Proof of a stronger version of the AJ Conjecture for torus knots

Anh T TRan

For a knot K in S^{3}, the sl_{2}-colored Jones function $J_{K}(n)$ is a sequence of Laurent polynomials in the variable t that is known to satisfy non-trivial linear recurrence relations. The operator corresponding to the minimal linear recurrence relation is called the recurrence polynomial of K. The AJ Conjecture (see Garoufalidis [4]) states that when reducing $t=-1$, the recurrence polynomial is essentially equal to the A-polynomial of K. In this paper we consider a stronger version of the AJ Conjecture, proposed by Sikora [14], and confirm it for all torus knots.

57N10; 57M25

1 Introduction

1.1 The AJ Conjecture

For a knot K in S^{3}, let $J_{K}(n) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ be the colored Jones polynomial of K colored by the n-dimensional simple sl_{2}-representation (Jones [8], and Reshetikhin and Turaev [13]), normalized so that for the unknot U,

$$
J_{U}(n)=[n]:=\frac{t^{2 n}-t^{-2 n}}{t^{2}-t^{-2}}
$$

The color n can be assumed to take negative integer values by setting $J_{K}(-n)=$ $-J_{K}(n)$. In particular, $J_{K}(0)=0$. It is known that $J_{K}(1)=1$, and $J_{K}(2)$ is the ordinary Jones polynomial.
Define two operators L, M acting on the set of discrete functions $f: \mathbb{Z} \rightarrow \mathcal{R}:=\mathbb{C}\left[t^{ \pm 1}\right]$ by

$$
(L f)(n):=f(n+1), \quad(M f)(n):=t^{2 n} f(n)
$$

It is easy to see that $L M=t^{2} M L$. Besides, the inverse operators L^{-1}, M^{-1} are well-defined. One can consider L, M as elements of the quantum torus

$$
\mathcal{T}:=\mathcal{R}\left\langle L^{ \pm 1}, M^{ \pm 1}\right\rangle /\left(L M-t^{2} M L\right)
$$

which is not commutative, but almost commutative.

Let

$$
\mathcal{A}_{K}=\left\{P \in \mathcal{T} \mid P J_{K}=0\right\}
$$

which is a left-ideal of \mathcal{T}, called the recurrence ideal of K. It was proved by Garoufalidis and Lê in [5] that for every knot K, the recurrence ideal \mathcal{A}_{K} is non-zero. An element in \mathcal{A}_{K} is called a recurrence relation for the colored Jones polynomials of K.

The ring \mathcal{T} is not a principal left-ideal domain, ie, not every left-ideal of \mathcal{T} is generated by one element. By adding all inverses of polynomials in t, M to \mathcal{T}, one gets a principal left-ideal domain $\widetilde{\mathcal{T}}$; cf [4]. The ring $\widetilde{\mathcal{T}}$ can be formally defined as follows. Let $\mathcal{R}(M)$ be the fractional field of the polynomial ring $\mathcal{R}[M]$. Let $\widetilde{\mathcal{T}}$ be the set of all Laurent polynomials in the variable L with coefficients in $\mathcal{R}(M)$,

$$
\widetilde{\mathcal{T}}=\left\{\sum_{j \in \mathbb{Z}} f_{j}(M) L^{j} \mid f_{j}(M) \in \mathcal{R}(M), f_{j}=0 \text { almost everywhere }\right\},
$$

and define the product in $\widetilde{\mathcal{T}}$ by $f(M) L^{k} \cdot g(M) L^{l}=f(M) g\left(t^{2 k} M\right) L^{k+l}$.
The left-ideal extension $\widetilde{\mathcal{A}}_{K}:=\widetilde{\mathcal{T}} \mathcal{A}_{K}$ of \mathcal{A}_{K} in $\widetilde{\mathcal{T}}$ is then generated by a polynomial

$$
\alpha_{K}(t ; M, L)=\sum_{j=0}^{d} \alpha_{K, j}(t, M) L^{j}
$$

where d is assumed to be minimal and all the coefficients $\alpha_{K, j}(t, M) \in \mathbb{Z}\left[t^{ \pm 1}, M\right]$ are assumed to be co-prime. That α_{K} can be chosen to have integer coefficients follows from the fact that $J_{K}(n) \in \mathbb{Z}\left[t^{ \pm 1}\right]$. The polynomial α_{K} is defined up to a polynomial in $\mathbb{Z}\left[t^{ \pm 1}, M\right]$. Moreover, one can choose $\alpha_{K} \in \mathcal{A}_{K}$, ie, it is a recurrence relation for the colored Jones polynomials. We will call α_{K} the recurrence polynomial of K.

Let ε be the map reducing $t=-1$. Garoufalidis [4] formulated the following conjecture (see also Frohman, Gelca and Lofaro [3], and Gelca [6]).

Conjecture 1 (AJ Conjecture) For every knot $K, \varepsilon\left(\alpha_{K}\right)$ is equal to the A-polynomial, up to a polynomial depending on M only.

The A-polynomial of a knot was introduced by Cooper, Culler, Gillet, Long and Shalen [1]; it describes the $\mathrm{SL}_{2}(\mathbb{C})$-character variety of the knot complement as viewed from the boundary torus. Here in the definition of the A-polynomial, we also allow the factor $L-1$ coming from the abelian component of the character variety of the knot group. Hence the A-polynomial in this paper is equal to $L-1$ times the A-polynomial defined in [1].

The AJ Conjecture was verified for the trefoil and figure 8 knots by Garoufalidis [4], and was partially checked for all torus knots by Hikami [7]. It was established for some classes of two-bridge knots and pretzel knots, including all twist knots and $(-2,3,6 n \pm 1)$-pretzel knots, by Lê and the author [9;10]. Here we provide a full proof of the AJ Conjecture for all torus knots. Moreover, we show that a stronger version of the conjecture, due to Sikora, holds true for all torus knots.

