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On the Turaev–Viro endomorphism
and the colored Jones polynomial

XUANTING CAI

PATRICK M GILMER

By applying a variant of the TQFT constructed by Blanchet, Habegger, Masbaum
and Vogel and using a construction of Ohtsuki, we define a module endomorphism
for each knot K by using a tangle obtained from a surgery presentation of K . We
show that it is strong shift equivalent to the Turaev–Viro endomorphism associated to
K . Following Viro, we consider the endomorphisms that one obtains after coloring
the meridian and the longitude of the knot. We show that the traces of these endomor-
phisms encode the same information as the colored Jones polynomials of K at a root
of unity. Most of the discussion is carried out in the more general setting of infinite
cyclic covers of 3–manifolds.

57M25, 57M27, 57R56

1 Introduction

1.1 History

Walker [26] first noticed that the endomorphism induced in a .2C 1/–TQFT (defined
over a field) by the exterior of a closed off Seifert surface of a knot in zero-framed
surgery along the knot can be used to give lower bounds for the genus of the knot.
He did this by showing the number of nonzero eigenvalues of this endomorphism
counted with multiplicity is an invariant [26], ie it does not depend on the choice of
the Seifert surface. Thus the number of such eigenvalues must be less than or equal
to the dimension of the vector space that the TQFT assigns to a closed surface of this
minimal genus.

Next Turaev and Viro [22], again assuming the TQFT is defined over a field, saw
that the similarity class of the induced map on the vector space associated to a Seifert
surface modulo the generalized 0–eigenspace was a stronger invariant. If the TQFT
is defined over a more general commutative ring, the second author observed [8] that
the strong shift equivalence class of the endomorphism is an invariant of the knot.
Strong shift equivalence (abbreviated SSE) is a notion from symbolic dynamics that
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we will discuss in Section 2.4. For a TQFT defined over a field F , the similarity class
considered by Turaev–Viro is a complete invariant of SSE. In this case, the vector
space modulo the generalized 0–eigenspace together with the induced automorphism,
considered as a module over F Œt; t�1�, is called the Turaev–Viro module. It should
be considered as somewhat analogous to the Alexander module. The order of the
Turaev–Viro module is called the Turaev–Viro polynomial and lies in F Œt; t�1�. We
will refer to the endomorphisms constructed as above (and those in the same SSE class)
as Turaev–Viro endomorphisms.

In [6; 7], the second author studied Turaev–Viro endomorphisms and gave methods
for computing the endomorphism explicitly. These methods adapted Rolfsen’s surgery
technique of studying infinite cyclic covers of knots. This method requires finding a
surgery description of the knot; that is a framed link in the complement of the unknot
such that the framed link describes S3 and the unknot represents the original knot.
Moreover each of the components of the framed link should have linking number zero
with the unknot. For this method to work, it is important that the surgery presentation
have a nice form. In this paper, we will show that all knots have a surgery presentations
of this form (in fact an even nicer form that we will call standard). Another explicit
method of computation was given by Achir and Blanchet [1]. This method starts with
any Seifert surface. The second author also considered the further invariant obtained
by decorating a knot with a colored meridian (this was needed to give formulas for
the Turaev–Viro endomorphism of a connected sum, and to use the Turaev–Viro
endomorphism to compute the quantum invariants of branched cyclic covers of the
knot).

Ohtsuki [18; 19] arrived at the same invariant as the Turaev–Viro polynomial but from
a very different point of view. Ohtsuki extracts this invariant from a surgery description
of a knot (alternatively of a closed 3–manifold with a primitive one dimensional
cohomology class) and the data of a modular category. His method starts from any
surgery description standard or not. This is a significant advantage of his approach.
Ohtsuki’s proof of the invariance of the polynomial in [18] is only sketched. He stated
that his invariant is the same as the Turaev–Viro polynomial, but does not give an
explanation.

Recently Viro [23; 24] has returned to these ideas. He has studied the Turaev–Viro
endomorphism of a knot after coloring both the meridian and the longitude of the knot.
Viro observed that a weighted sum of the traces of these endomorphisms is the colored
Jones polynomial evaluated at a root of unity.

In [6; 7; 8], Turaev–Viro endomorphisms were defined more generally for infinite cyclic
covers of 3–manifolds. Suppose .M; �/ is a closed connected oriented 3–manifold
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The Turaev–Viro endomorphism and the Jones polynomial 377

M with � 2H 1.M;Z/ such that �W H1.M;Z/!Z is onto. Let M1 be the infinite
cyclic cover of M corresponding to �. Choose a surface † in M dual to �. By
lifting † to M1 , we obtain a fundamental domain E with respect to the action of Z
on M1 . E is a cobordism from a surface † to itself. Let .V;Z/ be a .2C1/–TQFT
on the cobordism category of extended 3–manifolds and extended surfaces. Applying
.V;Z/ to E and †, we can construct an endomorphism Z.E/W V .†/! V .†/. In
[8], it is proved that the strong shift equivalent class of Z.E/W V .†/! V .†/ is an
invariant of the pair .M; �/, ie it does not depend on the choice of †. We denote this
SSE class by Z.M; �/. We will sometimes refer to a pair .M; �/ as above, informally,
as a 3–manifold with an infinite cyclic covering.

The knot invariants discussed above can be obtained as special cases of the above
invariants of 3–manifolds with an infinite cyclic covering. For any oriented knot
K in S3 , we obtain an extended 3–manifold S3.K/ by doing 0–surgery along K .
We choose � to be the integral cohomology class that evaluates to 1 on a positive
meridian of K . Then it is easy to see that the invariant Z.S3.K/; �/ corresponding to
.S3.K/; �/ only depends on K . If our TQFT is defined for 3–manifolds with colored
links, one may obtain further invariants by coloring the meridian and the longitude (a
little further away) of the knot.

For the knot invariants discussed above, it is required, in general, that K be oriented.1

This is so that the exterior of a Seifert surface acquires a direction as a cobordism from
the Seifert surface to itself. However, we decided to delay mentioning this technicality.
To avoid issues that arise from phase anomalies in TQFT, in this paper, we work with
extended manifolds as in Walker [27] and Turaev [21]. In this introduction, we omit
mention of the integer weights and Lagrangian subspaces of extended manifolds. We
discuss extended manifolds carefully in the main text.

1.2 Results of this paper

Inspired by Ohtsuki, we construct a SSE class Z.M; �/ from a framed (or banded)
tangle in S2�I that arises in a surgery presentation of .M; �/. We call this the tangle
endomorphism. Moreover we show that the endomorphism (or square matrix) that
Ohtsuki considers in this situation is well defined up to SSE. By relating the definition
of the Turaev–Viro endomorphism to Ohtsuki’s matrix, we give a different proof of
the invariance of Ohtsuki’s invariant. In fact, we show that Ohtsuki’s matrix has the
same SSE class as the Turaev–Viro endomorphism, ie Z.M; �/DZ.M; �/. We do
not prove these results in the general case of a TQFT arising from a modular category.

1For TQFTs over a field satisfying some common axioms, the Turaev–Viro endomorphisms of a knot
and its inverse have the same SSE class. This follows from [6, Proposition 1.5] and Proposition 2.23.
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We only work in the context of the skein approach for TQFTs associated to SO.3/ and
SU.2/. We work with a modified Blanchet–Habegger–Masbaum–Vogel approach [3]
as outlined in the second author’s [10]. This theory is defined over a slightly localized
cyclotomic ring of integers. It is worthwhile studying endomorphisms defined up to
strong shift equivalence over this ring rather than passing to a field.

We show that the traces of the Turaev–Viro endomorphism of knots with the meridian
and the longitude colored turns out to encode exactly the same information as the
colored Jones polynomial evaluated at a root of unity.

