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Proof of a stronger version of
the AJ Conjecture for torus knots

ANH T TRAN

For aknot K in S3, the sl,—colored Jones function Jk (1) is a sequence of Laurent
polynomials in the variable ¢ that is known to satisfy non-trivial linear recurrence
relations. The operator corresponding to the minimal linear recurrence relation is
called the recurrence polynomial of K. The AJ Conjecture (see Garoufalidis [4])
states that when reducing ¢ = —1, the recurrence polynomial is essentially equal
to the A—polynomial of K. In this paper we consider a stronger version of the AJ
Conjecture, proposed by Sikora [14], and confirm it for all torus knots.

57N10; 57M25

1 Introduction

1.1 The AJ Conjecture

For aknot K in S3, let Jx (1) € Z[t*'] be the colored Jones polynomial of K colored
by the n—dimensional simple sl, —representation (Jones [8], and Reshetikhin and Turaev
[13]), normalized so that for the unknot U,

Jo(n) = n] = o=t

The color n can be assumed to take negative integer values by setting Jg (—n) =
—Jg (n). In particular, Jg (0) = 0. It is known that Jg (1) = 1, and Jg(2) is the
ordinary Jones polynomial.

t2—t—2 '

Define two operators L, M acting on the set of discrete functions f: Z — R := C[t*!]
by
(L)) = fn+1), (Mf)n):=1>"f(n).

It is easy to see that LM = t> M L. Besides, the inverse operators L™, M~ are
well-defined. One can consider L, M as elements of the quantum torus

T :=R(LE, M*"Y /(LM — 1> ML),

which is not commutative, but almost commutative.
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610 Anh Tran

Let
Ag ={P €T | PJg =0},

which is a left-ideal of 7T, called the recurrence ideal of K. It was proved by Garo-
ufalidis and L& in [5] that for every knot K, the recurrence ideal Ag is non-zero. An
element in Ag is called a recurrence relation for the colored Jones polynomials of K.

The ring T is not a principal left-ideal domain, ie, not every left-ideal of T is generated
by one element. By adding all inverses of polynomials in ¢, M to 7, one gets a principal
left-ideal domain 7 ; cf [4]. The ring T can be formally defined as follows. Let R(M)
be the fractional field of the polynomial ring R[M ]. Let T be the set of all Laurent
polynomials in the variable L with coefficients in R(M),

T= {Z fi(M)LI

JjeZ

Ji(M) e R(M), fj =0 almost everywhere},

and define the product in T by f(M)LK.-g(M)L! = f(M)g(t** M)LK+!,

The left-ideal extension Ag := ’T'AK of Ak in T is then generated by a polynomial

d
ag (t: M. L) = ag j(t, M)L/,
j=0

where d is assumed to be minimal and all the coefficients ag (¢, M) € Z[t, M] are
assumed to be co-prime. That o can be chosen to have integer coefficients follows
from the fact that Jg (n) € Z[t*!]. The polynomial ag is defined up to a polynomial
in Z[lil, M. Moreover, one can choose ag € Ak, ie, it is a recurrence relation for
the colored Jones polynomials. We will call «g the recurrence polynomial of K.

Let ¢ be the map reducing 1 = —1. Garoufalidis [4] formulated the following conjecture
(see also Frohman, Gelca and Lofaro [3], and Gelca [6]).

Conjecture 1 (AJ Conjecture) Forevery knot K, e(ag) is equal to the A—polyno-
mial, up to a polynomial depending on M only.

The A-polynomial of a knot was introduced by Cooper, Culler, Gillet, Long and Shalen
[1]; it describes the SL,(C)—character variety of the knot complement as viewed from
the boundary torus. Here in the definition of the 4—polynomial, we also allow the
factor L — 1 coming from the abelian component of the character variety of the knot
group. Hence the A—polynomial in this paper is equal to L —1 times the A—polynomial
defined in [1].
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Proof of a stronger version of the AJ Conjecture for torus knots 611

The AJ Conjecture was verified for the trefoil and figure 8 knots by Garoufalidis [4],
and was partially checked for all torus knots by Hikami [7]. It was established for
some classes of two—bridge knots and pretzel knots, including all twist knots and
(=2, 3, 6n £ 1)—pretzel knots, by L& and the author [9; 10]. Here we provide a full
proof of the AJ Conjecture for all torus knots. Moreover, we show that a stronger
version of the conjecture, due to Sikora, holds true for all torus knots.

