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The link volume of 3–manifolds

YO’AV RIECK

YASUSHI YAMASHITA

We view closed orientable 3–manifolds as covers of S3 branched over hyperbolic
links. To a cover M

p
!S3 , of degree p and branched over a hyperbolic link L� S3 ,

we assign the complexity p Vol.S3 nL/ . We define an invariant of 3–manifolds,
called the link volume and denoted by LinkVol.M / , that assigns to a 3-manifold M

the infimum of the complexities of all possible covers M ! S3 , where the only
constraint is that the branch set is a hyperbolic link. Thus the link volume measures
how efficiently M can be represented as a cover of S3 .

We study the basic properties of the link volume and related invariants, in particular
observing that for any hyperbolic manifold M , Vol.M / is less than LinkVol.M / .
We prove a structure theorem that is similar to (and uses) the celebrated theorem of
Jørgensen and Thurston. This leads us to conjecture that, generically, the link volume
of a hyperbolic 3–manifold is much bigger than its volume.

Finally we prove that the link volumes of the manifolds obtained by Dehn filling a
manifold with boundary tori are linearly bounded above in terms of the length of the
continued fraction expansion of the filling curves.

57M12, 57M50; 57M27

1 Introduction

The study of 3–manifolds as branched covers of S3 has a long history. In 1920
Alexander [1] gave a very simple argument showing that every closed orientable
triangulated 3–manifold is a cover of S3 branched along the 1–skeleton of a tetrahedron
embedded in S3 . We explain his construction and give basic definitions in Section 2.
Clearly, if a 3–manifold M is a finite sheeted branched cover of S3 , then M is closed
and orientable. Moise [14] showed that every closed 3–manifold admits a triangulation,
thus we see: a 3–manifold M is closed and orientable if and only if M is a finite
sheeted branched cover of S3 . From this point on, by a manifold we mean a connected
closed orientable 3–manifold.

Alexander himself noticed one weakness of his theorem: the branch set is not a
submanifold. He claimed that this can be easily resolved, but gave no indication of the
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proof. In 1986 Feighn [5] substantiated Alexander’s claim, modifying the branch set to
be a link.

Thurston showed the existence of a universal link, that is, a link L� S3 so that every
3–manifold is a cover of S3 branched along L. Hilden, Lozano and Montesinos [7; 8]
drastically simplified Thurston’s example showing, in particular, that the figure eight
knot is universal. Cao and Meyerhoff [3] showed that the figure eight knot is the
hyperbolic link of the smallest volume. In this paper, we consider hyperbolic links and
consider their volume as a measure of complexity, hence we see that every 3–manifold
is a cover of S3 branched along the simplest possible link.

Our goal is to define and study an invariant that asks: how efficient is the presentation
of a 3–manifolds as a branched over of S3 ? We do this as follows: let M be a p–fold
cover of S3 , branched along the hyperbolic link L. We denote this by M

p
! .S3;L/

(read: M is a p–fold cover of S3 branched along L). The complexity of M
p
! .S3;L/

is defined to be the degree of the cover times the volume of L, that is:

p Vol.S3
nL/:

The link volume of M , denoted by LinkVol.M /, is the infimum of the complexities of
all covers M

p
! .S3;L/, subject to the constraint that L is a hyperbolic link, that is:

LinkVol.M /D inf
˚
p Vol.S3

nL/ jM
p
�! .S3;L/I L hyperbolic

	
:

Given a hyperbolic manifold M we consider its volume, Vol.M /, as its complexity.
This is consistent with our attitude towards hyperbolic links, and is considered very
natural by many 3–manifold topologists. Why is that? What is it that the volume
actually measures? Combining results of Gromov, Jørgensen and Thurston (for a
detailed exposition, see Kobayashi and the first author’s [9]) we learn the following.
Let tC .M / denote the minimal number of tetrahedra required to triangulate a link
exterior in M , that is, the least number of tetrahedra required to triangulate M nN.L/,
where the minimum is taken over all possible links L�M (possibly, LD∅) and all
possible triangulations of M nN.L/. Then there exist constants a; b > 0 which are
independent of M so that

(1) a Vol.M /� tC .M /� b Vol.M /:

We consider invariants up to linear equivalence, and so we see that Vol and tC are
equivalent. This gives a natural, topological interpretation of the volume. In this paper
we begin the study of the link volume, with the ultimate goal of obtaining a topological
understanding of it.
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The basic facts about the link volume are presented in Section 4. The most important
ones are the following easy observations:

(1) The link volume is attained, that is, for any manifold M there is a cover
M

p
! .S3;L/ so that LinkVol.M /D p Vol.S3 nL/.

(2) For every hyperbolic 3–manifold M we have:

LinkVol.M / > Vol.M /:

The second point begs the question: is the link volume of hyperbolic manifolds equiva-
lent to the hyperbolic volume? As we shall see below, the results of this paper lead us
to believe that this is not the case (Conjectures 1.2 and 1.3).

The right hand side of the inequality (1) implies that, for fixed V , any hyperbolic
manifold of volume less than V can be obtained from a manifold X by Dehn filling,
where X is constructed using at most bV tetrahedra. Since there are only finitely
many such X , this implies the celebrated result of Jørgensen and Thurston: for any
V > 0, there exists a finite collection of compact “parent manifolds” fXi ; : : : ;Xng, so
that @Xi consists of tori and any hyperbolic manifold of volume at most V is obtained
by Dehn filling Xi , for some i . Our first result is:

Theorem 1.1 (Structure Theorem) There exists a universal constant ƒ> 0 so that
for every V > 0, there is a finite collection f�i W Xi!Eig

nV

iD1
, where Xi and Ei are

complete finite volume hyperbolic manifolds and �i is an unbranched cover, and for
any cover M

p
! .S3;L/ with p Vol.S3 nL/ < V the following conditions hold:

(1) For some i , M is obtained from Xi by Dehn filling, S3 is obtained from Ei

by Dehn filling and the following diagram commutes (where the vertical arrows
represent the covering projections and the horizontal arrows represent Dehn
fillings):

Xi M

Ei .S3;L/

�i �

(2) Ei can be triangulated using at most ƒV =p tetrahedra (hence Xi can be trian-
gulated using at most ƒV tetrahedra so that �i is simplicial).

For V > 0, let MV denote the set of manifolds of link volume less than V . Since the
link volume is always attained, applying Theorem 1.1 to covers realizing the link vol-
umes of manifolds in MV , we obtain a finite family of “parent manifolds” X1; : : : ;Xn
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that give rise to every manifold in MV via Dehn filling, much like Jørgensen and
Thurston. The extra structure given by the projection �i W Xi ! Ei implies that the
fillings that give rise to manifolds of low link volume are very special:

Fix V , and let Xi be as in the statement of Theorem 1.1. Then for any hyperbolic
manifold M that is obtained by filling Xi we have Vol.M / < Vol.Xi/. On the other
hand, it is by no means clear that LinkVol.M / < V , for it is not easy to complete the
diagram in Theorem 1.1:

(1) Xi must cover a manifold Ei .

(2) The covering projection and the filled slopes must be compatible (see Section 2.3
for definition).

(3) The slopes filled on Ei must give S3 , a very unusual situation since Ei is
hyperbolic.

These lead us to believe that the link volume, as a function, is much bigger than the
volume. Specifically we conjecture:

Conjecture 1.2 Let X be a compact connected orientable manifold whose boundary
consists of a single torus and suppose that the interior of X admits a complete finite
volume hyperbolic metric. For a slope ˛ on @X , let X.˛/ denote the closed manifold
obtained by filling X along ˛ .

Then for any V > 0, there exists a finite set of slopes F on @X , so that if

LinkVol.X.˛// < V;

then ˛ intersects some slope in F at most V =2 times.