1.3 Organization

In Section 2, we discuss extended manifolds, a variant of the TQFT constructed in
[3], surgery presentations and the definition of SSE. In Section 3, we construct an
endomorphism for each framed tangle in S2 � I and apply it to the tangle obtained
from a surgery presentation of an infinite cyclic cover of a 3–manifold. We call it the
tangle endomorphism. Then we state Theorem 3.7, which says that the SSE class of
a tangle endomorphism constructed from a surgery presentation of .M; �/ is an of
invariant .M; �/. In Section 4, we discuss technical details concerning the Turaev–Viro
endomorphism for .M; �/, and the method of calculating Z.M; �/ introduced in
[6; 7]. In Section 5, we relate the tangle endomorphism associated to a nice surgery
presentation to the corresponding Turaev–Viro endomorphism. In Section 6, we prove
Theorem 3.7. In Section 7, we give formulas relating the colored Jones polynomial to
the traces of Turaev–Viro endomorphism of a knot whose meridian and longitude are
colored. In Section 8, we compute two examples to illustrate these ideas.

All surfaces and 3–manifolds in this paper are assumed to be oriented.

2 Preliminaries

2.1 Extended surfaces and extended 3–manifolds

For each integer p � 3, Blanchet, Habegger, Masbaum and Vogel [3] define a TQFT
from quantum invariants of 3–manifolds at 2p–th root of unity over a .2 C 1/–
cobordism category. The cobordism category has surfaces with p1 –structures as objects
and 3–manifolds with p1 –structures as morphisms. They introduce p1 –structures
in order to resolve the framing anomaly. Following the second author’s [9; 10], we
will modify the theory by using extended surfaces and extended 3–manifolds from
Turaev [21] and Walker [27] instead of p1 –structures to resolve the framing anomaly.
In the following, all homology groups have rational coefficients except otherwise stated.
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The Turaev–Viro endomorphism and the Jones polynomial 379

Definition 2.1 An extended surface .†; �.†// is a closed surface † with a Lagrangian
subspace �.†/ of H1.†/ with respect to its intersection form, which is a symplectic
form on H1.†/.

Definition 2.2 An extended 3–manifold .M; r; �.@M // is a 3–manifold with an
integer r , called its weight, and whose oriented boundary @M is given an extended
surface structure with Lagrangian subspace �.@M /. If M is a closed extended 3–
manifold, we may denote the extended 3–manifold simply by .M; r/.

Remark 2.3 Suppose we have an extended 3–manifold .M; r; �.@M // and †� @M
is a closed surface. Then

�.@M /\H1.†/

need not be a Lagrangian subspace of H1.†/.

Definition 2.4 Suppose we have an extended 3–manifold .M; r; �.@M // and †�@M
is a closed surface. If �.@M /\H1.†/ is a Lagrangian subspace of H1.†/, we call
† equipped with this Lagrangian a boundary surface of the extended 3–manifold
.M; r; �.@M //.

Notation 2.5 If † is a surface, we use † to denote the surface † with the opposite
orientation.

Proposition 2.6 Suppose .V1; !1/ and .V2; !2/ are two symplectic vector spaces.
Consider the symplectic vector space V1˚ V2 with symplectic form !1˚ !2 . We
can identify V1 and V2 as symplectic subspaces of V1 ˚ V2 . If � � V1 ˚ V2 is a
Lagrangian subspace such that �\V1 is a Lagrangian subspace of V1 , then �\V2 is
a Lagrangian subspace of V2 .

Proof Since �\V1 D spanha1; : : : ; ani, where nD 1
2

dim.V1/, we can assume that

�D spanh.a1; 0/; : : : ; .an; 0/; .c1; b1/; : : : ; .cm; bm/i;

where mD 1
2

dimV2 . Since for any i; j

0D !1˚!2..ai ; 0/; .cj ; bj //

D !1.ai ; cj /C!.0; bj /

D !1.ai ; cj /;

we have cj 2 .�\V1/
? D �\V1 . Therefore,

�D spanh.a1; 0/; : : : ; .an; 0/; .0; b1/; : : : ; .0; bm/i:

That means dim.�\V2/Dm. So �\V2 is a Lagrangian subspace in V2 .
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Corollary 2.7 [10] Suppose we have an extended 3–manifold .M; r; �.@M // and
that † � @M is a boundary surface. Then @M �†, equipped with the Lagrangian
H1.@M �†/\�.@.M //, is also a boundary surface.

Proof This follows from Proposition 2.6.

In the next three definitions, we describe the morphisms and the composition of
morphisms in C , a cobordism category whose objects are extended surfaces.

Definition 2.8 Let .M; r; �.@M // be an extended 3–manifold. Suppose

@M D†[†0;

and that this boundary has been partitioned into two boundary surfaces †, called
(minus) the source, and †0 , called the target. We write

.M; r; �.@M //W .†; �.†// �! .†0; �.†0//

and call .M; r; �.@M // an extended cobordism.

Definition 2.9 Let † be a boundary surface of an extended 3–manifold .M; r; �.@M //

with inclusion map
i†;M W † �!M:

Let †0 be @M �† with inclusion map

i†0;M W †
0
�!M:

Then we define
�M .†/D i�1

†;M .i†0;M .�.†0///:

We define the composition of morphisms in C as the extended gluing of cobordisms.

Definition 2.10 Let .M; r; �.@M // and .M 0; r 0; �.@M 0// be two extended 3–man-
ifolds. Suppose .†; �.†// is a boundary surface of .M; r; �.@M // and .†; �.†//
is a boundary surface of .M 0; r 0; �.@M 0//. Then we can glue .M; r; �.@M // and
.M 0; r 0; �.@M 0// together with the orientation reversing identity from † to † to form
a new extended 3–manifold. The new extended 3–manifold has:

(1) Base manifold M [† M 0 .

(2) Lagrangian subspace

Œ�.@M /\H1.@M �†/�˚ Œ�.@M
0/\H1.@M

0
�†/�:
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(3) Weight
r C r 0��.�M .†/; �.†/; �M 0.†//;

where � is the Maslov index as in [21].

Definition 2.11 Let .M; r; �.@M // be an extended 3–manifold with a boundary
surface of the form †[†. Then we define the extended 3–manifold obtained by
gluing † and † together to be the extended 3–manifold that results from gluing
.M; r; �.@M // and .† � Œ0; 1�; 0; �.†[†// along †[†. In the special case that
@M D†[†, we call the resulting extended 3–manifold the closure of .M; r; �.@M //.

Remark 2.12 One should think of the weight of an extended 3–manifold M as the
signature of some background 4–manifold [27]. See also [9, page 399].

Lemma 2.13 Let .R; r; �.@R// be a morphism from .†; �.†// to .†0; �.†0// and
.S; s; �.@S// be a morphism from .†0; �.†0// to .†; �.†//. Then the extended 3–
manifold we obtain by gluing .R; r; �.@R// to .S; s; �.@S// along †0 first and then
closing it up along † is the same as the one we obtained from gluing .S; s; �.@S// to
.R; r; �.@R// along † first and then closing it up along †0 .

Proof This can be seen from the 4–manifold interpretation of weights in [27; 10].

Extended surfaces may also be equipped with banded points: this is an embedding of
the disjoint union of oriented intervals. By a framed link, we will mean what is called
a banded link in [3, page 884], ie an embedding of the disjoint union of oriented annuli.
Framed 1–manifolds are defined similarly. Extended 3–manifolds are sometimes
equipped with framed links, or framed 1–manifolds or more generally trivalent fat
graphs. By a trivalent fat graph, we will mean what is called a banded graph in [3,
page 906]. The framed links, framed 1–manifolds and trivalent fat graphs must meet
the boundary surfaces of a 3–manifold in banded points with the induced “banding”.
Of course, we could have used the word “banded” in all cases, but the other terminology
is more common.

