
msp
Algebraic & Geometric Topology 13 (2013) 1369–1412

Lipschitz minimality of Hopf fibrations
and Hopf vector fields
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Given a Hopf fibration of a round sphere by parallel great subspheres, we prove that
the projection map to the base space is, up to isometries of domain and range, the
unique Lipschitz constant minimizer in its homotopy class.

Similarly, given a Hopf fibration of a round sphere by parallel great circles, we view
a unit vector field tangent to the fibers as a cross-section of the unit tangent bundle
of the sphere, and prove that it is, up to isometries of domain and range, the unique
Lipschitz constant minimizer in its homotopy class.

Previous attempts to find a mathematical sense in which Hopf fibrations and Hopf
vector fields are optimal have met with limited success.

53C23, 53C30, 55R10, 55R25, 57R22, 57R25, 57R35; 53C38, 53C43

Prologue

Background

The Hopf fibration S3 ! S2 was the first example of a homotopically nontrivial
map from a sphere to another sphere of lower dimension, and as such its discovery
signaled the birth of homotopy theory. This map and its higher-dimensional cousins
S2nC1 ! CPn , S4nC1 ! HPn and S15 ! S8 —all of them fibrations of round
spheres by great subspheres—are among the most strikingly beautiful maps in geometry
and topology. And likewise for the Hopf vector fields on odd-dimensional spheres, that
is, the unit vector fields on S2nC1 tangent to the great circle fibers of S2nC1!CPn .

Yet in what mathematical sense are these objects optimal—what functional on the space
of maps or vector fields do they minimize?

Fuller [8] and Eells and Lemaire [6] showed that Hopf projections are harmonic maps,
but unfortunately harmonic maps from spheres to compact Riemannian manifolds
are always unstable (see Xin [37]), and hence never energy-minimizing. Gluck and
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Ziller [16] used calibrations to show that the Hopf vector field on S3 , when viewed
as a cycle inside the unit tangent bundle US3 , is volume-minimizing in its homology
class. But David Johnson [23] showed that this fails on the 5–sphere, and likewise on
all higher odd-dimensional spheres.

What we do here

We find a mathematical sense in which Hopf fibrations and Hopf vector fields are
optimal. We prove that Hopf fibrations are Lipschitz constant minimizers in their
homotopy classes, uniquely so up to composition with isometries of domain and range.
We do the same for Hopf vector fields, viewed as maps of spheres into their own unit
tangent bundles.

Where does this lead?

We suspect that many natural geometric maps, such as Riemannian submersions of
compact homogeneous spaces, are Lipschitz constant minimizers in their homotopy
classes, unique up to composition with isometries of domain and range. The Hopf
projections and Hopf vector fields are examples. We give one further example in
this paper, and prove that the Stiefel projection of the space V2R

4 of orthonormal
2–frames in 4–space to the Grassmann manifold G2R

4 of oriented 2–planes through
the origin in 4–space is a Lipschitz constant minimizer in its homotopy class, unique
up to isometries of domain and range. In a forthcoming paper, Haomin Wen introduces
new techniques to prove this for group multiplication S3 � S3! S3 on the round
3–sphere.

Introduction and statement of results

The Hopf fibration S1 � S3 ! S2 of a round 3–sphere by parallel great circles
was introduced by Heinz Hopf [20]. It provided the first example of a homotopically
nontrivial map from one sphere to another of lower dimension, spurring the development
of both homotopy theory and fiber spaces in their infancy. Although Hopf first presented
his map in terms of quadratic polynomials, he explained later in this paper that the fibers
are the intersections of S3 with the complex lines through the origin in R4 DC2 .
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In his second paper on this theme [21], Hopf presented three families of fibrations of
round spheres by parallel great subspheres:

S1
� S3

! S2
DCP

1; S1
� S5

!CP
2; : : : ; S1

� S2nC1
!CP

n; : : :

S3
� S7

! S4
DHP

1; S3
� S11

!HP
2; : : : ; S3

� S4nC3
!HP

n; : : :

S7
� S15

! S8;

with base spaces the complex and quaternionic projective spaces, and with the nonas-
sociativity of the Cayley numbers responsible for the truncation of the third family.

This list is complete in the sense that any fibration of a round sphere by parallel great
subspheres is isometric to one of the above (see Wong [34], Wolf [33; 32], Escobales [7],
Ranjan [27]), meaning there is an isometry of the total space carrying fibers to fibers;
see also Gluck, Warner and Ziller [14; 15]. A deeper uniqueness result, without the
hypothesis that the fibers are great subspheres, is due to Gromoll and Grove [17; 18]
and Wilking [31].

The isometry groups of these Hopf fibrations act transitively on the spherical total
spaces, and so the base spaces inherit from them Riemannian metrics which make
the projection maps into Riemannian submersions. In particular, the spherical base
spaces S2 , S4 and S8 all have radius 1

2
.

We begin now with Theorem 1.

The Lipschitz constant Lipf of a continuous map f W X ! Y between metric spaces
is the smallest number c � 0 such that d.f .x/; f .x0// � cd.x;x0/ for all points x

and x0 in X . If no such number c exists, we regard the Lipschitz constant of f to be
infinite. Since the above Hopf projections are Riemannian submersions, they all have
Lipschitz constant 1.

Two maps f1 and f2W X ! Y between metric spaces will be said to be isometric if
there are isometries gX W X !X and gY W Y ! Y such that gY f1 D f2gX .

Theorem 1 The Lipschitz constant of any continuous map

S2nC1
!CP

n or S4nC3
!HP

n or S15
! S8

with nonzero Hopf invariant is greater than or equal to 1 and equals 1 if and only if the
map is isometric to the corresponding Hopf projection.

In particular, the Hopf projections are, up to isometries of domain and range, the unique
Lipschitz constant minimizers in their homotopy classes.
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The proof is entirely elementary metric geometry. Aiming for clarity of presentation,
we give the argument first in the case of the original Hopf fibration S1 � S3! S2 ,
then in the case of S1 � S5! CP

2 , and after that explain the minor adjustments
needed to carry out the proof in general.

We turn to Theorem 2.

Let Sn denote the round n–sphere of radius 1, let Sn�Sn be given the product metric,
let �Sn D f.x;x/ j x 2 Sng � Sn�Sn be the diagonal, which is isometric to a round
n–sphere of radius

p
2, and let i W �Sn! Sn �Sn denote the inclusion map.

Theorem 2 The Lipschitz constant of any map �Sn! Sn �Sn which is homotopic
to the inclusion is greater than or equal to 1 and equals 1 if and only if the map is
isometric to the inclusion.

This result can be appreciated by contrasting it with the following facts, pointed out to
us some time ago by Walter Wei [29].

(1) The diagonal circle i W �S1! S1 �S1 is length-minimizing in its homology
class, and any other length-minimizer in that class is isometric to it.

(2) The diagonal 2–sphere i W �S2! S2 �S2 is area-minimizing in its homology
class, but there are other area-minimizers, such as S2 _S2 , in the same class.

(3) For n� 3, the diagonal n–sphere i W �Sn!Sn�Sn is not volume-minimizing
in its homology class, since Sn _ Sn lies in the same class but has smaller
volume.

Thus, minimizing the “stretch” (Lipschitz constant) of a map in its homotopy class may
be viewed as an alternative to minimizing the area or volume of a cycle in its homology
class, and yields different results.

We turn to Theorem 3.

Given a Hopf fibration of S2nC1 by parallel great circles, let v denote either of the two
unit vector fields on S2nC1 which are tangent to these fibers. Then define the mapping
V W S2nC1 ! US2nC1 by V .x/ D .x; v.x//, so that V is the corresponding cross-
section of the unit tangent bundle of S2nC1 . We will also refer to the image V .S2nC1/

as a “Hopf vector field”, and let i W V .S2nC1/! US2nC1 denote the inclusion map.

Theorem 3 The Lipschitz constant of any map of the Hopf vector field V .S2nC1/

into the unit tangent bundle US2nC1 which is homotopic to the inclusion is greater than
or equal to 1 and equals 1 if and only if the map is isometric to the inclusion.
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In other words, Hopf vector fields are, up to isometries of domain and range, the unique
Lipschitz constant minimizers in their homotopy classes. This theorem, which asserts
the Lipschitz minimality of Hopf vector fields on spheres, may be compared with
attempts to prove their volume-minimality within the unit tangent bundle, as follows.

(1) On the 3–sphere, the 3–cycle V .S3/ � US3 is volume-minimizing in its ho-
mology class. This was shown by a calibrated geometry argument in Gluck and
Ziller [16] .

(2) On the 5–sphere, the 5–cycle V .S5/ � US5 is not volume-minimizing in its
homology class, and indeed, is not even a local minimum. This was shown by
David Johnson [23], and likewise on all higher odd-dimensional spheres.

(3) Sharon Pedersen [26] showed that on each odd-dimensional sphere, beginning
with S5 , there exist unit vector fields of exceptionally small volume which
converge to a vector field with one singularity. She conjectured that on these
spheres there are no unit vector fields of minimum volume at all, but that instead
her limiting vector-field-with-singularity has minimum volume in its homology
class in the unit tangent bundle. To support this, she showed that, as the ambient
dimension increases, the volumes of her singular fields grow at the same rate as
the known lower bound for volumes of nonsingular vector fields.

Remark � If the smooth submanifold M of the Riemannian manifold N is
a volume-minimizing cycle in its homology class, then the inclusion map
i W M !N is a Lipschitz constant minimizer in its homotopy class.

� Theorem 3 will follow quickly from Theorem 2.

We conclude with Theorem 4.

We suspect that many natural geometric maps, such as Riemannian submersions of
compact homogeneous spaces, are Lipschitz constant minimizers in their homotopy
classes, unique up to isometries of domain and range.