1.2 Main results

For a finitely generated group G, let $\chi(G)$ denote the $\mathrm{SL}_{2}(\mathbb{C})$-character variety of G; see eg Culler and Shalen [2], and Lubotzky and Magid [11]. For a manifold Y we use $\chi(Y)$ also to denote $\chi\left(\pi_{1}(Y)\right)$. Suppose $G=\mathbb{Z}^{2}$, the free abelian group with 2 generators. Every pair of generators μ, λ will define an isomorphism between $\chi(G)$ and $\left(\mathbb{C}^{*}\right)^{2} / \tau$, where $\left(\mathbb{C}^{*}\right)^{2}$ is the set of non-zero complex pairs (M, L) and τ is the involution $\tau(M, L):=\left(M^{-1}, L^{-1}\right)$, as follows: Every representation is conjugate to an upper diagonal one, with M and L being the upper left entries of μ and λ, respectively. The isomorphism does not change if one replaces (μ, λ) by $\left(\mu^{-1}, \lambda^{-1}\right)$.

For an algebraic set V (over \mathbb{C}), let $\mathbb{C}[V]$ denote the ring of regular functions on V. For example, $\mathbb{C}\left[\left(\mathbb{C}^{*}\right)^{2} / \tau\right]=\mathfrak{t}^{\sigma}$, the σ-invariant subspace of $\mathfrak{t}:=\mathbb{C}\left[M^{ \pm 1}, L^{ \pm 1}\right]$, where $\sigma\left(M^{k} L^{l}\right):=M^{-k} L^{-l}$.

Let K be a knot in S^{3} and $X=S^{3} \backslash K$ its complement. The boundary of X is a torus whose fundamental group is free abelian of rank two. An orientation of K will define a unique pair of an oriented meridian μ and an oriented longitude λ such that the linking number between the longitude and the knot is zero. The pair provides an identification of $\chi(\partial X)$ and $\left(\mathbb{C}^{*}\right)^{2} / \tau$ that actually does not depend on the orientation of K.

The inclusion $\partial X \hookrightarrow X$ induces an algebra homomorphism

$$
\theta: \mathbb{C}[\chi(\partial X)] \equiv \mathfrak{t}^{\sigma} \longrightarrow \mathbb{C}[\chi(X)]
$$

We will call the kernel \mathfrak{p} of θ the A-ideal of K; it is an ideal of \mathfrak{t}^{σ}. The A-ideal was first introduced in [3]; it determines the A-polynomial of K. In fact $\mathfrak{p}=\left(A_{K} \cdot \mathfrak{t}\right)^{\sigma}$, the σ-invariant part of the ideal $A_{K} \cdot \mathfrak{t} \subset \mathfrak{t}$ generated by the A-polynomial A_{K}.

The involution σ acts on the quantum torus \mathcal{T} also by $\sigma\left(M^{k} L^{l}\right)=M^{-k} L^{-l}$. Let \mathcal{A}_{K}^{σ} be the σ-invariant part of the recurrence ideal \mathcal{A}_{K}; it is an ideal of \mathcal{T}^{σ}. Sikora [14] proposed the following conjecture.

Conjecture 2 Suppose K is a knot. Then $\sqrt{\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)}=\mathfrak{p}$.

Here $\sqrt{\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)}$ denotes the radical of the ideal $\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)$ in the ring $\mathfrak{t}^{\sigma}=\varepsilon\left(\mathcal{T}^{\sigma}\right)$.
It is easy to see that Conjecture 2 implies the AJ Conjecture. Conjecture 2 was verified for the unknot and the trefoil knot by Sikora [14]. In the present paper we confirm it for all torus knots.

Theorem 1 Conjecture 2 holds true for all torus knots.

1.3 Plan of the paper

We provide a full proof of the AJ Conjecture for all torus knots in Section 2 and prove Theorem 1 in Section 2.

1.4 Acknowledgements

This paper was done when the author was a graduate student in the School of Mathematics, Georgia Institute of Technology. The author would like to thank T T Q Lê for his guidance, S Garoufalidis for helpful discussions, and the referee for suggestions.

2 Proof of the AJ Conjecture for torus knots

We will always assume that knots have framings 0 .
Let $T(a, b)$ denote the (a, b)-torus knot. We consider the two cases, $a, b>2$ and $a=2$, separately. Lemmas 2.1 and 2.5 below were first proved in [7] using formulas for the colored Jones polynomials and the Alexander polynomial of torus knots given in Morton [12]. We present direct proofs here.

2.1 The case $a, b>2$

Lemma 2.1 One has
$J_{T(a, b)}(n+2)=t^{-4 a b(n+1)} J_{T(a, b)}(n)+t^{-2 a b(n+1)} \frac{t^{2} \lambda_{(a+b)(n+1)}-t^{-2} \lambda_{(a-b)(n+1)}}{t^{2}-t^{-2}}$, where $\lambda_{k}:=t^{2 k}+t^{-2 k}$.

Proof By [12], we have

$$
\begin{equation*}
J_{T(a, b)}(n)=t^{-a b\left(n^{2}-1\right)} \sum_{j=-(n-1) / 2}^{(n-1) / 2} t^{4 b j(a j+1)}[2 a j+1], \tag{1}
\end{equation*}
$$

where $[k]:=\left(t^{2 k}-t^{-2 k}\right) /\left(t^{2}-t^{-2}\right)$. Hence:

$$
\begin{aligned}
& J_{T(a, b)}(n+2) \\
&= t^{-a b\left((n+2)^{2}-1\right)} \sum_{j=-(n+1) / 2}^{(n+1) / 2} t^{4 b j(a j+1)}[2 a j+1] \\
&= t^{-a b\left((n+2)^{2}-1\right)} \sum_{j=-(n-1) / 2}^{(n-1) / 2} t^{4 b j(a j+1)}[2 a j+1]+t^{-a b\left((n+2)^{2}-1\right)} \\
& \times\left(t^{b(n+1)(a(n+1)+2)}[a(n+1)+1]-t^{b(n+1)(a(n+1)-2)}[a(n+1)-1]\right) \\
&= t^{-4 a b(n+1)} J_{T(a, b)}(n)+t^{-2 a b(n+1)} \frac{t^{2} \lambda_{(a+b)(n+1)}-t^{-2} \lambda_{(a-b)(n+1)}}{t^{2}-t^{-2}}
\end{aligned}
$$