There is a surgery theory for extended 3–manifolds. We refer the reader to [10,
Section 2]. Here we give extended version of Kirby moves [13]. These moves relate
framed links in S3 , where S3 is itself equipped with an integer weight. The result
of extended surgery of S3 with its given weight along the link is preserved by these
moves. Moreover (but we do not use this) if surgery along two framed links in weighted
copies of S3 result in the same extended manifold then there is sequence of extended
Kirby moves relating them.
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Definition 2.14 The extended Kirby–1 move is the regular Kirby–1 move with the
weight of the manifold changed accordingly. More specifically, if we add an �–framed
unknot to the surgery link, then we change the weight of the manifold by �� , where
� D˙1. If we delete an �–framed unknot from the surgery link, then we change the
weight of the manifold by � . The extended Kirby–2 move is the regular Kirby–2 move
with the weight remaining the same.

2.2 A variant of the TQFT of Blanchet, Habegger, Masbaum and Vogel

Suppose a closed connected 3–manifold M is obtained from S3 by doing surgery
along a framed link L, then .M; r/ is obtained from .S3; r��.L// by doing extended
surgery along L. Here �.L/ is the signature of the linking matrix of L. Warning: this
is different than the signature of L. The quantum invariant of .M; r/ at a 2p–th root
of unity A is then defined as:

Z..M; r//D ��r��.L/
hL.!/i;

where

�k D hU.ek/i; ��1
D

qX
k

�2
k
; ! D

X
k

��kek ; � D hUC.!/i:

We use h i to denote the Kauffman bracket evaluation of a linear combination of
colored links in S3 , and L.x/ to denote the satellization of a framed link L by a skein
x of the solid torus. Moreover ek denotes the skein class in the solid torus obtained by
taking the closure of fk , the Jones–Wenzl idempotent in the k –strand Temperley–Lieb
algebra. Here U denotes the zero framed unknot and UC is the unknot with framing
C1. The sum is over the colors 0� k � p=2� 2 if p is even and 0� k � p� 3 with
k even if p is odd. One has that � is a square root of A�6�p.pC1/=2 . The choice of
square root here determines the choice in the square root in the formula of ��1 , or
vice-versa. See the formula for � in [3, page 897]. The closed connected manifold
M may also have an embedded p–admissibly colored fat trivalent graph G in the
complement of the surgery, then

Z..M; r/;G/D ��r��.L/
hL.!/[Gi:

By following the exactly the same procedure in [3], we can construct a TQFT for the
category of extended surfaces and extended 3–manifolds from quantum invariants. The
TQFT assigns to each extended surface .†; �.†//, possibly with some banded colored
points, a module V .†; �.†// over kp D ZŒ 1

p
;A; ��, and assigns to each extended

cobordism M , with a p–admissibly colored trivalent fat graph meeting the banded
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colored points,
.M; r; �.M //W .†; �.†// �! .†0; �.†0//;

a kp –module homomorphism:

Z..M; r; �.M ///W V ..†; �.†// �! V ..†0; �.†0///:

Then by using this TQFT, we can produce a Turaev–Viro endomorphism associated to
each weighted closed 3–manifold equipped with a choice of infinite cyclic cover using
the procedure described in Section 1.

Notation 2.15 We introduce some notations that will be used later.

(1) ƒ
.l/

k
WD �l�l

k
fk .

(2) !.l/ WD
P

k �
l�l

k
ek .

(3) ‚.a; b; c/ is the Kauffman bracket of the left diagram in Figure 1.

(4) Tet.a; b; c; d; e; f / is the Kauffman bracket of the right diagram in Figure 1.

a

b

c

a ce

f d

b

Figure 1: On the left is ‚.a; b; c/ and on the right is Tet.a; b; c; d; e; f /

2.3 Surgery presentations

The earliest use of surgery presentations, that we are aware of, was by Rolfsen [20]
to compute and study the Alexander polynomial. In this paper we consider surgery
descriptions for extended closed 3–manifolds with an infinite cyclic cover. We will use
these descriptions for extended 3–manifolds that contain certain colored trivalent fat
graphs. As this involves no added difficulty, we will not always mention these graphs
in this discussion.

Definition 2.16 Let K0[L be a framed link inside .S3; s/, where K0 is an oriented
0–framed unknot, and the linking numbers of the components of L with K0 are all
zero. Let D0 be a disk in S3 with boundary K0 which is transverse to L. Suppose
.M; r/ is the result of extended surgery along K0 [L, then there exists a unique
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epimorphism �W H1.M;Z/! Z which agrees with the linking number with K0 on
cycles in S3 n .K0[L/. We will call .D0;L; s/ a surgery presentation of ..M; r/; �/.
We remark that, in this situation, we will have s D r � �.L/. If there are graphs G0

in M and G in S3 n .K0[L/ (transverse to D0 ) related by the surgery, we will say
.D0;L; s;G/ a surgery presentation of ..M; r/; �;G0/.

If the result of surgery along L returns S3 with the image of K0 after surgery becoming
a knot oriented knot K , and the linking numbers of the components of L with K0 ,
then K0 [L is a surgery presentation of K as in [20]. The manifold obtained by
surgery along K0[L in S3 is the same as 0–framed surgery along K in S3 .

The following proposition is proved in [18, Section 4] for nonextended manifolds. The
extended version involves no extra difficulty

Proposition 2.17 Every extended connected 3–manifold equipped with an epimor-
phism �W H1.M;Z/! Z has a surgery presentation.

Every surgery presentation can be described by diagram as in Figure 2, which we will
refer to as a surgery presentation diagram.

...
...

>

>

>

>

>D0

K0

Some tangle

Figure 2: A surgery presentation diagram. Of course, the tangle must be such
that each closed component of L has zero linking number with K0 . Notice
the orientation on K0 .

Definition 2.18 If a surgery presentation diagram is in the form of Figure 3, then
we say this surgery presentation diagram is in standard form. We will also say that a
surgery presentation .D0;L; s;G/ is standard if it has a surgery presentation diagram
in standard form.

Ohtsuki [18, bottom of page 259] stated a proposition about surgery presentations
of knots which is similar to the following proposition. Our proof is similar to the

Algebraic & Geometric Topology, Volume 13 (2013)



The Turaev–Viro endomorphism and the Jones polynomial 385

...
...

D0

K0

Figure 3: The dotted part could be knotted or linked with other strands
within the tangle box. The bottom turn-backs are simple arcs without double
points under the projection. Each component of L intersects the flat disc D0

bounded by the trivial knot algebraically 0 times, but geometrically 2 times.

proof that Ohtsuki indicated. We will call a Kirby–1 move in a surgery presentation
a small Kirby–1 move if a disk which bounds the created or deleted component is
in the complement of D0 . We will call a Kirby–2 move in a surgery presentation a
small Kirby–2 move if it involves sliding a component other than K0 over another
component that is in the complement of D0 . A D0 –move is a choice of a new spanning
disk D0 with D0 \D0 DK0 followed by an ambient isotopy that moves D0 to the
original position of D0 and moves L at the same time.

Proposition 2.19 A surgery presentation described by a surgery presentation diagram
can be transformed into a surgery presentation described by a surgery presentation
diagram in standard form by a sequence of isotopies of L[G relative to D0 , small
Kirby–1 moves, small Kirby–2 moves and D0 –moves. Therefore, every extended 3–
manifold with an epimorphism �W H1.M;Z/! Z has a standard surgery presentation.

Proof We need to prove that we can change a surgery presentation described by a
surgery diagram as in Figure 2 into surgery presentation described by a diagram as in
Figure 3 using the permitted moves.

Let
m D max

Li is a com-
ponent of L

jLi \D0j:

We will prove the theorem by induction on m. Since each component Li has linking
number 0 with K0 , it is easy to see that m is even.

