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Topological complexity of motion planning in projective
product spaces
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We study Farber’s topological complexity (TC) of Davis’ projective product spaces
(PPS’s). We show that, in many nontrivial instances, the TC of PPS’s coming from at
least two sphere factors is (much) lower than the dimension of the manifold. This
is in marked contrast with the known situation for (usual) real projective spaces for
which, in fact, the Euclidean immersion dimension and TC are two facets of the
same problem. Low TC-values have been observed for infinite families of nonsimply
connected spaces only for H-spaces, for finite complexes whose fundamental group
has cohomological dimension at most 2 , and now in this work for infinite families
of PPS’s. We discuss general bounds for the TC (and the Lusternik–Schnirelmann
category) of PPS’s, and compute these invariants for specific families of such man-
ifolds. Some of our methods involve the use of an equivariant version of TC. We
also give a characterization of the Euclidean immersion dimension of PPS’s through
a generalized concept of axial maps or, alternatively (in an appendix), nonsingular
maps. This gives an explicit explanation of the known relationship between the
generalized vector field problem and the Euclidean immersion problem for PPS’s.

55M30, 57R42; 68T40

1 Introduction and notation

As shown by Farber, Tabachnikov and Yuzvinsky in [10], the topological complex-
ity (TC) and the Euclidean immersion dimension (Imm) of the n–dimensional real
projective space Pn are related by

(1) TC.Pn/D Imm.Pn/� �.n/D 2n� ı.n/;

where

�.n/D

(
1 nD 1; 3; 7;

0 otherwise;
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ı.n/D O.˛.n// and ˛.n/ denotes the number of ones in the binary expansion of n.
It is natural to ask whether the nice phenomenon in the first equality in (1) is part of
a general property of manifolds. Not only does this question have a negative answer,
but even close relatives of real projective spaces fail to satisfy the first equality in (1).
For instance, in view of the first author [14] and Astey, Davis and the first author [3],
the failure holds for lens spaces whose fundamental group has torsion of the form 2e

for e > 1. The same answer is observed in a forthcoming paper by two of the authors
in which they study flag manifolds whose fundamental group is an elementary 2–
group of rank greater than 1. This paper now shows that the list of counterexamples
extends to Davis’ projective product spaces, a family of manifolds giving a rather
natural generalization of real projective spaces, and which, in particular, have Z2 as
their fundamental groups (in the ‘generic’ case). Indeed, Theorem 3.8 in this paper
shows that, in contrast to the second equality in (1), the topological complexity of a
projective product space coming from at least two sphere factors can be much lower
than the dimension of the manifold. Thus, in those cases, more than half the homotopy
obstructions in the motion planning problem for Pxn are trivial (cf Remark 3.6 and
the considerations after Theorem 3.8). To the authors’ knowledge, this gives the first
infinite family of nonsimply connected closed manifolds which are not H-spaces and
whose TC is lower than their dimension (cf García-Calcines and Vandembroucq [11]
and Lupton and Scherer [24]; the upper bound in Costa and Farber [6, Theorem 3]
should be noted, too).

In the rest of this introductory section we set up notation and recall needed prelim-
inary results. We use the reduced form of the Schwarz genus (also called sectional
category, and denoted by secat) of a fibration, ie a trivial fibration has zero genus. In
particular, we consider the reduced form of the Lusternik–Schnirelmann category (cat)
and that of Farber’s topological complexity (TC) of a space X —the latter being the
reduced Schwarz genus of the double evaluation map X Œ0;1�!X �X sending a path
 W Œ0; 1�!X to the pair . .0/;  .1//. Thus, cat.X /D TC.X /D 0 for a contractible
space X . We will also assume the reader is familiar with Davis [7], and we next briefly
recall the required results from that paper.

We let xn stand for an r –tuple .n1; : : : ; nr / of positive integers with n1 � � � � � nr .
We consider the diagonal action of Z2 on Sxn WD Sn1 � � � � �Snr , and let Pxn denote
the resulting orbit space (so P.n1/ is the usual real projective space Pn1 ). We set
jxnj WD dim.Pxn/D dim.Sxn/D

P
ni and `.xn/D r . The real line bundle associated to

the obvious covering Sxn! Pxn , denoted by �xn and called the canonical line bundle
over Pxn , can be used to identify the stable class of the tangent bundle �Pxn since

(2) �Pxn ˚ r"� .jxnjC r/�xn:

Algebraic & Geometric Topology, Volume 13 (2013)



Motion planning in projective product spaces 1029

Here " stands for a trivial line bundle.

The total space of the k –fold iterated Whitney sum of �xn is given by the Borel
construction k�xn D Sxn �Z2

Rk . In particular, the projectivization of k�xn is given by

(3) P .k�xn/D Pxn �Pk�1:

The diagonal inclusion Sn1 ,! Sxn and the projection onto the first factor Sxn! Sn1

induce corresponding maps j W Pn1 ,! Pxn and pW Pxn! Pn1 satisfying

(4) j �.�xn/� �n1
; p�.�n1

/� �xn; p ı j D Id:

For 2� i � r there are mod 2 cohomology classes xi in Pxn with dim.xi/D ni such
that the mod 2 cohomology ring of Pxn is given by

(5) H�.PxnIZ2/DH�.Pn1 IZ2/˝ƒŒx2; : : : ;xr �;

where ƒ denotes an exterior algebra with the only exception that, if n1 is even, then
x2

i D xn1xi whenever ni D n1 . Here x 2H 1.Pn1 IZ2/ satisfies

(6) x D w1.�xn/; but all classes xi restrict trivially under the inclusion j:

We also need the concept of ‘generalized axial map’ as defined in [3]: For a real vector
bundle ˛ over a space X , we let S.˛/ and P .˛/ stand, respectively, for the sphere and
projectivized bundles associated to ˛ . Let h˛ denote the Hopf line bundle over P .˛/

splitting off ��.˛/, where � W P .˛/!X is the projection. A Hopf-type map1 for ˛
is any continuous map P .˛/! PN for which the composite P .˛/! PN ,! P1

classifies h˛ . In particular, (3) allows us to talk about Hopf-type maps defined on
products of the form Pxn �Ps .