We give one further example of this in the theorem below.

Let V2R
4 be the Stiefel manifold of orthonormal 2–frames in 4–space, with the metric

inherited from its natural inclusion in S3 � S3 , and let G2R
4 be the Grassmann

manifold of oriented 2–planes through the origin in 4–space. The natural projection
map V2R

4! G2R
4 takes an orthonormal 2–frame to the 2–plane oriented by this

ordered basis, and has Lipschitz constant 1 with respect to the Riemannian submersion
metric that it induces on the Grassmann manifold.

Algebraic & Geometric Topology, Volume 13 (2013)
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Theorem 4 The Lipschitz constant of any map of V2R
4!G2R

4 homotopic to the
Stiefel projection is greater than or equal to 1 with equality if and only if the map is
isometric to this projection.

To prove this theorem, we will observe within the Stiefel projection V2R
4!G2R

4

two families of Hopf projections S3! S2 , whose Lipschitz minimality, unique up
to isometries of domain and range, was established in Theorem 1. They provide the
framework for the proof.

Harmonic maps

We noted above that, beginning on S5 , Hopf vector fields are no longer volume-
minimizing cycles in their homology classes in the unit tangent bundle. So it is natural
to ask if they might be energy-minimizers there.

If LW V !W is a linear map between inner product spaces, its energy kLk2 is defined
to be the sum of the squares of the entries in a matrix for L with respect to orthonormal
bases for both V and W , and is easily checked to be independent of such choices.

The energy of a smooth map f W M !N between Riemannian manifolds (with M

compact) is then defined by

E.f /D
1

2

Z
x2M

kdfxk
2 d.vol/:

Such a map is harmonic if it is a critical point of the energy function, that is, if

dE.ft /

dt

ˇ̌̌̌
tD0

D
d

dt

ˇ̌̌̌
tD0

1

2

Z
x2M

kd.ft /xk
2 d.vol/D 0

for all one-parameter families fftg of maps from M !N with f0 D f .

Hopf projections are harmonic maps (see Fuller [8], Eells and Lemaire [6]); unfor-
tunately, harmonic maps from spheres to compact Riemannian manifolds are always
unstable (see Xin [37]).

If a vector field V on a Riemannian manifold M is regarded as a map of M to its
tangent bundle TM , then V is harmonic if and only if it is parallel (see Nouhaud [25],
Ishihara [22] and Konderak [24]).

By contrast, if a unit vector field on M is regarded as a map into its unit tangent
bundle UM with the standard Sasaki metric, then Hopf vector fields VH on all odd-
dimensional spheres are unstable harmonic maps. On S3 there are no other unit vector
fields which are harmonic (see Han and Yim [19]).
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If we now only look at cross-sections of the unit tangent bundle UM , rather than at
all maps of M ! UM , then the Hopf vector fields VH W S

n! USn are still unstable
for nD 5; 7; 9; : : : (see Wood [35]). But for nD 3 they are stable, and in fact local
minima of the energy (see Wood [36]).

The relation between volume and energy of unit vector fields on spheres and related
spaces has been studied over the past decade by Olga Gil-Medrano and her collaborators.
A cross-section of their papers is listed in the references (Borrelli, Brito and Gil-
Medrano [1], Borrelli and Gil-Medrano [2], Brito [4], Brito and Walczak [5], Gil-
Medrano [9; 10; 11] and Gil-Medrano and Llinares-Fuster [12]).
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1 Proof of Theorem 1 for maps from S 3 to S 2

Linking

Since the Hopf invariant of a map reports linking of inverse images, we begin by
commenting on this from two perspectives, homology and cohomology.

Homology Let K and K0 be disjoint oriented smooth simple closed curves in R3 .
Let S and S 0 be oriented surfaces bounded by K and K0 , in general position with
respect to one another. Then the linking number Lk.K;K0/ of K and K0 can be
defined to be the oriented intersection number of K with S 0 or of K0 with S , and
standard arguments show that both quantities are equal, and hence independent of the
choices of S and S 0 .
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Cohomology Given K and K0 as above, they have disjoint open tubular neighbor-
hoods U and U 0 , each an open solid torus. By Poincaré duality, the one-dimensional
homology of U is isomorphic to its two-dimensional cohomology with compact support,
H1.U IZ/ŠH 2

c .U IZ/, and likewise for U 0 . Let ˇ and ˇ0 be 2–forms with compact
support in U and U 0 which are dual in this way to K and K0 .

Extend ˇ and ˇ0 over R3 to be zero outside U and U 0 , and then let ˛ and ˛0 be
1–forms with compact support in R3 such that d˛ D ˇ and d˛0 D ˇ0 . Then we can
define

Lk.K;K0/D
Z
R3

˛^ˇ0 D

Z
R3

˛0 ^ˇ;

and standard arguments show that both integrals are equal, hence independent of the
choices of ˛ and ˛0 , and that this definition of linking number coincides with the one
given above.

The Hopf invariant of a map from S 3 to S 2

We give here two equivalent definitions of the Hopf invariant of a continuous map
f W S3! S2 and refer the reader to Bott and Tu [3, pages 227–239] for further details.

(1) Homotope f to a smooth map, which we still call f , and take any two reg-
ular values y and y0 . Then the inverse images f �1.y/ and f �1.y0/ are smooth
1–dimensional submanifolds of S3 , hence each is a finite union, say K and K0 , of
smooth simple closed curves, which we orient as follows. Start with orientations of
the domain S3 and the range S2 . Suppose x is a point of K D f �1.y/. Choose
a small disk Dx in S3 through x , transverse there to K . Orient Dx so that the
restriction of f to it is orientation-preserving. Then orient the component Kx of K

containing x so that the orientation of Dx followed by the orientation of Kx agrees
with the orientation of S3 . Continue in this way to orient all the components of K

and K0 . Then define the Hopf invariant of f to be the total linking number of all the
components of K with all the components of K0 .

Hopf [20] showed that this definition is independent of the choice of regular values y

and y0 of f , and that it depends only on the homotopy class of f , not on the particular
choice of f itself.

(2) Use singular cohomology with integer coefficients, and let ! be a 2–dimensional
cocycle on S2 with h!;S2i D 1. Then the pullback f �! is a 2–cocycle on S3 .
Since H 2.S3IZ/D 0, there is a 1–dimensional integral cochain ˛ on S3 such that
d˛ D f �˛ . Then the integer h˛[f �!;S3i is defined to be the Hopf invariant of f .
Note that we are using “d ” instead of “ı” for the coboundary map, as in the case of
differential forms.
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One shows that this definition is independent of the choice of 2–cocycle ! on S2 , and
of the choice of 1–cochain ˛ on S3 such that d˛ D f �! , and that it depends only
on the homotopy class of f , not on the particular choice of f itself.

Unlike Hopf’s definition, this one does not require us to first homotope f to make
it smooth. However, if f is smooth, we can use de Rham cohomology, let ! be a
smooth 2–form on S2 such that

R
S2 ! D 1, let ˛ be a smooth 1–form on S3 such

that d˛ D f �! , and then the integral
R

S3 ˛ ^ f
�! gives the Hopf invariant of f .

This is the approach of J H C Whithead [30], who showed it to be equivalent to Hopf’s.

Mix-and-match formula for the Hopf invariant

Since we will be looking at all continuous maps f W S3! S2 , not known in advance
to be smooth, we favor Whitehead’s approach to the Hopf invariant, phrased as above
in the language of singular cohomology with integer coefficients.

Here is a curiosity of that approach. Initially it is just a play with two actors: the
2–dimensional cocycle ! on S2 with h!;S2i D 1, and the 1–dimensional cochain ˛
on S3 with d˛ D f �! , with the Hopf invariant of f given by

Hopf.f /D h˛[f �!;S3
i:

A third actor can be introduced: another 2–dimensional cocycle !0 on S2 with
h!0;S2i D 1, and then we claim that

Hopf.f /D h˛[f �!0;S3
i;

which we view as a “mix-and-match” formula. To verify its correctness, note that !
and !0 are cohomologous on S2 , so we can write !�!0D d�, for some 1–cochain �
on S2 . Then

˛[f �! �˛[f �!0 D ˛[f �d�D ˛[ df ��:

Now
d.˛[f ��/D d˛[f ���˛[ df ��:

So integration by parts yields

h˛[f �!;S3
i � h˛[f �!0;S3

i D h˛[ df ��;S3
i

D hd˛[f ��;S3
i � hd.˛[ d��/;S3

i

D hd˛[f ��;S3
i;

since hd.˛[f ��/;S3i D 0 by Stokes’s theorem.

Algebraic & Geometric Topology, Volume 13 (2013)



1378 Dennis DeTurck, Herman Gluck and Peter Storm

But d˛ D f �! , and hence

d˛[f ��D f �! [f ��D f �.! [ �/D 0;

since ! [ � is a 3–form on S2 , and hence identically zero. This verifies the mix-and-
match formula above.

A sufficient condition for the Hopf invariant to be zero

We put the mix-and-match formula to immediate good use.

As motivation, suppose that f W S3! S2 is a smooth map, with y and y0 as regular
values, so that the Hopf invariant of f is given by the formula

Hopf.f /D Lk.K;K0/

where K D f �1.y/ and K0 D f �1.y0/ are smooth oriented links in S3 .

Suppose there is an open set U in S3 which contains K , excludes K0 , and has trivial
1–dimensional homology:

K � U � S3
�K0; H1.U IZ/D 0:

Then the link K bounds a 2–chain S in U , automatically disjoint from K0 , and hence
the linking number of K and K0 must be zero. Thus Hopf.f /D 0.

The following version of this, which applies to continuous rather than smooth maps, is
suitable for our purposes.