If mD 0, then L can be taken to be contained in the tangle box.

When mD 2, we may:
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� first do a D0 move to shift D0 slightly;

� then perform an isotopy relative to the new D0 of L so that the points on
intersection of the image of the old D0 with each components of L are adjacent
to each other;

� then do another D0 –move to move the old D0 back to its original position.

Now the arcs emitted from the bottom edge of the tangle are in a correct order. But the
diagram in Figure 2 may differ from a standard tangle in the way that the arcs emitted
from bottom edge of the tangle box are not in the specified simple form. This means
they could be knotted and linked with each other. However we may perform small
Kirby–1 and small Kirby–2 moves as in Figure 4 to unknot and unlink these arcs so
that the resulting diagram has standard form.

�! C1 �! �1

Figure 4: We use C1 or �1 surgery on unknot to change the crossing

We now prove that the theorem holds for all links with mD 2n, where n� 2, assuming
it holds for all links with m � 2n � 2. Suppose the component L1 intersects D0

geometrically 2n times. Because L1 has linking number 0 with K0 , we have that
at least one arc, say ˛ of L1 in Figure 2, that joins two points on the bottom of the
tangle box, ie it is a “turn-back”. For each crossing with exactly one arc from ˛ , we
can make the arc ˛ to be the top arc (in the direction perpendicular to the plane of
the diagram) by using the moves of Figure 4, which just involve some small Kirby–1

and small Kirby–2 moves. Then it is only simply linked to other components by some
new trivial components with framing ˙1. Then by using isotopies relative to D0 ,
we can slide the arc ˛ towards bottom of the tangle, with the newly created unknots
stretched vertically in the diagram so that they intersect each horizontal cross-section
in at most 2–points. See the central illustration Figure 5, where ˛ is illustrated by
two vertical arcs meeting a small box labeled X . This small box contains the rest
of ˛ . Now perform a D0 move, which has the effect of pulling the turn-back across
D0 . Those trivial components will follow the turn back and pass through D0 . But
since at the beginning, those components have geometric intersection 0 with D0 , they
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have geometric intersection 2 with D0 now. After this process, L1\D0 is reduced
by 2. This process does not change the number of intersections with D0 of the other
components of the original L.

...

x

::: :::

�!

...

:::
x

::: :::

�!

x

::: :::

Figure 5: Moves which reduce the number of intersections of a component
of L with D0 . We perform small K–moves and isotopies to change to the
middle picture. We perform a D0 –move to change to the right-hand picture.

We do this process for all components Lj with jLj \D0j D 2n. Then the new link has
m� 2n� 2. By our induction hypothesis, we can transform K0[L into a standard
form using the allowed moves.

2.4 Strong shift equivalence

We will discuss SSE in the category of free finitely generated modules over a commuta-
tive ring with identity. This notion arose in symbolic dynamics. For more information,
see [25; 16] and the references therein.

Definition 2.20 Suppose

X W V �! V and Y W U �! U

are module endomorphisms. We say X is elementarily strong shift equivalent to Y if
there are two module morphisms

RW V �! U and S W U �! V

such that
X D SR and Y DRS:

We denote this by X � Y .

Definition 2.21 Suppose

X W V ! V and Y W U ! U
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are module endomorphisms. We say X is strong shift equivalent to Y if there are finite
number of module endomorphisms fX1; : : : ;Xng such that

X �X1 �X2 � � � � �Xn � Y:

We denote this by X � Y .

It is easy to see that if X � Y , then Trace.X /D Trace.Y /.

Proposition 2.22 Let X be a module endomorphism of V . Suppose V D U ˚W ,
where U and W are free finitely generated modules such that U is in the kernel of X ,
and let yX be the induced endomorphism of W . Then yX is SSE to X .

Proof Suppose rank.U /Dm and rank.W /Dn. The result follows from the following
block matrix equations:"

vm�n

yXn�n

#
.nCm/�n

�
�

0n�m In

�
n�.nCm/

D

"
0m�m vm�n

0n�m
yXn�n

#
.nCm/�.nCm/ ;�

0n�m In

�
n�.nCm/

�

"
vm�n

yXn�n

#
.nCm/�n

D

h
yXn�n

i
n�n :

If T is an endomorphism of a vector space V , let N.T / denote the generalized 0–
eigenspace for T and let T[ denote the induced endomorphism on V =N.T /. The
next proposition may be deduced from more general statements made in [4, page 122,
Proposition 2.4]. For the convenience of the reader, we give a direct proof.

Proposition 2.23 Let T and T 0 be endomorphisms of vector spaces. T and T 0 are
SSE if and only if T[ and T 0

[
are similar.

Proof The “only if” implication is well-known [16, Theorem 7.4.6]. The “if” implica-
tion follows from the easy observations that similar transformations are strong shift
equivalent and that T is strong shift equivalent to T[ . This second fact follows from
the repeated use of the following observation: If x ¤ 0 is in the null space of T , hxi
denotes the space spanned by x , and Tx denotes the induced map on V =hxi, then T

and Tx are strong shift equivalent. This follows from Proposition 2.22 with U D hxi.
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3 The tangle morphism

In this section, we will assign a kp –module homomorphism to any framed tangle in
S2 � I enhanced with an embedded p–admissibly colored trivalent fat graph in the
complement of the tangle. By slicing a surgery presentation for an infinite cyclic cover
of an extended 3–manifold and applying the TQFT, we obtain such a tangle, and thus
a kp –module endomorphism. The idea of constructing this endomorphism is inspired
by the work of Ohtsuki in [18].

There is a unique Lagrangian for a 2–sphere. Thus we can consider any 2–sphere as
an extended manifold without specifying a Lagrangian. Similarly, we let .S2 � I; r/

denote the extended manifold S2 � I with weight r , as there is no need to specify a
Lagrangian.

Definition 3.1 Let S be a 2–sphere equipped with m ordered uncolored banded
points and u ordered banded points colored by x1; : : : ;xu . We define S.i1; i2; : : : im/

to be this 2–sphere where the m uncolored banded points have been colored by
.i1; i2; : : : im/ (and the u points already colored remain colored).

We define
V .S/ D

X
i1;:::;im

V .S.i1; i2; : : : im//:

Here V .S.i1; i2; : : : im// is the module for a extended 2–sphere with m uncolored
banded points colored by .i1; : : : ; im/ and u banded points colored by .x1; : : : ;xu/

obtained by applying the TQFT that we introduced in Section 2.

By an .m; n/–tangle in .S2�I; r/, we mean a properly embedded framed 1–manifold
in .S2 � I; r/ with m endpoints on S0 D S2 � f0g, n points on S1 D S2 � f1g, with
possibly some black dots on its components and a (possibly empty) colored trivalent
fat graph (in the complement of the 1–manifold) meeting S0 in u colored points
x1; : : : ;xu and meeting S1 in t colored points y1; : : : ;yt . Thus S0 is a 2–sphere
with m ordered uncolored banded points and u colored banded points. Similarly S1

is a 2–sphere with n ordered uncolored banded points and t colored banded points.
For any .m; n/–tangle, we will define a homomorphism from V .S0/ to V .S1/.

Before doing that, we introduce some definitions. From now on, we will not explicitly
mention the banding on the selected points of a surface or the framing of a tangle, or the
fattening of a trivalent graph. Each comes equipped with such and the framing/fattening
of a link/graph induces the banding on its boundary points. Nor will we mention the
ordering chosen for uncolored sets of points.
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Definition 3.2 Suppose we have a .m; n/–tangle in .S2�I; r/ with a colored trivalent
graph with u edges colored by x1; : : : ;xu meeting S2 � f0g and t edges colored by
y1; : : : ;yt meeting S2 � f1g. Suppose we color the m endpoints from the tangle on
S0DS2�f0g by i1; : : : ; im and color the n endpoints from the tangle on S1DS2�f1g

by j1; : : : ; jn . We say that the coloring .i1; : : : ; in; j1; : : : ; jm/ is legal if the two
endpoints of the same strand have the same coloring. We denote the tangle with the
endpoints so-colored by T

n;.j1;:::;jn/

m;.i1;:::;im/
. For an example, see Figure 6.

i k j k l

i l j

i j k k l

i l j

Figure 6: The coloring in first diagram is a legal coloring and the one in the
second diagram is an illegal coloring for k ¤ j . In this example, the colored
trivalent graph is empty.

