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Nonseparating spheres and twisted
Heegaard Floer homology

YI NI

If a 3–manifold Y contains a nonseparating sphere, then some twisted Heegaard
Floer homology of Y is zero. This simple fact allows us to prove several results
about Dehn surgery on knots in such manifolds. Similar results have been proved for
knots in L–spaces.

57M27; 57R58

1 Introduction

Heegaard Floer homology was introduced by Ozsváth and Szabó [16]. For nullho-
mologous knots, there is a filtered version of Heegaard Floer homology, called knot
Floer homology; see Ozsváth and Szabó [14] and Rasmussen [18]. Basically, if one
knows the information about the knot Floer homology of a knot, then one can compute
the Heegaard Floer homology of any manifold obtained by Dehn surgery on the knot.
However, in general the algebra involved here is too complicated. In order to get useful
information, people often assume the ambient manifold has “simple” Heegaard Floer
homology, namely, the ambient manifold is an L–space.

This paper is motivated by the observation that if the ambient manifold contains a
nonseparating sphere, and if we use twisted coefficients over a Novikov ring, then the
Heegaard Floer homology of the ambient manifold is even simpler: In this case the
twisted Heegaard Floer homology is zero. This observation allows us to prove several
results about nullhomologous knots in such ambient manifolds.

In order to state the first theorem, we introduce the concept of “Property G”.

Suppose K is a nullhomologous knot in a closed 3–manifold Y . Then there is a
canonical “zero” slope on K . Let Y0.K/ be the manifold obtained from Y by the zero
surgery on K . (In general, let Yr .K/ be the manifold obtained from Y by r –surgery
on K .) Gabai proved the following result in [5].

Theorem (Gabai) Let K be a knot in S3 , F be a minimal genus Seifert surface
for K . Let yF �S3

0
.K/ be the surface obtained by capping off @F with a disk. Then yF

is Thurston norm minimizing in S3
0
.K/. Moreover, if S3

0
.K/ fibers over the circle,

then K is a fibered knot.
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Our notion of “Property G” is motivated by the above theorem.

Definition 1.1 Suppose K is a nullhomologous knot in a closed 3–manifold Y . An
oriented surface F � Y is a Seifert-like surface for K , if @F D K . When F is
connected, we say that F is a Seifert surface for K . We also view a Seifert-like surface
as a proper surface in Y �

ı
�.K/.

Definition 1.2 Suppose M is a compact 3–manifold, a properly embedded surface
S �M is taut if x.S/D x.ŒS �/ in H2.M; @S/, S is incompressible and no proper
subsurface of S is nullhomologous. Here x. � / is the Thurston norm.

Definition 1.3 Suppose K is a nullhomologous knot in a closed 3–manifold Y . We
say K has Property G, if the following conditions hold:

(G1) any taut Seifert-like surface for K extends to a taut surface in Y0.K/ after
attaching a disk to its boundary;

(G2) if Y0.K/ fibers over S1 , such that the homology class of the fiber is the extension
of the homology class of a Seifert surface F for K , then K is a fibered knot,
and the homology class of the fiber is ŒF �.

If the first (or second) condition holds, then we say that K has Property G1 (or G2).

It is easy to construct knots that violate Property G. However, if we make some assump-
tion on Y or K , then we can get Property G. For example, one can show that nonprime
knots have Property G. In [5], Gabai proved that if K is a nullhomologous knot in
a reducible manifold Y , such that H1.Y / is torsion-free and Y �K is irreducible,
then K has Property G. This result has overlap with our Theorem 1.4. Moreover, using
Heegaard Floer homology, we can show that if HFred.Y /D 0 then K has Property G.
(For Property (G2), the proof can be found by Ai and the author in [9; 1]. The proof
for Property (G1) is similar.)

The first main theorem in this paper is Property G for knots in manifolds that contain
nonseparating spheres.

Theorem 1.4 Suppose Y is a closed 3–manifold that contains a nonseparating
sphere S , K is a nullhomologous knot in Y , such that Y �K is irreducible. Then K

has Property G.

The next result is about cosmetic surgeries on the above knots, which is an analogue of
Ozsváth and Szabó [17, Theorem 9.7].
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Theorem 1.5 Suppose Y is a closed 3–manifold that contains a nonseparating
sphere S , K is a nullhomologous knot in Y , such that Y � K is irreducible. If
two rational numbers r; s satisfy Yr .K/Š˙Ys.K/, then r D˙s .

The paper is organized as follows. In Section 2 we define a version of twisted Heegaard
Floer homology. In Section 3 we collect some properties of twisted Heegaard Floer
homology, especially the nontriviality results. Sections 4 and 5 are devoted to the
proofs of our main theorems.