As is well known, the volume of the figure eight knot complement is about 2:029 : : : ,
twice v3 , the volume of a regular ideal tetrahedron. By considering manifolds that
are obtained by Dehn filling the figure eight knot exterior we see that Conjecture 1.2
implies:

Conjecture 1.3 For every V > 0 there exists a manifold M so that

Vol.M / < 2v3 D 2:029 : : : and LinkVol.M / > V:

To describe our second result, we first define the knot volume and a few other variations
of the link volume; for the definition of simple cover, see Section 2.2.
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Definitions 1.4 (1) The knot volume of a 3–manifold M is obtained by considering
only hyperbolic knots in the definition of the link volume, that is,

KnotVol.M /D inf
˚
p Vol.S3

nK/ jM
p
�! .S3;K/I K is a hyperbolic knot

	
:

(2) The simple knot volume of a 3–manifold M is obtained by considering only
simple covers in the definition of the knot volume, that is,

KnotVols.M /D inf
�

p Vol.S3
nK/

ˇ̌̌̌
M

p
�! .S3;K/I

K a is hyperbolic knot
and the cover is simple

�
:

(3) For an integer d � 3, the simple d –knot volume is obtained by restricting to
p–fold covers for p � d in the definition of the simple knot volume, that is,

KnotVols;d .M /D inf

(
p Vol.S3

nK/

ˇ̌̌̌
ˇM

p
�! .S3;K/I

K is a hyperbolic knot;
the cover is simple
and p � d

)
:

Similarly, one can play with various restrictions on the covers considered. However,
one must ensure that the definition makes sense. For example, the regular link volume
can be defined using only regular covers. This makes no sense, as not every manifold
is the regular cover of S3 . It follows from Hilden [6] and Montesinos [15] that every
3–manifold is a simple 3–fold cover of S3 branched over a hyperbolic knot; hence the
definitions above make sense. Our next result is an upper bound, and holds for any of
the variations listed in Definitions 1.4. Since these definitions are obtained by adding
restrictions to the covers considered, it is clear that KnotVols;3.M / is greater than or
equal to any of the others, including the link volume. We therefore phrase Theorem 1.6
below for that invariant. But first we need:

Definition 1.5 Let T be a torus and �, � generators for H1.T IZ/. By identifying �
with 1=0 and � with 0=1, we get an identification of the slopes of T with Q[f1=0g,
where by a slope we mean a nontrivial element of H1.T IZ/, defined up to sign, that
can be represented by a connected simple closed curve on T . Then the depth of a slope
˛ , denoted by depth.˛/, is the length of the shortest continued fraction expansion
representing p=q . For a collection of tori T1; : : : ;Tn with bases chosen for H1.Ti IZ/
for each i we define

depth.p1=q1; : : : ;pn=qn/D

nX
iD1

depth.pi=qi/:

We are now ready to state:
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Theorem 1.6 Let X be a connected compact orientable 3–manifold, @X consisting
of n tori T1; : : : ;Tn and fix �i , �i , generators for H1.Ti IZ/ for each i .

Then there exist a universal constant B and a constant A that depends on X and the
choice of bases for H1.Ti IZ/, so that for any pi=qi (i D 1; : : : ; n),

KnotVols;3.X.p1=q1; : : : ;pn=qn// <ACB depth.p1=q1; : : : ;pn=qn/;

where X.p1=q1; : : : ;pn=qn/ denotes the manifold obtained by filling X along the
slopes pi=qi .

Remark 1.7 Both in Theorem 1.6 and in Corollary 1.8 below we can change the
depths of pi=qi arbitrarily by changing the bases used for H1.Ti IZ/; this will result
is a change to the constant A. If Conjecture 1.2 holds, then the values needed for A

are unbounded.

As noted above, KnotVols;3.M / is greater than or equals to all the invariants defined
in Definition 1.5 and the link volume. Hence Theorem 1.6, which gives an upper bound,
holds for all these invariants, and in particular:

Corollary 1.8 With the hypotheses of Theorem 1.6, there exist a universal constant B

and a constant A that depends on X and the choice of bases for H1.Ti IZ/, so that for
any slopes pi=qi (i D 1; : : : ; n),

LinkVol.X.p1=q1; : : : ;pn=qn// <ACB depth.p1=q1; : : : ;pn=qn/:

Organization This paper is organized as follows. In Section 2 we go over necessary
background material. In Section 3 we explain some possible variations on the link
volume. Notably, we define the surgery volume (definition due to Kimihiko Motegi)
and an invariant denoted by pB.M / (definition due to Ryan Blair). We show that,
conjecturally in contrast to the link volume, the surgery volume of hyperbolic manifolds
is bounded in terms of their volumes. We also show that pB.M / is linearly equivalent
to g.M /, the Heegaard genus of M . In Section 4 we explain basic facts about the link
volume and list some open questions. In Section 5 we prove Theorem 1.1. In Section 6
we prove Theorem 1.6.

Acknowledgement We thank Ryan Blair, Mike Hilden, Tsuyoshi Kobayashi, Kim-
ihiko Motegi, Hitoshi Murakami and Jair Remigio-Juárez for helpful conversations.
We are very grateful to the anonymous referee for a careful reading of the paper and
numerous helpful suggestions.
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2 Background

By a manifold we mean a connected closed orientable 3–manifold. In some cases, we
consider a connected compact orientable 3–manifolds; then we explicitly say compact
manifold. By a hyperbolic manifold X we mean a complete, finite volume Riemannian
3–manifold locally isometric to H3 . It is well know that any orientable hyperbolic
manifold X is the interior of a compact manifold X and X nX D @X consists of tori.
To simplify notation, we do not refer to X explicitly and call @X the boundary of X .
We assume familiarity with the basic concepts of 3–manifold theory and hyperbolic
manifolds and in particular the Margulis constant. By volume we mean the hyperbolic
volume. The volume of a hyperbolic manifold M is denoted by Vol.M /.

We follow standard notation. In particular, by Dehn filling (or simply filling) we mean
attaching a solid torus to a torus boundary component.

2.1 Branched covering

We begin by recalling Alexander’s Theorem [1]; because its proof is very short and
elegant we include a sketch below.

Theorem 2.1 (Alexander) Let T be a triangulation of Sn obtained by doubling an
n–simplex. Let M be a closed orientable triangulated n–manifold. Then M is a cover
of Sn branched along T .n�2/ , the .n� 2/–skeleton of T .

Sketch of proof Let M be as above. Given TM , a triangulation of M , let T 0
M

denote
its barycentric subdivision. Each vertex v of T 0

M
is the center of a k –face of TM , for

some k . Label v with the label k . By construction, there are exactly nC 1 labels,
0; : : : ; n, and no two adjacent vertices have the same label.

Note that the 1–skeleton of T is KnC1 , the complete graph on nC 1 vertices. Label
these vertices with the labels 0; : : : ; n so that every label appears exactly once.

We define a function from T 0.n�1/
M

(the .n�1/–skeleton of T 0
M

) to Sn by sending each
k –face simplicially to the unique k –face of Sn with the same labeling (for k < n); it
is easy to see that this function is well defined. However, each n–cell of M can be
sent to either of the two n simplices of T 0

M
. We pick the simplex so that the map is

orientation preserving.

It is left to the reader to verify that this is indeed a cover branched over the .n� 2/–
skeleton of the triangulation of Sn .
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Lemma 2.2 For any compact triangulated n–manifold M , B �M .n�2/ a subcom-
plex and d > 0, there are only finitely many p–fold covers of M branched along B

for p � d .

Proof It is well known that a p–fold cover of M branched along B is determined by
a presentation of �1.M nB/ into Sp , the symmetric group on p elements (see [18]).
The lemma follows from the fact that �1.M n B/ is finitely generated and Sp is
finite.