Lemma 5 (Preliminary version) Let f W S3! S2 be a continuous map, and let y

and y0 be two points of S2 , with inverse images K D f �1.y/ and K0 D f �1.y0/.
Suppose there is an open set U in S3 such that

K � U � xU � S3
�K0; H1.U IZ/D 0:

Then the Hopf invariant of f is zero.

Comment In the above statement, the symbol xU denotes the closure of U , and if the
chain of inclusions holds, we will say that U separates K from K0 . Note that if U

separates K from K0 , then S3� xU separates K0 from K .

Proof First we need to refine the above chain of inclusions by finding small open
sets V and V 0 about y and y0 in S2 so that

f �1.V /� U � S3
�f �1.V 0/:
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To find V , note that the image under f of the compact set S3 � U is compact
and hence closed in S2 , and misses the point y because f �1.y/ � U . Therefore
V D S2 � f .S3 � U / is an open neighborhood of y in S2 whose inverse image
f �1.V / lies in U , as desired. To find V 0 , repeat this with S3 � xU in place of U

and y0 in place of y .

K

f �1V
U

K0
f �1V 0

y

V

V 0

y0

Figure 1: f W S3! S2

Now let ! be a 2–dimensional singular cocycle on S2 with support in V , such that
h!;S2i D 1, and likewise for !0 and V 0 .

Then f �! is a 2–dimensional singular cocycle on S3 with support in f �1.V /� U .
By Poincaré duality, the 2–dimensional singular cohomology of U with compact
supports, H 2

c .U IZ/, is isomorphic to H1.U IZ/, which by hypothesis is zero. Hence
there is a 1–dimensional cochain ˛ on S3 with compact support inside U , such that
d˛ D f �! .

Now ˛ and f �!0 have supports inside the disjoint open sets U and f �1.V 0/, and
therefore the cohomology class Œ˛[f �!0�D 0. Then by the mix-and-match formula
for the Hopf invariant, we have

Hopf.f /D h˛[f �!0;S3
i D 0:

Plan of the proof of Theorem 1 for maps of S 3 to S 2.1=2/

We will show that any continuous map f W S3!S2.1=2/ with nonzero Hopf invariant
has Lipschitz constant greater than or equal to 1, with equality if and only if the map is
isometric to the Hopf projection. There are four steps to the proof, as follows.

Step 1 We show that for each point y 2 S2 , its inverse image f �1.y/ lies on some
great 2–sphere in S3 .

Algebraic & Geometric Topology, Volume 13 (2013)
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Step 2 We show that each inverse image f �1.y/ is a great circle in S3 .

Step 3 We show that any two such great circles f �1.y/ and f �1.y0/ are parallel to
one another.

Step 4 We conclude that f is isometric to the Hopf projection.

In what follows, we use the phrases “fiber of f ” and “point-inverse-image of f ”
interchangeably.

Step 1: Each fiber of f lies on a great 2–sphere in S3 Let f W S3! S2.1=2/ be
a map with nonzero Hopf invariant and with Lipschitz constant less than or equal to 1.

If A is a subset of S3 and r is a positive real number, N.A; r/ will denote the open
r –neighborhood of A,

N.A; r/D fp 2 S3
j d.p;A/ < rg:

We begin the argument by choosing at random a point y 2 S2.1=2/, and letting
KD f �1.y/ denote its inverse image in S3 . Since Lipf � 1, no point in N.K; �=2/

can map to the antipodal point �y in S2.1=2/.

On the other hand, some point in S3 must map to �y because f is homotopically
nontrivial, and hence onto. Say f .�x/D�y .

Since Lipf � 1, the point �x can not lie in N.K; �=2/, and therefore no point
of K can lie in the open hemisphere N.�x; �=2/. Hence K must lie in the closed
hemisphere of S3 centered at x , as shown below.

We depict y and �y as north and south poles of S2.1=2/, and x and �x as north
and south poles of S3 , with ES as the corresponding equatorial great 2–sphere.

Figure 2 shows x lying outside N.K; �=2/, and we argue now that this is correct.

Suppose to the contrary that x lies inside N.K; �=2/. Since K lies in the closed
northern hemisphere of S3 centered at x , we know the half open geodesic arc Œp;x/
from each point p of K , up to but not including x , must lie in N.K; �=2/. If x also
lies in N.K; �=2/, then each closed geodesic arc Œp;x� lies in N.K; �=2/.

Thus K can be contracted along these geodesic arcs within N.K; �=2/ to the single
point x . If f were smooth with regular values at y and �y , this would be enough to
show that the linking number of K D f �1.y/ and K0 D f �1.�y/ is zero, and hence
that the Hopf invariant of f is zero. This contradiction would then show that x must
indeed lie outside N.K; �=2/, confirming the accuracy of the above figure.

But we don’t know in advance that f is smooth, and so must work a little harder to
expose the contradiction.

Algebraic & Geometric Topology, Volume 13 (2013)



Lipschitz minimality of Hopf fibrations and Hopf vector fields 1381

x

N.K; �
2
/

ES

�x

y

fN.K; �
2
/

�y

Figure 2: f W S3! S2
�

1
2

�
Consider our assumption (contrary to fact) that x lies in the open set N.K; �=2/. Then
for some small " > 0, the closure of the 3"–ball N.x; 3"/ also lies in N.K; �=2/. It
follows that

(1) the closure of the 2"–ball N.x; 2"/ lies in N.K; �=2� "/.

Letting K0 D f �1.�y/, and noting our assumption that Lipf � 1, we have

(2) N.K; �=2� "/ and N.K0; "/ must be disjoint.

Now let C denote the cone over the open set N.K; "/ from the north pole x of S ,
meaning the union of all geodesic arcs from points of N.K; "/ to x . Denote such a
geodesic arc by Œp;x�, and note that it has length less than �=2C ". If we stop that
geodesic arc 2" short of x , say at the point x0 , then the subarc Œp;x0� lies entirely in
N.K; �=2� "/.

We can complete the trip along the geodesic arc from x0 to x within the closure of the
ball N.x; 2"/, and hence by (1) above within the open set N.K; �=2� "/.

Now let
U D C [N.x; 2"/;

the union of two cones in S3 with vertices at x . Since C is a cone over the open set
N.K; "/, it is open at all of its points, save possibly at x . Addition of the open set
N.x; 2"/ repairs this deficit, and so the set U is open. As the union of two cones, it is
contractible within itself to x .
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N.K; "/

C

x

N.x; 2"/

Figure 3: The contractible open set U D C [N.x; 2"/

By construction, we have

K � U �N.K; �=2� "/;

which is disjoint from N.K0; "/ by (2) above. Hence

K � U � xU � S3
�K0:

Since U is contractible, it certainly satisfies H1.U IZ/D 0.

Thus the conditions of Lemma 5 are satisfied, and we conclude that the Hopf invariant
of f is zero.

This contradiction shows that the north pole x can not lie inside N.K; �=2/, and
confirms the accuracy of its placement in Figure 2.

Since x cannot lie inside N.K; �=2/, it follows that no point of K can lie in the
open northern hemisphere N.x; �=2/. Since we already know that K lies in the
closed northern hemisphere, it follows that K must lie on its boundary, the equatorial
2–sphere ES , completing Step 1.

Step 2: Each fiber of f is a great circle in S 3 So far, we know that the fiber
K D f �1.y/ lies on the equatorial 2–sphere ES , and we intend to recreate there the
same situation we had on the full 3–sphere S3 .

To begin, some point of the fiber K0D f �1.�y/ must also lie on ES . Otherwise, for a
sufficiently small positive value of ", the open equatorial region U DN.ES; "/ would
separate K from K0 . Since H1.U IZ/D 0, Lemma 5 would imply that Hopf.f /D 0.
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Stealing notation from the previous section, let �x now denote a point of ES with
f .�x/D�y , so that �x lies in the fiber K0 D f �1.�y/. Note that this point �x is
entirely different from the point of the same name in the previous section.

Since Lipf � 1, the point �x can not lie in N.K; �=2/, and therefore no point of K

can lie in the open 2–dimensional hemisphere ES\N.�x; �=2/. Hence K must lie
in the closed hemisphere of ES centered at x .

If the point x were to lie inside N.K; �=2/, then, just as in the previous section, we
would find a contractible open subset U of S3 which separates K from K0 , which
once again by Lemma 5 would imply that Hopf.f /D 0.

Thus x cannot lie inside N.K; �=2/, and it follows that no point of K can lie in the
open hemisphere of ES centered at x . Since K lies in that closed hemisphere, it must
in fact lie on its boundary great circle EC .

We now assert that K can not be a proper subset of EC , and see this in three cases as
follows, supported by Figure 4 below.

Assume for the moment that K is a proper subset of the great circle EC .

Case 1: K 0 is disjoint from EC Then an open 3–cell U as shown in Figure 4
separates K from K0 .

U

U

x0

�x0

U

U

Figure 4: The fiber K can not be a proper subset of the great circle EC .

Case 2: K 0 meets EC in two antipodal points x0 and �x0 Then each of x0

and �x0 sits at the center of an open semicircle on EC which is forbidden to contain
any points of K , since the distance in S3 between K and K0 is ��=2. So K consists
at most of two points, and then the disjoint union U of two open three-cells, as shown
in the figure, separates K from K0 .

Case 3: K 0 meets EC , but not just in two antipodal points Then, as in Case 2
above, K is forbidden to lie in a union of open semicircles on EC , which in the present
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case is an open arc on EC . Therefore K is constrained to lie in the complementary
closed arc, and then the open 3–cell U shown in the figure separates K from K0 .

In each of the three cases above we have H1.U IZ/D 0, and then Lemma 5 would
imply that Hopf.f /D 0.

This contradiction shows that K D f �1.y/ must be the entire great circle EC .

Since y was an arbitrary point of S2 , we now know that all the fibers of f are great
circles in S3 .