Definition 3.3 Suppose we have a .i1; : : : ; im; j1; : : : ; jn/–colored .m; n/–tangle
T

n;.j1;:::;jn/

m;.i1;:::;im/
as in Definition 3.2. We define a homomorphism

V .S0.i1; : : : ; im//
Z
�
T

n;.j1;:::;jn/

m;.i1;:::;im/

�
�����������! V .S1.j1; : : : ; jn//

as follows:

� If .i1; : : : ; im; j1; : : : ; jn/ is an illegal coloring, then we take the homomorphism
to be the zero homomorphism.

� If .i1; : : : ; im; j1; : : : ; jn/ is a legal coloring, then we decorate uncolored com-
ponents of the tangle by some skeins in 2 cases:
(1) If there are l black dots on the component, l 2 f0; 1; 2; : : : g, and the com-

ponent has two endpoints with color k , k 2 fi1; : : : ; im; j1; : : : ; jng, then
we decorate the component by ƒ.l/

k
.

(2) If there are l black dots on the component, l 2 f0; 1; 2; : : : g, and the com-
ponent lies entirely in S2 � .0; 1/, then we decorate the component by
!.l/ .

Then we apply Z to .S2 � I; r/ with the tangle T n
m , so decorated, to get the

morphism Z
�
T

n;.j1;:::;jn/

m;.i1;:::;im/

�
.
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Now we are ready to define the homomorphism for a tangle T n
m .

Definition 3.4 Suppose we have a .m; n/–tangle T n
m . We define the homomorphism

for the tangle, denoted by Z.T n
m/, to be

V .S0/

P
Z
�
T

n;.j1;:::;jn/

m;.i1;:::;im/

�
�������������! V .S1/;

where Z
�
T

n;.j1;:::;jn/

m;.i1;:::;im/

�
is as in Definition 3.3 and the sum runs over all colorings

.i1; : : : ; im; j1; : : : ; jn/.

Proposition 3.5 For a tangle T1 in .S2 � I; r/ and a tangle T2 in .S2 � I; s/, we
have

Z.T2 ıT1/DZ.T2/Z.T1/;

where T2 ıT1 in .S2 � I; r C s/ means gluing T2 on the top of T1 . Here, of course,
we assume that the top of T1 and the bottom of T2 agree.

Proof This follows from the functoriality of the original TQFT.

Now we can construct tangle endomorphisms for an extended closed 3–manifold with
an embedded colored trivalent graph and the choice of an infinite cyclic cover. Given
..M; r/; �;G0/, we choose a surgery presentation .D0;L; s;G/. We put one black dot
somewhere on each component of L away from D0 . By doing a 0–surgery along K0 ,
we obtain .S2�S1; s/ with link L and trivalent graph G , where D0 can be completed
to S2 � fpg for some point p on S1 . We cut S2 � S1 along S2 � fpg. Then we
obtain a tangle T n

n in .S2 � I; s/. Here nD jT n
n \ .S

2 � f1g/j D jT n
n \ .S

2 � f0g/j.
Let Z.T n

n / denote the tangle endomorphism associated to T n
n .

Lemma 3.6 If T n
n is constructed as above, then the SSE class of Z.T n

n / is independent
of the positioning of the black dots.

Proof By definition, we can move a black dot on the component of the tangle T n
n

anywhere without changing the tangle endomorphism Z.T n
n /. We move the black dot

to near bottom or near top and cut the tangle T n
n into two tangles S and T , where T

is a trivial tangle with the black dot. For an example, see Figure 7. Then we switch the
position of S and T and move the black dot in resulting tangle to near the other end
of that component. Then we do the process again. By doing this, we can move it to
any arc of the tangle T n

n , which belongs to the same component of the link L. But for
each step, Z.ST /DZ.S/Z.T / is strong shift equivalent to Z.TS/DZ.T /Z.S/.
Therefore, the lemma is true.
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... ...

... ...

... ...
yLn S

T

�!

... ...

... ...

... ...

yLn S

T

Figure 7: T is the trivial part with the black dot

Thus the SSE class of the tangle endomorphism Z.T n
n / constructed as above de-

pends only on a surgery presentation .D0;L; s;G/. Thus we can denote this class by
Z.D0;L; s;G/.

Theorem 3.7 Let .D0;L1; s1;G1/ and .D0;L2; s2;G2/ be two surgery presenta-
tions for ..M; r/; �;G0/, an extended closed 3–manifold with an embedded colored
trivalent graph and choice of infinite cyclic cover. Then

Z.D0;L1; s1;G1/DZ.D0;L2; s2;G2/:

Thus we may denote this SSE class by Z..M; r/; �;G0/.

This theorem will be proved in Section 6, after the way has been prepared in Sections 4
and 5.

4 The Turaev–Viro endomorphism

In Section 1, we introduced the basic idea of the Turaev–Viro endomorphism. In this
section, we will include the technical details.

Remark 4.1 The discussion in this section and the next section works for 3–manifolds
with an embedded p–admissibly colored trivalent graph. For simplicity, we usu-
ally omit mention of the trivalent graph. Thus we will write ..M; r/; �/ instead of
..M; r/; �;G0/. This is according to the philosophy that we should think of the colored
trivalent graph G0 as simply some extra structure on M .

Lemma 4.2 Let .M; r; �.@M /1/ be an extended cobordism from .†; �.†/1/ to it-
self and .M; r; �.@M /2/ be an extended cobordism from .†; �.†/2/ to itself. Then
Z..M; r; �.@M /1// is strong shift equivalent to Z..M; r; �.@M /2//.
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Proof First we notice that

�.@M /1 D �.†/1˚�.†/1 2H1.†/˚H1.†/;

�.@M /2 D �.†/2˚�.†/2 2H1.†/˚H1.†/:

Then we have

.M; r; �.@M /1/D .†� I; 0; �.†/1˚�.†/2/[.†;�.†/2/ .M; r; �.†/2˚�.†/1/;

.M; r; �.@M /2/D .M; r; �.†/2˚�.†/1/[.†;�.†/1/ .†� I; 0; �.†/1˚�.†/2/:

Here we consider .M; r; �.†/2˚�.†/1/ as a cobordism from the manifold .†; �.†/2/
to .†; �.†/1/. Then by the functoriality of Z , we have the conclusion.

Lemma 4.3 Suppose we have a closed extended 3–manifold ..M; r/; �/ with an
infinite cyclic covering. We obtain two extended fundamental domains M1 and M2 by
slicing along two extended surfaces .†; �.†// and .†0; �.†0// which are dual to �.
We obtain two morphisms

.M1; r1; �.†/˚�.†//W .†; �.†//! .†; �.†//;

.M2; r2; �.†
0/˚�.†0//W .†0; �.†0//! .†0; �.†0//;

with weight r1; r2 respectively such that the closures of both cobordism having weight
r . Then

Z..M1; r1; �.†/˚�.†///�Z..M2; r2; �.†
0/˚�.†0//:

Proof We just need prove the case where † and †0 are disjoint from each other;
see [8; 15, Proof of Theorem 8.2]. Since †0 is disjoint from †, we can choose a
copy of .†0; �.†0// inside .M1; r1; �.†/˚ �.†//. We cut along †0 and get two
3–manifolds T;S . We assign to T;S extended 3–manifold structures, denoted by
.T; t; �.†/˚�.†0// and .S; s; �.†0/˚�.†//, such that if we glue R to S along †0 ,
we get .M1; r1; �.†/˚�.†// back. We need to choose appropriate weights t; s for
T;S . Using Definition 2.10, we see that such t; s exists. Now we just need prove that
if we glue S to T along †, we obtain .M2; r2; �.†

0/˚�.†0//. Actually, it is easy to
see that after gluing, we have the right base manifold and Lagrangian subspace. What
we need to prove is that we get the right weight. This follows from Lemma 2.13.