Lemma 2.2 The colored Jones function of $T(a, b)$ is annihilated by the operator $F_{a, b}=c_{3} L^{3}+c_{2} L^{2}+c_{1} L+c_{0}$ where:

$$
\begin{aligned}
& c_{3}:=t^{2}\left(t^{2(a+b)} M^{a+b}+t^{-2(a+b)} M^{-(a+b)}\right) \\
& \begin{aligned}
& c_{2}:=-t^{-2 a b}\left(t^{2}\left(t^{4(a+b)} M^{a+b}+t^{-4(a+b)} M^{-(a+b)}\right)\right. \\
&-t^{-2}\left(t^{2(a-b)} M^{a-b}+t^{-2(a-b)} M^{-(a-b)}\right) \\
& c_{1}:=-t^{-8 a b} M^{-2 a b} c_{3} \\
&\left.\left.c_{0}:=-t^{4(a-b)} M^{a-b}+t^{-4(a-b)} M^{-(a-b)}\right)\right)
\end{aligned}
\end{aligned}
$$

Proof It is easy to check that $c_{3} t^{-4 a b(n+2)}+c_{1}=c_{2} t^{-4 a b(n+1)}+c_{0}=0$ and
$c_{3}\left(t^{2} \lambda_{(a+b)(n+2)}-t^{-2} \lambda_{(a-b)(n+2)}\right)+c_{2} t^{2 a b}\left(t^{2} \lambda_{(a+b)(n+1)}-t^{-2} \lambda_{(a-b)(n+1)}\right)=0$.

Hence, by Lemma 2.1, $F_{a, b} J_{T(a, b)}(n)$ is equal to:

$$
\begin{array}{r}
c_{3} J_{T(a, b)}(n+3)+c_{2} J_{T(a, b)}(n+2)+c_{1} J_{T(a, b)}(n+1)+c_{0} J_{T(a, b)}(n) \\
=c_{3}\left(t^{-4 a b(n+2)} J_{T(a, b)}(n+1)+t^{-2 a b(n+2)} \frac{t^{2} \lambda_{(a+b)(n+2)}-t^{-2} \lambda_{(a-b)(n+2)}}{t^{2}-t^{-2}}\right) \\
+c_{2}\left(t^{-4 a b(n+1)} J_{T(a, b)}(n)+t^{-2 a b(n+1)} \frac{t^{2} \lambda_{(a+b)(n+1)}-t^{-2} \lambda_{(a-b)(n+1)}}{t^{2}-t^{-2}}\right) \\
+c_{1} J_{T(a, b)}(n+1)+c_{0} J_{T(a, b)}(n) \\
=\left(c_{3} t^{-4 a b(n+2)}+c_{1}\right) J_{T(a, b)}(n+1)+\left(c_{2} t^{-4 a b(n+1)}+c_{0}\right) J_{T(a, b)}(n) \\
+t^{-2 a b(n+1)}\left(c_{3} \frac{t^{2} \lambda_{(a+b)(n+2)}-t^{-2} \lambda_{(a-b)(n+2)}}{t^{2}-t^{-2}}\right. \\
\left.+c_{2} t^{2 a b} \frac{t^{2} \lambda_{(a+b)(n+1)}-t^{-2} \lambda_{(a-b)(n+1)}}{t^{2}-t^{-2}}\right)
\end{array}
$$

$$
=0
$$

This proves Lemma 2.2.

Recall that $\alpha_{T(a, b)}$ is the recurrence polynomial of $T(a, b)$.
Proposition 2.3 For $a, b>2$, one has $\alpha_{T(a, b)}=F_{a, b}$.
Proof By Lemma 2.2 it suffices to show that if an operator $P=P_{2} L^{2}+P_{1} L+P_{0}$, where the P_{j} are polynomials in $\mathbb{C}\left[t^{ \pm 1}, M\right]$, annihilates the colored Jones polynomials of $T(a, b)$ then $P=0$.

Indeed, suppose $P J_{T(a, b)}(n)=0$. Then, by Lemma 2.1:

Let $P_{2}^{\prime}=t^{-4 a b(n+1)} P_{2}+P_{0}$ and

$$
P_{0}^{\prime}=P_{2} t^{-2 a b(n+1)} \frac{t^{2} \lambda_{(a+b)(n+1)}-t^{-2} \lambda_{(a-b)(n+1)}}{t^{2}-t^{-2}}
$$

$$
\begin{aligned}
& 0=P_{2} J_{T(a, b)}(n+2)+P_{1} J_{T(a, b)}(n+1)+P_{0} J_{T(a, b)}(n) \\
& =P_{2}\left(t^{-4 a b(n+1)} J_{T(a, b)}(n)+t^{-2 a b(n+1)} \frac{t^{2} \lambda_{(a+b)(n+1)}-t^{-2} \lambda_{(a-b)(n+1)}}{t^{2}-t^{-2}}\right) \\
& +P_{1} J_{T(a, b)}(n+1)+P_{0} J_{T(a, b)}(n) \\
& =\left(t^{-4 a b(n+1)} P_{2}+P_{0}\right) J_{T(a, b)}(n)+P_{1} J_{T(a, b)}(n+1) \\
& +P_{2} t^{-2 a b(n+1)} \frac{t^{2} \lambda_{(a+b)(n+1)}-t^{-2} \lambda_{(a-b)(n+1)}}{t^{2}-t^{-2}}
\end{aligned}
$$

Then,

$$
\begin{equation*}
P_{2}^{\prime} J_{T(a, b)}(n)+P_{1} J_{T(a, b)}(n+1)+P_{0}^{\prime}=0 \tag{2}
\end{equation*}
$$

Note that P_{2}^{\prime} and P_{0}^{\prime} are polynomials in $\mathbb{C}\left[t^{ \pm 1}, M\right]$. We need the following lemma.
Lemma 2.4 The lowest degree in t of $J_{T(a, b)}(n)$ is

$$
l_{n}=-a b n^{2}+a b+\frac{1}{2}\left(1-(-1)^{n-1}\right)(a-2)(b-2) .
$$

Proof From (1), it follows easily that $l_{n}=-a b n^{2}+a b$ if n is odd, and $l_{n}=$ $\left(-a b n^{2}+a b\right)+(a b-2 b-2 a+4)$ if n is even.