Acknowledgements The authors wish to thank Peter Landweber for useful sugges-
tions on a preliminary version of this paper. The first author was supported by
CONACYT Grant 102783 during the time this research was conducted. The fourth
author would like to thank CONACYT grant 168349 and ABACUS, CONACYT grant
EDOMEX 2011-C01-165873.

2 Immersion dimension and axial maps

Consider a pair of sequences xnD .n1; : : : ; nr / and SmD .m1; : : : ;ms/.

1This is called an ‘axial map’ in [3], but we have to modify the name in view of Definition 2.1 in the
next section.
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Definition 2.1 A continuous map ˛W Pxn�PSm! P1 is said to be axial if its restriction
to each of the axes classifies the corresponding canonical bundle. By (6) this means
that ˛ corresponds to the class x˝ 1C 1˝x . A continuous map Pxn �PSm! PL is
called axial if the composite Pxn �PSm! PL ,! P1 is axial.

Remark 2.2 By (4), the existence of an axial map Pxn � PSm ! PL depends only
on n1 and m1 . In particular, according to [10], if n1 Dm1 , TC.Pn1/ is the minimal
integer L for which there is an axial map Pxn �PSm! PL . In any case, an axial map
Pxn �PSm! PL can exist only if L�maxfn1;m1g.

A slightly weaker concept of axiality arises by requiring that the restriction of the
map ˛W Pxn � PSm! P1 to j � j W Pn1 � Pm1 ,! Pxn � PSm is axial in the usual sense.
Yet, nothing is lost with respect to the more restrictive Definition 2.1 if we only care
(as we will in this subsection) about the existence of such maps. Indeed, in view
of (5), the only potential problem arises when n2 D 1 or m2 D 1. To fix ideas,
assume n2 D � � � D n` D 1< n`C1 .`� r/. Then, the restriction of ˛ to its first axis
might conceivably correspond to a class of the form xC

P`
iD2�ixi . Although such

a situation is perfectly attainable, it can be easily fixed. Indeed, [7, Theorem 2.20]
asserts that, under the present conditions, Pxn is homeomorphic to .S1/`�1�Pxq , where
xq D .1; n`C1; : : : ; nr /. Thus, unless m2 D 1 (in which case the following adjustment
would have to be made on the second axis, too), the required axial map is given by the
composite Pxn �PSm! Pxn �PSm! P1 where the first map is  � 1, the second map
is ˛ and  is the projection Pxn! Pxq followed by the inclusion Pxq ,! Pxn .

As a consequence of Remark 2.2, the nice relationship between TC and the existence
of suitable axial maps between (usual) real projective spaces cannot hold for a Pxn with
`.xn/ > 1. Yet, the axial map approach2 can be used to characterize the immersion
dimension of Pxn in a suitable range of dimensions. Indeed, the following are standard
consequences of [7] and Sanderson [28]:

(I) The existence of a smooth immersion Pxn # RM implies the existence of an
axial map Pn1 �PjxnjCr�1! PMCr�1 .

(II) The converse of (I) holds provided that Pxn is not stably parallelizable and
n1 < 2.M � jxnj/.

We will now elaborate on the previous facts from a purely ‘projective-product’ viewpoint,
without relying on the connection through the generalized vector field problem.

2The next two sections deal with TC.Pxn/ .
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Proposition 2.3 The existence of an immersion Pxn # RM implies the existence of a
Hopf-type map Pxn �PjxnjCr�1! PMCr�1 .

Proof Let " be the trivial line bundle over Pxn and � the normal bundle of the given
immersion. From (2) we have the composite

.jxnjC r/�xn ,! .jxnjC r/�xn˚ � D .�Pxn ˚ r"/˚ � D .M C r/":

The required Hopf-type map is given by the composite

Pxn �PjxnjCr�1
D P ..jxnjC r/�xn/ ,! P ..M C r/"/D Pxn �PMCr�1 proj

��! PMCr�1

(cf [3, Section 2]).

Remark 2.4 The converse of Proposition 2.3 can be proved (under an additional
hypothesis) in terms of a standard application of Haefliger–Hirsch homotopy approx-
imation of monomorphisms by skew-maps in the metastable range (see Haefliger
and Hirsch [18], compare with Adem, Gitler and James [2] or [3, Corollary 2.8]/.
Indeed, the axial map in the conclusion of Proposition 2.3 is double covered by a
Z2 –equivariant map

S..jxnjC r/�xn/D Sxn �Z2
S jxnjCr�1

! SMCr�1:

This and the projection .jxnjCr/�xn!Pxn determine a map S..jxnjCr/�xn/!Pxn�SMCr�1

which, after radial extension, yields a skew map .jxnj C r/�xn ! .M C r/" over Pxn .
Theorem 1.2 in [18] claims that the latter map can be skew-deformed to a bundle
monomorphism �W .jxnjC r/�xn ,! .M C r/" provided

(7) 3jxnj< 2M:

Coker.�/ is then an .M �jxnj/–dimensional bundle which, after taking into account (2)
and cancelling r trivial sections, yields an isomorphism �Pxn ˚Coker.�/DM ". Thus
Hirsch [19] asserts that Coker.�/ is the normal bundle of an immersion, as required.

Of course, the hypothesis (7) is much stronger than the arithmetical condition in (II),
a hypothesis where n1 plays a more relevant role (and which is in accordance with
Remark 2.2).

Proposition 2.5 There is a Hopf-type map Pxn �PjxnjCr�1! PMCr�1 if and only if
there is an axial map Pn1 �PjxnjCr�1! PMCr�1 .