Step 3: Any two great circle fibers of f are parallel to one another We claim now
that any two great circle fibers of f are parallel, meaning that they are a constant
distance apart from one another, and see this as follows.

Refer again to any pair of antipodal points y and �y on S2.1=2/, and to their inverse
images K D f �1.y/ and K0 D f �1.�y/ in S3 , now known to be great circles.

No point of K can be closer than �=2 to any point of K0 , since their images y and �y

under f are exactly �=2 apart on S2.1=2/ and we have Lipf � 1.

Thus the great circles K and K0 on S3 are orthogonal, meaning that they are the unit
circles on a pair of orthogonal 2–planes through the origin in R4 .

Now let z be a point on S2.1=2/ of distance ˛ from y and distance �=2�˛ from �y .

Let K00 D f �1.z/ be the corresponding great circle fiber. Where does K00 lie in S3

with reference to K and K0?

To answer that, consider the tubular neighborhoods N.K; ˛/ and N.K0; �=2 � ˛/

about K and K0 in S3 . Each is an open solid torus, and their common boundary, call
it T˛ , is a 2–dimensional torus, as shown in the figure below.

We claim that the great circle fiber K00Df �1.z/ must lie entirely on the 2–dimensional
torus T˛ .

If a part of K00 intrudes into the open set N.K; ˛/, then that part is closer than ˛ to K ,
yet is mapped by f to the point z which is exactly at distance ˛ from f .K/D y , in
contradiction to the assumption that Lipf � 1.

We get a similar contradiction if K00 intrudes into the open set N.K0; �=2�˛/.

Hence K00 lies on the common boundary T˛ of these two open sets, and so is at
constant distance ˛ from K and at constant distance �=2�˛ from K0 .

Since y and z were arbitrary nonantipodal points on S2.1=2/, we conclude that all
the great circle fibers of the map f are parallel to one another, as claimed.
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˛
K

T˛

�
2
�˛

N.K0; �
2
�˛/

K0

N.K; ˛/

Figure 5: S3 DN.K; ˛/[T˛ [N.K0; �
2
�˛/

Step 4. The map f is isometric to the Hopf projection We have been considering
a homotopically nontrivial map f W S3! S2.1=2/ with Lipschitz constant less than or
equal to 1, and have so far shown that the fibers of f are parallel great circles on S3 .

But, as mentioned earlier, any fibration of S3 by parallel great circles is isometric to the
Hopf fibration. So, f induces a homotopically nontrivial map xf W S2.1=2/!S2.1=2/

with Lipschitz constant less than or equal to 1, and this is easily seen to be an isometry.
It follows that the map f must be isometric to the Hopf projection.

This completes the proof of Theorem 1 in this first instance, and displays the style of
argument that we will emulate for the general case.

2 Proof of Theorem 1 for all Hopf projections

The Hopf invariant

Look once again at our display of all the Hopf fibrations of round spheres by parallel
great subspheres:

S1
� S3

! S2
DCP

1; S1
� S5

!CP
2; : : : ; S1

� S2nC1
!CP

n; : : :

S3
� S7

! S4
DHP

1; S3
� S11

!HP
2; : : : ; S3

� S4nC3
!HP

n; : : :

S7
� S15

! S8:
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We suppose that f is a continuous map from

S2nC1
!CP

n; S4nC1
!HP

n; or S15
! S8;

and intend to give two equivalent definitions of its Hopf invariant.

Before doing that, we recall the topology of the base spaces.

A choice of ascending complex vector spaces C1 � C2 � C3 � � � � leads to an
ascending sequence of complex projective spaces CP0 � CP1 � CP2 � � � � . The
cohomology ring H�.CPnIZ/ is a truncated polynomial ring with one generator Œ!�
in dimension 2 and with the relation Œ!�nC1D 0. We can take ! to be the Kähler form,
scaled so that it integrates to 1 over CP1 D S2.1=2/.

A choice of ascending quaternionic vector spaces H1 �H2 �H3 � � � � leads to an
ascending sequence of quaternionic projective spaces HP0�HP1�HP2� � � � . The
cohomology ring H�.HPnIZ/ is a truncated polynomial ring with one generator Œ!�
in dimension 4 and with the relation Œ!�nC1D 0. We can take ! to be the quaternionic
Kähler form, scaled so that it integrates to 1 over HP1 D S4.1=2/.

For simplicity of expression and to gain the advantage of making our arguments more
concrete, we will focus on maps f W S2nC1!CPn , and then comment afterwards on
the very slight changes needed to handle maps of S4nC1!HPn and of S15! S8 .

(1) Given a map f W S2nC1! CPn , homotope it so that it is smooth, has a given
value y in CPn as regular value, and so that it is transverse to the corresponding
“antipodal” CPn�1 , which is simply the cut locus of y in the usual Riemannian metric
on CPn . Then the inverse image K D f �1.y/ is a finite union of smooth simple
closed curves in S2nC1 , while the inverse image K0 D f �1.CPn�1/ is a smooth
submanifold of S2nC1 of dimension 2n� 1.

Orienting S2nC1 arbitrarily, and CPn in the usual way, we derive orientations for K

and K0 just as we did for maps of S3! S2 . Then the Hopf invariant of f is defined
to be the total linking number of all the components of K with all the components
of K0 .

This definition is independent of the choice of y and CPn�1 in CPn , and depends
only on the homotopy class of f .

(2) Let ! be the Kähler form on CPn , scaled so that h!;CP1i D 1. Then the
pullback f �! is a 2–cocycle on S2nC1 . Since H 2.S2nC1IZ/ D 0, there is a 1–
dimensional integral cochain ˛ on S2nC1 such that d˛ D f �! . Then the integer
h˛[ .f �!/n;S2nC1i is defined to be the Hopf invariant of f .
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One shows that this definition is independent of the choice of 2–cocycle ! on CPn

which generates H 2.CPnIZ/ŠZ, and of the choice of 1–cochain ˛ on S2nC1 such
that d˛ D f �! , and that it depends only on the homotopy class of f .

If f is smooth, we can use de Rham cohomology for this approach, just as we did for
maps of S3! S2 .

Mix-and-match formula for the Hopf invariant

The situation here is the same as for maps of S3! S2 .

Suppose !0 is another 2–cocycle on CPn with h!0;CP1i D 1.

Then instead of the above formula,

Hopf.f /D h˛[ .f �!/n;S2nC1
i;

for the Hopf invariant, we have the mix-and-match formula,

Hopf.f /D h˛[ .f �!0/n;S2nC1
i:

To verify this, first write ! �!0 D d� for some 1–cochain � on CPn .

It follows that !n� .!0/n D d� for some .2n� 1/–cochain � on CPn .

Write
˛[ .f �!/n�˛[ .f �!0/n D ˛[f �d� D ˛[ d f ��;

and then the integration by parts given earlier in the case of S3! S2 , now with �
in place of � there, finishes the present argument and confirms the mix-and-match
formula above.

A sufficient condition for the Hopf invariant to be zero
Lemma 5 (Complete version) (1) Let f W S2nC1!CPn be a continuous map,

and let y and CPn�1 be a point and disjoint projective hyperplane in CPn ,
with inverse images KD f �1.y/ and K0D f �1.CPn�1/. Suppose there is an
open set U in S2nC1 such that

K � U � xU � S2nC1
�K0 and H1.U IZ/D 0:

Then the Hopf invariant of f is zero.
(2) Let f W S4nC1!HPn be a continuous map, and let y and HPn�1 be a point

and disjoint projective hyperplane in HPn , with inverse images K D f �1.y/

and K0 D f �1.HPn�1/. Suppose there is an open set U in S4nC1 such that

K � U � xU � S4nC1
�K0 and H3.U IZ/D 0:

Then the Hopf invariant of f is zero.
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(3) Let f W S15! S8 be a continuous map, and let y and y0 be two points of S8 ,
with inverse images K D f �1.y/ and K0 D f �1.y0/. Suppose there is an open
set U in S15 such that

K � U � xU � S15
�K0 and H7.U IZ/D 0:

Then the Hopf invariant of f is zero.

The proof is the same as for the prototype discussed earlier.

Beginning the proof of Theorem 1

We will give the proof for maps of S5 ! CP2 , leaning heavily on the techniques
developed for the case S3! S2 , and afterwards explain the small adjustments needed
to handle the general case.

We begin with a continuous map f W S5!CP2 with nonzero Hopf invariant, assume
that Lipf � 1 and set out to prove that Lipf D 1 and that f is isometric to the Hopf
projection.

Step 1: Each fiber of f lies on a great 4–sphere in S 5 In CP2 , we focus on an
arbitrary point y and on its cut locus Y 0DCP1ŠS2 at maximal constant distance �=2
along every geodesic streaming out from y .

In S5 we focus on the fiber K D f �1.y/ and on the union of fibers K0 D f �1.Y 0/.

Let N.K; �=2/ again denote the open �=2 neighborhood of K in S5 .

Since Lipf � 1, no point in N.K; �=2/ can map to Y 0 .

On the other hand, some point in S5 must map to Y 0 , because otherwise the image of f
would lie in CP2�Y 0 , which is an open 4–cell, and this would make f homotopically
trivial.

Say f .�x/ 2 Y 0 .

Since Lipf � 1, the point �x can not lie in N.K; �=2/, and therefore no point
of K can lie in the open hemisphere N.�x; �=2/. Hence K must lie in the closed
hemisphere of S5 centered at x .

If the point x were to lie in N.K; �=2/ then, just as in the case of maps from S3!S2 ,
we could construct a contractible open neighborhood U of K which separates it
from K0 , and then conclude from Lemma 5 that the Hopf invariant of f must be zero.

