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The three smallest compact
arithmetic hyperbolic 5–orbifolds

VINCENT EMERY

RUTH KELLERHALS

We determine the three hyperbolic 5–orbifolds of smallest volume among com-
pact arithmetic orbifolds, and we identify their fundamental groups with hyperbolic
Coxeter groups.

22E40; 11R42, 20F55, 51M25

In memoriam Friedrich Hirzebruch

1 Introduction

Let Isom.H5/ be the group of isometries of the hyperbolic space H5 of dimension
five, and IsomC.H5/ its index two subgroup of orientation-preserving isometries. In
Belolipetsky and the first author’s [1] (see also the first author’s [5]) the lattice of smallest
covolume among cocompact arithmetic lattices of IsomC.H5/ was determined. This
lattice was constructed as the image of an arithmetic subgroup �0 of the spinor group
Spin.1; 5/ (note that Spin.1; n/ is a twofold covering of SO.1; n/ı Š IsomC.Hn/).
More precisely, �0 is given by the normalizer in Spin.1; 5/ of a certain arithmetic
group ƒ0�G0.k0/, where k0DQ.

p
5/ and G0 is the algebraic k0 –group Spin.f0/

defined by the quadratic form

(1-1) f0.x/D�.3C 2
p

5/x2
0 Cx2

1 C � � �Cx2
5 :

In [1], the index Œ�0 W ƒ0� was computed to be equal to 2. We note that it is easily
checked that ƒ0 contains the center of Spin.1; 5/, so that the covolume of the action
of ƒ0 on H5 is the double of the covolume of �0 .

In this article we construct a cocompact arithmetic lattice �2 � Spin.1; 5/ of covolume
slightly bigger than the covolume of ƒ0 , and we prove that it realizes the third smallest
covolume among cocompact arithmetic lattices in Spin.1; 5/. In other words, we obtain
the second and third values in the volume spectrum of compact orientable arithmetic
hyperbolic 5–orbifolds, thus improving the results of [1] and [5] for this dimension.
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Lattice Hyperbolic covolume

� 0
0

0.00153459236. . .

� 0
1

0.00306918472. . .

� 0
2

0.00396939286. . .

Table 1

Coxeter group Coxeter symbol Hyperbolic covolume

�0 Œ5; 3; 3; 3; 3� 0:00076729618 : : :

�1 Œ5; 3; 3; 3; 31;1� 0:00153459235 : : :

�2 Œ5; 3; 3; 3; 4� 0:00198469643 : : :

Table 2: Approximation of hyperbolic covolumes

For notational reasons we put �1 Dƒ0 . Moreover, for i D 0; 1; 2, we denote by � 0i
the image of �i in IsomC.H5/.

Theorem 1 The lattices � 0
0
; � 0

1
and � 0

2
(ordered by increasing covolume) are the three

cocompact arithmetic lattices in IsomC.H5/ of minimal covolume. They are unique,
in the sense that any cocompact arithmetic lattice in IsomC.H5/ of covolume smaller
than or equal to � 0

2
is conjugate in Isom.H5/ to one of the � 0i .

The precise formulas for the hyperbolic covolumes of these lattices are given below in
Proposition 4. We list in Table 2 the corresponding numerical approximations.

A central motivation for Theorem 1 is that the lattices � 0
0

, � 0
1

and � 0
2

can be related
to concrete geometric objects. Namely, let P0 and P2 be the two compact Coxeter
polytopes in H5 described by the following Coxeter diagrams, of respective Coxeter
symbols Œ5; 3; 3; 3; 3� and Œ5; 3; 3; 3; 4� (see Section 4):

P0 W �
5
� � � � � ___ �(1-2)

P2 W �
5
� � � �

4
� ___ �(1-3)

These two polytopes were first discovered by Makarov [10] (see also Im Hof [7]
and Section 4). Combinatorially, they are simplicial prisms. Let P1 D DP0 be the
geometric double of P0 with respect to its Coxeter facet Œ5; 3; 3; 3�. It follows that
the Coxeter polytope P1 can be characterized by the following Coxeter diagram, of
symbol Œ5; 3; 3; 3; 31;1�:

(1-4) P1 W

�

�
�
�

�
5
� � � �

�
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The three smallest compact arithmetic hyperbolic 5–orbifolds 819

We denote by �i � Isom.H5/ the Coxeter group generated by the reflections through
the hyperplanes delimiting Pi (0 � i � 2). It is known, by Vinberg’s criterion [14],
that the lattices �0 (thus �1 as well) and �2 are arithmetic.