Algebraic & Geometric Topology, Volume 13 (2013)



1032 Jesús González, Mark Grant, Enrique Torres-Giese and Miguel Xicoténcatl

Proof In view of (6), it suffices to check that the map Pxn � PjxnjCr�1 ! P1 that
classifies the Hopf line bundle h.jxnjCr/�xn corresponds to x ˝ 1C 1˝ x . For this
purpose, we may assume without loss of generality that the given Hopf-type map
arises from an immersion as in Proposition 2.3 (say for a large enough M —this is
irrelevant for the intended goal). Then, with the notation of that result, we see from (4)
that, by restricting the isomorphism .jxnjC r/�xn˚ � D .M C r/" under the inclusion
j W Pn1 ,! Pxn , we get a Hopf-type map

Pn1 �PjxnjCr�1
D P ..jxnjC r/�n1

/ ,! P ..jxnjC r/�xn/D Pxn �PjxnjCr�1
! PMCr�1;

which, as proved in [2], must also be an axial map. Thus, (6) implies that h.jxnjCr/�xn

corresponds, under the identification P ..jxnjC r/�xn/D Pxn �PjxnjCr�1 in (3), to a class
of the form

1˝xC
�
xC

X
�ixi

�
˝ 1;

where the summation runs over indices i with ni D 1, and each �i is either 0 or 1.
But the first isomorphism in (4) and the naturality of the construction of Hopf line
bundles imply �i D 0 for all relevant i .

Example 2.6 The arithmetical hypothesis in (II) above is superfluous when `.xn/D 1,
but it is needed if `.xn/ > 1. From our perspective, such a phenomenon is due to the fact
that, although an immersion Pn # RM can exist only within Haefliger’s metastable
range (ie with 3n< 2M , see [2]), as noted in [7], a projective product space Pxn with
`.xn/ > 1 usually admits (very) low-codimension Euclidean immersions—compare to
Remark 2.8 below. For instance3, the nonparallelizable P.12;14/ does not immerse
in R30 in view of [7, Theorem 3.4], [28, Lemma 2.2], and Lam and Randall [23] (in
that order), but the existence of the corresponding axial map in (I) is obtained in [23]
through a Postnikov tower argument.

Despite Example 2.6, the method of proof of the main result in [2] yields the following.

Proposition 2.7 If gd.�.jxnjCr/�n1
/>d.n1C 1/=2e, then the arithmetical hypothesis

in (II) is superfluous.

Proof Seeking a contradiction, assume that, for some M , there is an axial map
Pn1 � PjxnjCr�1! PMCr�1 but that the nonstably parallelizable Pxn does not immerse
in RM . Without loss of generality we can assume that M D imm.Pxn/ � 1 > jxnj.
Then, [7, Theorem 3.4] gives

M � jxnj D imm.Pxn/� jxnj � 1D gd.�.jxnjC r/�n1
/� 1�

ln1C 1

2

m
;

3We thank Kee Lam for kindly pointing out this example.
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which amounts to having the arithmetical hypothesis in (II).

Remark 2.8 By the same line of reasoning as in Example 2.6, it follows from
Adams [1] that, for any large n1 , there are instances of spaces P.n1;:::;nr / for which
the hypothesis in Proposition 2.7 fails.

It is worth mentioning that, for n1 � 9, the arithmetical hypothesis in (II) above is
superfluous4. As in the proof of Proposition 2.7, such an assertion can be verified by
checking that, in the indicated range, there is no axial map Pn1 �PjxnjCr�1! PMCr�1

with M D imm.Pxn/�1> jxnj. Indeed, under the current hypothesis, such an axial map
is prevented by the relation

(8) .xCy/MCr
¤ 0;

where x and y denote respectively the generators of the mod 2 cohomology groups
H 1.Pn1 IZ2/ and H 1.PjxnjCr�1IZ2/. Explicitly, the basis element xgyjxnjCr�1 2

H�.Pn1 �PjxnjCr�1IZ2/ appears in the expansion of (8) with coefficient

(9)
�
jxnjC r Cg� 1

g

�
;

where g D gd.�.jxnjC r/�n1
/. But, under the current hypothesis, a direct verification

using Lam [22] (or, alternatively, [7, Table 4.4 or Proposition 4.5]) shows that (9) is odd.
For instance, consider the case n1 D 6, where the assumption that Pxn is not stably par-
allelizable means jxnjC r 6� 0 mod 8. Then, [7, Table 4.4] gives gD .6; 6; 5; 4; 3; 2; 1/

for jxnjC r � .1; 2; 3; 4; 5; 6; 7/ mod 8. So�
jxnjC r Cg� 1

g

�
�

��
6

6

�
;

�
7

6

�
;

�
7

5

�
;

�
7

4

�
;

�
7

3

�
;

�
7

2

�
;

�
7

1

��
� 1 mod 2:

We close this subsection by remarking that, just as the situation in Example 2.6 for
the condition n1 < 2.M � jxnj/, the hypothesis that Pxn is not stably parallelizable
is also needed in (II). Yet, the full TC-axial picture is well understood in the stably
parallelizable case. In fact, the situation is entirely similar to that in the classical case
with `.xn/D 1, where there are well-known axial maps Pn �Pn! Pn for nD 1; 3; 7,
but of course no immersion Pn # Rn . Namely, since the immersion dimension of a
stably parallelizable Pxn is jxnjC 1, there is an axial map Pxn � PjxnjCr�1! PjxnjCr . But
there is a finer (and optimal) axial map

(10) Pxn �PjxnjCr�1
! PjxnjCr�1

4Kee Lam has brought to the authors’ attention that the smallest case where the arithmetical hypothesis
in (II) is actually needed takes place when n1 D 10 .
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(which cannot come from an immersion). Indeed, as shown in [7], the stable paralleliz-
ability of Pxn means that the exponent in the highest 2–power dividing jxnjCr is no less
than �.n1/—the number of positive integers less than or equal to n1 and which are
congruent to 0, 1, 2, or 4 mod 8. Therefore, classical work of Hurwitz, Radon, and
Eckmann on the so-called Hurwitz–Radon matrix equations gives in fact a nonsingular
bilinear map Rn1C1 �RjxnjCr !RjxnjCr and, in view of Remark 2.2, an axial map of
the form (10). An intriguing possibility is that explicit ‘linear’ formulæ leading to an
axial map (10) could be deduced from a refinement of the Clifford-algebra input in the
Hurwitz–Radon number—without relying on Remark 2.2.

