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Integral cohomology of rational projection method patterns
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We study the cohomology and hence K–theory of the aperiodic tilings formed by
the so called “cut and project” method, that is, patterns in d –dimensional Euclidean
space which arise as sections of higher dimensional, periodic structures. They
form one of the key families of patterns used in quasicrystal physics, where their
topological invariants carry quantum mechanical information. Our work develops
both a theoretical framework and a practical toolkit for the discussion and calculation
of their integral cohomology, and extends previous work that only successfully
addressed rational cohomological invariants. Our framework unifies the several
previous methods used to study the cohomology of these patterns. We discuss
explicit calculations for the main examples of icosahedral patterns in R3 – the Danzer
tiling, the Ammann–Kramer tiling and the Canonical and Dual Canonical D6 tilings,
including complete computations for the first of these, as well as results for many of
the better known 2–dimensional examples.

52C23; 52C22, 55R20

1 Introduction

This work considers one of the key families of aperiodic patterns used in quasicrystal
physics. We develop both a theoretical framework and a practical toolkit for the
discussion and calculation of the integral cohomology and K–theory of these patterns.
Our work extends previous results of Forrest, Hunton and Kellendonk [20; 21] and
of Kalugin [28], which successfully addressed only their rational cohomology, and
it provides a unified treatment of the two apparently distinct approaches exemplified
by [20; 21] and [28] studied so far in the literature. The patterns we consider are
point patterns in some d –dimensional Euclidean space Rd that arise as sections of
higher-dimensional, periodic structures, variously known as model sets, cut and project
patterns or just projection patterns; see, for example, Moody’s survey [34]. By a
standard equivalence, such point patterns may also be considered as tilings, coverings
of Rd by compact polyhedral sets meeting only face to face. The Penrose tiling in
2 dimensions is perhaps the best known example, but the class is huge (indeed, it is
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infinite) and today forms the principal set of geometric models for physical quasicrystals;
see, for example, Steurer and Deloudi [41].

To any point pattern or tiling P in Rd a topological space associated to P , called
the hull or tiling space � of P , may be constructed. In short, this is a moduli space
of patterns locally equivalent to P . Under standard assumptions (certainly satisfied
by the class of patterns we consider), � is a compact, metrisable space, fibering over
a d –torus with fibre a Cantor set, as shown by Forrest, Hunton and Kellendonk for
canonical projection tilings in [21], and more generally by Sadun and Williams in [39].
Much progress during the last 20 years or more in the study of aperiodic patterns
has developed through the study of these spaces, which can be analysed via standard
topological machinery such as cohomology or K–theory. Major results include the
Gap Labeling Theorem of Bellissard [7], including the work of Bellissard, Benedetti
and Gambaudo [8], Bellissard, Hermann and Zarrouati [9], Bellissard, Kellendonk and
Legrand [10], Benameur and Oyono-Oyono [11] and Kaminker and Putnam [29], the
deformation theory of tilings developed by Clark and Sadun [14], Kellendonk [30]
and Sadun and Williams [39], and the work on exact regularity of patterns and the
homological Pisot conjecture by Barge, Bruin, Jones and Sadun [5] and Sadun [38].
For a short introduction to the topology of tiling spaces and some of the geometric
and physical benefits of understanding their cohomology, we direct the reader also to
Sadun’s book [37].

It is a general truth that by writing any tiling space � as a Cantor bundle over a
d –torus, one can realise the Cech cohomology of � as the group cohomology of Zd

with coefficients derived from the structure of the fibre and the holonomy of the bundle.
In general, however, one has little hold over either the fibre or the holonomy, but, as
was realised in [20; 21], there is a large class of projection tilings for which a practical
description can be obtained. This class contains the so-called canonical projection
tilings, and was later called the class of almost canonical tilings by Julien [27]; we
present them formally in the next section. (It is interesting to note that this is also the
class of tilings whose asymptotic combinatorial complexity can be easily obtained [27].)

In [20; 21] Forrest, Hunton and Kellendonk effectively provided a method for the
computation of the rational cohomology of the spaces � of almost canonical tilings.
A related, but non-commutative approach, describing the K–theory of crossed product
algebras associated to these tilings, was given by Putnam in [36]. Results similar
to [21] for a smaller class of projection tilings, produced from an apparently rather
different perspective, were obtained by Kalugin in [28] who gave a shape equivalent
approximation to � by a finite CW complex (though that terminology was not used
in [28]).

Algebraic & Geometric Topology, Volume 13 (2013)



Integral cohomology of rational projection method patterns 1663

However, a key feature of the interpretations of all these works at the time was the
assumption that the cohomology and K–theory of these pattern spaces would be free
of torsion, and thus integral computation would follow from just working with rational
coefficients and counting ranks of vector spaces. This turned out not to be the case
(and, unfortunately, some statements about and referring to the torsion freeness of
cohomological or K–theoretic invariants in Forrest and Hunton [19] and Forrest, Hunton
and Kellendonk [20; 21] are consequently incorrect). This was shown, for example,
by Gähler’s counterexamples [23] obtained through extensive machine computation
for certain 2–dimensional patterns which arise as both projection and substitution
tilings. The substitution structure allowed a yet further approach to computation via the
method of Anderson and Putnam [2], though even for relatively modest 2–dimensional
examples this method is stretched to the limit of accessible computation. Nevertheless,
examples computed, in particular the Tübingen Triangle Tiling (TTT) (see Baake,
Kramer, Schlottmann and Zeidler [3] and Klitzing, Schlottmann and Baake [31]),
demonstrated that the integral cohomology could be far more complicated than had
previously been thought, and this formed the stimulus of our work here. We understand
that the existence of torsion, not appreciated at the time when Bellissard, Benedetti
and Gambaudo [8], Bellissard, Kellendonk and Legrand [10], Benameur and Oyono-
Oyono [11] and Kaminker and Putnam [29] were written, may cause problems with
some of the arguments used in the published proofs of the Gap Labeling Theorem.

Given the consequent complexity of the cohomology H�.�/, its complete description
for projection method patterns is beyond the scope of the techniques of any of Anderson
and Putnam [2], Forrest, Hunton and Kellendonk [20; 21], or Kalugin [28], for all but
the simplest examples.

In this paper we present techniques to address this. In Section 3 we introduce a set of
ideas from homological algebra that can be applied for discussing the bundle structures
associated to these patterns. As a further consequence, the generality of the framework
developed allows us to unify the approaches of both [20; 21] and [28], and this point
has computational advantages when we turn in the final section to the discussion of the
more complex examples.

In Section 4 we give a geometric interpretation of almost canonical projection patterns
whose cohomology is finitely generated and which satisfy one further assumption.
This is inspired by and is an analogue of a certain key assumption made in Kalugin’s
approach [28]. Patterns which enjoy this geometric interpretation we term rational
projection method patterns; they form the central class for which we compute integer
cohomology in the final section. Section 4 ends with a complete description of the
cohomology of a rational projection pattern in terms of data coded in the cohomology
of an inclusion of a certain finite CW complex A in an ambient torus T .
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It is these two new ingredients, the geometric interpretation of Section 4 and the
homological framework of Section 3, which give us tools to analyse integer cohomology
for examples beyond the ready scope of any of the previous works in the field.

The final sections of the paper turn to the actual computation of examples. The
complexity of the computation of the cohomology of a projection pattern increases with
the so-called codimension of the pattern. In Section 5 we give a complete description of
the cohomology of rational projection patterns of codimension 1 and 2, together with
details of many of the main examples and an outline of the machine methods used to
compute them. Strictly speaking, the results of this section are accessible with the older
techniques of Forrest, Hunton and Kellendonk [20; 21] and Kalugin [28], but the section
provides the necessary foundation for the new and more complex work of Section 6
which considers the codimension 3 examples and, briefly, the cohomology and K–theory
of general codimension rational patterns. We note that the physically interesting rational
projection patterns (that is, those in dimension up to 3) arise only from codimension 1,
2 or 3 schemes. We compute explicitly the cohomology of the Danzer tiling [16], and
much of the cohomology of three other 3 dimensional, icosahedral patterns, those of
Kramer and Neri [32], the canonical D6 and dual canonical D6 patterns (see Kramer
and Papadopolos [33]).

Some of these results and ideas were announced in Gähler, Hunton and Kellendonk [24]
(though the reader should note that there are some errors in the computation of the
torsion component of H 3.�/ published in [24] – see Section 6.3 for details), but the
framework and techniques presented here have developed considerably since that note.

Acknowledgements The first author was supported by the German Research Council
(DFG) within the CRC 701, project B2. The second author acknowledges the support
of study leave granted by the University of Leicester, and the hospitality of Université
de Lyon. The third author acknowledges the financial support of the ANR SubTile.

2 Projection patterns, their spaces and cohomology

We begin by describing the types of patterns we consider, and in so doing set up our
notation. The contents of this section are mostly a brief summary of the set-up and
foundational results of Forrest, Hunton and Kellendonk [20; 21]; the reader should
consult those sources for further detail and discussion. We start by listing the data
needed for a model set, or cut and project pattern.

Definition 2.1 A cut and project scheme consists of a euclidean space E of dimension
N containing a discrete cocompact abelian group (or lattice) � . There is a direct
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sum decomposition E D Ek ˚E? with associated projections �kW E ! Ek and
�?W E ! E? . We assume Ek and E? are in total irrational position meaning
that �k and �? are one to one and with dense image on the lattice � . Denote by
d , respectively n, the dimensions of Ek and E? , so N D d C n. We call d the
dimension of the scheme, and n its codimension. Finally, we have also an acceptance
window or atomic surface K , a finite union of compact non-degenerate polyhedra
in E? . We denote by @K the boundary of K , which consists of a finite union of
.n�1/–dimensional faces ffig.

For convenience we denote by �k and �? the images �k.�/ and �?.�/. These are
both rank N free abelian subgroups of Ek and E? respectively.

Definition 2.2 Given a cut and project scheme, we define the associated point pattern
P as the set of points in Ek

P D f�k. / j  2 � W �?. / 2Kg

or equivalently as

P DEk\ .� �K/:

There are a number of variations in the way cut and project patterns can be viewed.
In [21] the viewpoint was taken that these patterns arise as projections of point patterns
within strips EkCK . Kalugin in [28] uses the section method by means of which
these patterns arise as intersections between Ek and a � –periodic arrangement of sets.
In [20] the dual method using Laguerre complexes was adopted, which is more elegant
for some tilings such as the Penrose tilings. The reader can consult Moody’s work, for
example [34], for a wide ranging discussion of these patterns.