1.2 Main results

For a finitely generated group G, let x(G) denote the SL,(C)—character variety of
G ; see eg Culler and Shalen [2], and Lubotzky and Magid [11]. For a manifold ¥ we
use x(Y) also to denote x(1(Y)). Suppose G = Z?, the free abelian group with 2
generators. Every pair of generators p, A will define an isomorphism between x(G)
and (C*)2/t, where (C*)? is the set of non-zero complex pairs (M, L) and t is the
involution t(M, L) := (M~', L™1), as follows: Every representation is conjugate
to an upper diagonal one, with M and L being the upper left entries of u and A,
respectively. The isomorphism does not change if one replaces (1, A) by (= ', A71).

For an algebraic set V' (over C), let C[V] denote the ring of regular functions on
V. For example, C[(C*)?/t] = t°, the o —invariant subspace of t:= C[M*! L*1],
where o (M* LYy := M—*L—1.

Let K be a knotin S3 and X = S*\ K its complement. The boundary of X is a
torus whose fundamental group is free abelian of rank two. An orientation of K will
define a unique pair of an oriented meridian p and an oriented longitude A such that
the linking number between the longitude and the knot is zero. The pair provides an

identification of x(3X) and (C*)2/t that actually does not depend on the orientation
of K.

The inclusion dX < X induces an algebra homomorphism
0: C[x(0X)] =1t° — C[x(X)].

We will call the kernel p of 6 the A—ideal of K itis an ideal of t°. The A-ideal was
first introduced in [3]; it determines the A—polynomial of K. In fact p = (Ag - 1)°,
the o—invariant part of the ideal Ak -t C t generated by the A—polynomial Ak .

The involution ¢ acts on the quantum torus 7 also by o (M kphy =M% L7 Let
A% be the o—invariant part of the recurrence ideal Ak ; it is an ideal of 77 . Sikora
[14] proposed the following conjecture.

Conjecture 2 Suppose K is a knot. Then \/e(A%) = p.

Algebraic € Geometric Topology, Volume 13 (2013)



612 Anh Tran

Here ,/e(A%) denotes the radical of the ideal £(A%) in the ring t° = &(77).

It is easy to see that Conjecture 2 implies the AJ Conjecture. Conjecture 2 was verified
for the unknot and the trefoil knot by Sikora [14]. In the present paper we confirm it
for all torus knots.

Theorem 1 Conjecture 2 holds true for all torus knots.

1.3 Plan of the paper

We provide a full proof of the AJ Conjecture for all torus knots in Section 2 and prove
Theorem 1 in Section 2.

1.4 Acknowledgements

This paper was done when the author was a graduate student in the School of Mathe-
matics, Georgia Institute of Technology. The author would like to thank TT Q Lé for
his guidance, S Garoufalidis for helpful discussions, and the referee for suggestions.

2 Proof of the AJ Conjecture for torus knots

We will always assume that knots have framings 0.

Let T(a,b) denote the (a,b)—torus knot. We consider the two cases, a,b > 2 and
a = 2, separately. Lemmas 2.1 and 2.5 below were first proved in [7] using formulas
for the colored Jones polynomials and the Alexander polynomial of torus knots given
in Morton [12]. We present direct proofs here.