Theorem 2 For i D 0; 1; 2, let �Ci be the lattice �i \ IsomC.H5/, which is of index
two in �i . Then �Ci is conjugate to � 0i in Isom.H5/. In particular, �0 realizes the
smallest covolume among the cocompact arithmetic lattices in Isom.H5/.

The proof of Theorem 2 is obtained as a consequence of Theorem 1 (more exactly
from the slightly more precise Proposition 6) together with an geometric/analytic
computation of the volumes vol.P0/ and vol.P2/ that will be presented in Section 4.
We note that the fact that �2 and � 0

2
are commensurable lattices follows from the

work of Bugaenko [3], where �2 is constructed by applying Vinberg’s algorithm on
the same quadratic form (2-1) which we will use below to construct �2 . No arithmetic
construction of �0 and �1 was known so far.

The approximations of the volumes of P0 , P1 and P2 are listed in Table 2. These
volumes can be obtained by two completely different approaches: from the method
given in Section 4, or from the covolumes of the arithmetic lattices �i , which are
essentially computed with Prasad’s volume formula [13]. The comparison of these two
approaches has some arithmetic significance that will be briefly discussed in Section 5.

Acknowledgements We would like to thank Herbert Gangl for interesting discussions
concerning Section 5. We thank the Institut Mittag-Leffler in Stockholm, where this
paper was completed. The first named author is thankful to the Max Planck Institute for
Mathematics in Bonn for the hospitality and the financial support. The second named
author was partially supported by the Swiss National Science Foundation, project
number 200020-131967

2 Construction and properties of �2

We call an algebraic group admissible if it gives rise to cocompact lattices in Spin.1; 5/;
see [1, Section 2.2] for the exact definition. We say that an admissible k –group G is
associated with `=k , where ` is the smallest field extension of k (necessarily quadratic)
such that G is an inner form over `, sometimes called “splitting field” of G . We use
the same terminology for the arithmetic subgroups of G . Admissibility imposes that
G is of type 2A3 , the field k is totally real and ` has signature .2; d � 1/, where
d D Œk WQ� (see [1, Proposition 2.5]). Note that since we consider only cocompact
lattices in this article, we assume that k ¤Q. In the following, the symbol Vf will
always refer to the set of finite places of the base field k (and not of `).

Algebraic & Geometric Topology, Volume 13 (2013)
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Let G2 be the algebraic spinor group Spin.f2/ defined over k0 DQ.
p

5/, where f2

is the following quadratic form:

(2-1) f2.x/D�!x2
0 Cx2

1 C � � �Cx2
5 ;

with ! D .1C
p

5/=2. We have G2.R/ Š Spin.1; 5/� Spin.6/, proving that G2 is
admissible. Its “splitting field” is given by (see [1, Section 3.2]):

(2-2) `2 DQ.
p
!/ŠQŒx�=.x4

�x2
� 1/;

which has a discriminant of absolute value D`2
D 400. The following proposition

shows an analogy between G2 and G0 (see [1, Proposition 3.6]).

Proposition 3 The group G2 is quasisplit at every finite place v of k0 . It is the unique
admissible group associated with k0=`2 with this property.

Proof Since ! is an integer unit in k0 it easily follows that for at each nondyadic place
v¤ .2/ the form f2 has the same Hasse symbol as the standard split form of signature
.3; 3/. From the structure theory of Spin described in [1, Section 3.2] we conclude
that G2 must be quasisplit at every finite place v (note that at the place vD .2/, which
is ramified in `2=k0 , the group G2 is necessarily an outer form). Similarly to the proof
of [1, Proposition 3.6], the second affirmation follows from [1, Lemma 3.4] together
with the Hasse–Minkowski Theorem.