2.2 Simple covers and the Montesinos move

Definition 2.3 Let f W M !N be a cover of finite degree p branched along B �N .
Note that every point of N nB has exactly p preimages, and every point of B has at
most p preimages. f W M !N is called simple if every point of B has exactly p� 1

preimages.

Let M ! .S3;L/ be a 3–fold simple cover branched along the link L. We view L

diagrammatically, as projected into S2�S3 in the usual way. Since the cover is simple,
each generator in the Wirtinger presentation of S3 nL corresponds to a permutation
in the symmetric group on 3 elements (that is, .1 2/.3/ or .1 3/.2/ or .2 3/.1/). We
consider these as three colors, and color each strand of L accordingly. By assumption,
M is connected; hence not all generators correspond to the same permutation. Finally,
the relators of the Wirtinger presentation guarantee that at each crossing either all three
color appear or only one color does. Thus we obtain a 3–coloring of the strands of L.

Montesinos proved that if we replace a positive crossing where all three colors appear
by 2 negative crossings the cover is not changed. This is called the Montesinos move.
The reason is simple: the neighborhood of a 3–colored crossing is a ball, and its cover is
a ball as well. (This is false if only one color appears at the crossing!) More generally,
when all three colors appear we can replace n half twists with nC 3k half twists
(n; k 2 Z). The case nD 0 is allowed, but then we must require that the two strands
in question have distinct colors. We denote such a move by n 7! nC 3k Montesinos
move. In Figure 1 we show a few views of the Montesinos move.

Finally, we record the following fact for future reference. It is easy to see that a p–fold
cover f W M ! S3 branched along B � S3 is connected if and only if the image of
�1.S

3 nB/ in Sp acts transitively on the set of p letters. For simple 3–fold covers
this means:

Lemma 2.4 Let M be a 3–manifold and f W M!S3 a simple 3–fold cover branched
along the link L� S3 . Then M is connected if and only if at least two colors appear
in the 3–coloring of L.
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Figure 1: Montesinos move

2.3 Slopes on tori and coverings

Recall that a slope on a torus T is a nontrivial class in H1.T IZ/, defined up to sign,
that can be represented by connected simple closed curve. For this subsection we fix
the following: Let X and E be complete hyperbolic manifolds of finite volume and
�W X !E an unbranched cover. Let T be a boundary component of X ; note that �
induces an unbranched cover T ! �.T /.

Let ˛ be a slope on T realized by a connected simple closed curve  � T . Then �. /
is a (not necessarily simple) connected essential closed curve on �.T /. Since �.T / is
a torus, there is a simple closed curve x̌ on �.T / so that �. / is homotopic to x̌m ,
for some m¤ 0. Let ˇ be the slope defined by x̌. Define the function �# from the
slopes on T to the slopes on �.T / by setting �#.˛/D ˇ .

Conversely, let ˛ be a slope on �.T / realized by a connected simple closed curve
 � �.T /. Then ��1. / is a (not necessarily connected) essential simple closed curve.
Each component of ��1. / defines a slope on T , and since these curves are disjoint,
they all define the same slope, say ˇ . Define the function �" from the slopes on �.T /
to the slopes on T by setting �".˛/D ˇ . It is easy to see that �# is the inverse of �" .
We say that ˛ and �#.˛/ are corresponding slopes.

Suppose that we fill T and �.T /. If the slopes filled are not corresponding, then the
curve filled on T maps to a curve of �.T / that is not null homotopic in the attached
solid torus. Thus the map � cannot be extended into that solid torus.

Conversely, suppose that corresponding slopes are filled. We parametrize the attached
solid tori as S1�D2 and extend � into the solid tori by coning along each disk fpg�D2

(p 2 S1 ). It is easy to see that if we do this for every component of ��1.�.T // then
the extended map is a cover, branched (if at all) along cores of attached solid tori. (The
local degree at the core of a solid torus is the number denoted by m in the construction
of �# above.)
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In conclusion, � induces a correspondence between slopes of T and slopes of �.T /,
and � can be extended to the attached solid tori to give a branched cover after filling if
and only if corresponding slopes are filled.

Next, let T1 , T2 � @X be tori that project to the same component of @E . Then two
bijections �# from the slopes of T1 and T2 to the slopes of �.T1/D �.T2/ induce a
bijection between the slopes of T1 and the slopes of T2 ; again we call slopes that are
interchanged by this bijection corresponding. Filling T1 and T2 along corresponding
slopes is called consistent, inconsistent otherwise. Note that after filling X there is a
filling of E so that the cover X !E extends to a branched cover if and only if the
filling of X is consistent on every pair of components of @X that project to the same
component of @E .

2.4 Hyperbolic alternating links

In this subsection we follow Lickorish [12, Chapter 4]. We begin with the following
standard definitions:

Definitions 2.5 Let L be a link and D a diagram for L. The projection sphere is
denoted by S2 . Then D is called alternating if, for each component K of L, when
traversing the projection of K the crossing occur as . . . over, under, over, under, . . . . L

is called an alternating link if it admits an alternating diagram. A link diagram D is
called strongly prime if any simple closed curve that intersects it transversely in two
simple points (that is, two points that are not crossings) bounds a disk that D intersects
in a single arc with no crossings. A link L is called split if its exterior admits an
essential sphere, that is, if there is an embedded sphere S � S3 nL so that each of
the balls obtained by cutting S3 open along S contains at least one component of L.
A link diagram D � S2 is called a split diagram if there is a circle  embedded in
S2 , disjoint from D , so that each disk obtained by cutting S2 open along  contains
at least one component of D . Note that a split diagram is necessarily a diagram for a
split link, but the converse does not hold. A link is called simple if its exterior does
not admit an essential surface of nonnegative Euler characteristic. A link L is called
hyperbolic if S3 nL admits a complete, finite volume, hyperbolic metric.

Menasco [13] (see also Lickorish [12]) proved:

Theorem 2.6 Let D be an alternating link diagram for a link L. If D is strongly
prime and is not split, then either L is simple, or it is a torus link.

Thurston proved:
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Theorem 2.7 Any simple link is hyperbolic.

Since the only alternating torus links are 2; n–torus links, combining these results
gives us a way, in certain situations, of identifying hyperbolic links by looking at their
diagrams:

Corollary 2.8 If a link L has a nonsplit, strongly prime, alternating diagram which is
not the alternating diagram of a torus 2; n–link, then L is hyperbolic.

2.5 Twist number and hyperbolic volume

For the definition of twist number see, for example, [11]. We briefly recall it here. Let
D be a link diagram. Let � be the equivalent relation on the crossings of D generated
by c � c0 if c and c0 lie on the boundary of a bigon of D . This equivalence relation
can be visualized as follows: if c1; : : : ; cn form an equivalence class of crossings, then
after reordering if necessary, there is a chain of n� 1 bigons in D with ci and ciC1

on the boundary the i –th bigon.

The twist number of a link L, denoted by t.L/, is the smallest number of equivalence
classes in any diagram for L. Thus, for example, the obvious diagram of twist knots
show they have twist number at most 2.

Lackenby [11] gave upper and lower bounds on the hyperbolic volume of link exteriors
in terms of their twist number. We emphasize that the lower bound holds for alternating
links (or, more precisely, for alternating diagrams), while the upper bound holds for
any diagram of any link. It is the upper bound that we will need in this work, hence we
need not assume the diagram alternates. We will need:

Theorem 2.9 (Lackenby [11]) There exists a constant c so that for any hyperbolic
link L,

Vol.S3
nL/ < ct.L/:

3 Variations

In this section we discuss two variations of the link volume. The first variation is
obtained by replacing the volume by another knot invariant (note that one can use
any invariant with values in R�0 ). This variation was suggested by Ryan Blair. Let
L� S3 be a link and let b.L/ denote its bridge index. We consider the complexity of
M

p
! .S3;L/ to be pb.L/. Define pB.M / to be the infimum of pb.L/, taken over

all possible covers.
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It is easy to see that the preimage of a bridge surface S for L is a Heegaard surface
for M , say †. Since S is a 2b punctured sphere, �.S nL/D 2� 2b . Its preimage
has Euler characteristic p.2� 2b/. We obtain † by adding some number of points,
say n� 0. Then �.†/D p.2� 2b/C n. Thus we get:

2g.†/� 2D��.†/

D p.2b� 2/� n

D 2pb� .2pC n/

� 2pb� 2:

Since pB.M / is positive integer valued, the infimum is attained. By considering a
cover that realizes pB.M /, we obtain a surface † so that g.†/ � pB.M /. Thus
g.M /� g.†/� pB.M /.