3 Topological complexity

In this section we give several general estimates for TC.Pxn/. We find TC.Pxn/<dim.Pxn/
in certain cases, indicating that a simple relation to immersion dimension such as (1)
does not hold for these manifolds. We also compute the exact value of TC.Pxn/ in many
cases (Proposition 3.7), and give evidence toward the appealing possibility that TC.Pxn/
would depend mostly on TC.Pn1/ and `.xn/.

Let S1 stand for the r –tuple .1; : : : ;1/, and let PS1 denote the quotient of
Q

r S1

by the diagonal action of Z2 (with the antipodal action on each factor). Note that PS1
is an Eilenberg–Mac Lane space K.Z2; 1/ containing Pxn .

Lemma 3.1 There is a CW decomposition for PS1 whose n1 –skeleton is contained
in Pxn .

Proof Let e0
C[ e0

�[ � � � [ em
C [ em

� be the usual Z2 –equivariant cell structure on a
sphere Sm , and consider the resulting product structure

(11) Sxn D
[

e
i1

˙
� � � � � e

ir

˙
:

If � stands for the generator of Z2 , then a cell structure on Pxn can be formed by
identifying a cell e

i1

˙
� � � � � e

ir

˙
in (11) with the corresponding cell � � .ei1

˙
� � � � � e

ir

˙
/.

If `.Sm/D `.xn/ and ni �mi , then the inclusion Pxn ,! PSm contains the n1 –skeleton
of PSm . Thus the required cell structure in PS1 is the inductive one under the above
inclusions.

We are indebted to Sergey Melikhov for pointing out (in Melikhov [25]) the proof of
the following fact.
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Proposition 3.2 Let M m and N n be closed smooth manifolds, and let C1.M;N /

denote the space of smooth maps in the Whitney C1–topology. Then for f W M !N

in a dense subset of C1.M;N /, the fibers f �1.y/ with y 2N are all polyhedra of
dimension less than or equal to max.m� n; 0/.

Proof First we note that the set of triangulable maps is dense in C1.M;N /. Recall
that a smooth map f W M ! N is triangulable if there exists a PL map gW K! L

between PL manifolds, and homeomorphisms hW M !K and h0W N !L such that
g ı hD h0 ıf . By Verona’s proof of Thom’s triangulation conjecture [29], we know
that all proper, topologically stable maps f W M !N are triangulable. By the Thom–
Mather theorem (a full proof of which appears in Gibson, Wirthmüller, du Plessis and
Looijenga [12]), such maps form an open dense subset of C1.M;N /.

Next, we note that the fibers f �1.y/ of a triangulable map f W M ! N are all
polyhedra (they are homeomorphic to simplicial complexes). For given y 2N , we may
choose a triangulation h0W N !L as above with h0.y/ a vertex of L. Then f �1.y/

is homeomorphic with g�1.h0.y//, a subcomplex of K .

Finally, we claim that for f W M!N in an open dense subset of the space C1.M;N /,
the fibers f �1.y/ all have covering dimension less than or equal to max.m� n; 0/.
Intersecting this set with the set of proper, topologically stable maps, we find an open
dense set of maps whose fibers are all polyhedra of covering dimension less than or
equal to max.m�n; 0/. Since covering dimension is a topological property, this proves
the Proposition.

The proof of the final claim follows from the multijet transversality theorem by Gol-
ubitsky and Guillemin [13], which implies that for an open dense set of mappings
f W M !N , the fibers f �1.y/ all have the structure of a smooth submanifold of M of
dimension max.m�n; 0/ away from at most finitely many isolated singular points.

Theorem 3.3 TC.Pxn/� 2jxnj �n1C 1 for `.xn/ > 1. On the other hand, the following
numbers are equal, giving a lower bound for TC.Pxn/:

� the Schwarz genus of the obvious double cover Sxn �Z2
Sxn! Pxn �Pxn ;

� the smallest integer L for which .LC 1/�xn˝ �xn admits a nowhere zero section;

� the smallest integer L for which there is an axial map Pxn �Pxn! PL ;

� TC.Pn1/.

Proof It follows from Remark 2.2 and the first two conditions in (4) that the number
described in each of the first three items does not change if xn is replaced by n1 (for
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the first item we use the fact that the indicated double cover is the sphere bundle
associated to �xn ˝ �xn ). Therefore, the equality of the four listed numbers follows
from [10, Theorem 6.1]. The fact that they give a lower bound for TC.Pxn/ follows
from the third condition in (4) and the behavior of TC under retracts.

We use the argument by the second author in [16, Corollary 4.5] (which is inspired
in turn by Oprea and Walsh [27]) to prove the upper bound in this theorem. Set
LD2jxnj�n1C1. By (1) and Remark 2.2, we can choose an axial map qW Pxn�Pxn!PL .
Since the axial condition is homotopical, we can assume first that q is smooth and then,
by Proposition 3.2, that for each z 2 PL the inverse image q�1.z/ is homeomorphic
to a CW complex of dimension at most n1�1. Then, the axiality of q implies that the
image of the class x in (6) under the composite

(12) q�1.z/ ,! Pxn �Pxn
�i
�! Pxn

is independent of the projection �i W Pxn�Pxn! Pxn (i D 1; 2) used. In fact, Lemma 3.1
and the dimensionality assumption on q�1.z/ imply that the actual homotopy type
of (12) is independent of i . The result then follows from [16, Lemma 2.5 and Theo-
rem 4.3].

Of course, part of the argument for the lower bound in Theorem 3.3 actually yields
TC.Pn1/ � TC.P.n1;n2// � � � � � TC.P.n1;:::;nr�1// � TC.Pxn/. On the other hand, the
argument proving the upper bound uses and corrects the proof of [16, Corollary 4.5]
which, instead of using Proposition 3.2, is based on an assertion about approximating
axial maps by submersions. But such a claim is false in general, as illustrated next.