2.1 Thecasea,bh > 2

Lemma 2.1 One has

) Phab)nt1) =1 Aa—b)n+1)

JT(a,b) (}’l+2) = t_4ab(n+1) JT(a,b) (n)+t—20b(n+1

t2 _t—2
where Ay 1= 12k + 172k
Proof By [12], we have
(n—1)/2
2 . .
(1) Ir@py(n) =100 %7 4@ g ),
j=—m-1)/2
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Proof of a stronger version of the AJ Conjecture for torus knots 613

where [k]:= (12K —1=2k) /(12 —t~2). Hence:

JT@py(n+2)
n+1)/2
— ;—ab((n+2)>-1) Z 40i@i+ g 4 1]
j=—m+1)/2
(n—1)/2
_ t—ab((n+2)2—1) Z t4bj(aj+1)[2aj + 1]+ t—ab((n+2)2—1)
j=—m—1)/2
% (tb(n+1)(a(n+1)+2)[a(n + 1) + 1]—tb("+1)(a("+1)_2)[a(n + 1) _ 1])

2 -2
—2ab(+1) L Matb)nt1) =1 “Aa—b)(n+1)
[2_t—2

— t_4ab(n+1)JT(a,b)(n) 4t

Lemma 2.2 The colored Jones function of T (a, b) is annihilated by the operator
Fap = c3L3 4+ ¢, L? + ¢y L + ¢y where:

— t2(12(a+b)Ma+b + t—2(a+b)M—(a+b))

C3 .
_t—2 (tz(a—b)Ma—b + t—2(a—b)M—(a—b))
Cy = _t—2ab (Z2(14(a+b)Ma+b + t—4(a+b)M—(a+b))
+l_2 (t4(a—b) Ma—b + t—4(a—b)M—(a—b)))
1 = —Z_SabM_zabC3
o= —l_4abM_2abC2

Proof It is easy to check that ¢3¢ ~4¢2(1+2) 4 ¢ = ¢, p~4ab(r+1) ) = () and

3 (P atby ) =1 b)) T 2 (P h@rny ) =1 byt n) =0-
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Hence, by Lemma 2.1, F, 5 J1(4,5)(n) is equal to:

c3JT@ap) (M +3) + c2JT@ap) (0 +2) + c1IT@a,p) (0 + 1) + coJT(a,6) (1)

12\ —t72 (4
= ¢3 (Z—4ab(n+2)JT(a’b)(n+1)+t—2ab(n+2) (a+b)(n+[22)_t_2 (a b)(n+2))

— — lz)\ +b)(n+1 —1_2)\. —b)(n+1
+Cz(t 4ab(n+1)JT(a,b)(n)+l 2ab(n+1) (a+b)(n ZZ)_t_2 (a—b)(n ))

+c1dr@py(n+1) +codrap)(n)
= (3t 74T 4 o) Ty (1 + 1) + (et ™+ 2T o) Ir 4y (1)

2 -2
+t—2ab(n+1)(c3 1"Ma+b)(n+2) — 1 “Ma—b)(n+2)
t2 _Z—Z

sab M @+b)(nt1) — l_zk(a—b)(nﬂ))

+ cot 22

=0
This proves Lemma 2.2. |
Recall that a7, p) is the recurrence polynomial of T'(a,b).

Proposition 2.3 For a,b > 2, one has ar@p) = Fap-

Proof By Lemma 2.2 it suffices to show that if an operator P = P,L*+ P,L+ Py,

where the P; are polynomials in C [t£1, M], annihilates the colored Jones polynomials
of T'(a,b) then P =0.

Indeed, suppose P Jr(gp)(n) = 0. Then, by Lemma 2.1:

0= PoJr@p(n+2)+ PiJr@p(n+1)+ PoJrap(n)

- — tz)‘ +b)(n+1 _t_z)\ —b)(n+1
:P2<t 4ab(n+1)JT(a,b)(n)+l 2ab(n+1) (a+b)(n tz)_l‘_2 (a—b)(n ))

+ PiJ1@ap)(n+ 1)+ PoJr(a,p)(n)
= (174D p) 4 Po)Jr(apy(n) + PrJI 1y (n + 1)

2 -2
—2ab(+1) L Matb)n+1) =1 Aa—b)(n+1)
t2_t—2

+ Pyt
Let P) = (~4ab+) p, 4 Py and

o aabma1) D Mat b)) =1 A a—b) 1)
PO = Pyt 22 .
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Proof of a stronger version of the AJ Conjecture for torus knots 615

Then,
) PéJT(a’b)(l’l) + P, JT(a,b)(n + 1)+ P.=0.

Note that P; and P are polynomials in C[r%!, M]. We need the following lemma.