The converse is highly nontrivial. Given an arbitrary manifold M , Hilden [6] con-
structed a 3–fold cover M

3
! .S3;L/. The construction uses an arbitrary Heegaard

surface †�M . One feature of Hilden’s construction is that b.L/� g.†/C 2. Since
† was an arbitrary Heegaard surface, we may assume that g.†/D g.M /. Thus we
see that pB.M /� 3g.M /C 6. Combining the inequalities we got we obtain:

g.M /� pB.M /� 3g.M /C 6:

Thus we see that the Heegaard genus and pB are equivalent.

Another variation, suggested by Kimihiko Motegi, is the surgery volume. Given a
manifold M , it is well known that M is obtained by Dehn surgery on a link in S3 ,
say L. By Myers [16], every compact 3–manifold admits a simple knot. Applying
this to S3 nN.L/ it is easy to obtain a knot K so that L0 D L[K is a hyperbolic
link. Since M is obtained from S3 via surgery along L0 (with the original surgery
coefficients on L and the trivial slope on K ), we conclude that M is obtained from
S3 via surgery along a hyperbolic link. The surgery volume of M is then

SurgVol.M /D inffVol.S3
nL/ jM is obtained by surgery on L; L is hyperbolicg:

Results of Gromov, Jørgensen and Thurston show that if a hyperbolic manifold N1

is obtained by filling a hyperbolic manifold N2 , then Vol.N1/ < Vol.N2/ (see [19,
Theorem 6.5.6]). Applying this in our setting (with S3 nL0 as N2 and M as N1 ) we
see that for any hyperbolic manifold M , Vol.M / < SurgVol.M /.

We note that there exists a function f W .0;1/! .0;1/ so that any hyperbolic manifold
M is obtained by surgery on a hyperbolic link L�S3 with Vol.S3nL/�f .Vol.M //.
To see this, fix V and let X1; : : : ;Xn be the set of parent manifolds of all hyperbolic
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manifolds of volume at most V . For each Xi there is a link Li in S3 , so that Xi is
obtained by surgery on some of the components of Li and drilling the rest. Therefore,
any hyperbolic manifold M with volume at most V is obtained on surgery on some
Li (i D 1; : : : ; n). Set

f .V /D max
1�i�n

fVol.S3
nLi/g:

We get:
Vol.M /� SurgVol.M /� f .Vol.M //:

The surgery volume and the hyperbolic volume are equivalent if there is a linear
function f bounding SurgVol; we do not know if this is the case.

4 Basic facts and open questions

Basic facts about the link volume are:

The link volume is attained: That is, for every M there exists a cover M
p
! .S3;L/

so that LinkVol.M /D p Vol.S3 nL/. Recall that the link volume was defined as an
infimum. To see that there is a cover realizing it, we need to show that the infimum
is attained. Fix a manifold M , and let M

pn
! .S3;Ln/ be a sequence of covers that

approximates LinkVol.M /. By Jørgensen and Thurston [19] there exists � > 0 so that
for every n, Vol.S3 nLn/ > � . Hence for large enough n, pn � LinkVol.M /=� ; we
see that there are only finitely many values for pn . By subsequencing if necessary we
may assume that pn is constant, say p . For any collection of covers M

p
! .S3;Ln/ of

fixed degree p , the infimum of fp Vol.S3 nLn/g is attained since the set of hyperbolic
volumes is well-ordered. It follows that the link volume is realized by some cover in
fM

pn
! .S3;Ln/g.

The link volume is the volume of a link exterior: That is, for any M , there existseL �M so that LinkVol.M /D Vol.M n eL/. This follows easily from the previous
point. Let M

p
! .S3;L/ be a cover realizing the link volume. Let eL be the preimage

of L. Then the cover M ! S3 induces a cover M neL! S3 nL. Since the cover
M neL! S3 nL is not branched, we can lift the hyperbolic structure on S3 nL to
M neL. We obtain a complete finite volume hyperbolic structure on M neL of volume
p Vol.S3 nL/D LinkVol.M /.

The link volume is bigger than the volume: If the manifold M is hyperbolic then
LinkVol.M / >Vol.M /: this follows immediately from the previous point and the fact
the volume always goes down under Dehn filling [19].
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The spectrum of link volumes is well ordered: It follows from the second point above
that the spectrum of link volumes is a subset of the spectrum of hyperbolic volumes.
Since the spectrum of hyperbolic volumes is well ordered, so are all of its subsets.

The spectrum of link volumes is “small”: The reader can easily make sense of the claim
that the spectrum of link volumes is a very small subset of the spectrum of hyperbolic
volume. In fact, since the link volume is attained, every link volume is an integral
product of a volume of a hyperbolic link in S3 . However, the spectrum of link volumes
is not too small: there are infinitely many manifolds M with LinkVol.M / < 7:22 : : : .
Moreover, in [17] Jair Remigio-Juarez and the first named author showed that there are
infinitely many manifold of the same link volume, just under 7:22 : : : . This is in sharp
contrast to the hyperbolic volume function, which is finite-to-one.

For the remainder of this paper we will often use these facts without reference.

Basic questions about the link volume include:

(1) Calculate LinkVol.M /. It is not clear whether or not there exists an algorithm to
calculate the link volume of a given manifold M . This would involves some questions
about the set of links in S3 that give rise to M and appears to be quite hard.

(2) The following question was proposed by Hitoshi Murakami: If N
q
!M is an

unbranched cover then LinkVol.N /� q LinkVol.M /. How good is this bound? Even
for q D 2, the answer is not clear.

(3) Since the link volume is attained, for every manifold M there is a positive integer
d which is the smallest integer so that there exists a cover M

d
! .S3;L/ realizing

LinkVol.M /. What is d and how does it reflect the topology of M ? Can d be
arbitrarily large? Does every positive integer d occur in this way, for some M ?

(4) Characterize the set

feL �M j 9M ! S3 , branched over L, and eL is the preimage of Lg:

The link volume is, of course, the minimal volume of the exteriors of the hyperbolic
links in this set, and in this paper we concentrate on it. It is easy to see that there is no
upper bound to the volumes of exteriors of hyperbolic links in this set.

(5) Do there exist hyperbolic manifolds M1 , M2 with Vol.M1/ D Vol.M2/ and
LinkVol.M1/¤ LinkVol.M2/?

(6) Similarly, do there exist hyperbolic manifolds M1 , M2 with

LinkVol.M1/D LinkVol.M2/ and Vol.M1/¤ Vol.M2/ ?

We note that the examples of manifolds with the same link volume mentioned above
are all Siefert fibered spaces.
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5 Proof of Theorem 1.1

Fix V > 0. Fix a Margulis constant � > 0 for H3 and d > 0. (We remark that the
constant ƒ that we obtain in this proof depends on these choices.)

Let M be a manifold of LinkVol.M / < V . Let M
p
! .S3;L/ be a cover for which

p Vol.S3 nL/ < V . Denote the d neighborhood of the �–thick part of S3 nL by
EL . By construction, EL is obtained from S3 nL by drilling out certain geodesics;
by Kojima [10, Proposition 4], EL is hyperbolic.