Thus the point x can not lie in N.K; �=2/, and it follows that no point of K can lie
in the open hemisphere N.x; �=2/. Since we already know that K lies in that closed
hemisphere, it follows that K must lie on its boundary, which is a great 4–sphere ES4

in S5 .
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Steps 2, 3, 4: Each fiber of f is a great circle in S 5 We then follow the argument
from the case of maps from S3! S2 , using the fact that a small open neighborhood
of ES4 has trivial 1–dimensional homology, and invoke Lemma 5 once again to
conclude that K must in fact lie on a great 3–sphere ES3

� ES4 .

We iterate this twice more to conclude that K must lie on a great circle ES1 , and then
copy our earlier argument from the S3! S2 case to conclude that K can not be a
proper subset of that great circle, and hence must coincide with it.

Since y was an arbitrary point of CP2 , we now know that each fiber K D f �1.y/ is
a great circle on S5 .

Step 5: Any two great circle fibers of f are parallel to one another Consider the
great circle K D f �1.y/ and the set K0 D f �1.Y 0/, which must be a union of great
circles. Since Lipf � 1, the set K0 must lie within the great 3–sphere S3 in S5

which is orthogonal to K and at constant maximal distance �=2 from it.

If K0 were a proper subset of S3 , we could easily construct a contractible open set U

in S5 which separates K0 from K , and then conclude from Lemma 5 that the Hopf
invariant of f must be zero.

Hence K0 D S3 .

We now copy the argument from the S3! S2 case to conclude that any two great
circle fibers of f are parallel to one another.

Step 6: The map f is isometric to the Hopf projection Just as in the S3 ! S2

case, this follows from the known fact, mentioned earlier, that any fibration of a round
sphere by parallel great subspheres is isometric to the corresponding Hopf fibration.

Completion of the proof of Theorem 1

The same argument handles all the Hopf fibrations, and in each case shows that a map

S2nC1
!CP

n or S4nC3
!HP

n or S15
! S8

with nonzero Hopf invariant and Lipschitz constant less than or equal to 1 must have
Lipschitz constant equal to 1 and be isometric to the corresponding Hopf projection.

This completes the proof of Theorem 1.

Comment The set of homotopy classes of maps from S2nC1!CPn is in one-to-
one correspondence with the integers, as one sees from the homotopy sequence of the
bundle S1 � S2nC1!CPn , with the Hopf invariant providing the correspondence.
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But in the remaining cases, there are homotopically nontrivial maps which nevertheless
have zero Hopf invariant.

Consider for example the Hopf fibration S3�S7!S4 . From the homotopy sequence
of this bundle and the fact that the fiber is contractible in the total space, we get

ŒS7;S4�Š �7.S
4/Š �7.S

7/C�6.S
3/Š ZCZ12:

The Z–summand of �7.S
4/ corresponds to the Hopf invariant, but the maps in the

Z12 –summand all have Hopf invariant zero. And likewise for all the quaternionic Hopf
projections. In the one remaining case, S7 � S15! S8 , we get

ŒS15;S8�Š �15.S
8/Š �15.S

15/C�14.S
7/Š ZCZ120;

with the Z–summand corresponding to the Hopf invariant, but with all the maps in the
Z120 –summand having Hopf invariant zero.

3 Proof of Theorem 2

Statement of the Key Lemma

Theorem 2 metrically characterizes the inclusion map i W �Sn! Sn �Sn of the diag-
onal as a Lipschitz constant minimizer in its homotopy class, unique up to composition
with isometries of domain and range.

To prove this, we start with a map f W �Sn ! Sn � Sn which is homotopic to i ,
assume that Lipf � 1, and aim to show that Lipf D 1 and that f is isometric to i .

The basic tool is the Key Lemma, stated below.

If x is any point on Sn , then �x is the antipodal point, and their distance apart on Sn

is � .

Likewise, if .x;y/ is any point of Sn�Sn , then .�x;�y/ will be called its antipodal
point, and their distance apart on Sn � Sn is �

p
2. This is the maximum distance

between any two points of Sn �Sn .

Key Lemma Let f W �Sn! Sn �Sn be a map which is homotopic to the inclusion.
Then its image f .�Sn/ contains a pair of antipodal points .x;y/ and .�x;�y/ in
Sn �Sn .

The claim, in other words, is that the image f .�Sn/ contains a pair of points at
maximum distance apart in Sn �Sn . In applying the Key Lemma, these two points
will serve as a kind of framework, upon which the image is stretched.

The Key Lemma has a Borsuk–Ulam flavor.
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Suspension

Consider a map 'W Sm! Sn . Then a concrete model for the suspension of ' is the
map †'W SmC1! SnC1 defined by

†'.x cos t; sin t/D .'.x/ cos t; sin t/;

where x 2 Sm and ��=2� t � �=2, as illustrated in the figure below.

.x cos t; sin t/

Sm

x

'

.'.x/ cos t; sin t/

Sn

'.x/

Figure 6: †'W SmC1! SnC1

The suspension of ' takes m–spheres of constant latitude on SmC1 to n–spheres of
constant latitude on SnC1 by rescaled copies of ' . It is almost never smooth at the
north and south poles, no matter how smooth ' is.

If f D .f1; f2/W S
k ! Sm �Sn , then we define the suspension of f to be the map

†f D .†f1; †f2/W S
kC1
! SmC1

�SnC1:

If the map f = .f1; f2/W �Sn! Sn�Sn is homotopic to the inclusion, then the map
†f W �SnC1 ! SnC1 � SnC1 is also homotopic to the inclusion, with the obvious
rescaling to make the suspension of �Sn into �SnC1 .

Plan of the proof of Theorem 2

We start with a map f W �Sn! Sn�Sn which is homotopic to the inclusion, assume
that Lipf � 1, and aim to show that Lipf D 1 and that f is isometric to the inclusion.

The argument is by induction on n.

We assume the truth of the Key Lemma, leave the base step nD 1 as an exercise for
the reader, and begin with the induction step as follows.
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For n > 1, we use the Key Lemma together with the hypothesis that Lipf � 1 to
desuspend f to a map f 0W �Sn�1! Sn�1 � Sn�1 , meaning that †f 0 D f , such
that f 0 is homotopic to the inclusion and satisfies Lipf 0 � 1.

Then by the induction hypothesis, we know that f 0 is isometric to the inclusion, and
immediately conclude the same for f D†f 0 .

Finally, we give the proof of the Key Lemma.

For even n, this is a straightforward intersection argument in Sn�Sn using homology
with integer coefficients.

For odd n, this is an intersection argument in the symmetric product Sn �Sn using
homology with coefficients mod 2.

The induction step

We assume the truth of Theorem 2 for n� 1, and show how to prove it for n.

We start with a map f W �Sn ! Sn � Sn which is homotopic to the inclusion and
satisfies Lipf � 1.

By the Key Lemma, the image f .�Sn/ contains a pair of antipodal points .x;y/ and
.�x;�y/ in Sn �Sn .

Their distance apart in Sn�Sn is �
p

2, and since Lipf � 1, they must be the images
of a pair of antipodal points, say u and �u, in �Sn .

U

U 0

�Sn�1

�U

f 0

x

x0

Sn�1

�x

y

y0

Sn�1

�y

Figure 7: f W �Sn! Sn �Sn

On �Sn , each semicircle from u to �u is a geodesic of length �
p

2, and since
Lipf � 1, it must be taken by f to a geodesic, also of length �

p
2, from .x;y/ to

.�x;�y/ on Sn �Sn .
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The first coordinate of this image geodesic on Sn �Sn runs from x to �x along a
semicircle on the first Sn factor, and likewise the second coordinate runs from y to �y

along a semicircle on the second Sn factor.

Since Lipf � 1, the map f from the semicircle on �Sn to the product of the two
semicircles on Sn�Sn must be distance-preserving, with no leeway for slowing down
or speeding up.

Let �Sn�1 denote the equatorial .n� 1/–sphere on �Sn with poles at u and �u,
and likewise let Sn�1 denote (ambiguously) the equatorial .n� 1/–spheres on the
two Sn factors, with poles at x and �x , and at y and �y , respectively.

Let u0 , x0 and y0 denote the points where the three semicircles meet their respective
equators, as shown in the figure above. Then f .u0/D .x0;y0/. So we define

f 0W �Sn�1
! Sn�1

�Sn�1

to be the restriction of f to the equator �Sn�1 on �Sn .

Then we see from the above construction that f is the suspension of f 0 , that is,
f D†f 0 .

Since �Sn�1 is totally geodesic in �Sn , and Sn�1 � Sn�1 is totally geodesic in
Sn �Sn , the hypothesis that Lipf � 1 implies that Lipf 0 � 1.

Furthermore, the hypothesis that f W �Sn! Sn �Sn is homotopic to the inclusion
implies that f 0W �Sn�1! Sn�1 �Sn�1 is also homotopic to the inclusion.

The induction hypothesis, that Theorem 2 is true in dimension n� 1, now tells us
that f 0 must be isometric to the inclusion i 0W �Sn�1! Sn�1 �Sn�1 , and it follows
immediately that f D†f 0 must be isometric to the inclusion i W �Sn! Sn �Sn .

This completes the proof of Theorem 2, modulo the Key Lemma.

Proof of the Key Lemma for even n

We start with a map f W �Sn! Sn �Sn which is homotopic to the inclusion, and
must find a pair of antipodal points .x;y/ and .�x;�y/ in its image.

Let a and b denote the generators of Hn.S
n �SnIZ/ represented by Sn � point and

by point�Sn . Then f .�Sn/ can be regarded as a singular n–cycle representing the
class aC b .

Since n is even, the intersection form on Hn.S
n �SnIZ/ is given by

a � aD b � b D 0; a � b D b � aD 1:
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aC b

b

a

Figure 8: The n–cycle f .�Sn/ represents the homology class aC b .