Lemma 2.4 The lowest degree in t of Jr g p)(n) is

ln = —abn®* +ab + (1 — (=1)""")a—2)(b-2).

Proof From (1), it follows easily that [, = —abn® + ab if n is odd, and /, =
(—abn® + ab) + (ab —2b —2a + 4) if n is even. O

Let us complete the proof of Proposition 2.3. Suppose P;, P; # 0. Let r, and s, be
the lowest degrees (in t) of Pé and P; respectively. Note that, when » is large enough,
rn and s, are polynomials in n of degrees at most 1. Equation (2) then implies that
P+ 1y = sn+ 41, i€

Fn—Sn = lys1 —lp = —ab2n + 1) — (=1)"(a — 2) (b —2)

This cannot happen since the LHS is a polynomial in 7, when 7 is large enough, while
the RHS is not (since (a —2)(b —2) > 0). Hence P, = P; = Pj = 0, which means
P =0. m|

It is easy to see that e(ar(g,p)) = M~2abppa _ pr—ay (b — M_b)AT(a,b) where

Ar(ap) = (L—1)(L2M?% —1) is the A-polynomial of 7'(a,b) when a, b > 2. This
means the AJ Conjecture holds true for 7'(a, b) when a,b > 2.

2.2 Thecasea=2

Lemma 2.5 One has

JT(Z,b)(n +1)= —1_(4n+2)bJT(2,b)(n) + t_znb[Zn +1].

Proof By (1), we have

(n—1)/2
2 . .
Tt =200 S G )
j=—n—-1)/2
Hence
n/2
JT(Z b)(n+ 1) — Z—2b((n+])2—1) Z t4bk(2k+1)[4k+ 1]
k=—n/2

Algebraic € Geometric Topology, Volume 13 (2013)
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Set k =—(j + %). Then:

Jrepnn+1)
—(n+1)/2
— ~2b((+1)?=1) > I 4+ 1)
j=(m-1)/2
(n—1)/2
- z—2b(("+1>2—1)(_ > QI 4 )4 20t D, 1])
j=—m—-1)/2
= —~GnEDb g by () + 172020 4 1]

This proves Lemma 2.5. O

Lemma 2.6 The colored Jones function of T (2,b) is annihilated by the operator
Gz’b = d2L2 +dy L + dy where

dy:=12*M*— 172 M2,
dl = t—2b(t—4bM—2b(t2M2 —[_ZM_z) _ ([6M2 _ t_6M_2)),
do:=—t"*P M2 (O M2 — 1O M2,

Proof From Lemma 2.5 we have
Jrapym+1)=—=@nDb yro o m) + 172020 4 1),
Tz +2) = t730FDb o )y — =60+ Dby 1] 4 =2 Dby 3],
It is easy to check that
Z—S(n-i—l)bdz —t_(4”+2)bd1 +dy =0,
dy (10T DP 2y 4 1] 41720082y 4 3]) 4+ dy 72" 20 + 1] = 0.
Hence:
Ga2pJT1(2,6)(N)
=dyJrpn+2)+diJrepnn+ 1) +doJr2,6)(n)
= dy (178D gy 4 (1) — 1 7SET DBy 4 1] 4 2O DBy 4 3))
+dy (—t7 WDl Ty () + 72020 4 1)) + do T 7.8y (1)
= (¢80Tl g, =Wl g 4 do) T2y (1)
+dy (— 70T g 4 1] 4 2D 1 3)) + 2 20 4 1]
=0
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Proof of a stronger version of the AJ Conjecture for torus knots 617

This proves Lemma 2.6. |
Proposition 2.7 One has a5 = Gap.

Proof By Lemma 2.6, it suffices to show that if an operator P = P; L + Py, where
the P; are polynomials in C[t*', M], annihilates the colored Jones polynomials of
T(2,b) then P =0.