Let X� denote the preimage of EL in M . Then the cover �W M ! S3 induces an
unbranched cover �W X�!EL . By lifting the hyperbolic structure from EL to X� ,
we see that X� is a finite volume hyperbolic manifold.

By construction, the following diagram commutes (where vertical arrows represent
the covering projections and horizontal arrows represent inclusions induced by Dehn
fillings):

X� M

EL .S3;L/

� �

By Jørgensen and Thurston (see, for example, [9]), there exists a constant ƒ (depending
on � and d ), so that for any complete, finite volume hyperbolic manifold N , the
d –neighborhood of the �–thick part of N can be triangulated using no more than
ƒVol.N / tetrahedra. Applying this to N D S3 nL, since the d –neighborhood of
the �–thick part of N is EL , we see that EL can be triangulated using at most
ƒVol.S3 nL/ < ƒV =p tetrahedra.

Since there are only finite many manifolds that can be triangulated using at most ƒV =p

tetrahedra, there are only finitely many possibilities for EL .

Lifting the triangulation from EL to X� , we see that X� can be triangulated with at
most ƒLinkVol.M / < ƒV tetrahedra so that �W X�!EL is simplicial with respect
to this triangulation. This shows that there are only finitely many possibilities for X�
and � . We denote them by f�i W Xi!Eig

nV

iD1
.

This completes the proof of Theorem 1.1.
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6 The link volume and Dehn filling

In this section we prove Theorem 1.6. The proof is constructive and requires two
elements, the first is Hilden’s construction of simple 3–fold covers of S3 , and the
second is the results of Thurston and Menasco that show that an alternating link that
“looks like” a hyperbolic link is in fact hyperbolic. For the latter, see Section 2.4. We
now explain the former.

In [6] Hilden showed that any 3–manifold is the simple 3–fold cover of S3 . The crux
of his proof is the construction, for any g , of a 3–fold branched cover pW Vg ! B ,
where Vg is the genus g handlebody and B is the 3–ball. He then proves that any
map f W @Vg! @Vg can be isotoped so as to commute with p . Thus f induces a map
xf W @B! @B so that the following diagram commutes (here the vertical arrows denote

Hilden’s covering projection):

Vg Vg

B B

f

xf

Starting with a closed, orientable, connected 3–manifold M , Hilden uses a Heegaard
splitting of M D Vg [f Vg ; the construction above gives a map to B [ xf B Š S3 .
This is, in a nutshell, Hilden’s construction of M as a cover of S3 .

Our goal is using a similar construction to get a map from X . Since X has boundary
it cannot branch cover S3 , and we must modify Hilden’s construction. To that end, we
first describe the cover pW Vg!B in detail. Let S3gC2 be the 3gC2 times punctured
S2 , viewed as a 3g–times punctured annulus. Then S3gC2�Œ�1; 1� admits a symmetry
of order two (rotation by � about the y –axis) given by .x;y; t/ 7! .�x;y;�t/, where
S3gC2 is embedded symmetrically in the xy –plane as shown in Figure 2.

S3gC2� Œ�1; 1� also admits a symmetry of order 3 by rotating S3gC2 about the origin
of the xy –plane and fixing the Œ�1; 1� factor. These two symmetries generate an action
of the dihedral group of order 6 on S3gC2� Œ�1; 1�. It is easy to see that the quotient is
a ball. On the other hand, the quotient of S3gC2 � Œ�1; 1� by the order two symmetry
is Vg . This induces the map f W Vg ! B ; note that this is a cover, branched along
a trivial tangle with gC 2 arcs (thus the branch set of the map M ! S3 described
above is a gC 2 bridge link, and the braiding is determined by xf ). This is Hilden’s
construction, see Figure 3, where the branch set of Vg ! B is indicated by dashed
lines (in B ).
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y

g

g g

x

Figure 2: S3gC2 embedded in the xy –plane

=2 =3

Figure 3: Hilden’s covers

A Heegaard splitting for the manifold with boundary X is a decomposition of X into
two compression bodies; we assume the reader is familiar with the basic definitions
(see, for example, [4]). We use the notation Vg;n for a compression body with @CVg;n

a genus g surface and @�Vg;n a collection of n tori (so 0� n� g ). Since @X consists
of n tori, any Heegaard splitting of X consists of two compression bodies of the form
Vg;n1

and Vg;n2
, for some g; n1; n2 with n1C n2 D n. We use the notation V �g;ni

for
the manifold obtained by removing the interior of ni disjoint balls from the interior of
Vg;ni

. We use the notation X � for the manifold obtained by removing the interior of n

disjoint balls from the interior of X . Finally, we use the notation B�ni
for the manifold

obtained by removing the interior of ni disjoint balls from the interior of B .

Since compression bodies do not admit simple 3–fold branched covers of the type we
need, we work with V �g;ni

; see Figure 4.
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=2 =3

Figure 4: Hilden’s covers modified

Figure 4 is very similar to Figure 3, but has a few “decoration” added in blue. The
circles added to S3gC2 � Œ�1; 1� are embedded in S3gC2 � f0g. There are exactly
3ni such circles. Clearly, they are invariant under the dihedral group action, and their
images in Vg and B are shown. By removing an appropriate neighborhood of these
circles and their images, we get a simple 3–fold cover from V �g;ni

to B�ni
.

Applying Hilden’s Theorem to the gluing map f W @CVg;n1
! @CVg;n2

, we obtained a
map xf W @Bn1

! @Bn2
. Clearly, downstairs we see the manifold obtained by removing

n1C n2 D n open balls from S3 ; we denote it by S3;� .

Note that the branch set is a tangle (that is, a 1–manifold properly embedded in S3;� )
that intersects every sphere boundary component in exactly 4 points; we denote this
branch set by T . Moreover, the preimage of each component of @S3;� consists of
exactly two components: a torus that double covers it, and a sphere that projects to
it homeomorphically. The map from the torus in @X � to the sphere in S3;� is the
quotient under the well-known hyperelliptic involution.

Hilden’s construction, as adopted to our scenario, is the key to everything we do below.
We sum up its main properties here:

Proposition 6.1 Let X be a compact connected orientable manifold with @X consist-
ing of n tori. Let X � be the manifold obtained by removing n open balls from the
interior of X . Let S3;� be the manifold obtained by removing n open balls from S3 .

Then there exists a simple 3–fold cover pW X �!S3;� . The branch set is a compact 1–
manifold, denoted by T , that intersects every boundary component of S3;� in exactly
four points.

The preimage of each component S of @S3;� consists of one torus component of
@X that double covers S via a hyperelliptic involution, and one sphere component of
@X � n @X that maps to S homeomorphically.
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Recall that in Theorem 1.6, X came equipped with a choice of meridian and longitude
on each boundary component. S3;� is naturally a subset of S3 . We isotope S3;� in
S3 so that, after projecting it into the plane, the following conditions hold:

(1) The balls removed from S3 are denoted by Bi (i D 1; : : : ; n). The projection
of each Bi is a round disk; these disks are denoted by Bi ; see Figure 5.

�

�

NW NE

SW SE

Figure 5: T in a neighborhood of Bi

(2) T intersects each Bi in exactly four points. Each of these point is an endpoint
of a strand of T . The four point are the intersection of the lines of slopes ˙1

through the center of the disk with its boundary, and are labeled (in cyclic order)
NE, SE, SW and NW.

(3) We twist the boundary components of S3;� so that, in addition, the meridian and
longitude of the corresponding boundary component of @X map to a horizontal
and vertical circles, respectively; these curves (slightly rounded) are labeled �
and � in Figure 5.