We write here k D k0 . By Proposition 3 we see that for every finite place v 2 Vf there
exists a special parahoric subgroup Pv �G2.kv/. More precisely, Pv is hyperspecial
unless v is the dyadic place .2/ (the particularity of v D .2/ comes from the fact
that this place is ramified in the extension `2=k0 ). The collection .Pv/v2Vf of special
parahoric subgroups can be chosen to be coherent, ie such that

Q
v Pv is open in

the group G2.Af/ of finite adelic points. We now consider the principal arithmetic
subgroup associated with such a coherent collection:

(2-3) ƒ2 DG2.k0/\
Y
v2Vf

Pv:

The covolume of ƒ2 can be computed with Prasad’s volume formula [13]. If � denotes
the Haar measure on Spin.1; 5/ normalized as in [1] (which corresponds to the measure
�S in [13]), then we obtain

(2-4) �.ƒ2nSpin.1; 5//D D
15=2

k0
D

5=2

`2
C 2�k0

.2/�k0
.4/L`2=k0

.3/;

where C D 3 � 2�7��9 , the symbol �k denotes the Dedekind zeta function asso-
ciated with k and L`=k D �`=�k is the L–function corresponding to a quadratic
extension `=k .

Algebraic & Geometric Topology, Volume 13 (2013)



The three smallest compact arithmetic hyperbolic 5–orbifolds 821

We can now construct the group �2 and compute its hyperbolic covolume. In the
same proposition we recall the value of the hyperbolic covolume of �0 , which was
obtained in [1].

Proposition 4 Let �2 be the normalizer of ƒ2 in Spin.1; 5/. Then ƒ2 has index two
in �2 . It follows that the hyperbolic covolume of � 0

2
is equal to

(2-5)
9
p

5
15

23�15
�k0
.2/�k0

.4/L`2=k0
.3/D 0:00396939286 : : : :

The hyperbolic covolume of � 0
0

is equal to

(2-6)
9
p

5
15p

11
5

214�15
�k0
.2/�k0

.4/L`0=k0
.3/D 0:00153459236 : : : ;

where `0 is the quartic field with x4�x3C 3x� 1 as defining polynomial.

Proof The relation between the measure � and the hyperbolic volume is described
in [1, Section 2.1], where it is proved that in dimension 5 the hyperbolic covolume
corresponds to the covolume with respect to 2�3 ��. Thus it remains to prove that
Œ�2 Wƒ2�D 2. Let k D k0 .

It follows from the theory developed in [1, Section 4] that the index Œ�2 Wƒ2� is equal
to the order of the group denoted by A� in [1], which can be identified as a subgroup
of index at most two in A4=.`

�
2
/4 , where

AD fx 2 `�2 jN`2=k.x/ 2 .k
�/4 and x > 0g;(2-7)

A4 D fx 2 A j �.x/ 2 4Z for each normalized valuation � of `2g:(2-8)

Note that in particular, for the integers q and q0 introduced in [1, Section 4.9], we have
q D q D 1. Moreover, if v D .2/ denotes the (unique) ramified place of `2=k , the
subgroup A� is proper of index two in A4=.`

�
2
/4 if and only if there exists an element

of A4 acting nontrivially on the local Dynkin diagram �v of G2.kv/. The action of A
on �v comes from its identification as a subgroup of the first Galois cohomology group
H 1.k;C/ (where C is the center of G2 ), which acts on every local Dynkin diagram
associated with G2 . Since G2 is of type A, we can use the results of [12, Section 4.2],
which show that if �w 2 `2 is a uniformizer for the ramified place wjv of `2 , then
sD�w�

�1
w is a generator of the group Aut.�v/. Taking �wD 1C!C

p
! , we obtain

a positive unit s acting nontrivially on �v . Thus, A� has index two in A4=.`
�
2
/4 . But

the order of this latter group was computed in [1, Section 7.5] to be equal to 4. This
gives Œ�2 Wƒ2�D 2.