Acknowledgements We are very grateful to David Gabai, Cameron Gordon and
Matthew Hedden for helpful communications. This work was carried out when the
author was at MIT. The author was partially supported by an AIM Five-Year Fellowship
and NSF grant number DMS-0805807.

2 Preliminaries on twisted Heegaard Floer homology

In this section, we will set up the version of twisted Heegaard Floer homology we need.
Our approach is similar to the sketch by the author in [10]. More general constructions
can be found in [15] and Jabuka and Mark [7].

2.1 Twisted chain complexes

Let Y be a closed, oriented 3–manifold. Then .†;˛;ˇ; z/ is a Heegaard diagram
for Y . We always assume the diagram satisfies a certain admissibility condition so that
the Heegaard Floer invariants we are considering are well-defined (see [16] for more
details).

Let

ƒD

�X
r2R

ar T r
j ar 2R; #far j ar ¤ 0; r � cg<1 for any c 2R

�
be the universal Novikov ring, which is actually a field.

Let ! be a 1–cycle on †, such that it is in general position with the ˛– and ˇ–curves.
Namely, ! D

P
kici , where ki 2 R, each ci is an immersed closed oriented curve

on †, such that ci is transverse to the ˛– and ˇ–curves and ci does not contain any
intersection point of ˛– and ˇ–curves. We also regard ! as a 1–cycle in Y .

Let CF1.Y; !Iƒ/ be the ƒ–module freely generated by Œx; i �, where x 2 T˛ \Tˇ ,
i 2 Z. If � is a topological Whitney disk connecting x to y, let @˛� D .@�/\T˛ .
We can also regard @˛� as a multiarc that lies on † and connects x to y. We define

A.�/D .@˛�/ �!:

Algebraic & Geometric Topology, Volume 13 (2013)
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Let
@W CF1.Y; !Iƒ/! CF1.Y; !Iƒ/

be the boundary map defined by

@Œx; i �D
X

y

X
�2�2.x;y/
�.�/D1

#.M.�/=R/T A.�/Œy; i � nz.�/�:

Proposition 2.1 If !1; !2 are two 1–cycles which are homologous in Y , then we
have the isomorphism of chain complexes

CF1.Y; !1Iƒ/Š CF1.Y; !2Iƒ/:

In particular, when ! is nullhomologous in Y , the coefficients are “untwisted”.

Proof Since !1; !2 are homologous in Y , !1�!2 is homologous to a linear combi-
nation of ˛–curves and ˇ–curves in †. It is easy to check that @˛� � D 0 whenever �
is a Whitney disk and  is a parallel copy of an ˛– or ˇ–curve. Hence we may assume
that !1�!2 is nullhomologous in †.

Let D be a 2–chain in † such that @D D !1�!2 . Consider the map

f W CF1.Y; !1Iƒ/! CF1.Y; !2Iƒ/;

x 7! T D�xx;

where D � x is the cap product of D with the 0–chain
P

xi if xD .x1; : : : ;xg/. We
can check that f is a chain map which induces an isomorphism.

The standard construction in Heegaard Floer homology [16] allows us to define the chain
complexes bCF.Y; !Iƒ/ and CF˙.Y; !Iƒ/. The homologies of the chain complexes
are called twisted Heegaard Floer homologies. Proposition 2.1 allows us to regard !
as a homology class in H1.Y IR/.

This version of twisted Heegaard Floer homology is a special case of the general
construction in Ozsváth and Szabó [15, Section 8]. In fact, given a 1–cycle ! , ƒ
can be viewed as a module over the group ring ZŒH 1.Y IZ/�, where the action of
h 2H 1.Y IZ/ on T r 2ƒ is given by

h �T r
D T rChh;!i:

One can check that the twisted Floer homology defined above is exactly the twisted
Floer homology over the module ƒ as defined in [15, Section 8].

Algebraic & Geometric Topology, Volume 13 (2013)
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Proposition 2.2 Let Y be a 3–manifold, s be a Spinc structure, and ! be a 1–cycle.
Then, there are natural isomorphisms

bHF
�
.Y; !; s/ŠbHF�.�Y; !; s/; HF�˙.Y; !; s/Š HF�� .�Y; !; s/:

Proof As in [15, Proposition 2.5], if .†;˛;ˇ/ is a Heegaard diagram for Y , then
.�†;˛;ˇ/ is a Heegaard diagram for �Y . Suppose � 2 �2.x; y/ for Y . Then there
is a corresponding �0 2 �2.y; x/ for �Y . Moreover,

MJs
.�/ŠM�Js

.�0/; @˛.�/D�@˛.�
0/:

We then have
.@˛.�/ �!/† D .@˛.�

0/ �!/�†:

Now we can easily get our conclusion.