As a consequence of the two lemmas above, we have the following:

Proposition 4.4 For a tuple ..M; r/; �/ and .M1; r1; �.†1/˚ �.†1// given as in
Lemma 4.3, the strong shift equivalent class of the map Z..M1; r1; �.†1/˚�.†1///

is independent of the choice of the extended surface .†1; �.†1//. Thus we may denote
this SSE class by Z..M; r/; �/.
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Next, we work towards constructing a fundamental domain for an extended 3–manifold
..M; r/; �/ with an infinite cyclic covering. Suppose we have a surgery presentation
.D0;L; s/ in standard form for ..M; r/; �/, where sD r��.L/ [10, Lemma 2.2]. We
do 0–surgery along K0 and get a link L in .S2 �S1; s/. We cut S2 �S1 along the
2–sphere containing D0 in this product structure and obtain a tangle T in .S2 � I; s/

in standard form. Here, we say that a tangle is in standard form if it comes from
slicing a surgery presentation diagram in standard form. Then we drill out tunnels
along arcs which meet the bottom and glue them back to the corresponding place on
the top. We obtain a cobordism yE from †g to itself with a link yL embedded in it
as in Figure 8, where †g is a genus g closed surface. See [6, Figure 3] for example.
Moreover, we identify †g with a standard surface as pictured in Figure 9. We denote
by �A the Lagrangian subspace spanned by the curves labeled by ai in Figure 9. We
assign the Lagrangian subspace �A to each connected component of the boundary of
yE . Moreover, we assign the weight s to it. Thus we obtain an extended cobordism
. yE; s; �A˚�A/.

...

...

Figure 8: The extended cobordism . yE; s; �A˚�A/ containing a framed link
yL . If we do extended surgery along yL , we get a fundamental domain E . If,
instead, we color yL by ! , we obtain another cobordism E0 .

Proposition 4.5 The closure of . yE; s; �A˚ �A/ is .S3.U /; s; 0/, where U is a 0–
framed unknot.

Proof It is easy to see that the closure of yE is S3.U /. Then we just need to prove
that the weight of the closure is s . By the gluing formula and Definition 2.11, we have

...al ag

bl bg

Figure 9: A surface in standard position
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that the weight on S3.U / is

sC 0��
�
�E.†g [†g/; �.†g [†g/; �†g�Œ0;1�.†g [†g/

�
:

Now let

H1.†g/D ha1; : : : ; ag; b1; : : : ; bgi; H1.†g/D ha
0
1; : : : ; a

0
g; b
0
1; : : : ; b

0
gi:

Then

�E.†g [†g/D i�1

†g[†g;E
.0/

D f.x;y/ j x 2 ha1; : : : ; agi;y 2 hb
0
1; : : : ; b

0
gig;

�†g�Œ0;1�.†g [†g/D i�1

†g[†g;†g�Œ0;1�
.0/

D h.ai ;�a0i/; .bi ;�b0i/ j i D 1; : : : ;gi;

�.†g [†g/D �A˚�A

D f.x;y/ j x 2 ha1; : : : ; agi;y 2 ha
0
1; : : : ; a

0
gig:

So

�.†g [†g/C�E.†g [†g/

D f.x;y/ j x 2 ha1; : : : ; agi;y 2 ha
0
1; : : : ; a

0
giC hb

0
1; : : : ; b

0
gig

D f.x;y/ j x 2 ha1; : : : ; agi;y 2H1.†g/g:

Therefore,

�†g�Œ0;1�

�
†g [†g

�
\
�
�.†g [†g/C�E.†g [†g/

�
D
˝
.ai ;�a0i/ j i D 1; : : : ;g

˛
:

The bilinear form defined in [28] is identically 0 on h.ai ;�a0i/ j i D 1; : : : ;gi, as one
easily sees. So we have

�
�
�E.†g [†g/; �.†g [†g/; �†g�Œ0;1�.†g [†g/

�
D 0:

Then we get the conclusion.

Proposition 4.6 Let .E; s; �A ˚ �A/ be the result of extended surgery along the
embedded link yL in . yE; s; �A ˚ �A/ constructed as above starting with a standard
surgery presentation diagram for ..M; r/; �/. .E; s; �A˚�A/ is a fundamental domain
for ..M; r/; �/.

Proof The closure of .E; s; �A ˚ �A/ can be obtained by performing extended
surgery on the closure of . yE; s; �A ˚ �A/. This uses the commutative property of
gluing discussed in [10]. Thus the closure of E is diffeomorphic to M , and by [10,
Lemma 2.2], we see that the closure of .E; s; �A˚�A/ has weight r .
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Proposition 4.7 Let .E0; s; �A˚�A/ be the extended cobordism obtained by coloring
the link yL in . yE; s; �A˚�A/ by ! . The SSE class Z..M; r/; �/ is given by

Z.E0; s; �A˚�A/:

Proof The equality Z.E; s; �A˚�A/DZ.E0; s; �A˚�A/ follows from the surgery
axiom [10, Lemma 11.1] for extended surgery.

5 The relation between the Turaev–Viro endomorphism and
the tangle endomorphism

In this section, we will prove the following theorem.

Theorem 5.1 If ..M; r/; �/ is an extended 3–manifold with an infinite cyclic covering
having a surgery presentation .D0;L; s/ in standard form, then

Z..M; r/; �/DZ.D0;L; s/:

Proof For simplicity, we indicate the proof in case that ..M; r/; �/ does not have a
colored trivalent graph. The argument may easily be adapted to the more general case.

We obtain a tangle yLn from the surgery presentation .D0;L; s/, and we place black
dots on segments in the top part. We will directly compute two matrices for these two
endomorphisms with respect to some bases.

Step 1: Compute the entry for the Turaev–Viro endomorphism We will use the basis in
[3] for V .†g/, where †g is genus g surface. Specifically we choose our spine to be a
lollipop graph, as in [11]. We show one example of such elements in Figure 10.

...il in

Figure 10: An example of elements in the basis for V .†g/ constructed in [3]

Using the method employed in [7, Section 8], we can compute the entries of the matrix
with respect to this basis by computing the quantum invariants of colored links in a
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connected sum of S1 �S2 . We have

.i1; : : : ; ig/-.j1; : : : ; jg/ entry of Z..E0; s; �A˚�A/

D
��s��.L0/hthe first diagram in Figure 11i
����.L

00/hthe first diagram in Figure 12i
;

where L0 is as in Figure 11 and L00 as in Figure 12.

...

jl jn

!!

! !

il in

...
jl jn

il in

Figure 11: L0 consists of components colored with !

...
jl jn

! !

jl jn

...jl jn

Figure 12: L00 consists of components colored with !