A cut and project scheme in fact defines a whole parametrised family of point patterns
in Ek .

Definition 2.3 For each point x 2E define the point set

Px D f�
k. / j  2 � W �?. Cx/ 2Kg

DEk\ .�Cx�K/:

Note that the pattern Px depends only on the class of x in E=� D T , an N –torus.
In fact Px D Py if and only if x�y 2 � .
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Definition 2.4 We define the set S of singular points in E by

S D fx 2E W �?.x/ 2 @KC�?g DEkC�C @K:

Denote by NS its complement, the set of nonsingular points.

It is well known that, for any x , the pattern Px is aperiodic, that is, Px D Px C v

only if v is the zero vector, and is of finite local complexity, meaning that, up to
translation, for each r > 0 there are only a finite number of local configurations of
radius r in Px . If x 2 NS then Px satisfies the additional property that for each
finite radius r there is a number R such that any radius r patch of Px occurs within
distance R of any given point of Ek , a property known as repetitivity. We note
further that if x and y are both nonsingular points, then the patterns Px and Py are
locally indistinguishable in the sense that each compact patch of one pattern occurs
after translation as a patch in the other. Although these are important properties and
motivate interest in understanding and characterising cut and project patterns, they
will not generally play a very explicit role in the work which follows, though they
implicitly account for many of the topological properties of the space � we will shortly
introduce and is the main topic of the article. Again, see [34] for further introduction
and discussion of these properties.

The cohomology of point patterns which we investigate here is the Cech cohomology
of an associated pattern space. Suppose for simplicity that 0 … S .

Definition 2.5 The pattern space � of P D P0 is the completion of the translates of
P with respect to the pattern metric, defined on two subsets P;Q�Ek by

d.P;Q/D inf
�

1

r C 1

ˇ̌̌̌
there exists x;y 2 B1=r with�
Br \ .P �x/

�
[ @Br D

�
Br \ .Q�y/

�
[ @Br

�
:

Here Br is the closed ball around 0 of radius r in Ek . In essence this metric is
declaring two patterns to be close if, up to a small translation, they are identical up to a
long distance from the origin. The precise values of this metric will not be important
in what follows, but rather the topology it generates.

It can readily be shown that the space � contains precisely those point patterns which
are locally indistinguishable from P . As Px D Py if and only if x � y 2 � , � can
also be seen as the completion of q.NS/�T with respect to the pattern metric, where
qW E! T is the quotient E!E=� . Furthermore, the same space � is obtained on
replacement of P in the previous definition by Px for any nonsingular x .

Algebraic & Geometric Topology, Volume 13 (2013)



Integral cohomology of rational projection method patterns 1667

Definition 2.6 The cohomology of a projection method pattern P is the Cech co-
homology of the associated space �. We shall denote this H�.�/ when we are
considering coefficients in Z, and by H�.�IR/ when we take coefficients in some
other commutative ring R.

Note that the pattern metric is not continuous in the euclidean topology of the parameter
space q.NS/�T but conversely, the euclidean metric on T is continuous with respect
to the pattern metric. Therefore there is a continuous map

�W �! T ;

in fact a surjection, such that each non-singular point has a unique pre-image. Since
q.NS/ is large in a topological sense (it is a dense Gı –set) and in the measure sense (it
has full Lebesgue measure) � is called almost one to one. See [21] for a full discussion.

Definition 2.7 We shall call the cut and project scheme (and its corresponding patterns)
almost canonical if for each face fi of the acceptance domain, the set fiC�

? contains
the affine space spanned by fi .

We assume throughout this paper that our scheme and patterns are almost canonical.
From the constructions of [21] it can be shown, for example, see Irving [26], that for
the patterns of Definition 2.1 this is a necessary (but certainly not sufficient) condition
for the Cech cohomology H�.�/ to be finitely generated.

This definition is equivalent to saying that there is a finite family of .n�1/–dimensional
affine subspaces

W D
˚
W˛ �E?

	
˛2In�1

such that
S DEkC�?C

[
˛2In�1

W˛:

Note that we have some freedom to choose the spaces W˛ : replacing W˛ by W˛ � 

for some  2 �? does not change the singular set S . We will always assume that W
has the least number of elements possible, which means that from every �?–orbit we
have only one representative.

Definition 2.8 Suppose the cut and project scheme is almost canonical, and we have
chosen some such family of subspaces W . Call an affine subspace W˛C  �E? , for
any ˛ 2 In�1 and  2 �? a singular space. Clearly the set of all singular spaces is
independent of the particular finite family W chosen.
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Intersections of �?–translates of singular spaces may be empty, but if not they yield
affine subspaces of lower dimension. We shall call all affine spaces arising in this way
singular spaces as well. Note that � acts on the set of all singular spaces by translation;
if  2 � and W is a singular space of dimension r , then so is  �W DW C�?. /.
The stabilizer �W of a singular space W is defined as the subgroup of � given by
f 2 �jW ��?. /DW g. Note that the stabilizers of singular spaces which differ by
a translation coincide.

The cohomology groups H�.�/ depend on the geometry and combinatorics of the
intersections of the singular spaces and the action of � on them. It will therefore be
useful to develop notation for these concepts. Recall that In�1 indexes the set of orbit
classes of all .n�1/–dimensional singular spaces.

Definition 2.9 (1) For each 0 6 r < n, let Pr be the set of all singular r –spaces.
Denote the orbit space under the action by translation Ir D Pr=� .

(2) The stabilizer �W of a singular r –space W depends only on the orbit class
‚ 2 Ir of W and we will also denote it �‚ .

(3) Suppose r < k < n and pick some W 2 Pk of orbit class ‚ 2 Ik . Let PW
r

denote fU 2 Pr j U �W g, the set of singular r spaces lying in W . Then �‚

acts on PW
r and we write I‚r D PW

r =�‚ , a set which depends only on the
class ‚ of W . Thus I‚r � Ir consists of those orbits of singular r –spaces
which have a representative that lies in a singular k –space of class ‚.

(4) Finally we denote the cardinalities of these sets by Lr D jIr j and L‚r D jI
‚
r j.

We recall some of the main results of Forrest, Hunton and Kellendonk [21].

Theorem 2.10 (1) L0 is finite if and only if H�.�/ is finitely generated as a
graded abelian group [21, Theorems IV.2.9 and V.2.5].

(2) If L0 is finite then all the Lr and L‚r are finite as well, and � D N=n is an
integer. Moreover, rk�U D � � dim.U / for any singular space U if and only if
L0 is finite [21, Lemma V.2.3 and Theorem IV.6.7] and Julien [27].

3 Homological algebra for cut and project schemes

3.1 C–topes and complexes

We assume we have an almost canonical cut and project scheme, with associated .n�1/–
dimensional singular spaces Pn�1 D fW˛ C �

?g˛2In�1
in E? . The geometry and

combinatorics of these spaces give rise to a � –module Cn key to our work on H�.�/.
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The module Cn , and associated objects given by the lower dimensional singular spaces,
were first introduced in [20; 21] where the equivalences

(3-1) H s.�/ŠH s.�ICn/ŠHd�s.�ICn/:

were shown (for example, [20, Corollaries 41 and 43]). Here the latter two groups are
the group cohomology, respectively group homology, of � with coefficients in Cn .

We outline the proof of these equivalences in the Appendix, and complete details can
be found in [21], but for now we recall the definition of Cn and associated modules,
and develop further related algebraic tools.

Definition 3.1 Call a C–tope any compact polyhedron J in E? whose boundary
belongs to some union

S
W 2A W , where A is a finite subset of Pn�1 . As on singular

spaces, � acts on the set of C–topes by translation,  �J DJ��?. /. Each connected
component of the window K is a C–tope and, in fact, all C–topes occur as components
of finite unions of finite intersections of �?–translates of K .

Let Cn be the Z� –module generated by indicator functions on C–topes, and for r < n

let Cr be the Z� –module generated by indicator functions on r –dimensional facets
of C–topes. In particular, Cn can be identified with Cc.E

?
c ;Z/, the Z–module of

compactly supported Z–valued functions on E? with discontinuities only at points of
Pn�1 .

The set Pn�1 of all singular .n � 1/ spaces is dense in E? . It will be useful to
view Pn�1 D

S
i Pn�1.i/, where Pn�1.1/ � Pn�1.2/ � � � � � Pn�1.i/ � � � � is an

increasing sequence of locally finite collections of singular .n�1/–spaces. Write also
Pr .i/ for the singular r –spaces occurring as intersections of the elements of Pn�1.i/.
For r < n denote by Cr .i/ the Z–module of compactly supported Z–valued functions
on the singular r –spaces in Pr .i/ with discontinuities only at points of Pr�1.i/, and
for r D n write Cn.i/ for the Z–module of compactly supported Z–valued functions
on E? with discontinuities only at points of Pn�1.i/. Clearly there are inclusions
Cr .i/! Cr .i C 1/ and this construction yields the following.

Lemma 3.2 Cr D limi!1 Cr .i/.

These modules form a complex of Z� –modules with � –equivariant boundary maps

(3-2) 0 �! Cn
ı
�! Cn�1

ı
�! � � �

ı
�! C0

�
�! Z �! 0;

with ı being induced by the cellular boundary map on C–topes and � the augmentation
map defined as follows. The module C0 is generated by indicator functions on 0–
dimensional singular spaces; denote such a function by 1p for some p 2 P0 . Then �
is given by �.1p/D 1.
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Lemma 3.3 (Forrest, Hunton and Kellendonk [20, Proposition 61]) The sequence of
Z� modules (3-2) is exact.

Sketch proof First note that the corresponding sequence

0 �! Cn.i/
ı
�! Cn�1.i/

ı
�! � � �

ı
�! C0.i/

�
�! Z �! 0

is the augmented cellular chain complex of the space E? with cellular decomposition
given by the family of hyperplanes Pn�1.i/. It is exact since E? is contractible. The
result follows by taking the direct limit as i !1: exactness is preserved by direct
limits.

It will be useful to have a homological interpretation of the modules Cr and this will
follow from the cellular structures induced by the Pn�1.i/ as in the proof of the last
lemma. For convenience we shall denote also by Pr .i/, etc, the subspace of E?

consisting of the union of the affine subspaces in this set.