Let Ti � @X be the torus that projects to @Bi . Recall that by filling Ti we mean
attaching a solid torus Vi to Ti . The choice of meridian and longitude on Ti induces a
choice of meridian and longitude on @Bi , viewed as a four times punctured sphere. It
is well known that after filling Ti with slope pi=qi , Vi double covers a ball attached
to Bi and the branch set in this ball forms a pi=qi rational tangle. We denote this
rational tangle by Ri . In the rest of this paragraph we briefly explain this; for a detailed
explanation of rational tangles and their double covers see, for example, [18]. Consider
the foliation of Vi by concentric tori with one singular leaf (the core circle). We
construct the following explicit model of the hyperelliptic involution: let Ti be the
image of R2 under the action of Z2 given by .x;y/ 7! .x C n;y Cm/. Then the
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hyperelliptic involution is induced by rotation by � about .0; 0/. The four fixed points
on Ti are the images of .0; 0/, .1

2
; 0/ (rotate and translate by .xC1;y/), .0; 1

2
/ (rotate

and translate by .x;yC1/) and .1
2
; 1

2
/ (rotate and translate by .xC1;yC1/). Given

any slope pi=qi (with pi and qi relatively prime), it is clear that the foliation of R2

by straight lines of slope pi=qi is invariant under the rotation by � about .0; 0/. The
line through .0; 0/ goes through .pi=2; qi=2/, which is the image of one of the other
three fixed points as not both pi and qi are even. Similarly for the lines through .1

2
; 0/,

.0; 1
2
/, .1

2
; 1

2
/; these lines project to two circles on Ti with exactly two fixed points

on each circle. Thus the foliation of R2 by lines of slope pi=qi induces a foliation
of @Vi by circles representing the slope pi=qi that is invariant under the hyperelliptic
involution, in which exactly two leaves that have two fixed points each. We extend
this foliation into Vi minus the core by considering the foliation of each concentric
torus by circles of slope pi=qi . The quotient of each of the concentric tori under the
hyperelliptic involution is a sphere with four branch points; this sphere is foliated by
circles that represent slope pi=qi (as curves on the four times punctured sphere), with
two fibers are arcs. The image of the core of the solid torus is an arc. Thus the quotient
of Vi is foliated by spheres with one singular leaf that is an arc, and hence it is a ball.
By construction the branch set is a two strand tangle; it is not hard to see that this is a
rational tangle of slope pi=qi .

Definition 6.2 We assume the rational tangles Ri have been isotoped to be alternating
(it is well known that this can be achieved). Two rational tangles Ri and Ri0 are
considered equivalent if the following two conditions hold:

(1) The first crossing of the strand of Ri coming in from the NE is the same as
the first crossing of the strand of Ri0 coming in from the NE, that is, either
in both tangles the first crossing is an over crossing, or in both tangles it is an
undercrossing. Since Ri and Ri0 are both alternating, this implies that for each
of the remaining three corners the analogous condition is satisfied.

(2) The strands of Ri and Ri0 that start at NE end at the same point (SE, SW, or
NW).

Note that the crossing information is ill-defined for the two tangles 1=0 and 0=1, as
they have no crossings. We arbitrarily choose an equivalent class for each of these
tangle so that the second condition is fulfilled. We obtain 6n possible equivalence
classes (recall that nD j@X j).

Given slopes on T1; : : : ;Tn , we get rational tangles R1; : : : ;Rn , as described above.
In each Bi we place a rational tangle, denoted by bRi , so that bRi 2 f˙1;˙2;˙1

2
g,
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C1 �1 C2 �2 C
1
2

�
1
2

Figure 6: yRi , the representatives for equivalence classes

representing the same equivalence class as Ri . We assume that their projections into
Bi are as in Figure 6.

We thus obtain a link, denoted by bT , and a diagram for bT , denoted by bD . Since bT
and bD only depend on the equivalence classes of the slopes, when considering all
possible slopes, we obtain finitely many links and diagrams (specifically, 6n ).

In order to obtain hyperbolic branch set, we will, eventually, apply Mensaco [13] as
explained in Section 2.4. To that end we will need to make the branch set alternating.
As we shall see below, we do this using a 1!�2 and �2! 1 Montesinos moves;
these moves can be used to make the link alternating in a way that is very similar
to crossing changes. Below we will show that we can apply Montesinos moves to
T , however, we may not apply these moves to the rational tangles inside Bi . This
causes the following trouble: let ˛ � T be an interval connecting two punctures, say
@Bi and @Bi0 (possibly, i D i 0 ). Assume that the last crossing of Ri before ˛ is an
overcrossing, and that the number of crossings along ˛ is even. Then if we make T

alternate, the last crossing along ˛ will be an overcrossing. This means that the first
crossing of Ri0 after ˛ must be an undercrossing. This may or may not be the case,
and we have no control over it.

In order to encode this, we consider the following graph � : � has n vertices, and they
correspond to B1; : : : ;Bn . The edges of � correspond to intervals of T that connect
Bi to Bi0 (again, i and i 0 may not be distinct). Inspired by the discussion above, we
assign signs to the edges of � as follows (in essence, good edges get a C and bad
edges get a �):

(1) Let I � T be an interval connecting Bi to Bi0 (possibly i D i 0 ) so that the last
crossing before I and the first crossing after I are the same (that is, both are
overcrossings or both are undercrossings) and the number of crossings along I

is odd. Then the corresponding edge get the sign C.
(2) Let I � T be an interval connecting Bi to Bi0 (possibly i D i 0 ) so that the last

crossing before I and the first crossing after I are the opposite (that is, one is
an overcrossing and the other an undercrossing) and the number of crossings
along I is even. Then the corresponding edge get the sign C.

(3) All other edges get the sign �.
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If � is connected, we pick a spanning tree b� for � . That is, b� is a tree obtained from
� by removing edges, so that every vertex of � is adjacent to some edge of b� . In
general, we take b� to be a maximal forest in � . A forest is a collection of trees, that
is, a (possibly disconnected) graph without cycles. A maximal forest in � is a graph
obtained from � by removing a minimal (with respect to inclusion) set of edges so that
a forest is obtained; equivalently, it is the union of spanning trees for the connected
components of � . Clearly a maximal forest b� has the following two properties: first,b� contains no cycles. Second, any edge from � that we add to b� closes a cycle.

Lemma 6.3 There is a sign assignment to the vertices of b� so that an edge of b� has
a plus sign if and only if the vertices it connects have the same sign.

Proof of Lemma 6.3 We induct on the number of edges in b� . If there are no edges
there is nothing to prove.

Assume there are edges. In that case at least one component of b� is a tree with more
that one vertex. Such a tree must have a leaf, say v . Remove v and e , the unique
edge of b� connected to v . By induction, there is a sign assignment for the remaining
vertices fulfilling the conditions of the lemma. We now add v and e . Clearly, we can
give v a sign so that the condition of the lemma holds for e . The lemma follows.

Bi Bi

Figure 7: Modifying yD near Bi (negative sign)

We now isotope bT and accordingly modify bD as shown in Figure 7 at each puncture
that corresponds to a vertex with a minus sign. Since this changes the number of
crossings on some of strands of � , we recalculate the signs on the corresponding
edges. Note that the isotopy above adds one or three crossing to every strand of T that
corresponds to an edge of b� with sign �, and zero, two, four or six crossings to every
strand of T that corresponds to an edge with sign C. We easily conclude that every
edge of b� has sign C. Moreover:
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Lemma 6.4 Every edge of � has sign C.

Proof The proof is very similar to the proof that every link projection can be made
into an alternating link projection via crossing change and is left for the reader, with
the following hint: Suppose there exists an edge, say e , whose sign is �. Since we
used a maximal forest, there is a cycle in � (say e1; : : : ; ek ) so that e1 D e and ei

belongs to the maximal forest for i > 1; in particular, exactly one edge of the cycle
has sign �. Use this cycle to produce a (not necessarily simple) closed curve in S2

that intersects the link bT transversely an odd number of times. This is absurd, in light
of the Jordan curve theorem.