Indeed, suppose PJr(2,5)(n) = 0. Then:
0= PiJrep(n+1)+ PoJr,pn)
= Py (~1 4P 11y () + 17020+ 1]) + PoJ 72,y (1)
= (=Gt Do P Po) Iy () + 172020 + 1] Py
Let P| = —~@n+2bp 4 Py and P} = t=2025 + 1]P;. Then P{, P are poly-
nomials in C[t*!, M] and P{J(n)+ P{ = 0. This implies that P; = P; = 0 since

the lowest degree in ¢ of Jr(z p)(n) is —2bn? + 2b, which is quadratic in 1, by
Lemma 2.4. Hence P = 0. O

It is easy to see that e(ar(2,p)) = M~ — M_z)AT(z,b) where Ar2,p) =
(L —1)(LM?® +1) is the A—polynomial of T'(2,5). This means the AJ Conjecture
holds true for 7(2, b).

3 Proof of Theorem 1

As in the previous section, we consider the two cases, a,b > 2 and a = 2, separately.

3.1 Thecasea,b > 2
We claim that:

Proposition 3.1 The colored Jones function of T (a, b) is annihilated by the operator
PQ where:
P = t—lOab(L3M2ab + L_3M_2ab)
_(t2(a—b) + [2(b—a))l—4ab(L2M2ab 4 L—ZM—Zab) + [2ab(LM2ab + L—lM—Zab)
_(ZZab —|—l_2ab)(L —|—L_1) + (tl(a—b) +l2(b_a))(l4ab +l_4ab)
Q = l_6ab(L3M2ab + L—3M—2ab)
—(l‘z(a+b)+t_2(a+b))q_ab (L2M2ab+L—ZM—Zab)+t—2ab(LM2ab+L—1M—Zab)
_(t2ab +l_2ab)(L +L_1) _{_2([2((1+b) +t—2(a+b))
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Proof We first prove the following two lemmas.

Lemma 3.2 One has

lzabn}"(a—b)(n+1) _ Z_zabn}\(a—b)(n—l)

QJ1a b)) = 1*P"2 (g — Aamp) 2,2

Proof Let

oabn P Matbyn =1 Aa—byn
ZZ _ t—2 :

gn) =t
Then, by Lemma 2.1, J7(g5)(n +2) = 1_4ab(n+1)JT(a,b) (n) +g(n+1). Hence:
QJT(a,p) (1)
_ t—6ab(t4ab(n+3)JT(a’b)(n +3)+ t_4“b("_3)JT(a,b)(n — 3))
B (ZZ(‘“LI’) + 1_2(“+b))t_4“b(l4“b("+2)JT(a,b)(n 12)+ t—4ab(n—2)JT(a’b)(n _2))
+[—2ab(t4ab(n+1)JT(a’b)(n 1) +t—4ab(n—1)JT(a’b)(n_ 1))
— (t2% 117295 Ty + 1) + I py (1 — 1)
4 2(e2@FD) | 72@E0)y gy (n)
=179 (49 (T 1 py (0 + 1) + T apy (1 — 1))
4 2060F3) g (4 - 2) — 72000 g (1 —2))
_ (tz(a+b) —|—1_2(“+b))t_4"b(2t4“bJT(a,b)(n)
4 tzab(n+4)g(n +1)— t—Zab(n—4)g(n — 1))
+ —2ab (Z4ab (JT(a,b)(” “+ JT(a,b)(” + 1)) + (ZZab(n+3) _t—2ab(n—3))g(n))
— (2 + 72 (Jr(apy (1 + 1) + 1@ (n—1)
220D L 72@E0)y gy ()
_ ,—6ab (t2ab(n+5)g(n +2) —2ab =) gy 2))
_ (t2(a+b) + 1—2(a+b))t—4“b (12“1’(”+4)g(n 1) — 280D gy D)

+ t—Zab (t2ab(n+3) - [—Zab(n—3))g(n)

Using the definition of g(n), we get:

sabn ! Matb)n+2) =1 Ma—b)(n+2)
ZZ _ t—2

OJra.p)(n) =14 (l

_—2abn U hMatb)n=2) 1 _zMa—b)(n—z))
12 _ Z—Z
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_(t2(a+b) + t—2(a+b))t4ab x