Lemma 3.4

lim
i!1

Hm.E
?;Pn�1.i//D

(
Cn if mD n;

0 otherwise;

lim
i!1

Hm.Pr .i/;Pr�1.i//D

(
Cr if mD r;

0 otherwise.

Here H�.X;Y / denotes the relative homology of the pair Y �X .

Proof If X is a CW complex with r –skeleton X r (that is, the union of all cells of
dimension at most r ), then X r=X r�1 is a one point union of r –spheres, in one-to-one
correspondence with the r –cells of X . Thus Hr .X

r ;X r�1/DHr .X
r=X r�1/ is the

r th cellular chain group for X while Ht .X
r ;X r�1/D 0 for t 6D r . As Pr .i/ is the

r –skeleton of E? with CW structure given by the Pn�1.i/, the lemma follows by
taking limits as i !1.

Finally we note the following decomposition results for the lower Cr . Full details can
be found in [21, Lemma V.3.3, Corollaries V.4.2 and V.4.3]. For r < n and ˛ 2 Ir ,
if W is a singular r –space representative of the orbit indexed by ˛ , write C ˛

r for
the ZŒ�˛ �–module of Z–valued functions on W with discontinuities where W meets
transversely the singular spaces Pn�1 . Similarly, for r < k < n if V is a singular
k –space of orbit class ˛ 2 Ik , and W is a singular r –space in V of orbit class  2 I˛r ,
write C

˛; 
r for the ZŒ� �–module of Z–valued functions on W with discontinuities

where W meets transversely the singular spaces Pn�1 .
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Proposition 3.5 (Forrest, Hunton and Kellendonk [21]) For r < k < n there are � –,
respectively �˛–equivariant decompositions

Cr D

M
˛2Ir

�
C ˛

r ˝ZŒ�=�˛ �
�

C ˛
r D

M
 2I ˛

r

�
C ˛; 

r ˝ZŒ�˛=� �
�
:

Hence, there are homological decompositions

H�.�ICr /D
M
˛2Ir

H�.�
˛
IC ˛

r / H�.�
˛
IC ˛

r /D
M
 2I ˛

r

H�.�
 
IC ˛; 

r /:

3.2 A homological framework

We develop further tools from homological algebra for working with these and associ-
ated sequences of modules. A standard background text for this material is Weibel’s
book [43].

Definition 3.6 Let M� be the category of bounded Z–graded Z� complexes. Thus
an object in M� is a finite sequence of Z� –modules and maps

0 �!Ms
ı
�!Ms�1

ı
�!Ms�2 �! � � � �!MtC1

ı
�!Mt �! 0

for some s > t with ı2 D 0. Each module is assigned a Z–valued grading, and ı is a
degree �1 homomorphism, that is, it reduces grading by 1. Morphisms in M� are
degree preserving commutative maps of such complexes. We shall typically denote
objects of M� by underlined letters while non-underlined letters are individual Z� –
modules. If M� 2M� , denote by M�Œr � the complex with the same modules and
ı–maps as M� , but with degrees increased by r , that is, if Ms occurs in M� in degree
s , it occurs in M�Œr � in degree sC r . Unless otherwise stated, a module denoted Ms

will be understood to be in degree s ; in our sequences such as (3-2), the final copy of
Z is in degree �1.

If N is any individual Z� –module, we shall at times wish to consider it as an object
in M� namely the complex with just one non-zero entry, namely N in degree 0. In
the same way we shall write N Œr � for the object in M� with just one non-zero entry,
namely N in degree r .

For M� 2M� , denote by H�.M/ the homology of the complex M� , that is,

Hr .M/D ker
�
Mr

ı
�!Mr�1

�ı
im
�
MrC1

ı
�!Mr

�
:
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Definition 3.7 Let M� 2M� . Define H�.�IM�/ as the total homology of the
chain complex P�˝Z� M� where P� is any projective Z� resolution of Z. Without
loss, we may consider P� to be a free resolution. Recall that if M� and N � are
objects in M� with boundary maps ıM and ıN , the total complex of the product
M�˝Z� N � has as module in degree s the sum

L
pCqDs Mp ˝Nq and boundary

map ıM ˝ 1C .�1/p˝ ıN .

Note that Hs.�IM�/DHsCr .�IM�Œr �/.

We also note the standard property that an exact sequence of objects 0!A�!B�!

C �! 0 in M� , that is, maps of complexes which are exact in each degree, gives rise to
a long exact sequence on taking homology H�.�I �/. (For simplicity we shall denote
by 0 the zero complex in M� consisting of the zero module in every degree.) We also
note that, as usual, there are two spectral sequences computing the total homology,
one beginning with the double complex P�˝Z� M� and taking first the homology
with respect to the boundary maps in M� , the second beginning with P�˝Z� M� but
taking first the homology with respect to the boundary map in the Z� resolution P� .
An immediate consequence of the first of these spectral sequences is the following
observation.

Lemma 3.8 If M� 2M� is exact, then H�.�IM�/D 0.

Lemma 3.9 Suppose

0 �!Ms
ı
�!Ms�1

ı
�!Ms�2 �! � � � �!MtC1

ı
�!Mt �! 0

is exact, and for some s > r > t , write X� and Y� for the complexes

X� W 0 �!Mr�1 �! � � � �!MtC1
ı
�!Mt �! 0;

Y� W 0 �!Ms
ı
�!Ms�1 �! � � � �!Mr �! 0:

Then Hi�1.�IX�/ D Hi.�IY�/ D Hi�r .�IK/ where K is the kernel of the map
ıW Mr�1!Mr�2 (that is, the image of Mr !Mr�1 ) but considered to be in degree
0.

Proof The inclusion and projection maps make 0!X�!M�! Y�! 0 exact and
the left hand equality follows from the induced long exact sequence in group homology
and the previous lemma. The right hand equality comes by computing, taking the initial
differential that in the graded coefficient module.
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3.3 Exact sequences for pattern cohomology

We turn now to the specific element of M� we wish to study, namely the exact
sequence (3-2) which for convenience we shall denote C � . We define some auxiliary
subcomplexes as follows

A� W 0! Cn�1! � � � ! C0! 0I

T� W 0! Cn! � � � ! C0! 0I

Dr
� W 0! Cn! � � � ! Cr ! 0; n > r > 0:

Lemma 3.10 There is a � –equivariant equivalence

H�.A/Š lim
i

H�.Pn�1.i//:

Proof By the Lemma 3.4 the space Pn�1.i/ is a CW complex whose r th cellular
chain group in the limit as i !1 is Cr . The complex A� is defined as the cellular
chain complex of this space.

As in [20; 21] we write C 0
r for ker.Cr ! Cr�1/, so there is an exact sequence

(3-3) 0! C 0
r ! Cr ! Cr�1! � � �C0! Z! 0:

Lemma 3.11

H�.�IC
0
r�1/DH�Cr .�ID

r
�/

H�.�ICn/DH�Cn.�ID
n
�/:

Proof The first equality follows from (3-3) and Lemma 3.9, the second from identify-
ing Dn

� with CnŒn�.

The calculations of [20; 21] progressed by inductively working with long exact se-
quences in group homology given by the short exact sequences of modules

(3-4)

0 �! C 0
0 �! C0 �! Z �! 0;

0 �! C 0
1 �! C1 �! C 0

0 �! 0;

:::

0 �! Cn �! Cn�1 �! C 0
n�2 �! 0;

where the maps Cq! C 0
q�1

are induced by the maps Cq! Cq�1 and the exactness
of C � .
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The last of these exact sequences, and one we shall concentrate on later, runs

(3-5) � � �!H�C1.�IC
0
n�2/!H�.�ICn/!H�.�ICn�1/!H�.�IC

0
n�2/!� � � :

Remark 3.12 In [21] these long exact sequences were collected together into a single
spectral sequence. From our perspective in this paper, this is the spectral sequence
induced by the filtration of Dn

� D CnŒn� given by

(3-6) T� DD0
�!D1

�! � � � !Dn
� D CnŒn�:

To see the equivalence it is enough to note that the exact sequence of coefficient
modules 0! C 0

r ! Cr ! C 0
r�1
! 0 gives rise to the same long exact sequence in

group cohomology as the exact sequence in M�

0! Cr Œr �!Dr
�!DrC1

� ! 0

though care needs to be taken to check that the degrees and the maps between groups
correspond as claimed; we omit the details as the observation is not central to the work
which follows.

In particular, however, we note that the long exact sequence of [20; 21], namely (3-5)
above, is induced by the short exact sequence

(3-7) 0 �! Cn�1Œn� 1� �!Dn�1
� �! CnŒn� �! 0:

Remark 3.13 In the M� framework, the connecting maps

Hs.�IC
0
r /!Hs�1.�IC

0
rC1/

in the long exact sequences arising from (3-4) correspond to the maps

HsCrC1.�ID
rC1
� /!HsCrC1.�ID

rC2
� /:

Thus the iterated sequence of connecting maps

Hs.�IZ/ �!Hs�1.�IC
0
0 / �! � � � �!Hs�n.�ICn/

which occurs in our later calculations can be identified with the map in Hs.�I �/

induced by the projection TDD0
�!Dn

� D CnŒn�.

The algebraic framework we have set up allows for other exact sequences in homology.
In particular, we have the following analogue of Kalugin’s sequence [28], though our
construction does not need the rationality constructions of [28] (in fact, it can be set up

Algebraic & Geometric Topology, Volume 13 (2013)



Integral cohomology of rational projection method patterns 1675

without even requiring the earlier assumption that the cut and project scheme is almost
canonical). Consider the short exact sequence in M�

(3-8) 0!A�
j
�! T�

m
�! CnŒn�! 0:

This yields a long exact sequence
(3-9)

� � � !H�Cn.�IA�/
j�
�!H�Cn.�IT�/

m�
�!H�.�ICn/!H�Cn�1.�IA�/! � � � :

In the next section, under an additional assumption, we will provide a geometric
realisation of this sequence, identifying it more explicitly with that of [28]. It will relate
the Cech cohomology of �, namely H�.�ICn/, with the homology of the N –torus T
given by H�.�IT�/ and the group homology determined by the complex A� , which
will be identified with the homology of a certain subspace A of T .