Next we prove that X � can be obtained as a 3–fold cover of S3;� with a particularly
nice branch set. We begin with T , bT and bD described above; their properties are
summed up in condition (1) of Lemma 6.5 below. Parts of this argument are similar to
Blair [2]. Recall Definitions 2.5 for standard terms in knot theory.

Lemma 6.5 There exists a link bT in S3 , with projection into S2 denoted by bD , so
that X � is a simple 3–fold cover of S3 n

Sn
iD1 int.Bi/ branched along the tangle

T D bT \ .S3 n
S

i int.Bi// and the following conditions hold:

(1) bT \ Bi D
bRi (recall that bRi projects into Bi as shown in Figure 6), the

projection of int.T nbT / is disjoint from
Sn

iD1 Bi , and the meridian and longitude
of Ti�@X project to horizontal and vertical circles about Bi (respectively, recall
Figure 5).

(2) bD is not a split diagram.

(3) Every simple closed curve in S2 n
S

Bi that intersects bD transversely in two
simple points bounds a disk that intersects bD in a single arc with no crossing.

(4) Let ˛ � S2 be an arc with one endpoint on Bi0 and the other on Bi00 (for
i 0; i 00 D 1; : : : ; n, possibly i 0 D i 00 ) so that int.˛/\ .

S
i Bi/D∅. Then one of

the following conditions holds:
(a) i 0 D i 00 , and ˛ cobounds a disk with @Bi with no crossings.
(b) jint.˛/\ bDj> 2.

(5) In the three-coloring of bD\ .S2 n
Sn

iD1 Bi/ induced by the cover X �! S3;� ,
every crossing is three colored.

(6) bD is alternating.

(7) bT is a knot.

(8) bD has at least two twist regions, and one of them is not adjacent to Bi for any i .
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Remark 6.6 To obtain conditions (1)–(5) we modify bT via isotopy; except for the
move shown in Figure 9, the projection of the support of this isotopy is disjoint fromSn

iD1 Bi . Note that in the move shown in Figure 9 each edge gets and even number of
crossings added. Hence the signs of the edges of � do not change, and Lemma 6.4 still
holds after we obtain conditions (1)–(5). (We use this lemma to obtain condition (6),
and never need it again after that.)

Proof (1) This already holds. We note that none of the moves applied in the proof
of this lemma changes this. We will not refer to condition (1) explicitly.

(2) bD is diagrammatically split if and only if it is disconnected. Suppose bD is discon-
nected, and let Kj and Kj 0 be components of bT that project to distinct components
of bD . Let ˛ � S2 n

Sn
iD1 Bi be an embedded arc with one endpoint on Kj and the

other on Kj 0 (note that Kj ;Kj 0 6�
Sn

iD1 Bi , hence ˛ exists; ˛ may intersect bD in
its interior). We perform an isotopy along ˛ , as shown in Figure 8.

Kj Kj 0

˛

Kj Kj 0

Figure 8: Isotopy along ˛

After that Kj crosses Kj 0 outside
Sn

iD1 Bi ; clearly, this reduces the number of
components of bD . Repeating this process if necessary, condition (2) is obtained.

(3) For each Bi , let N.Bi/ be a collar neighborhood of Bi so that bD\N.Bi/ consists
of the tangle in Bi and four short segments as in the left hand side of Figure 9. We
assume further that for i ¤ j , N.Bi/\N.Bj /D∅. Inside each N.Bi/ perform the
isotopy shown in Figure 9.

Next we count the number of simple closed curves in S2 n
S

i Bi that intersect bD in
two points and do not bound a disk � with bD\� is a single arc with no crossings.
These curves are counted up to diagrammatic isotopy, that is, an isotopy via curves
that are transverse to bD at all time and in particular are disjoint from the crossings.

Let C1; : : : ;Ck be the closures of the components of S2 n .bD[ .Si Bi//. Let ;  0 �
S2 n

S
i Bi be two simple closed curves that intersects bD transversely in two simple

points. Then bD cuts  into 2 arcs, say one in the region Cj and one in Cj 0 . Note
that if j D j 0 , then Cj is adjacent to itself, and in particular there is a simple closed
curve in S2 that intersects bD transversely in one point, which is absurd. Condition (2)
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Bi Bi

Figure 9: Isolating Bi

(connectivity of bD ) is equivalent to all regions being disks, and hence implies that
 and  0 are diagrammatically isotopic if and only if both curves traverse the same
regions Cj and Cj 0 , and  \ @Cj is contained in the same segments of Cj \Cj 0 as
 0 \ @Cj 0 . (See Figure 10; here a segment means an interval I � S2 n

S
i int.Bi/,

so that I � Cj \Cj 0 , @I are crossings or lie on @Bi for some i , and I contains no
crossings in its interior.) For any pair of regions Cj and Cj 0 , let nj ;j 0 be the number
of segments in Cj \ Cj 0 (for example, in Figure 10, nj ;j 0 D 4). Then we see that
the number of simple closed curves that intersect bD in two simple points, traverse
Cj and Cj 0 , and do not bound a disk containing a single arcs of bD (counted up to
diagrammatic isotopy) is

�
nj ;j 0

2

�
, where

�
0
2

�
and

�
1
2

�
are naturally understood to be 0.

Hence the total number of such curves (counted up to diagrammatic isotopy) is

(2)
X

1�j<j 0�k

�
nj ;j 0

2

�
:

Bi
I1

Rj

I2 I3


I4

Rj 0

Figure 10: Segments

Now assume that condition (3) does not hold; then there exist regions Cj and Cj 0 with
nj ;j 0 � 2. Let I be an interval of Cj \Cj 0 . Since we isolated Bi (for all i ) as shown
in Figure 9, the endpoints of I cannot lie on @Bi and must therefore both be crossings.
The move shown in Figure 11 reduces nj ;j 0 by one. This move introduces several new
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Figure 11: Isotopy to reduce Ci;i0

regions, and those are shaded in Figure 11. Inspecting Figure 11, we see that for any
pair of regions Cj , Cj 0 that existed prior to the move, nj ;j 0 does not increase, and for
any pair of regions Cj , Cj 0 with at least one new region, nj ;j 0 is 1 or 0. Hence the
sum in Equation (2) is reduced, and repeated application of this move yields a diagrambD for a link bT for which condition (3) holds; by construction, condition (2) still holds.

(4) This holds thanks to the isotopy performed in the previous step and shown in
Figure 9.

(5) Since bD is the branch set of the simple 3–fold cover X �! S3;� it inherits a
3–coloring as explained in Section 2.1, where the colors are transpositions in S3 . Since
X � is connected, at least two colors appear in the coloring of T (recall Lemma 2.4;
that lemma was stated for covers of S3 but it is easy to see that it holds for covers of
S3;� as well).

Assume there exists a one colored crossing of bD outside
Sn

iD1 Bi , say c , and let p

be a point on a strand of bD that is of a different color than c and so that p 62
Sn

iD1 Bi .
Let ˛ be an arc connecting p and c so that ˛\ .

Sn
iD1 Bi/D∅. If int.˛/ intersects

a strand of bD whose color is different than the color of c , we cut ˛ short at that
intersection. Thus we may assume that any point of int.˛/\ bD has the same color as c .
We apply the move shown in Figure 12 (often used by Hilden, Montesinos and others).

This move reduces the number of one colored crossings outside
S

i Bi , and hence
repeating this move gives condition (5).