2.2 Twisted chain maps

Let .†;˛;ˇ;; z/ be a Heegaard triple-diagram. Let ! be a 1–cycle on † which is
in general position with the ˛–, ˇ– and  –curves.

The pants construction [16, Subsection 8.1] gives rise to a four-manifold X˛;ˇ; with

@X˛;ˇ; D�Y˛;ˇ �Yˇ; CY˛; :

By this construction X˛;ˇ; contains a region †�4, where 4 is a two-simplex with
edges e˛; eˇ; e . Let !�Œ0; 1�D!�e˛�X˛;ˇ; be the linear combination of properly
immersed annuli such that

! � f0g � Y˛;ˇ; ! � f1g � Y˛; :

Suppose x 2 T˛ \Tˇ , y 2 Tˇ \T , w 2 T˛ \T and  is a topological Whitney
triangle connecting them. Let @˛ D @ \T˛ be the arc connecting x to w. We can
regard @˛ as a multiarc on †. Define

A3. /D .@˛ / �!:

Let the chain map

f1˛;ˇ;;!�I W CF1.Y˛;ˇ; ! � f0gIƒ/˝R CF1.Yˇ; IR/! CF1.Y˛; ; ! � f1gIƒ/

be defined by the formula

f1˛;ˇ;;!�I .Œx; i �˝ Œy; j �/D
X

w

X
 2�2.x;y;w/
�. /D0

#M. /T A3. /Œw; i C j � nz. /�:
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The standard constructions [16; 15] allow us to define chain maps introduced by
cobordisms.

2.3 Twisted Knot Floer homology

Suppose K is a rationally nullhomologous oriented knot in Y , � is a relative Spinc –
structure in Spinc.Y;K/ and ! is a 1–cycle in Y �K . We can define the twisted knot
Floer complex CFK1.Y;K; �; !Iƒ/ as in [17, Section 3]; see also [14; 18]. Recall
that the chain complex is generated by the Œx; i; j �’s satisfying

(2-1) sw;z.x/C .i � j / �PDŒ��D �:

Since K is oriented, there is a natural way to extend a vector field representing a
relative Spinc –structure in Spinc.Y;K/ to a vector field on Y . Let

GY;K W Spinc.Y;K/! Spinc.Y /

be the induced map of Spinc –structures.

Lemma 2.3 [17, Proposition 3.2]There are natural isomorphisms of chain complexes

C �fi D 0g ŠbCF.Y;GY;K .�//; C �fj D 0g ŠbCF.Y;GY;�K .�//:

We can construct a Heegaard diagram .†;˛;ˇ; w; z/ for .Y;K/, such that ˇ1 D �

is the meridian of K , and ˛1 is the only ˛–curve that intersects ˇ1 , ˛1\ˇ1 D fxg.
There is a curve � � † which gives rise to the knot K . Then .†;˛;; z/ is a
diagram for Ym�C�.K/, where 1Dm�C� and all other i ’s are small Hamiltonian
translations of ˇi ’s. Figure 1 (which is a modification of [17, Figure 1]) is the local
picture in a cylindrical neighborhood of ˇ1 .

x0
1

1

1

2

1

w

x0
2

2

2

z

x

ˇ1
˛1

Figure 1: Local picture of the triple Heegaard diagram

As in [17], when m is sufficiently large, one defines a map

„W Spinc.Ym�C�.K//! Spinc.Y;K/

Algebraic & Geometric Topology, Volume 13 (2013)
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as follows. If t 2 Spinc.Ym�C�.K// is represented by a point x0 supported in the
winding region, let x 2 T˛ \Tˇ be the “nearest point”, and let  2 �2.x0; ‚; x/ be a
small triangle. Then

(2-2) „.t/D sw;z.x/C .nw. /� nz. // ��:

The reader may also see the author [12] for more discussion on the well-definedness
of „.

Lemma 2.4 The map „ is injective.

Proof Suppose two intersection points x0
1
; x0

2
2 T˛ \T are supported in the wind-

ing region, and they represent two Spinc –structures t1; t2 2 Spinc.Ym�C�/. Let
x1; x2 2 T˛ \Tˇ be the nearest points of x0

1
; x0

2
, and let  1;  2 be the corresponding

small triangles.