Remark 3.14 The long exact sequence (3-9) in fact follows directly from the total
homology of the double complex P�˝Z� A� . Computing the total homology by first
taking homology with respect to the differential for A� produces an E2 –page of the
spectral sequence given by

E2
p;q DHp.�IHq.A//D

8̂<̂
:

Hp.�ICn/ if q D n� 1

Hp.�IZ/ if q D 0

0 otherwise.

The line for q D 0 is of course the same as Hp.�IT�/ by Lemma 3.9. There can only
be one more differential, namely dnW H�.�IT�/!H��n.�ICn/ and the homology
of this computes H�.�IA�/, giving as it does the long exact sequence (3-9).

The following result directly links the two sequences (3-5) and (3-9) and hence the
two approaches of [20; 21] and [28], a comparison result which will be useful in our
computations of H�.�/ in the final section.

Proposition 3.15 There is a commutative diagram

� � � H�C1.�ICn�1///

� � �

� � �

� � � H�Cn.�IA�/// H�Cn.�IA�/

H�C1.�ICn�1/
��

H�C1.�IC
0
n�2

///
��

H�Cn.�IT�/
j� // H�Cn.�IT�/

H�C1.�IC
0
n�2

/

��
H�.�ICn///

��

H�.�ICn/
m� // H�.�ICn/

H�.�ICn/

Š

��
H�.�ICn�1///

��

H�Cn�1.�IA�/// H�Cn�1.�IA�/

H�.�ICn�1/
��

� � �//
��

� � �// � � �

� � �

in which the rows are exact.
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Proof The obvious inclusion and projection maps yield the following commutative
diagram in which the rows are exact.

0 Cn�1Œn�1�//

0

0

0 A�// A�

Cn�1Œn�1�
��

Dn�1
�

//
��

T�
j // T�

Dn�1
�

��
Dn
�

//
��

CnŒn�
m // CnŒn�

Dn
�

��
0//

��

0// 0

0

On identifying the groups and degrees, this induces the commutative diagram of long
exact sequences as in the statement of the Proposition.

4 Geometric realisation

In this section we introduce the rationality conditions which allow us to realise various
of the elements of M� of the last section and their group homologies in terms of finite
cell complexes. This will aid computation in the more difficult examples at the end of
the paper. We relate the conditions to the combinatorial condition that the number L0

is finite, equivalently to the condition that the cohomology groups H�.�/ are finitely
generated.

Assume we have an almost canonical cut and project scheme, and so there is a set Pn�1

of singular .n�1/–dimensional affine subspaces of E? , and we have chosen a finite set
W D fW˛g˛2In�1

of affine subspaces generating Pn�1 as Pn�1D fW˛C�
?g˛2In�1

.
Intersections of the elements of Pn�1 form the lower dimensional singular spaces, or
are empty. Each singular space U 2 Pr has associated to it the subgroup �U of �
which stabilises U under the natural (projected) translation action of � .

Definition 4.1 A rational subspace of E is a subspace spanned by vectors from Q� .
A rational affine subspace of E is a translate of a rational subspace.

Definition 4.2 A rational projection method pattern is any point pattern arising from an
almost canonical cut and project scheme satisfying the following rationality conditions.

(1) The number � D N
n
D 1C d

n
is an integer.

(2) There is a finite set D of rational affine subspaces of E in one to one corre-
spondence under �? with the set W , that is, each W 2 W is of the form
W D �?.D/ for some unique D 2D .

(3) The members of D are �.n�1/–dimensional, and any intersection of finitely
many members of D or their translates is either empty or a rational affine
subspace R of dimension � dim�?.R/.

Algebraic & Geometric Topology, Volume 13 (2013)



Integral cohomology of rational projection method patterns 1677

Extending the notation of Section 2, for any affine subspace R in E , we denote by
�R the stabiliser subgroup of � under its translation action on E . The following
observations are immediate from the geometric set-up.

Lemma 4.3 Suppose we have a rational projection pattern with data as in Definition 4.2.
Suppose the singular space U in E? corresponds to some rational affine subspace R

in E with U D �?.R/. Then the stabiliser subgroups of both U and R coincide and
the rank of this subgroup equals the dimension of R as an affine subspace.

Example 4.4 Consider the Ammann–Beenker, or Octagonal scheme – for details see,
for example, Beenker [6]. In this scheme we have E D R4 with � D Z4 � R4 the
integer lattice. Let vi , i D 1; : : : ; 4 be the four unit vectors

.1; 0; 0; 0/ .0; 1; 0; 0/ .0; 0; 1; 0/ .0; 0; 0; 1/

which both generate � and form a basis for E . Consider the linear map R4! R4

given with respect to this basis by the matrix0BB@
0 1 0 0

0 0 1 0

0 0 0 1

�1 0 0 0

1CCA :
This is a rotation of order 8 and has two 2–dimensional eigenplanes, one where the
action is rotation by �=4, the other by 3�=4; take the former for Ek and the latter for
E? . Let Wi , i D 1; : : : ; 4, be the 1–dimensional subspace of E? spanned by �?.vi/.
A set W generating the singular subspaces is given by fWigiD1;:::;4 . The Wi form
four rotationally symmetric lines in E? with WiC1 the rotation of Wi through �

8
.

The stabiliser of each Wi is of rank 2: specifically the stabilisers are

�W1 D hv1; v2� v4i; �W2 D hv2; v1C v3i;

�W3 D hv3; v2C v4i; �W4 D hv4; v1� v3i:

There is a rational affine plane arrangement DD fDigiD1;:::;4 covering this family W
where each Di is the 2–dimensional subspace in R4 defined by taking as basis the
generators of �Wi , as listed above.

Remark 4.5 Even for almost canonical schemes with � an integer, it is not always
immediately clear when there exists a finite set D of affine planes satisfying the ratio-
nality conditions. We shall see in Corollary 4.13 that if H�.�/ is not finitely generated
(equivalently, if L0 is infinite) then there cannot be a lift. However, conversely, suppose
H�.�/ is finitely generated, then Theorem 2.10 tells us that the rank of the stabiliser
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�W of each dimension n� 1 singular plane W �E? is �.n� 1/ and so any lift D

of W must be an affine space parallel to the subspace spanned by the elements of
�W � � ; the issue is which parallel plane to choose, in particular, how to make the
relative choices of lifts over all the W 2W .

Along the lines of the discussion at the end of Kalugin [28, Appendix], in the case
where we can choose singular planes W all meeting in a common intersection point, a
solution is easily given by choosing any point in E over this intersection point as a
intersection point of the D 2 D . This is the situation, for example, in the canonical
case, where � D ZN , the integer lattice in E , and the acceptance window is the
�?–projection of the unit cube, but this is certainly not the only situation that allows
lifts D .

Slightly more generally, instead of a common intersection point we can request that
each W 2W contains some rational point with respect to a basis of �? and a suitably
chosen origin. We say then that W has also rational position, in addition to the rational
orientation. Since intersections of affine spaces in rational position and orientation also
have rational position and orientation, all singular spaces then have rational positions.
In fact, such a singular space in rational position and orientation contains a dense subset
of rational points, a rational affine subspace, whose rational dimension is equal to the
rank of the stabilizer in � . Such rational affine spaces have a preferred lift with the
required properties. We choose as origin of E a point above the origin of E? , and as
lattice basis of � the unique lift fbig of the chosen basis fb?i g of �? . Every rational
point

P
i qib

?
i is then lifted to

P
i qibi , and rational affine subspaces of E? are thus

lifted to rational affine subspaces of E of the same rational dimension. As the full lift
of a singular subspace we thus take the closure of the lift of its rational subset. With
this scheme, the lift of the intersection of two affine subspaces is always equal to the
intersection of the two lifts, as required.

The situation with singular spaces in rational position actually includes the case with a
common intersection point of all W 2W , but is still by no means the most general
one. The generalised Penrose patterns (see Pavlovitch and Kléman [35]) are examples
of rational projection patterns where the elements of W have positions which can
move continuously when the parameter  is varied, and which do not have a common
intersection point.

Given a rational projection scheme, denote by Rn�1 the set DC� of all �.n� 1/D

.N � �/–dimensional affine subspaces in the � orbit of D . In Section 3 it was useful
to view Pn�1 , the set of all singular .n�1/–spaces in E? , as the increasing union
of locally finite collections of .n�1/–spaces, Pn�1 D

S
i Pn�1.i/. In the same way,

denote by Rn�1.i/ the �.n�1/–dimensional affine subspaces which correspond to the
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elements of Pn�1.i/. Again for convenience, we also denote by Rn�1 and Rn�1.i/

the subspaces of E consisting of the union of the subspaces in these sets.

Lemma 4.6 The projection map �? induces homology isomorphisms

H�.Rn�1.i//ŠH�.Pn�1.i//:

Proof The homologies H�.Rn�1.i// and H�.Pn�1.i// may each be computed, in
principle, by Mayer–Vietoris spectral sequences corresponding to the construction of
Rn�1.i/ and Pn�1.i/ as unions of �.n�1/– and .n�1/–dimensional planes respec-
tively. The map �? induces a one-to-one correspondence between the planes and
intersection planes in Rn�1.i/ and Pn�1.i/, and as in both cases each such plane is
contractible, �?� induces an isomorphism on the first page of the spectral sequence,
and hence an isomorphism of the final homologies.

Corollary 4.7 The projection map �? induces � –equivariant isomorphisms

H�.Rn�1/ŠH�.A/ and H�.E/ŠH�.T/:

Proof For the first, as Rn�1 is a CW complex and can be considered as the direct limit
of the Rn�1.i/ we have H�.Rn�1/Š limi H�.Rn�1.i// since homology commutes
with direct limits. The previous lemma gives an equivalence

limiH�.Rn�1.i//Š limiH�.Pn�1.i//

and the right hand object is equivalent to H�.A/ by Lemma 3.10. The second equiva-
lence is immediate since E? is a (� –equivariant) homotopy retract of E .

Definition 4.8 Write A for the quotient space Rn�1=� and T for E=� . Write ˛
for the induced inclusion ˛W A! T . Clearly T is just the N –torus.