Example 3.4 Since P2 # R3 , there exists an axial map qW P2 � P2! P3 . Note that
2 < 3 < 2 � 2D 4. However, q is not homotopic to a submersion. In fact, there does
not exist any submersion P2 � P2! P3 , by the following easy argument involving
Stiefel–Whitney classes: Suppose gW P2 �P2! P3 is a submersion. Then we obtain
the short exact sequence of vector bundles over P2 �P2

0!E! T .P2
�P2/

dg
��! g�T .P3/! 0;

where the kernel E is a real line bundle. It then follows that

w.P2
�P2/D w.E/g�w.P3/D w.E/

(the latter equality since P3 is parallelizable). But this is impossible since, for example,
w2.P2 �P2/¤ 0.
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Remark 3.5 It is possible to prove the upper bound in Theorem 3.3 by applying [11,
Theorem 3] to an axial map Pxn � Pxn ! P2jxnj�n1C1 and noticing that the canonical
inclusion Pxn ,!P2jxnj�n1C1 is an n1 –equivalence. We have chosen the approach in [16]
due to the intrinsic interest of Proposition 3.2.

Remark 3.6 The standard upper bound TC � 2 dim means that, in general, there
are up to twice dim.X / classical homotopy obstructions to consider when bounding
TC.X / from above. For instance, the top two are central in [6], with the very top one
being critical for Costa–Farber’s applications—the next-to-the-top one comes for free
from Berstein [4]. Thus, the upper bound in Theorem 3.3 is already taking care of the
first n1 � 1 of these obstructions for X D Pxn . But actually many more obstructions
are dealt with by Theorem 3.8 below.

The problem of explicitly computing the exact value of the topological complexity of
real projective spaces (ie the immersion problem of those manifolds) is an extremely
difficult one, nowadays lacking of even a concrete guess on how the numerical solution
should be. Indeed, not only can the gap between known upper and lower bounds be
arbitrarily large, but the most accurate known information available today applies only
to limited families of projective spaces (those whose dimension has a rather short
dyadic expansion). It is in this sense that a general result about the computation of the
topological complexity of projective product spaces cannot be expected to be more
accurate than what happens for its special case of real projective spaces. Nonetheless,
we next discuss a number of cases for which the general bounds in Theorem 3.3 can be
largely improved. In particular, Proposition 3.7 below describes the precise value of
the topological complexity of an infinite family of projective product spaces Pxn (those
where n1 is a 2–power with n1 dividing twice ni C 1 for i > 1).

The lower bound in Theorem 3.3 ignores information which comes from the product
Sn2�� � ��Snr . For instance, [10, Theorem 4.5], (5) and ‘zero-divisors’ cup-length (zcl)
considerations (as defined by Farber in [8]) easily yield

(13) TC.Pxn/� 2eC1
C `.xn/� 2; provided n1 � 2e;

which improves by an arbitrarily large amount the lower bound in Theorem 3.3 when
`.xn/� 0. On the other hand, the general philosophy behind (1) implies that the lower
bound in Theorem 3.3 can be much stronger than that in (13) if `.xn/D 2. For instance
James [20] gives

(14) TC.P.2e�1;2e�1//� TC.P2e�1/� 2eC1
� 2e� .2; 1; 1; 3/;

provided e � .0; 1; 2; 3/ mod 4, a bound which is almost twice that in (13). Of
course, further results of this sort can be deduced from our current knowledge of the
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immersion dimension of (usual) real projective spaces. In view of the first and third
authors and Velasco-Fuentes [15, Theorems 2.1 and 2.4], it should be possible to
use zcl-considerations based on generalized cohomology theories in order to insert
the nice `.xn/–feature of (13) into the lower bound in Theorem 3.3, thus merging the
corresponding strengths of (13) and (14) into a single lower bound (we hope to explore
such a possibility elsewhere).

More interesting is the fact that TC.Pxn/ can be arbitrarily smaller than the dimension
of Pxn . The simplest of such situations originates from the subadditivity of TC [8],
as TC.Pxn/ � TC.PSm/ � 2 whenever Pxn � PSm � Sni (the latter decomposition is
characterized arithmetically in [7, Theorem 2.20]). As an extreme situation consider
the following partial analogue of [7, (2.21)].

Proposition 3.7 Let �.n1/ be the number of positive integers less than or equal to n1

which are congruent to 0, 1, 2, or 4 .mod 8/. If �.ni C 1/� �.n1/ for all i > 1, then

zclZ2
.Pn1/C `.xn/� 1� TC.Pxn/� TC.Pn1/C `.xn/� 1:

Further, both inequalities above become equalities precisely for n1 a 2–power.

Proof The first inequality is (13); the second inequality follows from [7, Theorem 2.20].
The final assertion follows from the standard fact that TC.Pn1/D zclZ2

.Pn1/ precisely
for n1 a 2–power.

Proposition 3.7 suggests the possibility that TC.Pxn/ can be estimated for any xn in terms
of TC.Pn1/ and `.xn/ alone. Theorem 3.8 below (whose proof is postponed to the next
section) fits into such a general philosophy, and shows that the low TC-phenomenon in
Proposition 3.7 holds even if there are no spheres factoring out Pxn .

Theorem 3.8 If k denotes the number of spheres Sni with ni even and i > 1, then
TC.Pxn/ < .TC.Pn1/C 1/.`.xn/C k/.

The upper bound in Theorem 3.8 will be much lower than the dimension of Pxn provided
the sum n2C� � �Cnr is large enough—which can hold even if there are no spheres Sni

factoring out Pxn . Thus, in such cases, most of the homotopy obstructions in the motion
planning problem for Pxn already vanish. It is worth noticing that TC.Pxn/ is not always
less than dim.Pxn/: If 1r stands for the r –tuple .1; : : : ; 1/, then TC.P1r /D dim.P1r /,
in view of Proposition 3.7. On the other hand, the upper bound in Theorem 3.8 does not
always improve that in Theorem 3.3. For instance, in the case of P.2e;2e/ , the former
bound is 6 � 2e while the latter one is only 3 � 2eC 1.
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4 Equivariant topological complexity

In a recent paper [5] Hellen Colman and the second author explore an equivariant
generalization of topological complexity, in the setting of compact group actions. Here
we give additional examples and facts which will be useful in applying their results to
the estimation of topological complexity of projective product spaces.