Assume that „.t1/D„.t2/. By Equation (2-2), we have

(2-3) sw;z.x1/C .nw. 1/� nz. 1// ��D sw;z.x2/C .nw. 2/� nz. 2// ��:

Since � is nullhomologous in Y , then x1; x2 represent the same Spinc –structure in
Spinc.Y /. Hence there is a topological Whitney disk � for T˛;Tˇ connecting x1

to x2 . Since the ˇ1 –components of x1 and x2 are both x , @� contains nw.�/�nz.�/

copies of ˇ1 . Let  d D  1� 2 (see Figure 1 for an illustration). By (2-3), we have

sw;z.x1/� sw;z.x2/D�.nw. 
d /� nz. 

d // ��;

thus
nw.�/� nz.�/D�.nw. 

d /� nz. 
d //:

So we can glue � and  d together to get a disk '0 . After a Hamiltonian translation, '0

becomes a topological Whitney disk ' for T˛;T , connecting x0
1

to x0
2

. Hence
t1 D t2 .

The following result is the twisted version of [17, Theorem 4.1]. We do not state it
in the most generality since the current version suffices for our purpose. Recall that
a U –knot is a knot in a rational homology three-sphere Y with the property that the
induced filtration of CF1.Y;K/ is trivial.

Proposition 2.5 Let K � Y be a rationally nullhomologous knot in a closed, ori-
ented three-manifold, equipped with a frame �, and let ! be a 1–cycle in Y �K .
Let yA�.Y;K; !/ D C �fmaxfi; j g D 0g. Then, for all sufficiently large m and all
t 2 Spinc.Ym�C�.K//, there is an isomorphism

‰t;mWbCF.Ym�C�.K/; t; !Iƒ/! yA„.t/.Y;K; !/:

Algebraic & Geometric Topology, Volume 13 (2013)
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Proof See [17, Theorem 4.1].

Another result we will need is the following twisted version of [17, Corollary 5.3].

Proposition 2.6 If K2 � Y2 is a U –knot, ! is a 1–cycle in Y1 � K1 , then for
each �1 2 Spinc.Y1;K1/ and s2 2 Spinc.Y2/, there is some �2 2 Spinc.Y2;K2/

representing s2 , with the property that

CFK1.Y1;K1; !; �1/Š CFK1.Y1 # Y2;K1 # K2; !; �1 # �2/

as Z˚Z–filtered chain complexes.

3 Properties of twisted Heegaard Floer homology

In this section, we collect some properties of twisted Heegaard Floer homology. In
particular, we prove some nontriviality results following Ozsváth and Szabó [13].

3.1 Surgery exact sequences

As in [15], there are surgery exact sequences for twisted Heegaard Floer homology.
One of them is as follows (see also Ai and Peters [2]).

Proposition 3.1 Suppose K� Y is a knot with frame �, and ! � Y �K is a 1–cycle.
Then ! also lies in the manifolds Y� and Y�C� obtained by surgeries on K . The
2–handle addition cobordism W from Y to Y� naturally contains ! � I . We can
define a chain map induced by W ,

f C
W ;!�I

W CFC.Y; !Iƒ/! CFC.Y�; !Iƒ/:

Similarly, there are two other chain maps induced by the cobordisms Y�! Y�C� and
Y�C�! Y . These maps are the maps in the long exact sequence

� � � ! HFC.Y; !Iƒ/! HFC.Y�; !Iƒ/! HFC.Y�C�; !Iƒ/! � � � :

Lemma 3.2 Suppose F is a closed surface in a closed manifold Y , and F0 is a
component of F such that its genus greater than or equal to 2. Let Y 0 be the manifold
obtained by cutting open Y along F0 and regluing by a self-homeomorphism ' of F0 .
It is well-known that ' can be realized by a product of Dehn twists along a set of
curves C on F0 . Let ! be a 1–cycle in Y such that ! is disjoint from C . Then ! can
also be viewed as a 1–cycle in Y 0 . Then we have

HFC
�
Y; !; ŒF �; 1

2
x.F /Iƒ

�
Š HFC

�
Y 0; !; ŒF �; 1

2
x.F /Iƒ

�
:

Algebraic & Geometric Topology, Volume 13 (2013)
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Similarly, suppose F is a Seifert-like surface for a knot K in a closed manifold Y ,
and F0 is a component of F such that its genus greater than or equal to 2. Let Y 0 be
the manifold obtained by cutting Y along F0 and regluing by a self-homeomorphism ' ,
which can be realized by a product of Dehn twists along a set of curves C on F0 . Let !
be a 1–cycle in Y such that ! is disjoint from C . Then ! can also be viewed as a
1–cycle in Y 0 . The new knot in Y 0 is still denoted by K . Then we have

bHFK
�
Y;K; !; ŒF �; 1

2
.x.F /C 1/Iƒ

�
Š bHFK

�
Y 0;K; !; ŒF �; 1

2
.x.F /C 1/Iƒ

�
:

Proof The proof is a standard application of the surgery exact sequence and the
adjunction inequality; see the second proof of Proposition 3.5 by the author in [8].