Theorem 4.9 There is a commutative diagram whose vertical maps are isomorphisms

H�.�IA�/ H�.�IT�/
j�

//

H�.A/

H�.�IA�/
��

H�.A/ H�.T /
˛� // H�.T /

H�.�IT�/
��

and j� is induced by the inclusion A�! T� as in the exact sequence (3-8).
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Proof The quotient maps Rn�1 ! Rn�1=� D A and E ! E=� D T induce
fibrations and maps

E T//

Rn�1

E
��

Rn�1 A// A

T

˛

��
B�//

��

B�// B�

B�

where B� is the classifying space of the group � . These lead to computations of
H�.A/ and H�.T / via Serre spectral sequences, which compute these homologies as
the total homologies of the double complexes P�˝Z� C�.Rn�1/ and P�˝Z� C�.E/

where P� as in Section 3 is any free Z� resolution of Z while C�.Rn�1/ and C�.E/

are � –chain complexes computing the homologies of Rn�1 and E respectively.

By Corollary 4.7, after the first differential of the spectral sequences, the resulting double
complexes are identical to those computing respectively H�.�IA�/ and H�.�IT�/.
Moreover, the map of double complexes induced by ˛ is from this point on identical
to that induced by j W A�! T� .

The long exact sequence (3-9) may now be interpreted as follows, recovering the exact
sequence of Kalugin [28]. For simplicity, we denote the homomorphism H�.T /!
H�.�ICnŒn�/ given by the composite of m� with the identification H�.�IT�/ Š

H�.T / of Theorem 4.9 also by m� .

Corollary 4.10 There is an exact sequence

� � � Hr .A/// Hr .T /
˛� // Hr .�ICnŒn�/

m� //

H N�r .�/

Hr�1.A/// � � �//

Remark 4.11 Strictly speaking, to fully identify this sequence with that of [28]
we need to show that the composite Hr .T / ! Hr�n.�ICn/ Š H N�r .�/ can be
identified with the map ��W H N�r .T /! H N�r .�/ composed with the Poincare
duality isomorphism Hr .T /ŠH N�r .T /. This can be done by identifying the action
of �� with the map in group cohomology H�.�I �/ induced by the coefficient map
T� ! CnŒn� as in Remark 3.13. We briefly return to this issue in the Appendix, as
the complete identification requires the construction realising H�.�/ as the group
cohomology H�.�ICn/, but for now we omit the details as this point is not necessary
for the work which follows.

As A is a cell complex with top cells of dimension .N � �/, we have Hr .A/D 0 for
r >N � � . Corollary 4.10 immediately gives
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Corollary 4.12 For a rational projection pattern, there are isomorphisms Hr .�IZ/Š
Hr .�ICn/ for r >N ��C1. Equivalently, there are isomorphisms H s.T /ŠH s.�/

for s < � � 1.

Corollary 4.13 For any commutative ring S , the cohomology H�.�IS/ of a rational
projection pattern P is finitely generated over S .

Proof Recall that if X is a space with the homotopy type of a finite CW complex, then
H�.X / is finitely generated over Z. The spaces A and T both have the homotopy type
of finite CW complexes, and hence so too has the mapping cone C.˛/ of ˛W A! T .
The exact sequence of Corollary 4.10 says that H N��.�/ŠH�.C.˛// and hence the
groups are finitely generated. The result for general S follows by a standard universal
coefficient theorem argument.

The advantage of Theorem 4.9 is that it allows information useful for computing with
the long exact sequences (3-7), (3-9) to be obtained from the reasonably tangible map
of topological spaces A! T . The subspace A of the torus T is itself given as the
union of .N��/–tori, each such torus being Ti D Di=�

Di as Di , i 2 In�1 , runs
over the elements of D . A consequence of the rationality conditions means that any
intersection of finitely many of these tori is either empty or a common subtorus of the
form R=�R . This structure, together with details of the data describing the rational
affine subspaces D , makes H�.A/ and the homomorphism ˛� accessible, at least
in principle: for any given projection scheme of course, the finite complex A can of
course have considerable complexity.

The following observations specify the main phenomena that specific computation must
address. Rewriting the exact sequence of Corollary 4.10, we obtain

(4-1) 0! coker.˛�/!H�.�/! ker.˛�/! 0:

Thus for computations in rational cohomology, it suffices to compute the ranks of the
homomorphisms ˛�W Hr .AIQ/! Hr .T IQ/. However, for integral computations,
there are potential extension problems to solve if there is torsion in ker.˛�/, which
will certainly be the case if there is torsion in H�.A/, since H�.T / is torsion free.

As noted in the proof of Corollary 4.13, there is an isomorphism

H N�r .�/ŠHr .C.˛//;

where C.˛/ is the mapping cone of the map ˛ (equivalently, H�.C.˛// is the relative
homology H�.T ;A/). Given the finite generation result, Corollary 4.13, we know by
the universal coefficient theorem (UCT) going between homology and cohomology the
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groups H�.C.˛// (and hence H�.�/) if we can compute the cohomology H�.C.˛//.
Explicitly, and as regards torsion components, the torsion subgroup of H N�r .�/,
which is the torsion subgroup of Hr .C.˛//, is isomorphic to the torsion subgroup of
H rC1.C.˛//. This latter cohomology group sits in an extension analogous to (4-1)
(that is, the long exact sequence in cohomology of the pair .T ;A/)

(4-2) 0 �! coker
�
H r .T /

˛�

�!H r .A/
�
�!H rC1.C.˛//

�! ker
�
H rC1.T /

˛�

�!H rC1.A/
�
�! 0:

Note that the right hand group, the ker–term, is here necessarily torsion free, since
H�.T / is. Thus this short exact sequence splits and the only torsion component in
H�.C.˛// must arise as the torsion component of the coker–term of (4-2). Explicitly,
let us define

sr D free abelian rank of ker
�
H r .T /

˛�

�!H r .A/
�

fr D free abelian rank of coker
�
H r .T /

˛�

�!H r .A/
�

Tr D torsion subgroup of coker
�
H r .T /

˛�

�!H r .A/
�
:

Then H rC1.C.˛//D ZfrCsrC1 ˚ Tr , and by the UCT:

Corollary 4.14 The cohomology group H N�r .�/DHr .C.˛// is given by

H N�r .�/D Zfr�1Csr ˚ Tr :

5 Patterns of codimension one and two

The exact sequence (4-2) and Corollary 4.14 show that in principle the cohomology
groups H�.�/ for a rational projection pattern are completely determined by knowl-
edge of the homomorphisms ˛�W H�.T /!H�.A/. The homology or cohomology of
A is potentially accessible via a Meyer–Vietoris spectral sequence computation arising
from the decomposition of A into its component .N��/–tori; this is the approach of
the calculations (with Q coefficients) of [28], and we utilise aspects of this approach
for some of our work in the final section.

In this section however, and for our initial work on codimension 3 patterns in Section 6,
we use instead the exact sequence (3-5) as our fundamental tool and compute inductively
up the values of n, the codimension. The two approaches are essentially equivalent
for rational patterns, but the inductive approach has some merits in terms of spreading
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out the computations into manageable steps, and in particular is also applicable to
patterns not satisfying the rationality conditions. In general, for whichever approach,
the complexity and subtlety of the computations increases significantly as n increases.

5.1 Codimension 1

We consider almost canonical projection patterns of codimension 1, and note that the
faces of a one-dimensional acceptance domain are points and so P0 consists of a finite
number of distinct � –orbits of points; as before, L0 denotes the number of these
orbits.

Theorem 5.1 For a dimension d , codimension 1 almost canonical projection pattern,
H d�k.�/DHk.�IC1/ is a free abelian group of rank8̂<̂

:
0 for k > d;�
dC1
kC1

�
for d > k > 0;

L0C d for k D 0:

Proof We compute H�.�IC1/ using the short exact sequence of Z� –modules

0 �! C1 �! C0 �! Z �! 0;

which is the complex (3-2) for nD 1. In this sequence, Z carries the trivial � action,
while the action of � on C0 is free. In group homology we get the long exact sequence

� � � �!HkC1.�IZ/ �!Hk.�IC1/ �!Hk.�IC0/ �! � � � :

Now Hk.�IZ/Šƒk� is just the homology of a .dC1/–torus, so Hk.�IZ/ is free
abelian of rank

�
dC1

k

�
. Meanwhile, the freeness of � on C0 means that the homology

groups Hk.�IC0/ are zero for k > 0 and H0.�IC0/D ZL0 .

Our long exact sequence now tells us that Hk.�IC1/ŠƒkC1�ŠZ.
dC1
kC1/ in dimensions

k > 0 and for dimension 0 there is an exact sequence

0 �!ƒ1� �!H0.�IC1/ �! ZL0
�
�! Z! 0:

Hence H0.�IC1/Šƒ1�˚ ker � , and so is free abelian of rank L0C d .

Remark 5.2 While not needed for the work below, we note in passing that the same
result holds for the case where we would allow the acceptance domain to have infinitely
many connected components and where L0 may be infinite. The explicit details needed
can be found in Forrest, Hunton and Kellendonk [21, Chapter III] where a different
approach to the codimension 1 case is taken, and it is shown that � can be modelled
by a punctured torus.
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5.2 Codimension 2

We turn to the case n D 2. The theorem below is stated for any almost canonical
projection pattern with finitely generated cohomology, so in particular holds for any
rational projection pattern. Our analysis proceeds via the pair of exact sequences of
(3-4),

0 �! C2 �! C1 �! C 0
0 �! 0; 0 �! C 0

0 �! C0 �! Z �! 0:(5-1)

Denote by ˇk the homomorphism in Hk.�I �/ induced by the module homomorphism
C1! C 0

0
; the relevant part of the sequence (3-5) now runs

(5-2) 0 �! cokerˇkC1 �!Hk.�IC2/ �! kerˇk �! 0:

Set Rk to be the rank of hƒkC1�
˛ W ˛ 2 I1i, the subgroup of ƒkC1� generated by

all the images of the inclusions ƒkC1�
˛!ƒkC1� .

Theorem 5.3 Let P be an almost canonical projection pattern with codimension 2 and
suppose H�.�/ is finitely generated. Thus, in particular, the dimension d is 2.� � 1/

and the numbers L1 , L0 and L˛
0

are finite. Each group H d�k.�/D Hk.�IC2/ is
thus a sum of a free abelian group and a finite abelian torsion group.

(1) Sequence (5-2) splits and Hk.�IC2/Š cokerˇkC1˚ kerˇk .