If f D .f1; f2/, let �f D .�f1;�f2/, so that

�f .�Sn/D f.�x;�y/ j .x;y/ 2 f .�Sn/g:

In other words, �f .�Sn/ consists of the antipodes of all the points in f .�Sn/.

Since n is even, the oriented singular n–cycle �f .�Sn/ represents the homology
class �a� b .

The intersection number of the singular n–cycles f .�Sn/ and �f .�Sn/ is

.aC b/ � .�a� b/D�2:

Hence f .�Sn/ and �f .�Sn/ certainly have a nonempty intersection.

Therefore, for some point .x;y/ in f .�Sn/, the point .�x;�y/ is also in f .�Sn/,
which is precisely the claim of the Key Lemma.

Comment When n is odd, the intersection form on Hn.S
n �SnIZ/ is given by

a � aD b � b D 0; a � b D 1; b � aD�1;

and the singular n–cycles f .�Sn/ and �f .�Sn/ both represent the same class aCb .

The intersection number of these two n–cycles is therefore

.aC b/ � .aC b/D 0;

and the preceding argument falls apart.
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Rephrasing the Key Lemma

First we restate it.

Key Lemma Let f W �Sn! Sn �Sn be a map which is homotopic to the inclusion.
Then its image f .�Sn/ contains a pair of antipodal points .x;y/ and .�x;�y/ in
Sn �Sn .

Then we rephrase it.

Key Lemma (rephrased) Let f1 and f2W S
n ! Sn be two maps which are both

homotopic to the identity. Then there are points u and v in Sn such that f1.u/

and f1.v/ are antipodal, and at the same time f2.u/ and f2.v/ are also antipodal.

To match the two versions, put f .x;x/D .f1.x/; f2.x//.

In the two hypotheses, f is homotopic to the inclusion if and only if f1 and f2 are
both homotopic to the identity. And in the two conclusions, f .�Sn/ contains a pair
of antipodal points, call them f .u;u/D .f1.u/; f2.u// and f .v; v/D .f1.v/; f2.v//,
if and only if f1.u/ and f1.v/ are antipodal, and at the same time f2.u/ and f2.v/

are antipodal.

The proof of the Key Lemma which we give here is due to Dennis Sullivan. It begins
with the alternative phrasing above, and then moves the scene of action from the
cartesian product Sn �Sn down to the symmetric product Sn �Sn , in which every
point .u; v/ is identified with its “flip” .v;u/.

The virtue of this move is that the image of the “antidiagonal” in Sn �Sn will be seen
to have self-intersection number 1 .mod 2/ there, independent of the parity of n.

To prepare for the argument, we pause to discuss the geometries of both the cartesian
and symmetric products.

Geometry of the cartesian product S n � S n

Let
D D�Sn

D diagonal n–sphereD f.x;x/ j x 2 Sn
g � Sn

�Sn;

AD antidiagonal n–sphereD f.x;�x/ j x 2 Sn
g � Sn

�Sn:

Each of D and A is the focal locus of the other in Sn � Sn , and the isometry
'W Sn �Sn! Sn �Sn defined by '.x;y/D .x;�y/ interchanges them.
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The diagonal D and antidiagonal A are homologous to one another when n is odd,
but not when n is even.

The set U D f.x;y/ 2 Sn�Sn j x � y D 0g is a copy of the Stiefel manifold V2R
nC1

of orthonormal two-frames in RnC1 , and is situated halfway between D and A in
Sn �Sn .

A
D

U

Figure 9: The hypersurface U is halfway between D and A in Sn �Sn

The inner product function IPW Sn�Sn!R defined by IP.x;y/D x � y takes values
in the interval Œ�1; 1�, and we have

D D IP�1.1/; U D IP�1.0/; AD IP�1.�1/:

The level sets IP�1.t/ for �1 < t < 1 are all homeomorphic to one another, and
together foliate the complement of D and A in Sn �Sn , collapsing to D at one end
and to A at the other.

The sets N.D/D IP�1.Œ0; 1�/ and N.A/D IP�1.Œ�1; 0�/ are closed tubular neighbor-
hoods of D and A in Sn �Sn which share U as a common boundary. They are both
copies of the unit disk bundle of the tangent bundle of Sn .

The symmetric product S n � S n

Consider the involution � W Sn �Sn! Sn �Sn defined by �.x;y/D .y;x/.

The symmetric product Sn � Sn is obtained from Sn � Sn by dividing out by this
involution,

Sn
�Sn

D
Sn �Sn

.x;y/� .y;x/
:

Let pW Sn �Sn! Sn �Sn be the projection map, and write p.x;y/D Œx;y�.
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Each level set of the inner product function IPW Sn �Sn! Œ�1; 1� is invariant under
the involution � , and hence the decomposition of Sn�Sn into these level sets projects
under p to a corresponding decomposition of Sn �Sn .

The fixed point set of � is the diagonal n–sphere D , which projects one-to-one to its
image p.D/DD0 in Sn �Sn . At the other extreme is the antidiagonal A in Sn�Sn ,
which projects two-to-one to its image p.A/DA0 , a copy of RPn , in Sn �Sn .

The tubular neighborhoods N.D/ and N.A/ in Sn �Sn project to tubular neighbor-
hoods N.D0/ and N.A0/ in Sn �Sn .

The symmetric product S1 �S1 is a Möbius band, with D0 as its boundary, while the
symmetric product S2 �S2 is homeomorphic to CP2 .

By contrast, the symmetric product Sn �Sn fails to be a manifold along D0 starting
with n D 3. Nevertheless, for all n, .Sn � Sn/ �D0 is a (noncompact) manifold
containing A0 as a submanifold.

Since the involution � of Sn�Sn is orientation-preserving for even n and orientation-
reversing for odd n, the symmetric product Sn � Sn is orientable for even n and
nonorientable for odd n.

By contrast, the image A0 of the antidiagonal is homeomorphic to RPn , and is therefore
nonorientable for even n and orientable for odd n.

Thus the symmetric product Sn �Sn has some prominent nonorientable feature for
all n.

Self-intersection number of the antidiagonal in S n � S n

Recall that in Sn �Sn ,

� when n is even, the diagonal D has self-intersection number 2 and the antidiag-
onal A has self-intersection number �2;

� when n is odd, D and A each have self-intersection number 0.

Lemma 6 Regardless of the parity of n, the antidiagonal A0Dp.A/ in .Sn�Sn/�D0

has self-intersection number 1 .mod 2/.

When nD 1 this is easy to see visually, since S1 �S1 is a Möbius band, while A0 is
the circle running along the middle of the band.

To prove the lemma in general, we will describe a concrete perturbation of A0 in
.Sn �Sn/�D0 which meets A0 transversally in just one point.
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To that end, let f W Sn! Sn be a diffeomorphism with fixed points at the north and
south poles, but otherwise moving each point of Sn slightly southwards along its circle
of longitude. We want to choose f to satisfy the following two conditions:

(1) the differential of f at the north pole is expansive, and at the south pole con-
tractive;

(2) the behavior of f is related to the antipodal map as in the following diagram,
which shows a typical great circle of longitude.

f .x/

f
x

N

�f .x/

�x

S

Figure 10: Required behavior of f

We are requiring that f .�f .x// D �x , or in other words, that the map �f be an
involution.

We intend that f W Sn! Sn should be the same on every great semicircle of longitude,
and construct such a map as follows.

First we redraw the above circle of longitude on Sn , focus on its “left half”, and
parametrize this from 0 in the north to 1 in the south.

We see in Figure 11 that the point �f .x/ corresponds to the point 1� f .x/ in this
parametrization, and likewise the point �x corresponds to 1�x .

So, focusing on the left semicircle, and thinking of f as a map from Œ0; 1� to itself, we
are requiring in condition (2) above that

(2’) f .1�f .x//D 1�x .
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f .x/

x

N

0

1�f .x/ �f .x/

1�x

1
�x

S

Figure 11: Behavior of reparametrized f

1

1�f .x/

x

1�f .x/

f

x

f .x/

f .1�f .x//

0 1

Figure 12: Guide for constructing f

To construct such a function f , we are guided by Figure 12, in which we show the
graph of f inside the square Œ0; 1�� Œ0; 1�.

We insist that the graph of f should be invariant under reflection about the diagonal of
slope �1, and will show that this guarantees condition (2’).
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To that end, start with the point .x; f .x// on the graph. In the diagram, we show x as
a horizontal segment in black, f .x/ as a vertical segment in red, and then 1�f .x/ as
a vertical segment in green above it.

Now reflect in the diagonal of slope �1. Then 1� f .x/ reappears as a horizontal
segment in green, and due to the symmetry, its right hand end point is still on the graph
of f .

Hence f .1�f .x// appears as a vertical segment in blue.

Then 1�f .1� f .x// appears directly above it as a vertical segment in black which,
thanks again to the reflective symmetry, has length x . That is, 1�f .1�f .x//D x ,
which is just a transposed version of condition (2’).

To take care of condition (1), we simply make f 0.0/ > 1. Then by the reflective
symmetry we have f 0.1/D 1=f 0.0/< 1. For example, in Figure 12, we have f 0.0/D 2

and f 0.1/D 1=2.

We now define f W Sn ! Sn by copying the map f on every great semicircle of
longitude from the north pole N to the south pole S . We guarantee the differentiability
of this f at N and S by making the map f W Œ0; 1�! Œ0; 1� linear near 0, and hence
by reflection, also near 1, as shown in Figure 12.

With such a map f W Sn! Sn in hand, we complete the proof of Lemma 6 as follows.

The antidiagonal n–sphere A D f.x;�x/g in Sn � Sn projects down by p to the
antidiagonal real projective n–space A0 D fŒx;�x�g in Sn �Sn .

Up in Sn�Sn , consider the smooth n–sphere Af D f.x;�f .x/g. If f is close to the
identity, then Af is a slight perturbation of A, which by condition (1) above meets A

transversally in the two points .N;S/ and .S;N /.