(lzm M arb)(nt1) =1 “Aa—b)(nt1)
t2 _ t—Z

_—2abn U hatb) -1 ~ 1 _ZMa—b)(n—l))
ZZ _ t—2

2 -2
| 4ab (g 2abn _ =2abny harbn =1 Mabyn
ZZ _ t—2

Now applying the equality Ag4; + Ax—; = ArA;, we then obtain

_ t2abn}\‘ b)Yt 1 _[—2abn)\ )1
0 Jr(ap)®) = t*"2(hgp — hamp) @=b)n t2)—z—2 (@=b)(n=1)

This proves Lemma 3.2. |
Let h(n) := 1***" A (g—p)(ut1) = 1" ha—b)(n—1) -
Lemma 3.3 The function h(n) is annihilated by the operator P, ie, Ph(n) = 0.

Proof Let ¢ =a—b. Then:

Ph(n)

_ ;—10ab (l4ab(n+3)h(n +3) 4 174Dy — 3))

_ (tz(a—b) + [2(b—a))[—4ab (t4ab(n+2)h(n +2)+ [—4ab(n—2)h(n — 2))

+ ¢2ab (t4“b(”+1)h(n +1)+ t_4“b("_1)h(n — 1))

_ (l2ab + l_zab)(h(l’l + 1) + h(l’l _ 1)) + (12(a—b) + t2(b—a))(l4ab + l_4ab)h(n)

_ (12db(3n+4))\c(n+4) _ tzab("_z))»c(nﬂ)

+ t_zab(n+2))\c(n—2) _ t—2ab(3n—4))\c(n_4))

— e (Z2ab(3n+4)kc(n+3) _ t2abn)\‘c(n+1) + t_zabn)"c(n—l) _ t—2ab(3n—4))\c(n_3))
T (tzab(3”+4)kc(n+2) _2abnt2)y o p2ab(n=2)y [—Zab(3n—4))\c(n_2))
— (2 & Z—zab)(tzab(n+1)kc(n+2) _2abt ),
+ ZZab(n—l)kcn _ t—2ab(n—l)kc(n_2))

+ )Lc([4ab + t—4ab)(t2abn)\c(n+l) . [—Zabn)\c(n_l))
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Note that Ag4; + Ax—; = AgA;. Hence:

Ph(n) — (_t2ab(n—2))\c(n+2) + f_zab(n+2))\c(n—2))
— ke (12PN ey + 2P Ny
b (—g2abHD; g m2abe-); Y
_ (Zzab 4 Z_Z”b)(tzab(”+1)kc(n+2) _ l_zab("ﬂ)kcn
§2abDy L m2abey
+ kc(l4ab + Z_4ab)(t2abn)\c(n+l) _ t_zabn)\c(n—l))
= (b g ey 2abny (4 dab gy 2abny
_ (t4ab 4 y~4ab y |y(,2abn _~2abny
+ Ac(z““b + Z_4ab + 1)(12abn)hc(n+1) _ Z—2abnkc(n_1))
= — (% 1174l L 1) 2B () n2) + Aen — Aehenrn))
(P 4 74 12 () + Aen — Aehe(net))

=0
This proves Lemma 3.3. m|
Proposition 3.1 follows directly from Lemmas 3.2 and 3.3. |

3.2 Thecasea =2

‘We claim that:

Proposition 3.4 The colored Jones function of T (2, b) is annihilated by the operator

R = [_4b(L2M2b + L—ZM—Zb) + (Z2b +t_2b)(L + L—l)
—(* LM+ LTI M)+ (MPP MR =2t 7).

Proof From Lemma 2.5 we have
Tr@pyn+1) = =428 yr ) + 172020 + 1),
Jrs(n+2) = t_g(n+l)bJT(z,b)(n) OBy 4 ]y 2k Db D, 4 3
Jrapym—1) = —41728 100 0 () +12"02n — 1,
JT (b (n—2) = 8(—=1b Jr(2.0) (n) — 16(”_1)b[2n —1]+ t2(n—1)b[2n _3].
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Proof of a stronger version of the AJ Conjecture for torus knots 621