Algebraic & Geometric Topology, Volume 13 (2013)
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The “uniqueness” part of Theorem 1 requires the following result.

Proposition 5 Up to conjugacy, the image of �2 in Isom.H5/ does not depend on the
choice of a coherent collection of special parahoric subgroups Pv �G2.kv/.

Proof To prove this we can follow the same line of arguments as in [1, Section 6],
where the result is proved for �0 �G0 (our situation corresponding to the case of the
type 2D2mC1 ). Thus, using [1, Section 6.5], the result follows by checking that L=A
and UL=UA have the same order (equal to 2), where

(2-9) LD fx 2 `�2 jN`2=k0
.x/ 2 .k�0 /

4
g

and UL (respectively UA ) is the intersection of L (respectively A) with the integers
units in `2 .

3 Proof of Theorem 1

In view of Proposition 4, Theorem 1 is a direct consequence of the following statement.

Proposition 6 Let � 0 � IsomC.H5/ be a cocompact arithmetic lattice that is not
conjugate to � 0

0
, � 0

1
or � 0

2
. Then vol.� 0nH5/ > 4 � 10�3 .

Proof Let � � Spin.1; 5/ be the full inverse image of � 0 . We suppose that � is
an arithmetic subgroup of the group G , associated with `=k . From the values given
in (2-5) and (2-6), it is clear that if � is a proper subgroup of �0 , �1 or �2 , then
vol.� 0nH5/> 4�10�3 . Thus it suffices to prove the result assuming that � is a maximal
arithmetic subgroup with respect to inclusion. In particular, � can be written as the
normalizer of the principal arithmetic subgroup ƒ associated with some coherent
collection P D .Pv/ of parahoric subgroups Pv �G.kv/.

First we suppose that kDk0 and `D`0 or `2 . By Proposition 3 and its analogue for G0 ,
if G is not isomorphic to G0 or G2 then at least one Pv is not special. In particular, a
“lambda factor” �v � 18 appears in the volume formula of ƒ [1, Section 7.1]. Together
with [1, Equation (15)] (note that we do not assume here that � D �m , in the notation
of [1]) this shows that the covolume of � is at least 9 times the covolume of �0 . Now
if G is isomorphic to G0 or G2 , Proposition 5 and its analogue for G0 show that at
least one Pv is not special, and the same argument as above applies.

Now we consider the situation .k; `/¤ .k0; `0/ nor .k0; `2/. We will use the different
lower bounds for the covolume of � given in [1, Section 7]. Note that in our case
the rank r of G is equal to 3. The notations are the following: d is the degree of k ,

Algebraic & Geometric Topology, Volume 13 (2013)
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Dk and D` are the discriminants of k and ` in absolute value, and h` is the class
number of `. Moreover, we set a D 332�4��11 . From [1, Equation (37)] we have
for d � 7 the following lower bound, which proves the result in this case (recall that
the hyperbolic volume corresponds to 2�3 ��, where � is the Haar measure used by
Prasad):

(3-1) vol.� 0nH5/ >
2�3

32
.9:35:5

� a/7 D 7:657 : : :

The following bound corresponds to [1, Equation (35)]:

(3-2) vol.� 0nH5/ >
2�3

32
D5:5

k ad

For each degree d D 2; : : : ; 6 we can use (3-2) to prove the result for a discriminant
Dk high enough (eg Dk � 27 for d D 2). This leave us with a finite number of possible
fields k to examine. From these bounds on Dk and the tables of number fields (such
as [2] and [6]) we obtain a list of nineteen fields k (none of degree d D 6) that remain
to check.