Furthermore, by condition (2), for each point .x;�f .x// of Af , the point .�f .x/;x/
is also in Af , and so Af is invariant under the involution � .

Therefore the map pW Af !p.Af /DA0
f

is a double covering, whose image is a slight
perturbation of A0 , and which meets it transversally in the single point ŒN;S �D ŒS;N �.
By construction of f , this perturbation of A0 takes place entirely in .Sn �Sn/�D0 .

This completes the proof of Lemma 6.

Proof of the Key Lemma

In order to prove the rephrased version of the Key Lemma, we start with the two maps
f1 and f2W S

n! Sn , both homotopic to the identity, and must find points u and v
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in Sn such that f1.u/ and f1.v/ are antipodal, and at the same time f2.u/ and f2.v/

are also antipodal.

To that end, define F1 and F2W S
n �Sn! Sn �Sn by

F1.Œu; v�/D Œf1.u/; f1.v/�; F2.Œu; v�/D Œf2.u/; f2.v/�:

We will show that
F�1

1 .A0/\F�1
2 .A0/¤∅:

Suppose, to the contrary, that the inverse images F�1
1
.A0/ and F�1

2
.A0/ are disjoint.

Choose an open tubular neighborhood N 0 of A0 in Sn �Sn�D0 such that

F�1
1 .N 0/\F�1

2 .N 0/D∅:

In the following argument, all homology and cohomology will be understood to have Z2

coefficients. The symbol H 2n
c denotes cohomology with compact supports.

Using the terminology and results of Eilenberg–Steenrod XI.6, the pair .Sn �Sn;D0/

is a relative 2n–manifold. The fact that Sn �Sn�D0 is connected implies that

H 2n.Sn
�Sn;D0/Š Z2; H 2n

c .Sn
�Sn

�D0/Š Z2;

and the inclusion .Sn �Sn�D0;∅/� .Sn �Sn;D0/ induces an isomorphism

H 2n
c .Sn

�Sn
�D0/!H 2n.Sn

�Sn;D0/:

Consider the compact smooth submanifold A0 � Sn � Sn � D0 . Let ! be an
n–dimensional cochain representing the Poincaré dual of A0 in the cohomology ring
H 2n

c .Sn �Sn�D0/, that is, ! represents the Thom class of the normal bundle of A0 .
We may assume that ! is supported in the open tubular neighborhood N 0 of A0 .

We saw in the previous section that A0 has nonzero self-intersection number mod 2

in Sn � Sn �D0 . It follows from Poincaré duality that the cup product Œ!�[ Œ!� is
nonzero in H 2n

c .Sn �Sn�D0/. Using the inclusion map, we see that Œ!�[ Œ!� is also
nonzero in H 2n.Sn �Sn;D0/.

Since f1 and f2W S
n! Sn are both homotopic to the identity, it follows that F1 and

F2W S
n �Sn! Sn �Sn are also both homotopic to the identity through maps which

always take the singular locus D0 to itself (though not keeping it pointwise fixed).
Therefore

F�1 Œ!�[F�2 Œ!�D Œ!�[ Œ!�D 1

in H 2n.Sn �Sn;D0/Š Z2 .
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Since the support of ! is contained in N 0 , and we have seen F�1
1
.N 0/\F�1

2
.N 0/D∅,

it follows that the cochains F�
1
! and F�

2
! have disjoint supports. Therefore

F�1 Œ!�[F�2 Œ!�D 0:

This contradiction shows that

F�1
1 .A0/\F�1

2 .A0/¤∅:

Now let Œu; v� be a point in this intersection.

The fact that F1.Œu; v�/D Œf1.u/; f1.v/� lies in A0 tells us that f1.u/ and f1.v/ are
antipodal.

The fact that F2.Œu; v�/D Œf2.u/; f2.v/� lies in A0 tells us that f2.u/ and f2.v/ are
antipodal.

This is exactly the claim of the Key Lemma, and so completes its proof, and with it the
proof of Theorem 2.

4 Proof of Theorem 3

Equivalence of Hopf vector fields

We will make use of the following in the proof of Theorem 3.

An orthogonal complex structure J on Euclidean space R2nC2 is an element of the
group SO.2nC2/ such that J 2D�Identity. Decomposing R2nC2 into an orthogonal
direct sum of 2–planes invariant under J , we note that

(i) x � J.x/D 0 for all x 2R2nC2 ;

(ii) any two orthogonal complex structures on R2nC2 are conjugate in O.2nC 2/.

A Hopf vector field on S2nC1 is the same thing as the restriction to S2nC1 of an
orthogonal complex structure on R2nC2 .

Suppose that J and J 0 are any two orthogonal complex structures on R2nC2 , and
that g is an element of O.2nC2/, thanks to (ii) above, such that gJ DJ 0g . Then .g;g/
is an isometry of the unit tangent bundle US2nC1 taking the graph V of the restriction
of J to S2nC1 to the graph V 0 of the corresponding restriction of J 0 , since

.g;g/.x;J.x//D .g.x/;gJ.x//D .g.x/;J 0g.x//D .y;J 0.y//:

In other words, any two Hopf cross sections V .S2nC1/ and V 0.S2nC1/ of US2nC1

can be taken to one another by an isometry of this unit tangent bundle.
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Proof of Theorem 3

Let v be a Hopf vector field on S2nC1 , obtained as the restriction of the orthogonal
complex structure J on R2nC2 . Let V be the corresponding cross-section of US2nC1 ,
and denote by i W V .S2nC1/! US2nC1 the inclusion map. The claim of Theorem 3
is that if the map f W V .S2nC1/! US2nC1 is homotopic to the inclusion and has
Lipschitz constant less than or equal to 1, then its Lipschitz constant equals 1 and f is
isometric to the inclusion.

The composite inclusion V .S2nC1/ � US2nC1
� S2nC1 � S2nC1 is isometric to

the inclusion of the diagonal �S2nC1 � S2nC1 �S2nC1 , since the restriction of J

to S2nC1 is an isometry.

The composite map f W V .S2nC1/! US2nC1
� S2nC1 �S2nC1 is homotopic to the

inclusion of V .S2nC1/ into S2nC1�S2nC1 , and still has Lipschitz constant less than
or equal to 1 there. So by Theorem 2, the composite map f must have Lipschitz
constant equal to 1 and be isometric to the inclusion of V .S2nC1/ into S2nC1�S2nC1 .

Thus the image under f of V .S2nC1/ in S2nC1 �S2nC1 must be the graph V 0 of
an orientation-preserving isometry J 0W S2nC1! S2nC1 such that x � J 0.x/D 0 for
all x in S2nC1 . In other words, f takes the Hopf cross-section V .S2nC1/ to another
Hopf cross-section V 0.S2nC1/ in US2nC1 .

Since both V .S2nC1/ and V 0.S2nC1/ are round 2nC1–spheres of radius
p

2, and f
has Lipschitz constant less than or equal to 1, the map f W V .S2nC1/! V 0.S2nC1/

must be an isometry.

We saw in the previous section that there is an isometry of US2nC1 to itself which
takes V .S2nC1/ to V 0.S2nC1/. It follows that f W V .S2nC1/!US2nC1 is isometric
to the inclusion i W V .S2nC1/! US2nC1 , completing the proof of Theorem 3.

So we see that Theorem 3 is a direct consequence of Theorem 2.

Comment on Theorem 3

There are really two distinct Riemannian metrics on the unit tangent bundle of a sphere.

The first, which we have been using, views

USn
D f.x;y/ j x;y 2 Sn; x � y D 0g � Sn

�Sn;

takes the usual product metric on Sn � Sn , and then gives to USn the Riemannian
metric induced by this inclusion.
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The second, due to Sasaki [28], applies to the tangent bundle TM of any Riemannian
manifold M . If .x.t/; v.t// is a curve in TM , then the length of the tangent vector to
this curve is taken to be

.jx0.t/j2Cjv0.t/j2/1=2;

where x0.t/ is the tangent vector to the curve x.t/ in M , where v0.t/ is the covariant
derivative of the vector field v.t/ along the curve x.t/, and the norms of these vectors
are measured in the given Riemannian metric on M .

As a result, if v.t/ is a parallel vector field along the curve x.t/ in M , meaning that
the covariant derivative v0.t/D 0, then the length of the tangent vector to the curve
.x.t/; v.t// in TM is simply the length jx0.t/j of the tangent vector to the curve x.t/

in M .

For example, if M is the unit circle S1 in R2 , and if

x.t/D .cos t; sin t/; v.t/D .� sin t; cos t/;

then not only is x.t/ a unit speed curve in M , but also .x.t/; v.t// is a unit speed
curve in TM , since v.t/ is parallel along x.t/. In other words, the fact that v.t/ is, to
the naked eye, spinning around just as fast as x.t/, is forgiven, and the length of the
loop .x.t/; v.t// in TM is just 2� , as opposed to 2�

p
2.

The same thing happens with the Sasaki metric on the unit tangent bundle USn of Sn .
If x.t/ travels at unit speed once around a great circle in Sn , and if v.t/D x0.t/ is its
velocity vector, then the curve .x.t/; v.t// in USn also travels at unit speed in USn ,
and so has length 2� . By contrast, in the “product metric” on USn inherited from its
natural inclusion in Sn �Sn , this loop has length 2�

p
2.

This is the only difference between the two competing metrics on USn : you pass from
the product metric to the Sasaki metric by reducing lengths by a factor of

p
2 in the

direction of the above “geodesic flow”, while preserving lengths in the orthogonal
direction.

It would be sensible to check the validity of Theorem 3 using the Sasaki metric on the
unit tangent bundle US2nC1 , but we have not done this yet.