3.2 The presence of a nonseparating sphere

When there is a nonseparating two-sphere, we have the following properties from [10].

Lemma 3.3 ([10, Lemma 2.1]) Suppose Y contains a nonseparating two-sphere S ,
! � Y is a closed curve such that ! �S ¤ 0. We then have

bHF.Y; !Iƒ/D 0; HFC.Y; !Iƒ/D 0:

Lemma 3.4 ([10, Lemma 5.1]) Suppose Y is a closed 3–manifold containing a
nonseparating two-sphere S , K � Y is a nullhomologous knot, F is a Seifert-like
surface for K . Let Y0.K/ be the manifold obtained by doing 0–surgery on K , and
let yF be the extension of F in Y0.K/. Let !�Y �K be a 1–cycle such that ! �S ¤ 0.
We then have

bHFK
�
Y;K; !; ŒF �; 1

2
.x.F /C 1/Iƒ

�
Š HFC

�
Y0.K/; !; Œ yF �;

1
2
.x.F /� 1/Iƒ

�
:

3.3 The topmost nontrivial term

In this subsection we will prove some nontriviality results following the approach
in [13]. Although it is possible to prove stronger results, we are satisfied with the
current version since it is sufficient for our purpose. We also cite a result about twisted
Floer homology and fibered knots.

Lemma 3.5 Suppose Y is a closed 3–manifold with a taut foliation F which is
smooth except possibly along some compact leaves. Then F can be approximated
by a positive contact structure �C and a negative contact structure �� , and there is a
nonempty open subset U � �H 2.Y IR/ with the following property: For any h 2 U � ,
there exists a symplectic form � on Y � Œ�1; 1�, such that Œ�� D h 2 H 2.Y IR/,
�jY �f˙1g is everywhere positive on �˙ .

Algebraic & Geometric Topology, Volume 13 (2013)
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Proof By Eliashberg and Thurston [3], we can approximate F by a positive contact
structure �C and a negative contact structure �� , and there exists a symplectic form �

on Y � Œ�1; 1�, �jY �f˙1g is everywhere positive on �˙ . Now if we perturb � by a
small closed 2–form on Y � Œ�1; 1�, we still get a symplectic form which is everywhere
positive on �˙ . This finishes the proof.

Theorem 3.6 Suppose Y is a closed irreducible 3–manifold, F is a taut surface in Y .
Then there exists a nonempty open set U �H1.Y IR/, such that for any ! 2 U ,

HFC
�
Y; !; ŒF �; 1

2
x.F /Iƒ

�
¤ 0; bHF

�
Y; !; ŒF �; 1

2
x.F /Iƒ

�
¤ 0:

Proof By Gabai [4], there exists a taut foliation F of Y , such that F is a union of
compact leaves of F, and F is smooth except possibly along toral components of F .
By Lemma 3.5 we have a nonempty open subset U � �H 2.Y IR/ with the property
stated there. Let U �H1.Y IR/ be the dual of U � . Now for any ! 2U , the argument
in [13, Section 4] shows that HFC

�
Y; !; ŒF �; 1

2
x.F /Iƒ

�
¤ 0.

If bHF
�
Y; !; ŒF �; 1

2
x.F /Iƒ

�
D 0, then the map

U W HFC
�
Y; !; ŒF �; 1

2
x.F /Iƒ

�
! HFC

�
Y; !; ŒF �; 1

2
x.F /Iƒ

�
is an isomorphism. Since HFC.Y; !; ŒF �; 1

2
x.F /Iƒ/ ¤ 0 and U na D 0 for any

a 2 HFC.Y; !; ŒF �; 1
2
x.F /Iƒ/ and sufficiently large n, we get a contradiction.

The following lemma will be used in the proof of Theorem 3.8.

Lemma 3.7 Suppose K � Y is a nullhomologous knot, Y �K is irreducible, F is a
taut Seifert-like surface for K . Let J � S3 be a fibered knot with fiber G , and let F 0

be the Seifert-like surface for K # J which is the boundary connected sum of F and G .
Then if the genus of J is sufficiently large, Y �

ı
�.K #J / admits a longitudinal foliation

such that F 0 is a union of compact leaves, and the foliation is smooth except possibly
at the toral components of F 0 .