(2) The rank of the free abelian part of Hk.�IC2/ is given by the formulae8<:
�

2�
2Ck

�
CL1

�
�

1Ck

�
�Rk �RkC1; for 0< k 6 d; andP2

jD0.�1/j
�

2�
2�j

�
CL1

P1
jD0.�1/j

�
�

1�j

�
C e�R1; for k D 0;

where e is the Euler characteristic and is given by

e D
X
p

.�1/p rkQ Hp.�IC2/D�L0C

X
˛2I1

L˛0 :

(3) The torsion part of Hk.�IC2/ is given by the torsion part of the cokernel of
ˇkC1 , which can be identified here as the mapM

˛2I1

ƒkC2�
˛
!ƒkC2�

induced by the inclusions �˛ ! � . In particular, H d�k.�/ D Hk.�IC2/ is
torsion free for k > d=2.
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Proof The right hand sequence of (5-1) in group homology behaves identically to the
calculations in the previous subsection for codimension 1. We obtain

Hk.�IC
0
0 /Š

(
Z.

dC2
kC1/ DƒkC1� for k > 0;

ZdCL0C1 for k D 0

where the k D 0 case arises from the short exact sequence

0 �!ƒ1� �!H0.�IC
0
0 / �! ker � �! 0 with �W ZL0 �! Z:

Using the splitting of Proposition 3.5, which here identifies Hk.�IC1/ with the direct
sum

L
˛ Hk.�

˛IC ˛
1
/, a similar calculation based on the exact sequences

(5-3) 0 �! C ˛
1 �! C ˛

0 �! Z �! 0

gives

(5-4) Hk.�IC1/Š

8<:
L
˛2I1

ƒkC1�
˛ for k > 0;L

˛2I1
.ƒ1�

˛˚ ker �˛/ for k D 0

where �˛ denotes the augmentation H0.�
˛IC ˛

0
/ŠZL˛

0 !Z. Recall that the rank of
each �˛ is � . The internal direct sum in the case k D 0 represents the splitting of the
short exact sequences

0 �!ƒ1�
˛
�!H0.�

˛
IC ˛

1 / �! ker �˛ �! 0:

For k > 0, the homomorphism in ˇk W Hk.�IC1/! Hk.�IC
0
0
/ identifies with the

homomorphism

(5-5)
M
˛2I1

ƒkC1�
˛
!ƒkC1�

induced by the inclusions �˛! � . Similarly, ˇ0 identifies with the homomorphism
of extensions

(5-6)

0 ƒ1�//

0

0

0
L
˛2I1

ƒ1�
˛//

L
˛2I1

ƒ1�
˛

ƒ1�

ˇ0
0��

H0.�IC
0
0
///

��

H0.�IC1/// H0.�IC1/

H0.�IC
0
0
/

ˇ0
��

ker �//
��

L
˛2I1

ker �˛//
L
˛2I1

ker �˛

ker �

ˇ00
0��

0//
��

0// 0

0

induced by the inclusions �˛! � and C ˛
0
� C0 .

We can now prove the claims of the theorem by organising the data from these cal-
culations and exact sequences. The reader may find it helpful to consult Diagram 5.1
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which displays this information for the case � D 2; the analogue for higher values of �
is very similar, though obviously longer in the vertical direction.

For part (1), note that the left hand sequence in (5-1) gives the long exact sequence in
homology

� � � �!HkC1.�IC1/
ˇkC1

�! HkC1.�IC
0
0 / �!Hk.�IC2/ �!Hk.�IC1/

ˇk
�! � � �

which at Hk.�IC
2/ may be written as the short exact sequence

0 �! cokerˇkC1 �!Hk.�IC
2/ �! kerˇk �! 0:

This splits since kerˇk �Hk.�IC1/ is finitely generated free abelian.

For part (2) it is sufficient to work with rational coefficients and count ranks. Note that
Rk is the rank of the image of ˇk and that ˇ0 is surjective.

For part (3), the torsion part of Hk.�IC2/ must arise from cokerˇkC1 since kerˇk

is free. However, as the rank of ƒkC2�
˛ is

�
�

kC2

�
, for k > d=2D � � 1 this is trivial

and so in this range the map ˇkC1 is zero and there is no torsion in its cokernel.

This final result, putting bounds on where torsion may appear, will be seen to be a
special case of a result for arbitrary codimension in Section 6.4. Examples suggest that
these bounds are best possible.

A direct computation of kerˇ0 from the data encoded in kerˇ0
0

and kerˇ00
0

and the
diagram (5-6) need not be immediate, a point which will become a serious issue
when we deal with the codimension 3 patterns later. The diagram (5-6) gives an exact
sequence

0 �! kerˇ00 �! kerˇ0 �! kerˇ000
�0
�! cokerˇ00 �! 0

(cokerˇ0 D 0 as ˇ0 is surjective). In general there is no reason why the connecting
map �0W kerˇ00

0
! cokerˇ0

0
should be trivial. In fact, the Tübingen Triangle Tiling (see

Baake, Kramer, Schlottmann and Zeidler [3] and Klitzing, Schlottmann and Baake [31])
is an example in which cokerˇ0

0
D Z5 and hence �0 is non-trivial. However, we

do not need to compute �0 explicitly as the cokerˇ0
0

term will only be comprised
of torsion terms, which do not contribute either to the torsion or the free rank of the
cohomology of the tiling.

5.3 Example computations

All examples discussed below have to some extent been calculated by computer. For
this purpose, we have used the computer algebra system GAP [42], the GAP package
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0
L
˛2I1

ƒ4�
˛ H3.�IC1/

ˇ3
��

Z ƒ4� H3.�IC
0
0
/

��
H2.�IC2/

��

H 0.�/

0
L
˛2I1

ƒ3�
˛ H2.�IC1/

ˇ2
��

Z4 ƒ3� H2.�IC
0
0
/

��
H 1.�/H1.�IC2/

��
ZL1

L
˛2I1

ƒ2�
˛ H1.�IC1/

ˇ1
��

Z
�
2�
2

�
ƒ2� H1.�IC

0
0
/

��
H0.�IC2/

��

H 2.�/

0 ƒ1�//

0

0

0
L
˛2I1

ƒ1�
˛//

L
˛2I1

ƒ1�
˛

ƒ1�

ˇ0
0��

H0.�IC
0
0
///

��

H0.�IC1/// H0.�IC1/

H0.�IC
0
0
/

ˇ0
��

ker �//
��

L
˛2I1

ker �˛//
L
˛2I1

ker �˛

ker �

ˇ00
0��

0//
��

0// 0

0

0
��

Diagram 5.1: The entire computation for the case �D 2 , that is, codimension
D dimension D 2 can be summarized in the above diagram in which all rows
and columns are exact

Cryst by Eick, Gähler and Nickel [17; 18], as well as further software written in the
GAP language. It should be emphasized that these computations are not numerical, but
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use integers and rationals of unlimited size or precision. Neglecting the possibility of
programming errors, they must be regarded as exact.

One piece of information that needs to be computed is the set of all intersections of
singular affine subspaces, along with their incidence relations. This is done with code
based on the Wyckoff position routines from the Cryst package. The set of singular
affine subspaces is invariant under the action of a space group. Cryst contains routines
to compute intersections of such affine subspaces and provides an action of space
group elements on affine subspaces, which allows to compute space group orbits.
These routines, or variants thereof, are used to determine the space group orbits of
representatives of the singular affine subspaces, and to decompose them into translation
orbits. The intersections of the affine subspaces from two translation orbits is the union
of finitely many translation orbits of other affine subspaces. These intersections can be
determined essentially by solving a linear system of equations modulo lattice vectors,
or modulo integers when working in a suitable basis. With these routines, it is possible
to generate from a space group and a finite set W of representative singular affine
spaces the set of all singular spaces, their intersections, and their incidences.

A further task is the computation of ranks, intersections, and quotients of free Z–
modules, and of homomorphisms between such modules, including their kernels and
cokernels. These are standard algorithmic problems, which can be reduced to the
computation of Smith and Hermite normal forms of integer matrices, including the
necessary unimodular transformations (see Cohen [15]). GAP already provides such
routines, which are extensively used.

The codimension 2 examples discussed here all have dihedral symmetry of order 2n,
with n even. The lattice �?n is given by the Z–span of the vectors in the star ei D�

cos
�

2�i
n

�
; sin

�
2�i

n

��
, i D 0; : : : ; n�1. The singular lines have special orientations

with respect to this lattice. They are parallel to mirror lines of the dihedral group, which
means that they are either along the basis vectors ei , or between two neighboring basis
vectors, that is, along ei C eiC1 . In all our examples below, with the single exception
of the generalized Penrose tilings (see Pavlovitch and Kléman [35]), one line from each
translation orbit passes through the origin. We denote the sets of representative singular
lines by Wa

n and Wb
n , for lines along and between the basis vectors ei . The defining

data of several well-known tilings can now be given as a pair of a (projected) lattice, and
a set of translation orbit representatives of singular lines. Specifically, the Penrose tiling
(see de Bruijn [12; 13]) is defined by the pair

�
�?

10
;Wa

10

�
, the Tübingen Triangle Tiling

(TTT) [3; 31] by the pair
�
�?

10
;Wb

10

�
, the undecorated octagonal Ammann–Beenker

tiling (see Beenker [6]) by the pair
�
�?

8
;Wa

8

�
, and the undecorated Socolar tiling [40]

by the pair
�
�?

12
;Wa

12

�
. For the decorated versions of the Ammann–Beenker (see

Amman, Grünbaum and Shephard [1], Gähler [22] and Socolar [40]) and Socolar
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tilings [40], the set of singular lines Wa
n has to be replaced by Wa

n [Wb
n , n D 8

and 12, respectively. These well-known examples are complemented by the coloured
Ammann–Beenker tiling with data

�
�?

8
;Wb

8

�
, which can be realised geometrically

by colouring the even and odd vertices of the classical Ammann–Beenker tiling with
two different colours, and the heptagonal tiling from Gähler and Kellendonk [25],
which is given by the pair

�
�?

14
;Wa

14

�
. Except for the coloured Ammann–Beenker

tiling, which had not been considered in the literature previously, the rational ranks
of the cohomology of these tilings had been computed in [25]. Table 5.1 shows their
cohomology with integer coefficients, including the torsion parts where present.

The generalized Penrose tilings of Pavlovitch and Kléman [35] are somewhat different
from the tilings discussed above. They are built upon the decagonal lattice �?