Let us complete the proof of Proposition 2.3. Suppose $P_{2}^{\prime}, P_{1} \neq 0$. Let r_{n} and s_{n} be the lowest degrees (in t) of P_{2}^{\prime} and P_{1} respectively. Note that, when n is large enough, r_{n} and s_{n} are polynomials in n of degrees at most 1. Equation (2) then implies that $r_{n}+l_{n}=s_{n}+l_{n+1}$, ie:

$$
r_{n}-s_{n}=l_{n+1}-l_{n}=-a b(2 n+1)-(-1)^{n}(a-2)(b-2)
$$

This cannot happen since the LHS is a polynomial in n, when n is large enough, while the RHS is not (since $(a-2)(b-2)>0)$. Hence $P_{2}^{\prime}=P_{1}=P_{0}^{\prime}=0$, which means $P=0$.

It is easy to see that $\varepsilon\left(\alpha_{T(a, b)}\right)=M^{-2 a b}\left(M^{a}-M^{-a}\right)\left(M^{b}-M^{-b}\right) A_{T(a, b)}$ where $A_{T(a, b)}=(L-1)\left(L^{2} M^{2 a b}-1\right)$ is the A-polynomial of $T(a, b)$ when $a, b>2$. This means the AJ Conjecture holds true for $T(a, b)$ when $a, b>2$.

2.2 The case $a=2$

Lemma 2.5 One has

$$
J_{T(2, b)}(n+1)=-t^{-(4 n+2) b} J_{T(2, b)}(n)+t^{-2 n b}[2 n+1] .
$$

Proof By (1), we have

$$
J_{T(2, b)}(n)=t^{-2 b\left(n^{2}-1\right)} \sum_{j=-(n-1) / 2}^{(n-1) / 2} t^{4 b j(2 j+1)}[4 j+1] .
$$

Hence

$$
J_{T(2, b)}(n+1)=t^{-2 b\left((n+1)^{2}-1\right)} \sum_{k=-n / 2}^{n / 2} t^{4 b k(2 k+1)}[4 k+1] .
$$

Set $k=-\left(j+\frac{1}{2}\right)$. Then:
$J_{T(2, b)}(n+1)$

$$
\begin{aligned}
& =t^{-2 b\left((n+1)^{2}-1\right)} \sum_{j=(n-1) / 2}^{-(n+1) / 2} t^{4 b j(2 j+1)}[-(4 j+1)] \\
& =t^{-2 b\left((n+1)^{2}-1\right)}\left(-\sum_{j=-(n-1) / 2}^{(n-1) / 2} t^{4 b j(2 j+1)}[4 j+1]+t^{2 b n(n+1)}[2 n+1]\right) \\
& =-t^{-(4 n+2) b} J_{T(2, b)}(n)+t^{-2 n b}[2 n+1]
\end{aligned}
$$

This proves Lemma 2.5.
Lemma 2.6 The colored Jones function of $T(2, b)$ is annihilated by the operator $G_{2, b}=d_{2} L^{2}+d_{1} L+d_{0}$ where

$$
\begin{aligned}
& d_{2}:=t^{2} M^{2}-t^{-2} M^{-2} \\
& d_{1}:=t^{-2 b}\left(t^{-4 b} M^{-2 b}\left(t^{2} M^{2}-t^{-2} M^{-2}\right)-\left(t^{6} M^{2}-t^{-6} M^{-2}\right)\right) \\
& d_{0}:=-t^{-4 b} M^{-2 b}\left(t^{6} M^{2}-t^{-6} M^{-2}\right)
\end{aligned}
$$

Proof From Lemma 2.5 we have

$$
\begin{aligned}
& J_{T(2, b)}(n+1)=-t^{-(4 n+2) b} J_{T(2, b)}(n)+t^{-2 n b}[2 n+1], \\
& J_{T(2, b)}(n+2)=t^{-8(n+1) b} J_{T(2, b)}(n)-t^{-6(n+1) b}[2 n+1]+t^{-2(n+1) b}[2 n+3] .
\end{aligned}
$$

It is easy to check that

$$
\begin{aligned}
& t^{-8(n+1) b} d_{2}-t^{-(4 n+2) b} d_{1}+d_{0}=0 \\
& d_{2}\left(-t^{-6(n+1) b}[2 n+1]+t^{-2(n+1) b}[2 n+3]\right)+d_{1} t^{-2 n b}[2 n+1]=0 .
\end{aligned}
$$

Hence:
$G_{2, b} J_{T(2, b)}(n)$

$$
\begin{aligned}
= & d_{2} J_{T(2, b)}(n+2)+d_{1} J_{T(2, b)}(n+1)+d_{0} J_{T(2, b)}(n) \\
= & d_{2}\left(t^{-8(n+1) b} J_{T(2, b)}(n)-t^{-6(n+1) b}[2 n+1]+t^{-2(n+1) b}[2 n+3]\right) \\
& \quad+d_{1}\left(-t^{-(4 n+2) b} J_{T(2, b)}(n)+t^{-2 n b}[2 n+1]\right)+d_{0} J_{T(2, b)}(n) \\
= & \left(t^{-8(n+1) b} d_{2}-t^{-(4 n+2) b} d_{1}+d_{0}\right) J_{T(2, b)}(n) \\
& +d_{2}\left(-t^{-6(n+1) b}[2 n+1]+t^{-2(n+1) b}[2 n+3]\right)+d_{1} t^{-2 n b}[2 n+1] \\
= & 0
\end{aligned}
$$

This proves Lemma 2.6.
Proposition 2.7 One has $\alpha_{T(2, b)}=G_{2, b}$.
Proof By Lemma 2.6, it suffices to show that if an operator $P=P_{1} L+P_{0}$, where the P_{j} are polynomials in $\mathbb{C}\left[t^{ \pm 1}, M\right]$, annihilates the colored Jones polynomials of $T(2, b)$ then $P=0$.

Indeed, suppose $P J_{T(2, b)}(n)=0$. Then:

$$
\begin{aligned}
0 & =P_{1} J_{T(2, b)}(n+1)+P_{0} J_{T(2, b)}(n) \\
& =P_{1}\left(-t^{-(4 n+2) b} J_{T(2, b)}(n)+t^{-2 n b}[2 n+1]\right)+P_{0} J_{T(2, b)}(n) \\
& =\left(-t^{-(4 n+2) b} P_{1}+P_{0}\right) J_{T(2, b)}(n)+t^{-2 n b}[2 n+1] P_{1}
\end{aligned}
$$

Let $P_{1}^{\prime}=-t^{-(4 n+2) b} P_{1}+P_{0}$ and $P_{0}^{\prime}=t^{-2 n b}[2 n+1] P_{1}$. Then $P_{1}^{\prime}, P_{0}^{\prime}$ are polynomials in $\mathbb{C}\left[t^{ \pm 1}, M\right]$ and $P_{1}^{\prime} J(n)+P_{0}^{\prime}=0$. This implies that $P_{1}^{\prime}=P_{0}^{\prime}=0$ since the lowest degree in t of $J_{T(2, b)}(n)$ is $-2 b n^{2}+2 b$, which is quadratic in n, by Lemma 2.4. Hence $P=0$.