Proof The proof is the same as that by the author in [11, Proposition 2.4].

Theorem 3.8 Suppose K is a nullhomologous knot in a closed 3–manifold Y , Y �K

is irreducible. Let F be a taut Seifert-like surface for K . Then there exists a nonempty
open set U �H1.Y IR/, such that for any ! 2 U ,

bHFK
�
Y;K; !; ŒF �; 1

2
.x.F /C 1/Iƒ

�
¤ 0:
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Proof By Lemma 3.7, the complement of K1 DK # J admits a smooth longitudinal
foliation with a compact leaf F1 . So Y0.K1/ admits a taut smooth foliation with a com-
pact leaf yF1 . By Theorem 3.6, there exists a nonempty open set U1�H1.Y0.K1/IR/,
such that for any ! 2 U1 , HFC

�
Y0.K1/; !; Œ yF1�;

1
2
.x.F1/� 1/

�
¤ 0.

Let .M;  / be the sutured manifold obtained by cutting Y open along F1 . Since J

is a fibered knot, .M;  / contains a nonseparating product disk D . We can cut Y

open along F1 then reglue by a diffeomorphism ' to get a new knot K0 in a new
manifold Y 0 , such that D \RC. / and D \R�. / are glued together. Now D

becomes a nonseparating annulus A in the complement of K0 , such that @A consists
of two copies of the meridian of K0 . So Y 0 contains a nonseparating sphere S .

The diffeomorphism ' can be realized by a product of Dehn twists along a set of
curves C on F1 . In other words, there exists a link L � Y �K1 , such that a Dehn
surgery on L yields Y 0 . Let

�W H1.Y �K1�LIR/!H1.Y �K1IR/DH1.Y0.K1/IR/;

�0W H1.Y �K1�LIR/!H1.Y
0
�K0IR/DH1.Y

0
0.K

0/IR/;

be the natural inclusion maps. Both � and �0 are surjective. Let

V �H1.Y
0
�K0IR/

be the codimension 1 subspace defined by

v � ŒS �D 0:

Let ! be a 1–cycle in Y �K1�L such that ! 2 ��1.U /�.�0/�1.V/. By Lemma 3.2,
we have

bHFK
�
Y;K1; �.!/; ŒF1�;

1
2
.x.F1/C1/

�
Š bHFK

�
Y 0;K0; �0.!/; ŒF1�;

1
2
.x.F1/C1/

�
;

HFC
�
Y0.K1/; �.!/; Œ yF1�;

1
2
.x.F1/�1/

�
Š HFC

�
Y 00.K

0/; �0.!/; Œ yF1�;
1
2
.x.F1/�1/

�
:

By Lemma 3.4,

bHFK
�
Y 0;K0; �0.!/; ŒF1�;

1
2
.x.F1/C1/

�
ŠHFC

�
Y 00.K

0/; �0.!/; Œ yF1�;
1
2
.x.F1/�1/

�
:

Hence bHFK .Y;K1; �.!/; ŒF1�; .x.F1/C 1/=2Iƒ/¤ 0.

By the connected sum formula

bHFK .Y;K # J; �.!/Iƒ/Š bHFK .Y;K; �.!/Iƒ/˝ bHFK .S3;J IR/;

we conclude for any ! 2 ��1.U /� .�0/�1.V/, bHFK .Y;K; �.!/; .x.F /C1/=2/¤ 0.
Let

i�W H1.Y0.K/IR/DH1.Y �KIR/!H1.Y IR/
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be the natural map which is a projection. Let

U D i��.�
�1.U /� .�0/�1.V//:

Then U is the nonempty open set we need.

The following result is a twisted version of a theorem due to Ghiggini [6] and the
author [9].

Theorem 3.9 [10, Theorem 2.2] Suppose K is a nullhomologous knot in a closed,
oriented, connected 3–manifold Y , Y �K is irreducible, and F is a genus g Seifert
surface for K . Let ! � Y �K be a 1–cycle. If

bHFK .Y;K; !; ŒF �;gIƒ/Šƒ;

then K is fibered, and F is a fiber of the fibration.

4 Property G

This section is devoted to the proof of Theorem 1.4, which is a direct corollary of the
properties listed in the last section.