By using fusion and [14, Lemma 6] and the fact that

�.L0/D �.L00/D 0;

we have

.i1; : : : ; ig/-.j1; : : : ; jg/ entry of Z..E0;��.L/; �A˚�A/

D
��s�n�j1

: : : �jn
hU.!/inhthe second diagram in Figure 11i

�hU.!/inhthe second diagram in Figure 12i

D
�s�n�j1

: : : �jn
hthe second diagram in Figure 11i

hthe second diagram in Figure 12i
;

where U.!/ is the 0–framing unknot colored with ! .
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...jl jn

il il in in

Figure 13: Elements in a basis for V .S2I 2n/ that do not automatically vanish
under Z. yLn/ have this form

Step 2: Compute the entry for tangle endomorphism

By gluing the tangle in .S2 � I; s/ to the basis element in Figure 13, we can see that

.i1; : : : ; ig/-.j1; : : : ; jg/ entry of Z. yLn/

D
�s�n�j1

: : : �jn
hthe second diagram in Figure 11i

hthe second diagram in Figure 12i

for a legal coloring .i1; : : : ; in; j1; : : : ; jn/, and it is zero otherwise.

Step 3: The two matrices are strong shift equivalent By above discussion, it is easy to
see that if the matrix for Turaev–Viro endomorphism is X , then a matrix for tangle
endomorphism is the block matrix

�
X 0
0 0

�
. We see that this block matrix is strong shift

equivalent to X by Proposition 2.22.

6 Proof of Theorem 3.7

Lemma 6.1 The transformation process in Proposition 2.19 does not change the strong
shift equivalent class of the tangle endomorphism.

Proof A small extended Kirby–1 move adds a ˙1 framed ! to all the different
decorations of T n

n which go into the definition of Z.T n
n /. This would seem to multiply

Z.T n
n / by �˙1 . But a small extended Kirby–1 move also changes �.L/ by ˙1, and

thus changes the weight s of S2 � I � T n
n by �1. These two effects of the move

cancel out and Z.T n
n / is unchanged. The small Kirby–2 moves preserves all the

summands of Z.T n
n /, by a well known handle slide property of ! ; see [12, Lemma 21]

for instance. Two tangles related by a D0 move are obtained by cutting S2�S1 along
two different S2 . Suppose if we cut S2 � S1 along S0 D S2 � fp0g, we obtain a
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tangle yLn . If we cut along S1 D S2 � fp1g, we obtain a tangle yL0m . By those two
cutting, we obtain two homomorphisms

Z. yLn/W V .S1/ �! V .S1/

and
Z. yL0m/W V .S0/ �! V .S0/:

Now suppose we cut S2�S1 along S2�fp0g and S2�fp1g, we get a .n;m/–tangle
in .S2 � I; 0/, denoted by T1 , and a .m; n/–tangle, denoted by T2 . T1 defines a
homomorphism

Z.T1/W V .S1/ �! V .S0/;

and T2 defines a homomorphism

Z.T2/W V .S0/ �! V .S1/:

It is easy to see that
Z. yLn/DZ.T2/Z.T1/;

and
Z. yL0m/DZ.T1/Z.T2/:

Therefore, Z. yLn/ is strong shift equivalent to Z. yL0m/.

Lemma 6.2 Suppose that we have two surgery presentations .D0;L1; s1;G1/ and
.D0;L2; s2;G2/ for .M; r; �;G0/ in standard form, then

Z.D0;L1; s1;G1/DZ.D0;L2; s2;G2/:

Proof This easily follows from Theorem 5.1.

Proof of Theorem 3.7 By Proposition 2.19 and Lemma 6.1, we can transform
.D0;L1; s1;G1/ and .D0;L2; s2;G2/ so that they are standard without changing
the SSE class of their induced tangle endomorphism. Then the result follows from
Lemma 6.2.

7 Jones polynomials and Turaev–Viro endomorphisms

In this section, we assume, for simplicity, that p is odd. Similar formulas could be
given for p even, by the same methods. We let J.K; i/ denote the bracket evaluation
of a knot diagram of K with zero writhe colored i at a primitive 2p–th root of
unity A. Letting U denote the unknot, we have that J.U; i/ D �i . In particular,

Algebraic & Geometric Topology, Volume 13 (2013)



400 Xuanting Cai and Patrick M Gilmer

J.U; 1/D�A2�A�2 . This is one normalization of the colored Jones polynomial at a
root of unity.

Remark 7.1 Using [2, Lemma 6.3], we have that

J.K; i Cp/D�J.K; i/ and J.K; i C .p� 1/=2/D J.K;�i C .p� 3/=2/:

We can restrict our attention to J.K; 2i/ for 0� i � .p� 3/=2 without losing infor-
mation. For other c , J.K; c/ D ˙J.K; 2i/ for some 0 � i � .p � 3/=2, using the
above equations.

Let .S3.K/; i; j ; 0// denote 0–framed surgery along an oriented knot K in S3 dec-
orated with a meridian to K colored i and a longitude little further away from K

colored j and equipped with the weight zero. Let � be the homomorphism from
H1.M / to Z which sends a meridian to one. Let TV.K; i; j / denote the SSE class of
the Turaev–Viro endomorphism Z.S3.K/; i; j ; 0//; �/. The vector space associated
to a 2–sphere with just one colored point which is colored by an odd number is zero.
Using this fact and a surgery presentation, one sees that

TV.K; i; j /D 0 if i is odd.

The second author studied TV.K; i; 0/ [6; 7]. The idea of adding the longitude with
varying colors is due to Viro [24; 23]. The least interesting case of this next theorem,
when j D 0, already appeared in [6, Corollary 8.3].

Theorem 7.2 (Viro) For 0� j � p� 2,

J.K; j / D

.p�3/=2X
iD0

�2i Trace.TV.K; 2i; j //:

Proof One has that 0–framed surgery along K with the weight zero is the result of
extended surgery of S3 with weight zero along a zero-framed copy of K . If we add
then a zero-framed meridian of K to this framed link description, we undo the surgery
along K and we get back an extended surgery description of S3 , also with weight
zero. A longitude to K colored j and placed a little outside the meridian will go to
a longitude of K colored j in S3 , which is of course isotopic to K . But adding a
zero-framed meridian to the framed link changes h ip in the same way as cabling by
! D �

P.p�3/=2
iD0

�2ie2i . If we cable the meridian of K by e2i instead of by ! , and
calculate h ip , we get

h.S3.K/; 2i; j ; 0/ip D Trace.TV.K; 2i; j //
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by the trace property of TQFT [3, 1.2]. Thus

hS3 with K colored j i D �

.p�3/=2X
iD0

�2i Trace.TV.K; 2i; j //:

Dividing by � yields the result.

Thus the colored Jones is determined by the traces of the TV.K; 2i; j /. The next
theorem shows that the J.K; j / determine the traces of the TV.K; 2i; j /.

Theorem 7.3 For 0� i; j � .p� 3/=2,

Trace.TV.K; 2i; 2j //D �2

.p�3/=2X
kD0

kCjX
lDjk�j j

�.2kC1/.2iC1/�1J.K; 2l/:

More generally:

Trace.TV.K; 2i; j //D �2

.p�3/=2X
kD0

2kCjX
l D j2k� j j

l � j mod 2

�.2kC1/.2iC1/�1J.K; l/

Proof By the trace property of TQFT,

Trace.TV.K; 2i; 2j //D h.S3.K/; 2i; 2j /ip:

Direct calculation of h.S3.K/; 2i; 2j /ip from the definition yields � times the bracket
evaluation of K cabled by ! together with the meridian colored 2i and the longitude
further out colored 2j . These skeins all lie in a regular neighborhood of K with
framing zero. These skeins can then be expanded as a linear combination of the core
of this solid torus with different colors.

The operation of encircling an arc colored 2k with loop colored 2j in the skein module
of a local disk has the same effect as multiplying the arc by �.2kC1/.2jC1/�1=�2k

by [15, Lemma 14.2]. Note the idempotents fk are only defined for 0� k � .p� 2/.
It is well known that the ek satisfy a recursive formula which can be used to extend
the definition of ek for all k � 0. This is given [2] as follows: e0 D 1, e1 is the zero
framed core of a solid standard solid torus and ek D zek�1�ek�2 . In the skein module
of a solid torus, we have e2k � e2j D

PkCj

lDjk�j j
e2l . Using these rules, the expansion

can be worked out to be

�

.p�3/=2X
kD0

kCjX
lDjk�j j

�.2kC1/.2iC1/�1e2l :
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The second equation is worked out in a similar way.