It is easy to see that $\varepsilon\left(\alpha_{T(2, b)}\right)=M^{-2 b}\left(M^{2}-M^{-2}\right) A_{T(2, b)}$ where $A_{T(2, b)}=$ $(L-1)\left(L M^{2 b}+1\right)$ is the A-polynomial of $T(2, b)$. This means the AJ Conjecture holds true for $T(2, b)$.

3 Proof of Theorem 1

As in the previous section, we consider the two cases, $a, b>2$ and $a=2$, separately.

3.1 The case $a, b>2$

We claim that:
Proposition 3.1 The colored Jones function of $T(a, b)$ is annihilated by the operator $P Q$ where:

$$
\begin{aligned}
& P:=t^{-10 a b}\left(L^{3} M^{2 a b}+L^{-3} M^{-2 a b}\right) \\
& -\left(t^{2(a-b)}+t^{2(b-a)}\right) t^{-4 a b}\left(L^{2} M^{2 a b}+L^{-2} M^{-2 a b}\right)+t^{2 a b}\left(L M^{2 a b}+L^{-1} M^{-2 a b}\right) \\
& \quad-\left(t^{2 a b}+t^{-2 a b}\right)\left(L+L^{-1}\right)+\left(t^{2(a-b)}+t^{2(b-a)}\right)\left(t^{4 a b}+t^{-4 a b}\right) \\
& Q:=t^{-6 a b}\left(L^{3} M^{2 a b}+L^{-3} M^{-2 a b}\right) \\
& -\left(t^{2(a+b)}+t^{-2(a+b)}\right) q^{-a b}\left(L^{2} M^{2 a b}+L^{-2} M^{-2 a b}\right)+t^{-2 a b}\left(L M^{2 a b}+L^{-1} M^{-2 a b}\right) \\
& \quad-\left(t^{2 a b}+t^{-2 a b}\right)\left(L+L^{-1}\right)+2\left(t^{2(a+b)}+t^{-2(a+b)}\right)
\end{aligned}
$$

Proof We first prove the following two lemmas.
Lemma 3.2 One has

$$
Q J_{T(a, b)}(n)=t^{4 a b-2}\left(\lambda_{a+b}-\lambda_{a-b}\right) \frac{t^{2 a b n} \lambda_{(a-b)(n+1)}-t^{-2 a b n} \lambda_{(a-b)(n-1)}}{t^{2}-t^{-2}}
$$

Proof Let

$$
g(n):=t^{-2 a b n} \frac{t^{2} \lambda_{(a+b) n}-t^{-2} \lambda_{(a-b) n}}{t^{2}-t^{-2}}
$$

Then, by Lemma 2.1, $J_{T(a, b)}(n+2)=t^{-4 a b(n+1)} J_{T(a, b)}(n)+g(n+1)$. Hence:

$$
\begin{aligned}
& Q J_{T(a, b)}(n) \\
& =t^{-6 a b}\left(t^{4 a b(n+3)} J_{T(a, b)}(n+3)+t^{-4 a b(n-3)} J_{T(a, b)}(n-3)\right) \\
& -\left(t^{2(a+b)}+t^{-2(a+b)}\right) t^{-4 a b}\left(t^{4 a b(n+2)} J_{T(a, b)}(n+2)+t^{-4 a b(n-2)} J_{T(a, b)}(n-2)\right) \\
& +t^{-2 a b}\left(t^{4 a b(n+1)} J_{T(a, b)}(n+1)+t^{-4 a b(n-1)} J_{T(a, b)}(n-1)\right) \\
& -\left(t^{2 a b}+t^{-2 a b}\right)\left(J_{T(a, b)}(n+1)+J_{T(a, b)}(n-1)\right) \\
& +2\left(t^{2(a+b)}+t^{-2(a+b)}\right) J_{T(a, b)}(n) \\
& =t^{-6 a b}\left(t^{4 a b}\left(J_{T(a, b)}(n+1)+J_{T(a, b)}(n-1)\right)\right. \\
& \left.+t^{2 a b(n+5)} g(n+2)-t^{-2 a b(n-5)} g(n-2)\right) \\
& -\left(t^{2(a+b)}+t^{-2(a+b)}\right) t^{-4 a b}\left(2 t^{4 a b} J_{T(a, b)}(n)\right. \\
& \left.+t^{2 a b(n+4)} g(n+1)-t^{-2 a b(n-4)} g(n-1)\right) \\
& +t^{-2 a b}\left(t^{4 a b}\left(J_{T(a, b)}(n-1)+J_{T(a, b)}(n+1)\right)+\left(t^{2 a b(n+3)}-t^{-2 a b(n-3)}\right) g(n)\right) \\
& -\left(t^{2 a b}+t^{-2 a b}\right)\left(J_{T(a, b)}(n+1)+J_{T(a, b)}(n-1)\right) \\
& +2\left(t^{2(a+b)}+t^{-2(a+b)}\right) J_{T(a, b)}(n) \\
& =t^{-6 a b}\left(t^{2 a b(n+5)} g(n+2)-t^{-2 a b(n-5)} g(n-2)\right) \\
& -\left(t^{2(a+b)}+t^{-2(a+b)}\right) t^{-4 a b}\left(t^{2 a b(n+4)} g(n+1)-t^{-2 a b(n-4)} g(n-1)\right) \\
& +t^{-2 a b}\left(t^{2 a b(n+3)}-t^{-2 a b(n-3)}\right) g(n)
\end{aligned}
$$