10
too,

but have only fivefold rotational symmetry. The singular lines do not pass through the
origin in general, and their positions depend on a continuous parameter  . For instance,
the representative lines of the two translation orbits of lines parallel to e0 pass through
the points � e1 and  .e1C e2/. It turns out that these shifts of line positions always
lead to the same line intersections and incidences. Even multiple intersection points
remain stable, and are only moved around if  is varied. Consequently, all generalized
Penrose tilings have the same cohomology, except for  2 ZŒ� �, which corresponds
to the real Penrose tilings in de Bruijn [12; 13]. This had already been observed by
Kalugin [28], and is in contradiction with the results given in [25], which were obtained
due to a wrong parametrisation of the singular line positions. Corrected results are
given in Table 5.1.

Tiling H 2 H 1 H 0

Ammann–Beenker (undecorated) Z9 Z5 Z1

Ammann–Beenker (coloured) Z14˚Z2 Z5 Z1

Ammann–Beenker (decorated) Z23 Z8 Z1

Penrose Z8 Z5 Z1

generalized Penrose Z34 Z10 Z1

Tübingen Triangle Z24˚Z2
5

Z5 Z1

Socolar (undecorated) Z28 Z7 Z1

Socolar (decorated) Z59 Z12 Z1

Table 5.1: Cohomology of codimension 2 tilings with dihedral symmetry.
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Among the tilings discussed above, only the TTT and the coloured Ammann–Beenker
tiling have torsion in their cohomology. The set of singular lines of the TTT is
constructed from the lines Wb

10
. The translation stabilizers �˛ of all these lines are

contained in a common sublattice � 0?
10

generated by the star of vectors eiCeiC1 ; it has
index 5 in �?

10
. It is therefore not too surprising that cokerˇ1 (Theorem 5.3) develops

a torsion component Z2
5

, which shows up in the cohomology group H 2 of the TTT,
in agreement with the results obtained using the method of Anderson and Putnam [2]
which computes the cohomology of TTT via its substitution structure. In much the
same way, and for analogous reasons, a torsion component Z2 in H 2 is obtained also
for the coloured Ammann–Beenker tiling, and also the four-dimensional, codimension
2 tilings with data

�
�?

14
;Wb

14

�
have torsion components Z4

7
in H 4 , and Z3

7
in H 3 ,

in agreement with the bounds given in Theorem 5.3.

There is an interesting relation between the TTT and the Penrose tiling. Since the lattice
� 0?

10
is rotated by �=10 with respect to �?

10
, the TTT can also be constructed from

the pair
�
� 0?

10
;Wa

10

�
. However, the singular set � 0?

10
CWa

10
is even invariant under

all translations from �?
10

, so that it is equal to �?
10
CWa

10
, which defines the Penrose

tiling. In other words, the TTT and the Penrose tiling have the same set of singular
lines, only the lattice �? acting on it is different. The TTT is obtained by breaking
the translation symmetry of the Penrose tiling to a sublattice of index 5. This explains
why the Penrose tiling is locally derivable from the TTT, but local derivability does
not hold in the opposite direction (see Baake, Schlottmann and Jarvis [4]). A broken
symmetry can be restored in a local way, but the full lattice symmetry cannot be broken
to a sublattice in any local way, because there are no local means to distinguish the five
cosets of the sublattice. Any tiling whose set of singular lines accidentally has a larger
translation symmetry are likely candidates for having torsion in their cohomology.

For the coloured Ammann–Beenker tiling, the situation is completely analogous. Geo-
metrically, the coloured and the uncoloured version are the same, and thus have the same
singular lines Wa

8
. For the coloured variant, we have to restrict the lattice to the colour

preserving translations, which form a sublattice � 0?
8

of index 2 in �?
8

. With respect to
� 0?

8
, the lines in Wa

8
are between the generating vectors, so that the pair

�
� 0?

8
;Wa

8

�
is equivalent to the pair

�
�?

8
;Wb

8

�
. Again, the uncoloured Ammann–Beenker tiling

can be recovered from the coloured one by restoring the translations broken by the
colouring.

6 Patterns of codimension three

The case of projection patterns of codimension 3 is a good deal more complex than
the codimension 2 theory, though the principles of computation remain the same. We
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shall initially consider almost canonical projection patterns with finitely generated
cohomology (equivalently, that L0 is finite). Later we shall specialise to the rational
projection patterns.

The dimension 3 space E? now has families of singular lines and singular planes.
Following Forrest, Hunton and Kellendonk [21] we shall index by � the lines and by ˛
the planes. The rank of the main group � is N and, by Theorem 2.10, the rank of the
stabiliser �˛ of a singular plane is N � � D 2� , while the stabiliser �� of a singular
line has rank � .

The complex (3-2) in this case can be broken into two exact sequences

(6-1) 0�!C3 �!C2 �!C 0
1 �! 0 and 0�!C 0

1 �!C1 �!C0 �!Z�! 0:

The left hand sequence gives the long exact sequence

� � � �!Hs.�IC3/ �!Hs.�IC2/
�s
�!Hs.�IC

0
1 / �!Hs�1.�IC3/ �! � � �

computing H�.�IC3/ D H d��.�/ so long as we know the groups and homomor-
phisms

�sW Hs.�IC2/!Hs.�IC
0
1 /

and can solve the resulting extension problems. The groups Hs.�IC
0
1
/ are computed

from the right hand sequence of (6-1) following exactly the same procedure we used to
compute the codimension 2 examples from the analogous complex. We obtain

Lemma 6.1 There are equalities and short exact sequences

(6-2)

Hs.�IC
0
1 /D 0 for s > N � 1;

Hs.�IC
0
1 /DƒsC2� for N � 1> s > �;

0 �!ƒsC2� �!Hs.�IC
0
1 / �! ker s �! 0; for � > s > 1;

0 �! coker 1 �!H0.�IC
0
1 / �! ker 0 �! 0;

where, for s > 0,

sW Hs.�IC1/D
M
�2I1

ƒsC1�
�
�!Hs.�IC

0
0 /DƒsC1�;

and

0 ƒ1�//

0

0

0
L
�2I1

ƒ1�
�//

L
�2I1

ƒ1�
�

ƒ1�

 0
0

��
H0.�IC

0
0
///

��

H0.�IC1/// H0.�IC1/

H0.�IC
0
0
/

0

��
ker �//

��

L
�2I1

ker ��//
L
�2I1

ker ��

ker �

 00
0

��
0//

��

0// 0

0
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are both induced by the inclusions �� ! � and C �
0
� C0 . Note that all the terms

in (6-2) are free of torsion except possibly the coker 1 summand.

By Proposition 3.5 the groups H�.�IC2/ split as
L
˛2I2

H�.�
˛IC ˛

2
/ and for each

singular plane C ˛
2

we have a sequence

0 �! C ˛
2 �! C ˛

1 �! C ˛
0 �! Z �! 0:

As before, we obtain the following.

Lemma 6.2 There are equalities and short exact sequences

(6-3)

Hs.�
˛
IC ˛

2 /D 0 for s > 2� � 1;

Hs.�
˛
IC ˛

2 /DƒsC2�
˛ for 2� � 1> s > �;

0 �!ƒsC2�
˛
�!Hs.�

˛
IC ˛

2 / �! kerˇ˛s �! 0; � > s > 1

0 �! cokerˇ˛1 �!H0.�
˛
IC ˛

2 / �! kerˇ˛0 �! 0;

where, for s > 0,

ˇ˛s W Hs.�IC
˛
1 /D

M
�2I ˛

1

ƒsC1�
�
�!Hs.�

˛
IC ˛0

0 /DƒsC1�
˛;

and

0 ƒ1�
˛//

0

0

0
L
�2I ˛

1
ƒ1�

�//
L
�2I ˛

1
ƒ1�

�

ƒ1�
˛

ˇ˛
0
0

��
H0.�IC

˛ 0
0
///

��

H0.�IC
˛
1
/// H0.�IC
˛
1
/

H0.�IC
˛ 0
0
/

ˇ˛
0

��
ker �˛//

��

L
�2I ˛

1
ker ��//

L
�2I ˛

1
ker ��

ker �˛

ˇ˛
0
00

��
0//

��

0// 0

0

The maps ˇ˛s are again induced by the obvious inclusions, and the only potential torsion
term in (6-3) arises from the cokerˇ˛

1
expression; all other terms are free abelian.

The expression for �sW Hs.�IC2/ ! Hs.�IC
0
1
/ under the identifications in Lem-

mas 6.1 and 6.2 can be obtained as in [21]: �s is a sum of morphisms �˛s , which in
turn are determined by the diagrams

(6-4)

Hs.�IC
0
1
///

Hs.�IC
˛
2
˝ZŒ�=�˛ �/// Hs.�IC

˛
2
˝ZŒ�=�˛ �/

Hs.�IC
0
1
/

�˛
s

�� L
�2I1

ƒsC1�
�//

��

L
�2I ˛

1
ƒsC1�

�//
L
�2I ˛

1
ƒsC1�

�

L
�2I1

ƒsC1�
�

j˛
s
��

ƒsC1�s

//
��

ƒsC1�
˛

ˇ˛
s // ƒsC1�

˛

ƒsC1�

{˛
s

��
//

��

//
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for s > 0, and

H0.�IC
0
1
///

H0.�IC
˛
2
˝ZŒ�=�˛ �/// H0.�IC
˛
2
˝ZŒ�=�˛ �/

H0.�IC
0
1
/

�˛
0

�� L
�2I1

.ƒ1�
�˚ ker �� ///

��

L
�2I ˛

1
.ƒ1�

�˚ ker �� ///
L
�2I ˛

1
.ƒ1�

�˚ ker �� /

L
�2I1

.ƒ1�
�˚ ker �� /

j˛
0
��

ƒ1�˚ ker �
0

//
��

ƒ1�
˛˚ ker �˛

ˇ˛
0 // ƒ1�

˛˚ ker �˛

ƒ1�˚ ker �

{˛
0

��
0//

��

0// 0

0

where j ˛s and {˛s are induced by the obvious inclusions.