Let G be a compact Hausdorff topological group (in our present applications G will
be the cyclic group Z2 ). If pW E!B is a G –map, the equivariant sectional category
of p , denoted secatG.p/, is defined in [5, Section 5] to be the least integer k such
that B may be covered by k G–invariant open sets U1; : : : ;Uk on each of which
there exists a G–homotopy section, that is a G–map si W Ui ! E such that p ı si

is G–homotopic to the inclusion �Ui
W Ui ,! B . If p is a G–fibration, then this is

equivalent to requiring the existence of a G –section si W Ui!E , ie a G –map si such
that p ı si D �Ui

.

In particular, for any G –space X the equivariant topological complexity of X is defined
in [5, Section 6] to be the equivariant sectional category of the double evaluation map
X Œ0;1�!X �X . Here G acts diagonally on the product and by composition on the
path space of X .

In keeping with the conventions in place in this paper, we will define the equivariant
topological complexity to be one less than the number of sets in the open cover; thus

TCG.X /D secatG.X Œ0;1�
!X �X /� 1:

Lemma 4.1 Let G D Z2 act antipodally on the sphere Sn , where n� 1. Then

TCG.S
n/D

(
1 if n is odd,

2 if n is even.

Proof We argue that the usual motion planning rules on the spheres can be made
equivariant with respect to the antipodal action, by choosing vector fields which are
equivariant.

Suppose n is odd. Then the projective space Pn has zero Euler characteristic and so
admits a nowhere-vanishing vector field. Using the double cover immersion Sn!Pn ,
this pulls back to a nowhere-vanishing vector field v on Sn which is equivariant in
the sense that dg.v.A//D v.gA/ for g 2G and A 2 Sn . We consider the open sets
U0 D f.A;B/ 2 Sn � Sn j A ¤ �Bg and U1 D f.A;B/ 2 Sn � Sn j A ¤ Bg. We
define s0 on U0 by choosing the shortest geodesic path from A to B (traveled at
constant velocity). We define s1 on U1 in two stages: First travel from A to �A along
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the great circle in the direction determined by v.A/; second travel from �A to B

along the shortest geodesic path. It is easy to check that these sets and motion planning
rules are G –invariant.

When n is even, removing a point ŒC � from Pn gives an open manifold homotopy
equivalent to Pn�1 , which therefore admits a nowhere-vanishing vector field. Again we
pull this back to obtain a nowhere-vanishing equivariant vector field v0 on Sn�f�C;C g.
We let U0 and s0 be as before. We let U 0

1
D f.A;B/ 2 Sn�Sn jA¤B;C;�C g and

define s0
1

using v0 similarly to s1 . Finally we let U 0
2
D f.A;�A/ j A 2W [�W g,

where W is a small open disk neighbourhood centred on C . The path s0
2
.A;�A/ for

A2W travels first along the geodesic segment to the centre C of W ; then along some
fixed path  from C to �C ; then along the geodesic segment in �W to �A. For
A 2 �W the path s0

2
.A;�A/ travels first along the geodesic segment in �W to �C ;

then along � from �C to C ; then along the geodesic segment in W to �A.

The lower bounds are given by the obvious inequality TC.X /� TCG.X /, which holds
for any G –space X .

Theorem 4.2 Let G be a compact Lie group, and let X and Y be smooth G–
manifolds. Then

TCG.X �Y /� TCG.X /CTCG.Y /;

where X �Y is given the diagonal G –action.

Proof Let TCG.X /D n and TCG.Y /Dm. Suppose that X �X D U0 [ � � � [Un ,
where the Ui are open invariant sets with G–sections si W Ui ! X Œ0;1� . Suppose
further that Y � Y D V0 [ � � � [ Vm , where the Vj are open invariant sets with G–
sections �j W Vj ! Y Œ0;1� . We can find a G –invariant partition of unity ffig on X �X

subordinate to fUig (see Guillemin, Ginzburg and Karshon [17, Corollary B.33]).
Likewise let fgj g be a G –invariant partition of unity on Y �Y subordinate to fVj g.

The rest of the proof proceeds by direct analogy with the proof in the nonequivariant
case given in [8, Theorem 11], hence is omitted.

Remark 4.3 Theorem 4.2 is certainly not the most general setting in which the product
inequality holds. For instance, we believe it holds whenever X and Y are G –ENRs.

Corollary 4.4 Consider the diagonal action of Z2 on Sxn D Sn1 � � � � � Snr . If k

denotes the number of spheres with ni even, then

TCG.Sxn/D `.xn/C k:
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Proof This follows from Lemma 4.1, Theorem 4.2, and [8, Theorem 13] as the first
and third terms in

TC.Sxn/� TCG.Sxn/�

rX
iD1

TCG.S
ni /

agree.

The main result we will apply from [5] gives an upper bound for the (nonequivariant)
topological complexity of a Borel fibration in terms of the topological complexity of
the base and the equivariant topological complexity of the fiber.

Theorem 4.5 ([5, Theorem 6.21]) Let X be a G –space, and let E!B DE=G be
a numerable principal G –bundle. Then

TC.XG/ < .TCG.X /C 1/.TC.B/C 1/;

where XG DE �G X is the corresponding Borel space of X .

Proof of Theorem 3.8 Let SmD .n2; : : : ; nr /. Note Pxn can be thought of as the Borel
space Sn1 �Z2

SSm . The result then follows from Corollary 4.4 and Theorem 4.5.