Proof of Theorem 1.4 We first prove Property (G1). If F is a taut Seifert-like surface
for K , by Theorem 3.8 we can find a 1–cycle ! � Y �K , such that ! �S ¤ 0 and

bHFK
�
Y;K; !; ŒF �; 1

2
.x.F /C 1/Iƒ

�
¤ 0:

Now Lemma 3.4 implies that

HFC
�
Y0.K/; !; Œ yF �;

1
2
.x.F /� 1/Iƒ

�
¤ 0;

hence yF is taut.

Now we prove Property (G2). Suppose Y0.K/ fibers over S1 with fiber in the homology
class Œ yF �, where F is a taut Seifert-like surface for K . By Property (G1), yF is taut
in Y0.K/, hence yF is isotopic to a fiber of the fibration. Choose a 1–cycle ! � Y �K ,
such that ! �S ¤ 0; ! � Œ yF �¤ 0. Since Y0.K/ fibers over S1 , by [2] we have

HFC.Y0.K/; !; Œ yF �;g.F /� 1Iƒ/Šƒ:

Lemma 3.4 then implies that

bHFK .Y;K; !; ŒF �;g.F /Iƒ/Šƒ:

Using Theorem 3.9, we conclude that K is fibered with fiber F .
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5 Cosmetic surgery

In this section, we will prove Theorem 1.5. Like [17, Section 9], the proof relies on
the rational surgery formula of Floer homology. However, our situation here is much
simpler. The result we will use is as follows.

Proposition 5.1 Let Y be a closed 3–manifold that contains a nonseparating sphere S .
Then K is a nullhomologous knot in Y , such that Y �K is irreducible. Let ! be a
1–cycle in Y �K satisfying ! �S ¤ 0. Then there exists a constant RDR.Y;K; !/,
such that

rankƒbHF.Yp=q.K/; !Iƒ/D qR

for any p=q 2Q. Here p; q 2 Z; q > 0; gcd.p; q/D 1.

The following lemma is an analogue of [17, Theorem 6.1].

Lemma 5.2 Let Y be a closed 3–manifold that contains a nonseparating sphere S .
Let K be a rationally nullhomologous knot in Y , � a frame on K . Let ! be a 1–cycle
in Y �K satisfying ! �S ¤ 0. Let

yA.Y;K; !/D
M

�2Spinc.Y;K /

yA�.Y;K; !/:

Then there is an isomorphism

bHF.Y�.K/; !Iƒ/ŠH�.yA.Y;K; !//:

Proof We claim that for any two frames �1; �2 on K ,

bHF.Y�1
.K/; !Iƒ/ŠbHF.Y�2

.K/; !Iƒ/:

This claim follows from Proposition 3.1 and the fact that

bHF.Y; !Iƒ/D 0:

By the above claim and Proposition 2.5, when m is sufficiently large we have

(5-1) bHF.Y�.K/; !Iƒ/Š
M

t2Spinc.Ym�C�/

yA„.t/.Y;K; !/:

Recall that yA�.Y;K; !/ D C �fmaxfi; j g D 0g. By (2-1), yA�.Y;K; !/ ¤ 0 only if
some Spinc –structure �Cn PDŒ�� is represented by an intersection point x 2T˛\Tˇ .
Moreover, by (2-1) and Lemma 2.3, there exists a constant N0 , such that for any x, if
jnj>N0 , then

yAsw;z .x/�n PDŒ��.Y;K; !/ŠbCF.Y; !; r/;
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for some Spinc structure r depending on x; n. By Lemma 3.3, the right hand side of
the above equation is acyclic.

The analysis in the last paragraph shows that, if m is sufficiently large, then the image
of „ contains all the � such that yA�.Y;K; !/¤ 0. Our desired result then follows
from (5-1) and Lemma 2.4.

Let K be a nullhomologous knot in Y . As in [17, Section 7], Yp=q.K/ can be realized
by a Morse surgery on the knot K0 DK # Oq=r � Y 0 D Y # L.q; r/, where Oq=r is a
U –knot in L.q; r/.

Suppose � 2 Spinc.Y 0;K0/, then � is the connected sum of two Spinc –structures �1 2
Spinc.Y;K/ and �2 2Spinc.L.q; r/;Oq=r /. Let …1.�/D �1 , …2.�/2Spinc.L.q; r//

be the Spinc –structure represented by �2 .

Lemma 5.3 There is a bijective map

…1 �…2W Spinc.Y 0;K0/! Spinc.Y;K/�Spinc.L.q; r//:

Proof Let
.†1;˛1;ˇ1; w1; z1/

be a doubly pointed Heegaard diagram for .Y;K/, and let

.†2;˛2;ˇ2; w2; z2/

be a genus 1 Heegaard diagram for .L.q; r/;Oq=r /.

