acts almost effectively on M . Then dim G � n2C 2n and
equality only holds for M DCPn and zG D SU.nC 1/.
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Proof Because M has nonzero Euler characteristic, we have rank G � n. If we have
rank G D n, it follows from [18, Remark 2.9] that G has a covering group of the form
zG D

Qk
iD1 SU.liC 1/�T l0 with

Pk
iD0 li D n. Therefore we have dim G � n2C 2n

with equality holding if and only if zG D SU.nC 1/. In the latter case it follows from
[18, Corollary 8.9] that M DCPn .

Now assume that rank G � n� 1. The highest dimensional Lie groups of rank k are:

k G dim G .kC 1/2C 2.kC 1/

1 Spin.3/ 3 4

2 G2 14 15

3 Spin.7/ 21 24

Therefore the statement follows.

Now we turn to the middle dimensions 10� 2n� 18. Those 2n–dimensional simply
connected manifolds on which compact connected nonabelian Lie groups of rank n

act were classified in [18]. Therefore we first focus on actions of those groups which
have a rank which is smaller than n.

As a first step we show that if a high-dimensional Lie group acts on a quasitoric
manifolds of these dimensions, then its simply connected covering group has a big
simple factor which is isomorphic to Spin.k/.

Lemma 8.4 Let M be a manifold of dimension 2n, 5 � n � 9, and G a compact
connected Lie group with rank G � n � 1 and dim G � n2 C 2n that acts almost
effectively on M . Then G has a covering group of the form

zG D Spin.k/�G0;

with k D 9 if nD 5 and

k �

8̂̂̂<̂
ˆ̂:

11 if nD 6;

12 if nD 7;

13 if nD 8;

15 if nD 9:

Proof Let G=H be a principal orbit type of the G –action on M . Then

dim G � n2
C 2n�

�
n

2
C 1

�
dim M �

�
n

2
C 1

�
dim G=H:

Algebraic & Geometric Topology, Volume 13 (2013)



308 Michael Wiemeler

Because n=2C 1 � 14=4, we may apply [14, Proposition B] with r D n=2C 1� � .
Therefore zG is of the form

Spin.k/�G0 k � nC 2; or

SU.k/�G0 k � nC 1; or

Sp.k/�G0 k � n:

Because rank G � n� 1, the last two cases do not occur.

It remains to prove that the lower bound for k given in the lemma holds. This follows
from an inspection of the dimensions of those groups which have Spin.k/, k � nC 2,
as a simple factor and rank bounded from above by n� 1. These groups are listed in
the following tables. Here we have omitted those groups which are not isomorphic to
Spin.k/ and for which the Spin.k/–factor alone has a dimension greater or equal to
n2C2n. If the Spin.k/–factor has a lower dimension, we have only listed those groups
which have maximal dimension among those groups which have this Spin.k/–factor.

If nD 5 we have n2C 2nD 35 and:

G dim G

Spin.9/ 36

Spin.8/ 28

Spin.3/�Spin.7/ 24

For nD 6 we have n2C 2nD 48 and:

G dim G

Spin.11/ 55

Spin.10/ 45

Spin.3/�Spin.9/ 39

For nD 7 we have n2C 2nD 63 and:

G dim G

Spin.13/ 78

Spin.12/ 66

Spin.3/�Spin.11/ 58

G2 �Spin.9/ 50

For nD 8 we have n2C 2nD 80 and:
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G dim G

Spin.15/ 105

Spin.14/ 91

Spin.3/�Spin.13/ 81

Spin.3/�Spin.12/ 69

G2 �Spin.11/ 69

For nD 9 we have n2C 2nD 99 and:

G dim G

Spin.17/ 136

Spin.16/ 120

Spin.15/ 105

Spin.3/�Spin.14/ 94

G2 �Spin.13/ 92

Spin.7/�Spin.11/ 69

Therefore the statement about k follows.

The next step is to identify the identity component of the principal isotropy group of
the Spin.k/–action on M .

Lemma 8.5 Let M , G as in Lemma 8.4. If nD 5, then also assume that �.M /¤ 0.
Then the identity component of the principal isotropy group of the Spin.k/–action on
M is Spin.k � 1/.

Proof If 6� n� 9, one can argue as in the proof of the main lemma of [14, page 135]
in Case III.

Therefore assume that nD 5. Then we have k D 9. Because �.M /¤ 0, there is a
point x 2M such that Spin.9/x has maximal rank in Spin.9/. By the classification
of maximal rank subgroups of Spin.9/ given by Borel and de Siebenthal [4] and the
dimension assumption, it follows that Spin.9/0x D Spin.8/ or Spin.9/0x D Spin.9/.

If Spin.9/0x D Spin.8/, then the orbit of x has codimension two in M . Because
Spin.8/ has no nontrivial 2–dimensional representation, it follows that Spin.8/ is the
identity component of a principal isotropy group.

If Spin.9/0x D Spin.9/, then TxM is a 10–dimensional representation of Spin.9/.
Therefore it is the sum of the standard 9–dimensional representation of Spin.9/ and
the trivial one dimensional representation. Hence, the statement follows in this case.
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As a consequence of Lemmas 8.4 and 8.5 we get the following lemma which implies
Theorem 8.1 in the remaining dimensions.

Lemma 8.6 Let M be a quasitoric manifold of dimension 2n, 5� n� 9, and G be
a compact connected Lie group which acts almost effectively on M .

Then dim G � n2C 2n and equality only holds for M DCPn and zG D SU.nC 1/.

Proof Since M has nonzero Euler characteristic, we have rank G � n. In the case
rank G D n, one can argue as in the proof of Lemma 8.3.

Therefore we may assume that rank G � n� 1. Assume that dim G � n2C 2n. By
Lemmas 8.4 and 8.5, there is an almost effective action of Spin.k/ on M such that
dim M=Spin.k/ � 4 and all orbits are acyclic over Q up to dimension 7. By the
Vietoris–Begle mapping theorem, it follows that

0¤H 6.M IQ/ŠH 6.M=Spin.k/IQ/D 0:

This is a contradiction.

Appendix A Groups acting on tori

In this appendix we prove some of the technical details which are needed in the proof
of Lemma 2.10.

Lemma A.1 Let M be a free, finitely generated Z–module and G a finite group
which acts on M . Then there is a G –invariant submodule M 0 �M such that:

(1) M 0\M G D f0g.

(2) rank M 0C rank M G D rank M .

Proof Choose a positive definite G–invariant metric on M . Then the orthogonal
complement M 0 of M G is G–invariant and M 0 \M G D f0g. Moreover, we have
rank M 0C rank M G D rank M .

Lemma A.2 Let G be a finite group, which acts by automorphisms on the torus T .
Then there are subtori T1;T2 � T such that:

(1) T1 � T G .

(2) T G
2

is finite.

(3) hT1;T2i D T .
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Proof The action of G on T induces an action of G on the Lie algebra LT of T .
Let M be the integer lattice in LT . Then M is G –invariant. Let M 0 and M G as in
Lemma A.1 and T2 be the subtorus of T corresponding to M 0 ; T1 the subtorus of T

corresponding to M G .

Then we have:

� T1 � T G because G acts trivially on the Lie algebra of T1 .

� T G
2

is finite because of (1) in Lemma A.1.

� hT1;T2i D T because of (1) and (2) in Lemma A.1.
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