Hence
RIT@py () = t 42 (4028 1r 5y +2) + 174D T 4y (01— 2)
+ (20 41720 (I (4 1) + Tr@p(n—1))
— (@ TR (AT g 4 1) + D8 T 4y (- 1)
(8 4 740 2+ 7)) Iy (1)
= 740 (72D 0y 4 1] 4 2Dy 4 3]
_A0Db )4 20 Dbp, 3))
+ (22 + 1720y (2P 20 + 1]+ 12020 — 1))
— (et (PP 1] 4 CE D2, 1))
— (¢ +7H28 (202 4 1]+ 72020 — 1))
= 220278 (20 4 3]+ 20— 1] — (¢* + 720 + 1))
1200720 (20 = 3]+ 20+ 1] — (¢* + 7 H 20 — 1))
=0,

since [k + 1]+ [k — 1] = (¥ +72))[k]. o

3.3 Proof of Theorem 1

We first note that the A—ideal p, the kernel of 6: t — C[x(X)], is radical, ie, ,/p =p,
since the character ring C[x(X)] is reduced, ie, has nil-radical 0, by definition.

Lemma 3.5 Suppose §(¢, M, L) € Ag. Then there are polynomials g(t, M) €
C[t*', M] and y(t, M, L) € T such that
1
3 8¢, M, L)y = ———y (. M,L)ag(t, M, L).
3 (.M. L) = oty (. M, Lyag (1. M. L)

Moreover, g(t, M) and y(t, M, L) can be chosen so that £(g) # 0.

Proof By definition ag is a generator of Ak , the extension of Ag in the principal
left-ideal domain 7. Since § € Ak, it is divisible by ag in 7. Hence (3) follows.

We can assume that 7 4 1 does not divide both g(z, M) and y (¢, M, L) simultaneously.
If e(g) = 0 then g is divisible by 7 + 1, and hence y is not. But then from the equality
g6 = yag, it follows that ag is divisible by ¢ + 1, which is impossible, since all the
coefficients of powers of L in ag are supposed to be co-prime. |
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Showing /e(A%) Cp For torus knots, by Section 1, we have e(ag) = f(M)Ag,
where f(M) e C[M*!]. For every § € Ag, by Lemma 3.5, there exist g(t, M) €
C[t*', M] and y € T such that § = W yag and g(g) # 0. It implies that

1
@ ) = gy )e@) = () S (M) A

The A—polynomial of a torus knot does not contain any non-trivial factor depending
on M only. Since e(y) € t = C[L*!, M*!], equation (4) implies that

IR

is an element of t. Hence e(y) € Ak -t, the ideal of t generated by Ag . It follows
that e(Ag) C Ak -t and thus e(A%) C (Ag -1)° =p. Hence (/e(A%) C /P =p.

Showing p C \/e(A%) For a,b > 2, by Proposition 3.1 the colored Jones function of
T (a, b) is annihilated by the operator PQ. Note that

S(PQ) — (L + L—l _2)2(L2M2ab + L—ZM—Zab _2)2

= L72(L' ML — 1) (LM —1))*,

If u €p then u = vA,T(a,b)’ where
Aoy =L ML —1)(L2M>*® — 1) = LT M~ A7 (44

and v € C[M*', L*']. It is easy to see that o(v) = Lv, since o(u) = u and
o (A7 T@. b)) L~ A/T(a by This implies that o(v2L) = o (v)?L~! = v2L. We then
have

ut=v AT(a by = =e(W*L*PQ) € e(A%).
hence u € (/e(A%).

For a = 2, by Proposition 3.4 the colored Jones function of 7°(2, b) is annihilated by
the operator R. Note that o(R) = R and

s(R)=(L+ L' =) (LM + L' M~ +2) = (L' M2 (L—1)(LM?> +1))*.
If u €p then u = vA’T(z’b), where
Teb = LM (L —1)(LM® +1) = L7'M ™ A7)

and ve C[M*!, L*1]. Itis easy to see that o(v) = —v and hence o (v?) =0 (v)o (v) =
v2. We then have
u?=v AT(zb)—s(v R) € e(A%),

Algebraic € Geometric Topology, Volume 13 (2013)
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hence u € (/e(A%).

In both cases p C /(A% ). Hence /(A% ) = p for all torus knots.
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