5 Proof of Theorem 4

Setup

The Stiefel manifold V2R
4 is the set of orthonormal 2–frames in 4–space,

V2R
4
D f.x;y/ j x 2 S3; y 2 S3; x � y D 0g;
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and we give it the Riemannian metric inherited from its inclusion in S3 �S3 .

The Grassmann manifold G2R
4 is the set of oriented 2–planes through the origin in

4–space. We identify it with the set of unit decomposable 2–vectors in the exterior
product ƒ2

R
4 , a 6–dimensional Euclidean space, and give it the resulting Riemannian

metric.

Fact (Gluck and Warner [13]) A 2–vector in 4–space is decomposable if and only
if it has equal length projections into the C1 and �1 eigenspaces E3

C and E3
� of the

Hodge star operator on ƒ2R4 .

From this fact, it follows that

G2R
4
D S2

C.1=
p

2/�S2
�.1=
p

2/�E3
C˚E3

� Dƒ
2
R

4;

the product of the 2–spheres of radius 1=
p

2 in E3
C and E3

� .

The projection map pW V2R
4 ! G2R

4 takes .x;y/ ! .x ^ y/=kx ^ yk. It is a
Riemannian submersion, and thus has Lipschitz constant 1.

Theorem 4 asserts that any map homotopic to the Stiefel projection has Lipschitz
constant greater than or equal to 1, with equality if and only if the map is isometric to
this projection.

In other words, the Stiefel projection is, up to isometries of domain and range, the
unique Lipschitz constant minimizer in its homotopy class.

To prove this theorem, we will observe within the Stiefel projection V2R
4!G2R

4

two families of Hopf projections S3! S2 , whose Lipschitz minimality, unique up
to isometries of domain and range, was established in Theorem 1. They provide the
framework for the proof.

An alternative view of the Stiefel projection

The Stiefel manifold V2R
4 is the same as the unit tangent bundle US3 of the 3–sphere.

This bundle is trivial topologically (though not metrically), and has two common sense
trivializations, US3

! S3 �S2 , given by

.x;y/! .x;yx�1/; .x;y/! .x;x�1y/;

using multiplication of unit quaternions, and thinking of S2 as the space of purely
imaginary unit quaternions.

Packaging these two trivializations together yields a map

V2R
4
D US3

! S2
�S2; .x;y/! .yx�1;x�1y/;
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which is a copy of the Stiefel projection pW V2R
4! G2R

4 , scaled up by the linear
factor

p
2.

This version of the Stiefel projection p has Lipschitz constant
p

2, and we will use it
in what follows.

Copies of the complex Grassmannian G1C
2 inside G2R

4

It is easy to see that on R4 , all orthogonal complex structures are given by left or right
multiplication by a purely imaginary unit quaternion. To be specific, let us use left
multiplication by the purely imaginary unit quaternion u to regard R4 as C2 .

The corresponding complex Grassmannian G1C
2 consists of all complex lines in C2

through the origin. To real eyes, each such complex line is a 2–plane through the
origin, with a natural orientation given by the ordered basis x;ux for any unit vector x

therein.

Using the alternative version p.x;y/D .yx�1;x�1y/ of the Stiefel projection, we
have p.x;ux/D .u;x�1ux/, which tells us that

G1C
2
D u�S2

� S2
�S2

DG2R
4;

a “vertical” 2–sphere in S2 �S2 . The inverse image p�1.G1C
2/ up in V2R

4 is the
subset

uV D f.x;ux/ j x 2 S3
g:

It is a round, totally geodesic 3–sphere of radius
p

2, and is the graph of the corre-
sponding Hopf vector field.

The restriction pW uV ! G1C
2 of the Stiefel projection is just a copy of the Hopf

projection, scaled up by a factor
p

2.

Varying the choice of purely imaginary unit quaternion u gives us all possible “vertical”
2–spheres u�S2 as the corresponding G1C

2 inside our S2 �S2 picture of G2R
4 .

Each one serves as the base space of a Hopf projection, as above.

Similarly, fixing an orthogonal complex structure on R4 via right multiplication by
the purely imaginary unit quaternion v , we get the corresponding

G1C
2
D S2

� v � S2
�S2

DG2R
4;

a “horizontal” 2–sphere in S2 �S2 .

The inverse image p�1.G1C
2/ up in V2R

4 is the subset

Vv D f.x;xv/ j x 2 S3
g;
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and again, the restriction pW Vv!G1C
2 of the Stiefel projection is a scaled-up copy

of the Hopf projection.

Varying the choice of v gives us all possible “horizontal” 2–spheres S2 � v as the
corresponding G1C

2 inside our S2 �S2 picture of G2R
4 , again with each serving

as the base space of a Hopf projection.

Vv Š S3.
p

2/

uV Š S3.
p

2/

V2R4

G2R4

G1C 2 D S2 �V
G1C 2 D U �S2

Figure 13: Two copies of G1C
2 inside G2R

4 , and their inverse images in V2R
4

Proof of Theorem 4

We start with the Stiefel projection pW V2R
4!G2R

4DS2�S2 , which is a scaled-up
Riemannian submersion with Lipschitz constant

p
2.

Then we consider another map f W V2R
4 ! G2R

4 which is homotopic to p with
Lipschitz constant less than or equal to

p
2, and must show that f has Lipschitz

constant equal to
p

2, and agrees with p up to composition with isometries of domain
and range.

The isometries of the domain V2R
4 are known to preserve the Stiefel fibers (Gluck

and Ziller [16]), so somewhere in the argument we will have to show that these are
also the fibers of f , and we take this as a hint.

Fix a purely imaginary unit quaternion v , and use right multiplication by v to impose
an orthogonal complex structure on R4 , so that we can regard it as C2 .
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Then consider again the restriction pW Vv!G1C
2 �G2R

4 of the Stiefel projection.

Let p1 and p2 denote the compositions of p with the projections of G2R
4DS2�S2

to its first and second factors.

Likewise, let f1 and f2 denote the corresponding compositions of f with these two
projections.

Now compare the restrictions

p1; f1W Vv Š S3.
p

2/! S2:

Since p and f are homotopic, so are the above restrictions of p1 and f1 . The
restricted p1 is a Hopf projection, scaled up by

p
2, with Lipschitz constant

p
2, while

the restricted f1 has Lipschitz constant less than or equal to
p

2.

By Theorem 1, the restricted f1 must have Lipschitz constant equal to
p

2, and agree
with the restricted p1 up to isometries of domain and range.

In other words, f1W Vv Š S3.
p

2/! S2 is a Hopf projection, scaled up by
p

2.

Claim The image f .Vv/ is a horizontal 2–sphere S2 � v0 in S2 �S2 .

Proof of claim We already know that f1W Vv Š S3.
p

2/! S2 is a Hopf projection,
whose fibers are great circles of radius

p
2.

In particular, the map f1 is smooth.

In the tangent space to Vv at the point .x;xv/, let Fx denote the tangent line to the
great circle fiber of f1 , and Gx the orthogonal 2–plane.

The differential of f1 at this point takes Gx conformally to the tangent 2–plane to S2

at the image point, stretching lengths by
p

2.

In particular, any smooth curve in Vv everywhere tangent to Gx is taken by f1

conformally to a curve in S2 , stretching lengths by
p

2.

Since this is the maximum stretch allowed the map f W Vv!G2R
4 D S2 �S2 , that

same curve in Vv must be taken by f to a horizontal curve in S2 �S2 .

But any two Hopf fibers can be connected by a smooth curve in S3 which is everywhere
orthogonal to the fibers its passes through, and hence f must take all of Vv to a single
horizontal 2–sphere S2 � v0 , verifying the claim.

And since f1W Vv! S2 is a Hopf fibration, so also is f W Vv! S2 � v0 , where it is
perfectly possible that v0 ¤ v .
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We have thus gained some control over the nature of f : on each Vv the map f must
be a Hopf projection, with image a horizontal 2–sphere in S2 �S2 .

The fibers of f must therefore be great circles in Vv Š S3.
p

2/, but we don’t yet
know that they coincide with the Stiefel fibers.

Now repeat all of the above with orthogonal complex structures on R4 given by left
multiplication by a purely imaginary unit quaternion u, and learn that the image f .uV /

is a vertical 2–sphere u0 �S2 in S2 �S2 , where again it is possible that u0 ¤ u.

The two images u0 �S2 and S2 � v0 intersect in the single point .u0; v0/.

Since the inverse image of an intersection is the intersection of the inverse images, the
portion of f �1.u0; v0/ within uV [Vv must be uV \Vv , which is a Stiefel fiber.

It follows in this way that the map f must collapse each Stiefel fiber in V2R
4 to a

single point in G2R
4 , although we do not yet know that distinct Stiefel fibers are sent

to distinct points by f .

Since f W V2R
4!G2R

4 collapses each Stiefel fiber to a point, it induces a map

xf W G2R
4
D S2

�S2
!G2R

4
D S2

�S2;

with Lipschitz constant less than or equal to 1.

From the above discussion, we see that xf takes the horizontal 2–sphere S2 � v to the
horizontal 2–sphere S2�v0 , and the vertical 2–sphere u�S2 to the vertical 2–sphere
u0 �S2 , in each case with Lipschitz constant less than or equal to 1.

Since by hypothesis the map f is homotopic to the Stiefel projection p , these horizontal-
to-horizontal and vertical-to-vertical maps of 2–spheres are all homotopic to the identity.

But a map from S2 to S2 which is homotopic to the identity and has Lipschitz constant
less than or equal to 1 must be an orientation-preserving isometry.

It follows that
xf .u; v/D .u0; v0/D .g.u/; h.v//;

where g and h are orientation-preserving isometries of S2 .

Hence f differs from the Stiefel projection p by an isometry .g; h/ of their common
range G2R

4 , completing the proof of Theorem 4.
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