We perform the connected sum of †1 and †2 by identifying the neighborhoods of z1

and w2 , hence get a new genus .gC 1/ surface †0 . Then

.†0;˛0 D ˛1[˛2;ˇ
0
D ˇ1[ˇ2; w1; z2/

is a Heegaard diagram for .Y 0;K0/.

Now …1 and …2 can be defined as follows. Given � 0 2 Spinc.Y 0;K0/, suppose
x0 2 T˛0 \Tˇ0 represents the underlying Spinc structure of � 0 . Then

� 0 D sw1;z2
.x0/C n ��0

for some n 2Z. Now let x1;x2 be the projections of x0 to T˛1
\Tˇ1

and T˛2
\Tˇ2

.
Then

…1.�
0/D sw1;z1

.x1/C n ��;(5-2)

…2.�
0/D sw2

.x2/:
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From the above construction, it is clear that the map …1 �…2 is surjective. Now we
want to prove the injectivity. In fact, suppose � 0; �0 2 Spinc.Y 0;K0/ satisfy

…1 �…2.�
0/D…1 �…2.�

0/:

Choose a diagram as above, such that there are x0; y0 2 T˛0 \Tˇ0 and n;m 2 Z, such
that

(5-3) sw1;z2
.x0/C n�0 D � 0; sw1;z2

.y0/Cm�0 D �0:

It follows that sw1
.x0/D sw1

.y0/, so sw1
.x1/D sw1

.y1/ and x2Dy2 . Here x1 , y1 , x2

and y2 are the projections of x0; y0 to T˛1
\Tˇ1

and T˛2
\Tˇ2

.

Now there is a topological Whitney disk � for T˛1
and Tˇ1

which connects x1 to y1 .
Since …1.�

0/D…2.�
0/, by [14, Lemma 2.5] and (5-2), (5-3) we have

nz1
.�/� nw1

.�/Dm� n:

Let �0 be a topological Whitney disk whose domain is the connected sum of the
domain of � and †2 . Then �0 connects x0 to y0 , nz2

.�0/D nw2
.�0/D nz1

.�/ and
nw1

.�0/D nw1
.�/. It follows that

nz2
.�0/� nw1

.�0/D nz1
.�/� nw1

.�/Dm� n:

So we have
sw1;z2

.x0/C n�0 D sw1;z2
.y0/Cm�0;

hence � 0 D �0 . This proves the injectivity.

Theorem 1.5 does not directly follow from the previous two results. The reason is that
bHF.Y; !Iƒ/ is not an invariant for Y : it depends on the choice of ! . However, it is
not hard to overcome this difficulty.

Proof of Theorem 1.5 Assume there are two rational numbers p1=q1;p2=q2 satisfy-
ing that there is a homeomorphism

f W Yp1=q1
!˙Yp2=q2

:

Then jp1j D jp2j for homological reason. If p1=q1 ¤ p2=q2 , then we can assume

0< q1 < q2:

By Lemma 3.4 and Theorem 3.8, there exists a nonempty set U �H1.Y IR/, such that
for any 1–cycle !�Y �K representing an element in U , one has HFC.Y0; !Iƒ/¤ 0.
Thus

(5-4) bHF.Y0; !Iƒ/¤ 0;
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as argued in the proof of Theorem 3.6.

Since K is nullhomologous, we can identify H1.Y IR/ with H1.Yr IR/ for any
r 2Q�f0g. Let V be the subspace of H1.Y IR/ defined by the equation x �S D 0.
Choose

! 2 U n[n2Z f
n
� .V/:

Then .f n
� !/ �S ¤ 0 for any n 2 Z. By Proposition 5.1,

rankƒbHF.Yp1=q1
; f n
� !Iƒ/D q1=q2 rankƒbHF.Yp2=q2

; f n
� !Iƒ/

for any n 2 Z. Moreover, since f W Yp1=q1
!˙Yp2=q2

is a homeomorphism, using
Proposition 2.2 if necessary, we have

rankƒbHF.Yp1=q1
; f n
� !Iƒ/D rankƒbHF.Yp2=q2

; f nC1
� !Iƒ/:

Thus we get

rankƒbHF.Yp1=q1
; f n
� !Iƒ/D

�
q1

q2

�n

rankƒbHF.Yp1=q1
; !Iƒ/:

By Proposition 5.1 and (5-4),

rankƒbHF.Yp1=q1
; !Iƒ/D q1 rankƒbHF.Y0; !Iƒ/¤ 0;

so 0< rankƒbHF.Yp1=q1
; f n
� !Iƒ/< 1 when n is sufficiently large, a contradiction.
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