Let us further consider the two following bounds, corresponding to [1, Equations (34)
and (31)]. See (2-4) for the value of the symbol C :

vol.� 0nH5/ >
2�3

32
D2:5

k D1:5
` ad ;(3-3)

vol.� 0nH5/ >
2�3

h`2
dC1

D7:5
k .D`=D2

k/
2:5C d :(3-4)

For each of the nineteen fields k we easily obtain an upper bound bk for D` for which
the right hand side of (3-3) is at most 4 �10�3 . Thus we only need to analyse the fields `
with D` � bk . Let us fix a field k . The computational method described [4], based on
class field theory, allows to determine all the quadratic extensions `=k with D` � bk

and with ` of the right signature, that is, .2; d � 1/ (see [1, Proposition 2.5]). More
precisely, we obtain this list of `=k by programming a procedure in PARI/GP that
uses the built-in functions bnrinit and rnfkummer. For each pair .k; `/ obtained,
PARI/GP gives us the class number h` (checking its correctness with bnfcertify)
and this information makes (3-4) usable. The inequality vol.� 0nH5/ > 4 �10�3 follows
then for all the remaining .k; `/ except for the two situations:

.Dk ;D`/D .8; 448/;(3-5)

.Dk ;D`/D .5; 475/:(3-6)

The case (3-6) follows from Proposition 7 below. Let us then consider the case
associated with (3-5). The smallest possible covolume of a maximal arithmetic subgroup
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� DNSpin.1;5/.ƒ/ associated with `=k would be in the situation when all parahoric
subgroups Pv determining ƒ are special. In this case, by [1, Proposition 4.12] the
index Œ� Wƒ� is bounded by 8, and together with the precise covolume of ƒ by Prasad’s
formula, we obtain (using PARI/GP to evaluate the zeta functions):

(3-7) vol.� 0nH5/�
2�3

8
D7:5

k .D`=D2
k/

2:5C 2�k.2/�k.4/�`.3/=�k.3/D 0:004997 : : :

This concludes the proof.

Proposition 7 Let ` be the quadratic extension of k0 DQ.
p

5/ with discriminant of
absolute value D` D 475. There exists a cocompact arithmetic lattice in IsomC.H5/

associated with `=k0 whose approximate hyperbolic covolume is 0:006094 : : : . This is
the smallest covolume among arithmetic lattices in IsomC.H5/ associated with `=k0 .

Proof Let k D k0 . The field ` can be concretely described as ` D k.
p
ˇ/, where

ˇD�1C2
p

5 (this is a divisor of 19). We consider the algebraic group GD Spin.f /
defined over k D k0 , with

(3-8) f .x/D�ˇx2
0 Cx2

1 C � � �Cx2
5 :

Similarly to [1, Proposition 3.6], we have that G is quasisplit at every finite place
v 2 Vf (note that the proof for the unique dyadic place can be simplified in [1] by
noting 2 is inert in ` and thus G must be an outer form, necessarily quasisplit;
see [1, Section 3.2]). It follows that there exist a coherent collection of special parahoric
subgroups Pv �G.kv/, and by Prasad’s volume formula the hyperbolic covolume of
an associated principal arithmetic subgroup ƒ is given by

(3-9) vol.ƒnH5/D 2�3D7:5
k .D`=D2

k/
2:5C 2�k.2/�k.4/�`.3/=�k.3/:

The index Œ� Wƒ� of ƒ in its normalizer � can be computed using the same method
as in the proof of Proposition 4. That the group A4=.`

�/4 has order 4 was already
computed in [1, Section 7.5]. We use again [12, Section 4.2] to analyse the behavior at
the ramified place v D .ˇ/: For the uniformizer �w D .

p
ˇCˇ/=2 of the place wjv

we get that s D �w�
�1
w is an element of A4 that acts nontrivially on the local Dynkin

diagram �v of G.kv/. As in the proof of Proposition 4 it follows that Œ� W ƒ� D 2.
From (3-9) we obtain the value 0:006094 : : : as the hyperbolic covolume of � . That
no other arithmetic group associated with `=k has smaller covolume follows from
[1, Section 4.3] (since ƒ is of the form ƒm ; see [5, Section 12.3] for more details).
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4 Proof of Theorem 2