Using the definition of $g(n)$, we get:
$Q J_{T(a, b)}(n)=t^{4 a b}\left(t^{2 a b n} \frac{t^{2} \lambda_{(a+b)(n+2)}-t^{-2} \lambda_{(a-b)(n+2)}}{t^{2}-t^{-2}}\right.$

$$
\left.-t^{-2 a b n} \frac{t^{2} \lambda_{(a+b)(n-2)}-t^{-2} \lambda_{(a-b)(n-2)}}{t^{2}-t^{-2}}\right)
$$

$$
\begin{aligned}
& -\left(t^{2(a+b)}+t^{-2(a+b)}\right) t^{4 a b} \times \\
& \left(t^{2 a b n} \frac{t^{2} \lambda_{(a+b)(n+1)}-t^{-2} \lambda_{(a-b)(n+1)}}{t^{2}-t^{-2}}\right. \\
& \left.-t^{-2 a b n} \frac{t^{2} \lambda_{(a+b)(n-1)}-t^{-2} \lambda_{(a-b)(n-1)}}{t^{2}-t^{-2}}\right) \\
& +t^{4 a b}\left(t^{2 a b n}-t^{-2 a b n}\right) \frac{t^{2} \lambda_{(a+b) n}-t^{-2} \lambda_{(a-b) n}}{t^{2}-t^{-2}}
\end{aligned}
$$

Now applying the equality $\lambda_{k+l}+\lambda_{k-l}=\lambda_{k} \lambda_{l}$, we then obtain

$$
Q J_{T(a, b)}(n)=t^{4 a b-2}\left(\lambda_{a+b}-\lambda_{a-b}\right) \frac{t^{2 a b n} \lambda_{(a-b)(n+1)}-t^{-2 a b n} \lambda_{(a-b)(n-1)}}{t^{2}-t^{-2}}
$$

This proves Lemma 3.2.

Let $h(n):=t^{2 a b n} \lambda_{(a-b)(n+1)}-t^{-2 a b n} \lambda_{(a-b)(n-1)}$.

Lemma 3.3 The function $h(n)$ is annihilated by the operator P, ie, $P h(n)=0$.

Proof Let $c=a-b$. Then:
Ph(n)

$$
\begin{aligned}
& =t^{-10 a b}\left(t^{4 a b(n+3)} h(n+3)+t^{-4 a b(n-3)} h(n-3)\right) \\
& -\left(t^{2(a-b)}+t^{2(b-a)}\right) t^{-4 a b}\left(t^{4 a b(n+2)} h(n+2)+t^{-4 a b(n-2)} h(n-2)\right) \\
& +t^{2 a b}\left(t^{4 a b(n+1)} h(n+1)+t^{-4 a b(n-1)} h(n-1)\right) \\
& -\left(t^{2 a b}+t^{-2 a b}\right)(h(n+1)+h(n-1))+\left(t^{2(a-b)}+t^{2(b-a)}\right)\left(t^{4 a b}+t^{-4 a b}\right) h(n) \\
& =\left(t^{2 a b(3 n+4)} \lambda_{c(n+4)}-t^{2 a b(n-2)} \lambda_{c(n+2)}\right. \\
& \left.\quad+t^{-2 a b(n+2)} \lambda_{c(n-2)}-t^{-2 a b(3 n-4)} \lambda_{c(n-4)}\right) \\
& -\lambda_{c}\left(t^{2 a b(3 n+4)} \lambda_{c(n+3)}-t^{2 a b n} \lambda_{c(n+1)}+t^{-2 a b n} \lambda_{c(n-1)}-t^{-2 a b(3 n-4)} \lambda_{c(n-3)}\right) \\
& +\left(t^{2 a b(3 n+4)} \lambda_{c(n+2)}-t^{2 a b(n+2)} \lambda_{c n}+t^{-2 a b(n-2)} \lambda_{c n}-t^{-2 a b(3 n-4)} \lambda_{c(n-2)}\right) \\
& -\left(t^{2 a b}+t^{-2 a b}\right)\left(t^{2 a b(n+1)} \lambda_{c(n+2)}-t^{-2 a b(n+1)} \lambda_{c n}\right. \\
& \left.+t^{2 a b(n-1)} \lambda_{c n}-t^{-2 a b(n-1)} \lambda_{c(n-2)}\right) \\
& +\lambda_{c}\left(t^{4 a b}+t^{-4 a b}\right)\left(t^{2 a b n} \lambda_{c(n+1)}-t^{-2 a b n} \lambda_{c(n-1)}\right)
\end{aligned}
$$

Note that $\lambda_{k+l}+\lambda_{k-l}=\lambda_{k} \lambda_{l}$. Hence:

$$
\begin{aligned}
& P h(n)=\left(-t^{2 a b(n-2)} \lambda_{c(n+2)}+t^{-2 a b(n+2)} \lambda_{c(n-2)}\right) \\
& \quad-\lambda_{c}\left(-t^{2 a b n} \lambda_{c(n+1)}+t^{-2 a b n} \lambda_{c(n-1)}\right) \\
&+\left(-t^{2 a b(n+2)} \lambda_{c n}+t^{-2 a b(n-2)} \lambda_{c n}\right) \\
&-\left(t^{2 a b}+t^{-2 a b}\right)\left(t^{2 a b(n+1)} \lambda_{c(n+2)}-t^{-2 a b(n+1)} \lambda_{c n}\right. \\
&\left.+t^{2 a b(n-1)} \lambda_{c n}-t^{-2 a b(n-1)} \lambda_{c(n-2)}\right) \\
&+\lambda_{c}\left(t^{4 a b}+t^{-4 a b}\right)\left(t^{2 a b n} \lambda_{c(n+1)}-t^{-2 a b n} \lambda_{c(n-1)}\right) \\
&=-\left.\left(t^{4 a b}+t^{-4 a b}+1\right) t^{2 a b n} \lambda_{c(n+2)}+\left(t^{4 a b}+t^{-4 a b}+1\right) t^{-2 a b n} \lambda_{c(n-2)}\right) \\
& \quad-\left(t^{4 a b}+t^{-4 a b}+1\right)\left(t^{2 a b n}-t^{-2 a b n}\right) \lambda_{c n} \\
&+\lambda_{c}\left(t^{4 a b}+t^{-4 a b}+1\right)\left(t^{2 a b n} \lambda_{c(n+1)}-t^{-2 a b n} \lambda_{c(n-1)}\right) \\
&=-\left(t^{4 a b}+t^{-4 a b}+1\right) t^{2 a b n}\left(\lambda_{c(n+2)}+\lambda_{c n}-\lambda_{c} \lambda_{c(n+1)}\right) \\
&+\left(t^{4 a b}+t^{-4 a b}+1\right) t^{-2 a b n}\left(\lambda_{c(n-2)}+\lambda_{c n}-\lambda_{c} \lambda_{c(n-1)}\right) \\
&=0
\end{aligned}
$$

This proves Lemma 3.3.