The argument in the proof of Theorem 3.8 can be used to give low upper bounds for
the LS-category of projective product spaces (extending the phenomenon in [7, (2.21)]
when Pxn has a full set of factoring spheres). Namely

(15) cat.Pxn/ < .n1C 1/`.xn/:

Since TC� 2cat, we get in particular

(16) TC.Pxn/ < 2.n1C 1/`.xn/� 1;

which improves on Theorem 3.8 only when Pxn comes from a product having ‘enough’
even dimensional spheres, ie k � Cn1

`.xn/ where

Cn1
D

2n1C 1�TC.Pn1/

TC.Pn1/C 1
:

Note that, although k � `.xn/, Cn1
� 1 for any ‘generic’ n1 .

Just as (16) and Theorem 3.8 may fail to improve the upper bound in Theorem 3.3, the
bound in (15) is not always useful (for instance if all the ni are equal). For such cases
it is worth keeping in mind that, in view of [4, Theorem 3.5], the standard estimate
cat � dim is improved by the inequality cat.Pxn/ < dim.Pxn/ provided n1 > 1 and
`.xn/ > 1.
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5 Some explicit motion planning algorithms

Recall that a motion planning algorithm (MPA) on a space X is a (perhaps noncon-
tinuous) section sW X �X !X Œ0;1� for the double evaluation map X Œ0;1�!X �X .
There are several (equivalent, if X is an ENR) ways s can be characterized to be tame
(see Farber [9, Definition 4.4 and Proposition 4.12]). For the purposes of this paper we
require that there is a nested sequence of open sets

(17) ¿D U0 � U1 � U2 � � � � � UkC1 DX �X

so that s is continuous on each difference UiC1�Ui (0� i � k ). Thus, the minimal k

in any such decomposition of X �X is the topological complexity of s , whereas
TC.X / is the minimal topological complexity of MPA’s on X . Note that the above
condition of tameness is obviously met when s is continuous on each member of a
covering fUig1�i�kC1 of X �X .

In this section, we describe two ways of constructing tame MPA’s of practical use
on projective product spaces that realize some of the upper bounds in Section 3. We
first use [9, Theorem 4.49] in order to spell out the argument used in the proof of
Proposition 3.7. The algorithm that we will describe applies to those Pxn satisfying the
conditions in that proposition. For concreteness we will focus on the case of P.2;3/ ,
although the steps described by our algorithm can be applied regardless of whether n1

is a 2–power (for instance, we may construct of an MPA on P.5;7/ of topological
complexity eight, which is at most one unit away from being optimal in view of
Proposition 3.7). Start with the easy MPA sW S3�S3! .S3/Œ0;1� given so that s.x;y/

is the path at constant velocity following the geodesic from x to y . Here we have
to choose the geodesic in the direction of a fixed nowhere-zero vector field on S3 , if
xD�y . It is standard that s is optimal as its topological complexity is that of S3 . On
the other hand, an equally optimal MPA � W P2�P2! .P2/Œ0;1� is described in [10, proof
of Proposition 6.3]. It is given in such a way that, for a pair of lines .L1;L2/2 P2�P2 ,
�.L1;L2/ is the constant-speed rotation about the origin from L1 to L2 in the plane
they generate so that

(a) the rotation swipes the acute angle, if L1 and L2 are not perpendicular (in
particular, the rotation is in fact static for L1 DL2 );

(b) the rotation projects to the canonical orientation on the .x1;x2/–plane, if L1

and L2 have different and nondegenerate projections onto that plane;
(c) the rotation projects to the canonical orientation on the .x1;x3/–plane, if L1

and L2 have different and nondegenerate projections onto that plane;
(d) L1 and L2 must have different and nondegenerate projections onto the .x2;x3/–

plane, and the rotation projects to the canonical orientation on that plane.
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The proof of [9, Theorem 4.49] asserts that the cartesian product .�; s/ gives an MPA
on P2�S3 . The required MPA �W P.2;3/�P.2;3/! .P.2;3//Œ0:1� then follows in terms
of the homeomorphism

P.2;3/ Š P2
�S3;

Œx;y�$ .Œx�;xy/;
(18)

noted in [7, part (1) of Theorem 2.20] where the product xy refers to multipli-
cation in the quaternions H (with R3 ,! R4 D H being the inclusion onto the
first three coordinates). Explicitly, given a ‘time’ parameter t 2 Œ0; 1� and a pair
.Œx1;y1�; Œx2;y2�/ 2 P.2;3/ �P.2;3/ ,

�.Œx1;y1�; Œx2;y2�/.t/D Œat ; xatbt �;

where at 2 S2 is any representative for �.Œx1�; Œx2�/.t/ 2 P2 , xat is the quaternion
conjugate of at , and bt D s.x1y1;x2y2/.t/2S3 . The optimality of � is guaranteed by
Proposition 3.7. The corresponding nested open sets in (17) can be explicitly described
in terms of (18) and (a)–(d) using [9, Theorem 4.49]; the verification of the easy details
is left to the reader (cf [10, Section 9]).

Next we describe an MPA realizing the upper bound given by Theorem 3.8. To fix
ideas, we focus on the case of P.n1;n2/ with n2 odd, assuming an MPA for Pn1 is given
via a nonsingular map

(19) � D .�1; : : : ; �kC1/W R
n1C1

�Rn1C1
!RkC1

through the explicit construction in [10]. Thus, �1 is assumed to be positive on
the diagonal (explicit examples of nonsingular maps can easily be obtained from
Lam [21] and Milgram [26]; some of them with TC.Pn1/D k ), and we consider the
open covering fVigiD1;:::;kC1 of Pn1 � Pn1 where Vi consists of the pairs .Œu�; Œv�/
with �i.u; v/ ¤ 0 and, if i > 1, Œu� ¤ Œv�. (For instance, the four local motion
planners in items (a)–(d) above arise when (19) is the restriction to R3 �R3 of the
quaternionic ‘twisted’ multiplication x xy ). Likewise P.n1;n2/ �P.n1;n2/ is covered by
the sets Ui given as the inverse image of the corresponding Vi under the fibration
p�pW P.n1;n2/ �P.n1;n2/! Pn1 �Pn1 , where p is as in (4).