Consider the vector space model R1;5 for H5 as above and represent a hyperbolic
hyperplane H D e? by means of a space-like unit vector e 2 R1;5 . A hyperbolic
Coxeter polytope P D

T
i2I H�i is the intersection of finitely many half-spaces (whose

normal unit vectors are directed outwards with respect to P ) whose dihedral angles
are submultiples of � . The group � generated by the reflections with respect to the
hyperplanes Hi ; i 2 I , is a discrete subgroup of Isom.H5/. If the cardinality of I is
small, a Coxeter polytope and its reflection group are best represented by the Coxeter
diagram or by the Coxeter symbol. To each limiting hyperplane Hi of a Coxeter
polytope P corresponds a node i in the Coxeter diagram, and two nodes i; j are
connected by an edge of weight p if the hyperplanes intersect under the (non-right)
angle �=p . Notice that the weight 3 will always be omitted. If two hyperplanes are
orthogonal, their nodes are not connected. If they admit a common perpendicular
(of length l ), their nodes are joined by a dashed edge (and the weight l is usually
omitted). We extend the diagram description to arbitrary convex hyperbolic polytopes
and associate with the dihedral angle ˛D†.Hi ;Hj / an edge with weight ˛ connecting
the nodes i; j . For the intermediate case of quasi-Coxeter polytopes whose dihedral
angles are rational multiples .p=q/� of � , the edge weight will be q=p . The Coxeter
symbol is a bracketed expression encoding the form of the Coxeter diagram in an
abbreviated way. For example, Œp; q; r � is associated with a linear Coxeter diagram
with 3 edges of consecutive markings p; q; r . The Coxeter symbol Œ3i;j ;k � denotes a
group with Y-shaped Coxeter diagram with strings of i , j and k edges emanating
from a common node. However, dashed edges are omitted leaving a connected graph.
The Coxeter symbol can be extended to the quasi-Coxeter case in an obvious way as
well.

Group Coxeter diagram Coxeter symbol Polytope

�0 �
5
� � � � � ___ � Œ5; 3; 3; 3; 3� P0

�1

�

�
�
�

�
5
� � � �

�

Œ5; 3; 3; 3; 31;1� P1 DDP0

�2 �
5
� � � �

4
� ___ � Œ5; 3; 3; 3; 4� P2

Table 3: Three hyperbolic Coxeter groups and their 5–polytopes

We are particularly interested in the quasi-Coxeter groups �i and the polytopes Pi

(see Section 1) as given in Table 3. In order to compute the volumes of Pi , we consider
the 1–parameter sequence of compact 5–prisms with symbol

(4-1) P .˛/ W Œ5; 3; 3; 3; ˛�;

Algebraic & Geometric Topology, Volume 13 (2013)
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where ˛ 2 Œ�=4; 2�=5�. Geometrically, they are compactifications of 5–dimensional
orthoschemes obtained by cutting away the ultraideal principal vertices by the associated
polar hyperplanes. The sequence (4-1) contains the Coxeter polytopes P0D Œ5; 3; 3; 3; 3�

and P2 D Œ5; 3; 3; 3; 4� as well as the pseudo-Coxeter prism Œ5; 3; 3; 3; 5=2�. There is
no closed volume formula for such polytopes known in terms of the dihedral angles.
However, for certain noncompact limiting cases and by means of scissors congruence
techniques, exact volume expressions could be derived [8, Section 4.2]. For example,

vol5
�
Œ5=2; 3; 3; 5; 5=2�

�
D

13�.3/

9600
C

11

1152
L3

�
�

5

�
;(4-2)

vol5
�
Œ5; 3; 3; 5=2; 5�

�
D�

�.3/

4800
C

11

1152
L3

�
�

5

�
;(4-3)

and finally,

(4-4) vol5.P .2�=5//D
1

5

�
vol5

�
Œ5=2; 3; 3; 5; 5=2�

�
�vol5

�
Œ5; 3; 3; 5=2; 5�

��
D
�.3/

3200
:

Here

(4-5) L3.!/D
1

4

1X
rD1

cos.2r!/

r3
D

1

4
�.3/�

!Z
0

L2.t/ dt; ! 2R;

denotes the Lobachevsky trilogarithm function, which is related to the real part of
the classical polylogarithm Lik.z/D

P1
rD1 zr=rk for k D 3 and z D exp.2i!/ (see

[8, Section 4.1] and (4-10)).