Proposition 3.1 follows directly from Lemmas 3.2 and 3.3.

3.2 The case $a=2$

We claim that:

Proposition 3.4 The colored Jones function of $T(2, b)$ is annihilated by the operator

$$
\begin{aligned}
R=t^{-4 b} & \left(L^{2} M^{2 b}+L^{-2} M^{-2 b}\right)+\left(t^{2 b}+t^{-2 b}\right)\left(L+L^{-1}\right) \\
& -\left(t^{4}+t^{-4}\right) t^{-2 b}\left(L M^{2 b}+L^{-1} M^{-2 b}\right)+\left(M^{2 b}+M^{-2 b}\right)-2\left(t^{4}+t^{-4}\right)
\end{aligned}
$$

Proof From Lemma 2.5 we have

$$
\begin{aligned}
& J_{T(2, b)}(n+1)=-t^{-(4 n+2) b} J_{T(2, b)}(n)+t^{-2 n b}[2 n+1], \\
& J_{T(2, b)}(n+2)=t^{-8(n+1) b} J_{T(2, b)}(n)-t^{-6(n+1) b}[2 n+1]+t^{-2(n+1) b}[2 n+3], \\
& J_{T(2, b)}(n-1)=-t^{(4 n-2) b} J_{T(2, b)}(n)+t^{2 n b}[2 n-1], \\
& J_{T(2, b)}(n-2)=t^{8(n-1) b} J_{T(2, b)}(n)-t^{6(n-1) b}[2 n-1]+t^{2(n-1) b}[2 n-3] .
\end{aligned}
$$

Hence

$$
\begin{array}{r}
R J_{T(2, b)}(n)=t^{-4 b}\left(t^{4(n+2) b} J_{T(2, b)}(n+2)+t^{-4(n-2) b} J_{T(2, b)}(n-2)\right) \\
\quad+\left(t^{2 b}+t^{-2 b}\right)\left(J_{T(2, b)}(n+1)+J_{T(2, b)}(n-1)\right) \\
-\left(t^{4}+t^{-4}\right) t^{-2 b}\left(t^{4(n+1) b} J_{T(2, b)}(n+1)+t^{-4(n-1) b} J_{T(2, b)}(n-1)\right) \\
\\
\quad+\left(\left(t^{4 n b}+t^{-4 n b}\right)-2\left(t+t^{-4}\right)\right) J_{T(2, b)}(n) \\
=t^{-4 b}\left(-t^{-2(n-1) b}[2 n+1]+t^{2(n+3) b}[2 n+3]\right. \\
\\
\left.\quad-t^{2(n+1) b}[2 n-1]+t^{-2(n-3) b}[2 n-3]\right) \\
\quad+\left(t^{2 b}+t^{-2 b}\right)\left(t^{-2 n b}[2 n+1]+t^{2 n b}[2 n-1]\right) \\
= \\
-\left(t^{4}+t^{-4}\right) t^{-2 b}\left(t^{(2 n+4) b}[2 n+1]+t^{(-2 n+4) b}[2 n-1]\right) \\
\quad-\left(t+t^{-4}\right) t^{2 b}\left(t^{2 n b}[2 n+1]+t^{-2 n b}[2 n-1]\right) \\
=0,
\end{array}
$$

since $[k+l]+[k-l]=\left(t^{2 l}+t^{-2 l}\right)[k]$.

3.3 Proof of Theorem 1

We first note that the A-ideal \mathfrak{p}, the kernel of $\theta: \mathfrak{t}^{\sigma} \longrightarrow \mathbb{C}[\chi(X)]$, is radical, ie, $\sqrt{\mathfrak{p}}=\mathfrak{p}$, since the character ring $\mathbb{C}[\chi(X)]$ is reduced, ie, has nil-radical 0 , by definition.

Lemma 3.5 Suppose $\delta(t, M, L) \in \mathcal{A}_{K}$. Then there are polynomials $g(t, M) \in$ $\mathbb{C}\left[t^{ \pm 1}, M\right]$ and $\gamma(t, M, L) \in \mathcal{T}$ such that

$$
\begin{equation*}
\delta(t, M, L)=\frac{1}{g(t, M)} \gamma(t, M, L) \alpha_{K}(t, M, L) \tag{3}
\end{equation*}
$$

Moreover, $g(t, M)$ and $\gamma(t, M, L)$ can be chosen so that $\varepsilon(g) \neq 0$.

Proof By definition α_{K} is a generator of $\tilde{\mathcal{A}}_{K}$, the extension of \mathcal{A}_{K} in the principal left-ideal domain $\widetilde{\mathcal{T}}$. Since $\delta \in \mathcal{A}_{K}$, it is divisible by α_{K} in $\widetilde{\mathcal{T}}$. Hence (3) follows.

We can assume that $t+1$ does not divide both $g(t, M)$ and $\gamma(t, M, L)$ simultaneously. If $\varepsilon(g)=0$ then g is divisible by $t+1$, and hence γ is not. But then from the equality $g \delta=\gamma \alpha_{K}$, it follows that α_{K} is divisible by $t+1$, which is impossible, since all the coefficients of powers of L in α_{K} are supposed to be co-prime.