In these conditions, the first main ingredient in the construction of the MPA we want is
given by the maps Fi W Ui � Œ0; 1�! P.n1;n2/ �P.n1;n2/ defined by

(20) Fi.Œu; r �; Œv; s�; t/D .Œu
00
t ; r
0�; Œv; s�/;
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where we choose representatives .u0; r 0/ and .v0; s0/ such that �i.u
0; v0/ > 0 (this

choice is not canonical; we may equally well choose .�u0;�r 0/ and .�v0;�s0/) and,
in these terms, u00t is the unit vector obtained at time t from the constant-speed rotation
from u0 to v0 in the plane they span. Each Fi is a homotopy, starting at the inclusion
Ui ,! P.n1;n2/ �P.n1;n2/ , and finishing at a map fi W Ui ! P.n1;n2/ �P.n1;n2/ whose
image is contained in .p�p/�1.�Pn1 /, the inverse image under p�p of the diagonal
Pn1 ,! Pn1 � Pn1 . The second (and final) main ingredient in the construction of the
MPA we want arises from the open covering fW0;W1g of .p�p/�1.�Pn1 / where W0

consists of pairs of the form .Œv; s�; Œv; t �/ with s ¤ t , and W1 consists of pairs of
the form .Œv; s�; Œv; t �/ with s ¤ �t . Then, our explicit MPA on P.n1;n2/ is defined
at .Œu; r �; Œv; s�/ 2 f �1

i .Wj / by first moving Œu; r � to Œv; r 0�, the first coordinate of
Fi.Œu; r �; Œv; s�; 1/, via the path t 7!Fi.Œu; r �; Œv; s�; t/, and then moving Œv; r 0� to Œv; s�
by means of the MPA from r 0 to s explicitly described in the first half of the proof of
Lemma 4.1. The last part of the motion is well defined due to its equivariance at the
level of representatives.

Appendix A Nonsingular maps on projective product spaces

Just as for regular real projective spaces, the existence of axial maps for projective
product spaces can be translated into the existence of certain nonsingular maps. Such
a topic has been left out from the main body of the paper since, on the one hand,
the construction is a straightforward generalization of the corresponding well-known
property for usual projective spaces and, on the other, the language of nonsingular
maps turns out to be irrelevant for the purposes of the paper since, as discussed in
Section 2, they fail to provide sharp local motion planners as in the classical case [10].
Consequently, the ideas are loosely treated in this appendix, which has been included
only for the sake of completeness.

There are two closely related notions of nonsingular maps associated to an axial map
between projective product spaces. In the first one, for an `–tuple xqD .q1; : : : ; q`/, we
consider the cone Qxq in Rq1C1 � � � � �Rq`C1 consisting of tuples xx D .x1; : : : ;x`/

with jx1j D � � � D jx`j. Thus, Pxq is the projectivization of Qxq , ie Pxq is the sub-
space of PjxqjC`�1 consisting of the lines contained in Qxq . Then, a continuous
map f W Qxn �QSm ! RkC1 is said to be nonsingular if f .�xx; �xy/ D ��f .xx; xy/

for �;� 2R, and if the equality f .xx; xy/D 0 holds only with xx D 0 or xy D 0. With
this definition, there is a one-to-one correspondence between the set of nonsingular
maps f W Qxn �QSm ! RkC1 (taken up to multiplication by a nonzero scalar) and
the set of axial maps gW Pxn � PSm ! Pk . Such a corresponding pair .f;g/ fits in a
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commutative diagram

Qxn �QSm

f

��

Sxn �SSm

f 0

��

? _oo // Sxn �Z2
SSm

h

��

// Pxn �PSm

g

��

RkC1 RkC1�f0g? _oo � // Sk // Pk :

Here the unlabelled horizontal maps facing east are the obvious two-fold coverings, � is
the normalization map �.u/Du=juj, f 0 is the restriction f jSxn�SSm , and the right hand
square is a pullback (hence h is Z2 –equivariant). Explicitly, given f , g.Œxx�; Œxy�/ is the
line in RkC1 that goes through the origin and f .xx; xy/. Conversely, given g , pick h as
in the diagram above and precompose it with the double covering Sxn�SSm!Sxn�Z2

SSm
to get a Z2 –biequivariant map zgW Sxn �SSm! Sk . Then f is the ‘biradial’ extension
of zg given by

(21) f .xx; xy/D

(
jxxj
p
`.xn/

jxyj
p
`.Sm/
zg
�p`.xn/
jxxj
xx;
p
`.Sm/
jxyj
xy
�
; if xx ¤ 0 and xy ¤ 0,

0; if xx D 0 or xy D 0:

Note that if f W Rn1C1 �Rm1C1! RkC1 is a nonsingular map (in the usual sense),
then for any xn D .n1; n2; : : : ; nr / and Sm D .m1;m2; : : : ;ms/ a nonsingular map
Qxn �QSm ! RkC1 can be defined by .xx; xy/ 7! f .x1;y1/. Of course, this fact is
compatible with Remark 2.2.

A slight variation of the notion of nonsingular maps goes as follows: First we set
Vxt D Rt1C1 � � � � �Rt`C1 . A map f W Vxn �VSm! RkC1 is said to be nonsingular if
f .�xx; �xy/D��f .xx; xy/ for �;�2R, and if the equality f .xx; xy/D0 holds only when
a coordinate xi of xx or a coordinate yj of xy vanishes. Then the above considerations
apply basically without change, except that (21) takes the slightly more elaborate form

f .xx; xy/D

8<:N.xx; xy/zg
�

x1

jx1j
; : : : ; xr

jxr j
; y1

jy1j
; : : : ; yr

jys j

�
; if no xi nor yj is zero;

0; otherwise;

where N.xx; xy/D .jx1j � � � jxr j/
1
r .jy1j � � � jysj/

1
s and, as above, r D `.xn/ and sD `.Sm/.
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