For the volume calculation of the prisms P0 and P2 , we apply the volume differential
formula of L Schläfli (see [11], for example) with the reference value (4-4) in order to
obtain the simple integral expression

(4-6) vol5.P .˛//D
1

4

2�=5Z
˛

vol3.Œ5; 3; ˇ.t/�/ dt C
�.3/

3200
;

with a compact tetrahedron Œ5; 3; ˇ.t/� whose angle parameter ˇ.t/ 2 �0; �=2Œ is
given by

(4-7) ˇ.t/D arctan
p

2� cot2 t :

Put

(4-8) �.t/D arctan

q
1� 4 sin2 �

5
sin2 ˇ.t/

2 cos �
5

cosˇ.t/
2

i
0;
�

2

h
:
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Then the volume of the 3–dimensional orthoscheme face Œ5; 3; ˇ.t/� as given by
Lobachevsky’s formula (see [8, Equation (67)], for example) equals

(4-9) vol3. Œ5; 3; ˇ.t/� /D
1

4

n
L2

��
5
C�.t/

�
�L2

��
5
� �.t/

�
�L2

��
6
C �.t/

�
CL2

��
6
��.t/

�
CL2

�
ˇ.t/C�.t/

�
�L2

�
ˇ.t/��.t/

�
C 2L2

��
2
��.t/

�o
;

where

(4-10) L2.!/D
1

2

1X
rD1

sin.2r!/

r2
D�

!Z
0

log j 2 sin t j dt; ! 2R;

is Lobachevsky’s function (in a slightly modified way).

The numerical approximation of the volumes of P0 and P2 can now be performed
by implementing the data (4-7), (4-8) and (4-9) into the expression (4-6). We obtain,
using the functions intnum and polylog in PARI/GP, that the three volumes of P0 ,
P1 and P2 (in increasing order) are clearly less than 2 � 10�3 . Since the groups �i

(i D 0; 1; 2) are known to be arithmetic, it follows then from Proposition 6 that their
subgroups of index two �Ci must coincide with the � 0i . This concludes the proof of
Theorem 2.

5 Remarks on the identification of volumes

Although in the proof of Theorem 2 it suffices to use the rough estimate vol.P2/ <

2 � 10�3 , the numerical approximations are much more precise. Namely, the equality
vol.� 0inH

5/D vol.�Ci nH
5/, proved by Theorem 2, yields for i D 0; 2:

(5-1)

8̂̂̂<̂
ˆ̂:

9
p

5
15p

11
5

214�15
�k0
.2/�k0

.4/L`0=k0
.3/D 2 vol5.P .�=3//;

9
p

5
15

23�15
�k0
.2/�k0

.4/L`2=k0
.3/D 2 vol5.P .�=5//:

Using PARI/GP, a computer checks within seconds that both sides of each equation
coincide up to 50 digits (the right hand side being computed from (4-6) like in last step
of Section 4).

The equalities (5-1) have also some arithmetic interest, due the presence on the left
hand side of the special value L`=k0

.3/ (with `D `0 or `2 ). Since k0 is totally real,
it follows from the Klingen–Siegel theorem (see [9]; see also [12, Appendix C]) that
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�k0
.2/�k0

.4/ is up to a rational given by some power of � divided by
p

Dk0
D
p

5.
Thus, from (5-1) the nontrivial part L`=k0

.3/ of vol.� 0inH
5/ can be expressed by a

sum of integrals of Lobachevsky’s functions. A related but much more significant idea
is the possibility, predicted by Zagier’s conjecture, of expressing L`=k0

.3/ as a sum of
trilogarithms evaluated at integers of k0 . We refer to [15] for more information on this
subject.
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