Showing $\sqrt{\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)} \subset \mathfrak{p}$ For torus knots, by Section 1, we have $\varepsilon\left(\alpha_{K}\right)=f(M) A_{K}$, where $f(M) \in \mathbb{C}\left[M^{ \pm 1}\right]$. For every $\delta \in \mathcal{A}_{K}$, by Lemma 3.5, there exist $g(t, M) \in$ $\mathbb{C}\left[t^{ \pm 1}, M\right]$ and $\gamma \in \mathcal{T}$ such that $\delta=\frac{1}{g(t, M)} \gamma \alpha_{K}$ and $\varepsilon(g) \neq 0$. It implies that

$$
\begin{equation*}
\varepsilon(\gamma)=\frac{1}{\varepsilon(g(M))} \varepsilon(\gamma) \varepsilon\left(\alpha_{K}\right)=\frac{1}{\varepsilon(g(M))} \varepsilon(\gamma) f(M) A_{K} \tag{4}
\end{equation*}
$$

The A-polynomial of a torus knot does not contain any non-trivial factor depending on M only. Since $\varepsilon(\gamma) \in \mathfrak{t}=\mathbb{C}\left[L^{ \pm 1}, M^{ \pm 1}\right]$, equation (4) implies that

$$
h:=\frac{1}{\varepsilon(g(M))} \varepsilon(\gamma) f(M)
$$

is an element of \mathfrak{t}. Hence $\varepsilon(\gamma) \in A_{K} \cdot \mathfrak{t}$, the ideal of \mathfrak{t} generated by A_{K}. It follows that $\varepsilon\left(\mathcal{A}_{K}\right) \subset A_{K} \cdot \mathfrak{t}$ and thus $\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right) \subset\left(A_{K} \cdot \mathfrak{t}\right)^{\sigma}=\mathfrak{p}$. Hence $\sqrt{\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)} \subset \sqrt{\mathfrak{p}}=\mathfrak{p}$.

Showing $\mathfrak{p} \subset \sqrt{\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)}$ For $a, b>2$, by Proposition 3.1 the colored Jones function of $T(a, b)$ is annihilated by the operator $P Q$. Note that

$$
\begin{aligned}
\varepsilon(P Q) & =\left(L+L^{-1}-2\right)^{2}\left(L^{2} M^{2 a b}+L^{-2} M^{-2 a b}-2\right)^{2} \\
& =L^{-2}\left(L^{-1} M^{-a b}(L-1)\left(L^{2} M^{2 a b}-1\right)\right)^{4}
\end{aligned}
$$

If $u \in \mathfrak{p}$ then $u=v A_{T(a, b)}^{\prime}$, where

$$
A_{T(a, b)}^{\prime}:=L^{-1} M^{-a b}(L-1)\left(L^{2} M^{2 a b}-1\right)=L^{-1} M^{-a b} A_{T(a, b)}
$$

and $v \in \mathbb{C}\left[M^{ \pm 1}, L^{ \pm 1}\right]$. It is easy to see that $\sigma(v)=L v$, since $\sigma(u)=u$ and $\sigma\left(A_{T(a, b)}^{\prime}\right)=L^{-1} A_{T(a, b)}^{\prime}$. This implies that $\sigma\left(v^{2} L\right)=\sigma(v)^{2} L^{-1}=v^{2} L$. We then have

$$
u^{4}=v^{4} A_{T(a, b)}^{\prime 4}=\varepsilon\left(v^{4} L^{2} P Q\right) \in \varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)
$$

hence $u \in \sqrt{\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)}$.
For $a=2$, by Proposition 3.4 the colored Jones function of $T(2, b)$ is annihilated by the operator R. Note that $\sigma(R)=R$ and
$\varepsilon(R)=\left(L+L^{-1}-2\right)\left(L M^{2 b}+L^{-1} M^{-2 b}+2\right)=\left(L^{-1} M^{-b}(L-1)\left(L M^{2 b}+1\right)\right)^{2}$.
If $u \in \mathfrak{p}$ then $u=v A_{T(2, b)}^{\prime}$, where

$$
A_{T(2, b)}^{\prime}:=L^{-1} M^{-b}(L-1)\left(L M^{2 b}+1\right)=L^{-1} M^{-b} A_{T(2, b)}
$$

and $v \in \mathbb{C}\left[M^{ \pm 1}, L^{ \pm 1}\right]$. It is easy to see that $\sigma(v)=-v$ and hence $\sigma\left(v^{2}\right)=\sigma(v) \sigma(v)=$ v^{2}. We then have

$$
u^{2}=v^{2} A_{T(2, b)}^{\prime 2}=\varepsilon\left(v^{2} R\right) \in \varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)
$$

hence $u \in \sqrt{\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)}$.
In both cases $\mathfrak{p} \subset \sqrt{\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)}$. Hence $\sqrt{\varepsilon\left(\mathcal{A}_{K}^{\sigma}\right)}=\mathfrak{p}$ for all torus knots.

References

[1] D Cooper, M Culler, H Gillet, D D Long, P B Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994) 47-84 MR1288467
[2] M Culler, P B Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. 117 (1983) 109-146 MR683804
[3] C Frohman, R Gelca, W Lofaro, The A-polynomial from the noncommutative viewpoint, Trans. Amer. Math. Soc. 354 (2002) 735-747 MR1862565
[4] S Garoufalidis, On the characteristic and deformation varieties of a knot, from: "Proceedings of the Casson Fest", (C Gordon, Y Rieck, editors), Geom. Topol. Monogr. 7 (2004) 291-309 MR2172488
[5] S Garoufalidis, $\mathbf{T} \mathbf{T}$ Q Lê, The colored Jones function is q-holonomic, Geom. Topol. 9 (2005) 1253-1293 MR2174266
[6] R Gelca, On the relation between the A-polynomial and the Jones polynomial, Proc. Amer. Math. Soc. 130 (2002) 1235-1241 MR1873802
[7] K Hikami, Difference equation of the colored Jones polynomial for torus knot, Internat. J. Math. 15 (2004) 959-965 MR2106155
[8] V F R Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103-111 MR766964
[9] T T Q Lê, The colored Jones polynomial and the A-polynomial of knots, Adv. Math. 207 (2006) 782-804 MR2271986
[10] T Lê, A Tran, On the AJ conjecture for knots, to appear in Transactions of the AMS arXiv:1111.5258
[11] A Lubotzky, A R Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985) xi+117 MR818915
[12] H R Morton, The coloured Jones function and Alexander polynomial for torus knots, Math. Proc. Cambridge Philos. Soc. 117 (1995) 129-135 MR1297899
[13] N Y Reshetikhin, V G Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990) 1-26 MR1036112
[14] A Sikora, Quantizations of character varieties and quantum knot invariants arXiv: 0807.0943

Department of Mathematics, The Ohio State University
100 Math Tower, 231 West 18th Avenue, Columbus OH 43210, USA
tran.350@osu.edu

Received: 22 November 2011