Notice that, in the summation on the right of the first equation in Theorem 7.3, J.K; 2l/

for l > .p� 3/=2 sometimes appears. This can be rewritten using Remark 7.1 as
J.K; 2j / for j � .p� 3/=2.

We remark that using [9, Corollary 2.8], one can see that the Turaev–Viro polynomials
of TV.K; i; j / will have coefficients in a cyclotomic ring of integers, if p is an odd
prime or twice an odd prime.

8 Examples

In this section, we wish to illustrate with some concrete examples how to calculate
TV.K; i; j / using tangle morphisms in the case p D 5 (which is the first interesting
case). For both examples, we check our computation against an identity from the
previous section.

The first example is the k –twist knot with meridian colored 0 or 2 and longitude
colored 2. We then verify directly the equation in Theorem 7.2 for the case when
p D 5, j D 2 and K is the k –twist knot.

The second example we study is the knot 62 with the meridian and longitude uncolored.
We work out, using tangle morphisms, the traces of the Turaev–Viro endomorphism.
We then verify the equation in Theorem 7.3 when p D 5, i D j D 0 and K D 62 .

We pick an orthogonal basis for the module associated with a 2–sphere with some points,
and use this basis to work out the entries on the matrix for the tangle endomorphism
coming from a surgery presentation. The bases are represented by colored trees in the
3–ball which meet the boundary in the colored points as in Figure 13. Here we will
refer to these colored trees as basis-trees. Each entry is obtained as a certain quotient.
The numerator is the evaluation as a colored fat graph in S3 obtained from the tangle
closed off with the source basis-tree at the bottom and the target basis-tree at the top.
The denominator is the quotient as the evaluation of the double of the target basis
element. In both examples, we use a surgery presentation, with one surgery curve with
framing C1. Thus the initial weight of S3 , denoted s above, should be �1, so the
weight of S3 after the surgery is zero. This puts a factor of ��1 in front of the tangle
endomorphism. There is also a uniform factor of � coming from the single black dot
on a strand with two endpoints. We put this total factor of ��1� in front. We also have
�i prefactors where i is the color of the strand with the black dot, and these factor
vary from entry to entry.

To simplify our formulas, when p D 5, we use Tet to abbreviate Tet.2; 2; 2; 2; 2; 2/,
� to abbreviate �1 D�2 and ‚ to denote ‚.2; 2; 2/.
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8.1 The Turaev–Viro endomorphism and the colored Jones polynomial of
the k–twist knot

A tangle T for the k –twist knot with meridian and longitude is given in Figure 14.

...

...2kC1

2k

Figure 14: Surgery presentation of k –twist knot with meridian and longitude.
The straight line is from the meridian and the circle is from the longitude. We
have also chosen a position for the black dot.

If we denote by T0 the tangle T with meridian colored by 0 and longitude colored by
2, and let S denote a 2–sphere with two uncolored points, then we obtain a map

TV.K; 0; 2/DZ.T0/W V .S/ �! V .S/:

By using the trivalent graph basis in [3],

V .S/D spanha1; a2i;

where a1; a2 are as in Figure 15.

0 2

Figure 15: A basis for V .S/ , where S is a 2–sphere with two uncolored points

With respect to this basis, we have:

TV.K; 0; 2/D ��1�

�
� �3

�A16kC8 �.A8C�A8kC8/

�

We follow the convention that the columns of the matrix for a linear transformation
with respect to a basis are given the images of that basis written in terms of that
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basis. The characteristic polynomial of this matrix (ie the Turaev–Viro polynomial)
has coefficients in ZŒA�.

If we denote by T2 the tangle T with meridian colored by 2 and longitude colored by
2, and let S denote a 2–sphere with two uncolored points and one point colored 2,
then we obtain a map

TV.K; 2; 2/DZ.T2/W V .S/ �! V .S/:

By using the trivalent graph basis in [3],

V .S/D spanhb1; b2; b3i;

where b1; b2; b3 are as in Figure 16.

2
2

2
0

2
2

2
0

2

Figure 16: A basis for V .S/ , where S is a 2–sphere with two uncolored
points and one point colored 2

With respect to this basis, we have:

T V .K; 2; 2/D ��1�

2664�
�

A8

�
C

A8kC8�Tet
‚2

�
0 0

0 0 0

0 0 0

3775
By Proposition 2.22, we also have:

T V .K; 2; 2/D

�
���1�

�
A8

�
C

A8kC8�Tet
‚2

��
This last expression lies in ZŒA� for all k . One has that:

Trace.T V .K; 0; 2//C�Trace.T V .K; 2; 2//

D ��1��.1CA8
C�A8kC8/� ��1��

�
A8

�
C

A8kC8�Tet
‚2

�
Moreover, we used recoupling theory as in [12; 15; 17] to calculate the 2–colored
Jones polynomial of k –twist knot directly to obtain:

J.K; 2/D�
A4

�
C

�
1C

�2 Tet
‚2A8

�
A8k

We used Mathematica to verify that the two calculations agree for all k .
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8.2 The Turaev–Viro endomorphism of 62 and the quantum invariant of
S 3.62/

In this section, we will compute the Turaev–Viro endomorphism and the quantum
invariant of S3.62/ when A is a primitive 10–th root of unity and verify that the trace
of the Turaev–Viro endomorphism equals the quantum invariant. By 62 , we mean the
knot as pictured in [5], which is the mirror image of the knot as pictured in [15; 20]. A
tangle T for S3.62/ is as in Figure 17.

Figure 17: Tangle for S3.62/ , with a choice for the position for the black dot

So we obtain a map

TV.62; 0; 0/DZ.T /W V .S/ �! V .S/;

where S is a 2–sphere with four uncolored points. We use a trivalent graph basis in
[3] for V .S/ as in Figure 18.

With respect to this basis, we can obtain a 13� 13 matrix, which is in the strong shift
equivalence class of the Turaev–Viro endomorphism. However, by Proposition 2.22
applied twice in succession, it is enough to consider the minor given by the first five
rows and columns. We thus obtain a 5� 5 matrix:

TV.62; 0; 0/

D ��1�

266666664

1 0 �2 0 0

A2 0 �.A3CA/ 0 0

0 A4 0 � A2‚

0
A8

�
0 A8 A8‚

�

0
�A2

‚
0

�2

‚
�
�
1�A6CA8C

.A4�A6/�Tet
‚2

�

377777775
The Turaev–Viro polynomial (at p D 5) is the characteristic polynomial of the above
matrix, namely

x5
C
�
A3
CA�1

�
x4
C
�
�A3
�A2

�A
�
x3
C
�
A2
CAC1

�
x2
C
�
A3
�A2

�1
�
x�A3:
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2 0 0 2

2

0 2 2 0

2

0 0 0 0

0

2 2 2 2

2

2 2 2 2

0

0 2 0 2

2

2 2 2 0

0

2 2 0 2

2

2 0 2 0

2

2 2 0 0

0

0 0 2 2

0

2 0 2 2

2

0 2 2 2

2

Figure 18: A basis for V .S/ , where S is a 2–sphere with four uncolored points

We also note that

Trace.TV.62; 0; 0//D 1�A�A3:

The left hand side of the first equation in Theorem 7.3, with i D j D 0 and K D 62

is, by definition, the quantum invariant of S3.62/. The right hand side is, by direct
computation:

�2.J.62; 0/�0CJ.62; 2/�2 D �
2.1C�.�A�2

CA2
�A8

�A6//D 1�A�A3

Therefore, we verify a case of the first equation in Theorem 7.3.
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