We now verify that conditions (2)–(4) still hold. Inspecting Figure 12, we see that
condition (2), which is equivalent to connectivity of bD , clearly holds. A simple closed
curves that intersects bD twice after this moves, intersects it at most twice before the
move. By considering these curves and Figure 12 we conclude that condition (3) holds
as well (in checking this, note that int˛\ bD maybe empty; to rule out one case, you
need to use the coloring: a red arc cannot be connected to a blue arc without a crossing).
For each i , the preimage of @Bi is disconnected; hence the four segments of bD on
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R B B B B

p
˛

c

B

R B B B B

G R

R G
G

G R

R B

Figure 12: Making the crossings 3–colored

the left side of Figure 9 are all the same color. Since bD is connected and has more
than one color, is must have a three-colored crossing, which cannot be contained in
N.Bi/ for any i . We can take the point p in the construction above to be a point near
the three colored crossing, and in particular, we may assume that p 62N.Bi/ for any i .
Therefore this move effects bD\N.Bi/ by adding arcs that traverse N.Bi/ without
intersecting Bi itself, but not changing any of the existing diagram in the right hand
side of Figure 9. Therefore condition (4) holds.

(6) Recall that the tangles bRi are alternating (i D 1; : : : ; n). It is well known that
any link projection can be made into an alternating projection by reversing some of
its crossings. We mark the crossings of bD by ˙, marking a crossing C if we do
not need to reverse it and � otherwise. By reversing all the signs if necessary, we
may assume that the signs in B1 are C. Since the signs of all the edges of � are C
(Lemma 6.4 and Remark 6.6), the signs in every Bi are all C. Thus all the crossings
that are marked � are outside

Sn
iD1 Bi , and hence three colored. We change each of

this crossing using the Montesinos move C1 7! �2 or �1 7! C2, as in the top row of
Figure 1, noting that this does not change the double cover. It is clear that now bD is an
alternating diagram fulfilling conditions (1)–(6).

(7) Assume bT is a link. If there is a crossing outside
S

i Bi that corresponds to two
distinct components of bT , we perform a C1 7!C4 or �1 7!�4 Montesinos move; this
reduces the number of components of T . Assume there is no such crossing, and let ˛
be an arc connecting strands (say s1 and s2 ) that correspond to two distinct components
of bT . Since no Bi contains a closed component, we may assume ˛\ .

S
i Bi/D∅;

furthermore, by truncating ˛ if necessary, we may assume that int.˛/\ bD D∅. By
condition (4) at least one endpoint of s2 is a crossing outside

S
i Bi , say c . If s1 and

s2 have the same color, we replace ˛ with an arc that connects s1 with a strand adjacent
to s2 at c . By condition (5) c is three-colored, and by assumption, both its strands
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correspond to the same component of bT . Thus we obtain an arc that connects distinct
components and has endpoints of different colors. Finally, we assume without loss of
generality that the crossing information at s1 is as shown in Figure 13. Since bD is
connected and alternating, considering the face of the projection sphere S2 containing
˛ , we conclude that the crossing information on s2 is as shown in that figure. We
change bD using a 0 7! ˙3 Montasinos move (as shown in the bottom of Figure 1),
obtaining a diagram fulfilling conditions (1)–(6) that corresponds to a link with fewer
components; see Figure 13.

B B

R G G

S1 S2

R B G

G R

B B

R G G

R B G

G R

B B

R G G

R

G

B

R B G

G R

Figure 13: Making the branch set into a knot

Iterating this process, we obtain a knot.

(8) If this is not already satisfied, we take an arc ˛ �
Sn

iD1 N.Bi/ connecting two
strands of distinct colors and perform the move described in Figure 14, consisting of
two 0!˙6 Montesinos moves. Similar to condition (7) above, since the diagram is
alternating and connected, an appropriate choice of sign will result in an alternating
diagram. It is straightforward to see that conditions (1)–(7) are satisfied.

This completes the proof of Lemma 6.5

We are now ready to complete the proof of Theorem 1.6. Fix X as in the statement
of the theorem and pick a slope on each components of @X , say pi=qi on the torus
Ti � @X ; note that we are using the meridian-longitudes to express the slopes as
rational numbers (possibly, 1=0). Construct a 3–fold simple cover X �! S3;� as in
Lemma 6.5 that corresponds to the appropriate equivalence classes of the slopes (recall
Definition 6.2). For convenience we work with bD , the diagram of bT , that fulfills the
conditions of Lemma 6.5.

We now change the diagram bD by replacing the rational tangle bRi in Bi (that represents
the equivalence class of pi=qi ) with the rational tangle Ri (that realizes the slope
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Figure 14: Adding twist regions

pi=qi ), i D 1; : : : ; n. By construction the four strands of bD that connect to Bi are
single colored, and we color the Ri by the same color. Thus we obtain a diagram of a
three colored link denoted by K .

We claim that K has the following properties:

(1) K is a knot.

(2) K admits an alternating projection.

(3) This projection is nonsplit.

(4) This projection is strongly prime.

(5) K is not a torus knot.

We prove each claim in order:

(1) Since the tangles bRi and Ri are equivalent they connect the same points on @Bi

(Definition 6.2). By Lemma 6.5(7), bT is a knot. Hence K , which is obtained from bT
by replacing bRi by Ri , is a knot as well.

(2) By Lemma 6.5(6), bD is alternating. By the definition of the equivalence classes of
rational tangles, K (which is obtained by replacing bRi by Ri ) admits an alternating
projection.

(3) Let  � S2 be a simple closed curve disjoint from the diagram for K . If  is
diagrammatically isotopic (that is, an isotopy through curves that are transverse to the
diagram at all times) to a curve that is disjoint from

S
i Bi then by Lemma 6.5(2) 

bounds a disk disjoint from bD ; this disk is also disjoint from the diagram of K . If  is
diagrammatically isotopic into Bi , then  bounds a disk disjoint from the diagram for

Algebraic & Geometric Topology, Volume 13 (2013)



956 Yo’av Rieck and Yasushi Yamashita

K since rational tangles are prime. Finally, if  is not isotopic into or out of
S

i Bi ,
we violate condition (4b) of Lemma 6.5. Hence the diagram for K is nonsplit.

(4) This is very similar to (3) and is left to the reader.

(5) By condition (8) the diagram bD has more than one twist region, and at least one
is not adjacent to Bi for any i . The diagram obtained for K is alternating, and hence
no crossing cancellation can occur. Note that any alternating torus knot is a 2; n–torus
knot, and every alternating diagram for it has only one twist region. We conclude that
K is not a torus knot.

By Menasco and Thurston (see Corollary 2.8), conditions (2)–(5) imply that K is
hyperbolic.

Next we note that the 3–coloring of K defines a 3–fold cover of S3 ; by construction,
the cover of S3;� is X � . The cover of each rational tangle is disconnected and
consists of a solid torus attached to Ti � @X with slope pi=qi , and a ball attached to a
component of @X � n @X . Thus we obtain X.p1=q1; : : : ;pn=qn/ as a simple 3–fold
cover of S3 branched over K .

We now isotope each rational tangle Ri to realize its depth, that is, realizing the twist
number of each rational tangle (recall Section 2.5). The twist number of Ri is exactly
depth.pi=qi/. The tangle T (which is the projection of K outside

S
i Bi ) has a fixed

number of twist regions, say t . Hence the total number of twist regions is at most
tC
Pn

iD1 depth.pi=qi/D tCdepth.˛/ (where ˛D .˛1; : : : ; ˛n/ denotes the multislope
on @X , as in Section 1). This gives an upper bound for the twist number for K :

t.K/� t C depth.˛/:

Lackenby [11] (recall Section 2.5 and in particular Theorem 2.9) showed that there
exists a constant c so that:

Vol.S3
nK/� ct.K/:

Hence we get:

KnotVols;3.X.˛1; : : : ; ˛n//� 3 Vol.S3
nK/

� 3ct.K/

� 3ct C 3c.depth.˛//:

By setting A D 3c and B D 3ct , we obtain constants fulfilling the requirements of
Theorem 1.6 that are valid for any multislope ˛0 D .˛0

1
; : : : ; ˛0n/, with ˛0i in the same

equivalence class as ˛i . As there are only finitely many (specifically, 6n ) equivalence
classes, taking the maximal constants A and B for these classes completes the proof
of Theorem 1.6.
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