As for the case n D 2 we shall compute first with rational coefficients and in so
doing compute the ranks of the free abelian part of the integral cohomology H�.�/,
and second consider the torsion part. Although the rational computation amounts to
counting dimensions and using the extension

0! coker�sC1!Hs.�IC3/! ker�s! 0

the computation in terms of accessible numbers does not follow immediately by chasing
Diagram 6.1 or its analogue for higher � : for example, the rank of coker�sC1 is not
automatically the sum of the ranks of coker�0

sC1
and coker�00

sC1
, and likewise for the

kernels. As before, a simple application of the snake lemma tells us that there are six
term exact sequences

(6-5) 0! ker�0s! ker�s! ker�00s
�s
�! coker�0s! coker�s! coker�00s ! 0:

As in the codimension 2 case, direct knowledge of �0 is unnecessary to solve for either
the rational ranks or the torsion. However, the maps �s , s> 0, enter into consideration
in both cases; of course �s is trivial for s > � since ker�00s D 0 in these degrees.

The following lemma gives a useful link between the data required for computations
using the set-up just described, based on the long exact sequence (3-5), and the approach
to computing H�.�/ which uses the sequence (3-9). Note that in the case of a rational
projection pattern, j� is essentially the homomorphism ˛� of Corollary 4.10. It will
give us a helpful criterion for deciding when �s vanishes.

Lemma 6.3 For s > 0, the cokernel of j�W HsC2.�IA�˝R/!HsC2.�IT�˝R/

is identical to coker.�0s/= im�s . In particular, �s D 0 if and only if coker.j�/ D
coker.�0s/.

Proof By the exact sequence (3-9), coker.j�/D im.m�/. As we can write m as the
composite T�!D2

�!D3
� D C3Œ3� in M� , we may identify the composite

ƒsC2�!Hs.�IC
0
1 /!HsC2.�IC3Œ3�/DHs�1.�IC3/
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Z ƒ6�

0

Z

0
L
˛2I2

ƒ6�
˛

L
˛2I2

ƒ6�
˛

ƒ6� H4.�IC
0
1
/

H4.�IC2/H4.�IC2/

H4.�IC
0
1
/

��

��
H3.�IC3/ H 0.�/ Z

��

Z6 ƒ5�

0

Z6

0
L
˛2I2

ƒ5�
˛

L
˛2I2

ƒ5�
˛

ƒ5� H3.�IC
0
1
/

H3.�IC2/H3.�IC2/

H3.�IC
0
1
/

��

��
H2.�IC3/ H 1.�/

��

0 ƒ4�//

0

0

0
L
˛2I2

ƒ4�
˛//

L
˛2I2

ƒ4�
˛

ƒ4�

�0
2��

H2.�IC
0
1
///

��

H2.�IC2/// H2.�IC2/

H2.�IC
0
1
/

�2��
0//

��

0// 0

0

��
H1.�IC3/ H 2.�/

��

0 ƒ3�//

0

0

0
L
˛2I2

ƒ3�
˛//

L
˛2I2

ƒ3�
˛

ƒ3�

�0
1��

H1.�IC
0
1
///

��

H1.�IC2/// H1.�IC2/

H1.�IC
0
1
/

�1��
ker 1
//

��

L
˛2I2

kerˇ˛
1

//
L
˛2I2

kerˇ˛
1

ker 1

�00
1��

0//
��

0// 0

0

��
H0.�IC3/ H 3.�/

��

0 coker 1
//

0

0

0
L
˛2I2

cokerˇ˛
1

//
L
˛2I2

cokerˇ˛
1

coker 1

�0
0��

H0.�IC
0
1
///

��

H0.�IC2/// H0.�IC2/

H0.�IC
0
1
/

�0��
ker 0
//

��

L
˛2I2

kerˇ˛
0

//
L
˛2I2

kerˇ˛
0

ker 0

�00
0��

0//
��

0// 0

0

0
��

Diagram 6.1: The computation for the case �D 2 is shown in this diagram in
which all rows and columns are exact. The general case is similar with a longer
diagram. The finite generation condition on cohomology means that the only
rational projection patterns in dimension 3 are those with codimension 1 or 3.
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in Diagram 6.1 (or its analogue for higher values of � ) with m� in H�.�I �/. Thus
im.m�/D coker.j�/ can be identified with the image of the composite

coker.�0s/! coker.�s/ ,!Hs�1.�IC3/

which, by the exact sequence (6-5), is equal to coker.�0s/= im�s .

6.1 Rational computations

The computation of the rational ranks, that is, dim H�.�IC3 ˝Q/, for an almost
canonical projection pattern is now essentially straightforward, albeit longwinded.
Clearly

dim Hs.�IC3˝Q/D dim coker�sC1C dim ker�s

and the computations follow from knowledge of the dimensions of H�.�IC2˝Q/
and H�.�IC

0
1
˝Q/ obtained via the methods for nD 2, together with a computation

of the ranks of the maps �s . The latter are obtained relatively straightforwardly for
s > � , but for smaller values of s the terms arising via �00s add a further degree of
complexity and require knowledge of �s . The following summarises the computation
in the general case, and also corrects an error in the determination of the kernel of 
in [21, page 112]. Applied to the Ammann–Kramer tiling (see Kramer and Neri [32]),
these formulae evaluate to agree with Kalugin’s results [28]. All of the terms used in
the statement can be calculated relatively easily on a computer provided �s D 0, which
we shall see below is the case for any rational projection tiling when using rational
coefficients.

Theorem 6.4 (Erratum1 to [21, Theorem 2.7]) Given an almost canonical projection
pattern with L0 finite, codimension 3 and dimension d D 3.� � 1/, the following
formulae give the ranks of the rational homology groups H�.�IC3˝Q/. All ranks
are understood to be rational ranks. For s > 0,

rk Hs.�IC
n
˝Q/D

�
3�

sC3

�
CL2

�
2�

sC2

�
C

X
˛2I2

L˛1
�
�

sC1

�
CL1

�
�

sC2

�
�Rs �RsC1;

rk H0.�IC
n
˝Q/D

3X
jD0

.�1/j
�

3�
3�j

�
CL2

2X
jD0

.�1/j
�

2�
2�j

�
C

X
˛2I2

L˛1

1X
jD0

.�1/j
�
�

1�j

�
CL1

2X
jD0

.�1/j
�
�

2�j

�
C e�R1:

1The formulae given in [21] are correct only if the equation him j ˛s \ ker s W ˛ 2 I2i D ker s in the
middle of page 112 holds and rk�s D 0 . For the Ammann–Kramer tiling and the dual canonical D6

tiling this is not so and the rank of the left hand side is one lower than that of the right.
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Here Rs D rk�sC
P
˛2I2

rkˇ˛s � rk sC rk�s which is given by

RsD rkhƒsC2�
˛
W˛ 2 I2iC

X
˛2I2

rkhƒsC1�
�
W � 2 I˛1 i�rkhƒsC1�

�
W � 2 I1iCrk�s

for s > 1, and

R1 D rkhƒ3�
˛= imˇ˛ W ˛ 2 I2iC

X
˛2I2

rkhƒ2�
�
W � 2 I˛1 i

C rk
�� M

�2I ˛
1

ƒ2�
�

�
\ ker 1 W ˛ 2 I2

�
� rkhƒ2�

�
W � 2 I1iC rk�1:

Finally, the Euler characteristic e WD
P

s.�1/s rkQ Hs.�IC
n/ is given by

e DL0�

X
˛2I2

L˛0 C
X
˛2I2

X
�2I ˛

1

L�0 �
X
�2I1

L�0:

Remark 6.5 For s > � the expression for Rs simplifies to RsD rkhƒsC2�
˛ W˛ 2 I2i.

This follows from the fact that ƒsC1�
� vanishes for � 2 I1 or I˛

1
as the rank of ��

is � . For � D 2, that is if the dimension is 3, the expression for R1 also simplifies
slightly as imˇ˛

2
vanishes for similar reasons.

Now assume the projection pattern considered satisfies the rationality conditions, and
so we can use the geometric realisation A

˛
�!T of the homomorphism A�

j
�!T� as

in Theorem 4.9. In particular, Lemma 6.3 tells us that �s D 0 if im.˛�/D im.�0s/.

Lemma 6.6 For a rational projection pattern, in computations of cohomology with
any coefficient ring R a field of characteristic 0, the homomorphisms �s D 0 for all
s > 0.

Proof Recall that A is given as a union of .N��/–tori Ti inside T . The individual
inclusions Ti ! T combine to give a map factoring

`
Ti ! A

˛
�!T which shows

that we always have the inclusion im.�0s/� im.˛�/; we prove the opposite inclusion.
It is sufficient to work with the field F DR.

Consider a simplicial decomposition of the pair .T ;A/, that is, a simplicial decom-
position of T such that each (open) cell has either empty intersection with A or is
contained in it. The map on simplicial chain groups given by mapping the simplex
.x0; : : : ;xr / to .x1�x0/^� � �^ .xr �x0/ 2ƒr R� vanishes on boundaries and hence
induces an isomorphism between Hr .T IR/ and ƒr�˝R. Restricting to AD[Ti

it follows that im.˛�/ is contained in the subgroup of ƒr� ˝R generated by the
subgroups ƒr�

Di ˝R.

Algebraic & Geometric Topology, Volume 13 (2013)



Integral cohomology of rational projection method patterns 1697

Corollary 6.7 For rational projection tilings rk�s D 0 for all s > 0 and the formulae
in the statement of Theorem 6.4 correspondingly simplify.

6.2 Torsion and the integral computations

We turn to the determination of the integral cohomology of almost canonical projection
patterns and, given the results above for calculations with rational coefficients, this
entails an examination of the torsion groups which can arise in the computations,
and the solution of associated extension problems. As before, we assume throughout
this subsection that the number L0 is finite, but do not as yet assume the rationality
conditions.

The results of Lemmas 6.1 and 6.2 show that computations for Hs.�IC3/ are relatively
straightforward for s > � ; in these cases we have an extension

0 �! coker
�
�0sC1W

M
˛2I2

ƒsC3�
˛
�!ƒsC3�

�
�!Hs.�IC3/

�! ker
�
�0sW

M
˛2I2

ƒsC2�
˛
�!ƒsC2�

�
�! 0

and this extension splits since the kernel term is free abelian. In fact as the rank of �˛

is 2� we immediately recover the result of Corollary 4.12 for codimension 3 patterns.
As the cokernel term can in principle have torsion, this same observation about the rank
of �˛ gives the following analogue of the final line in Theorem 5.3; again examples
suggest this result is best possible.

Proposition 6.8 For a codimension 3 almost canonical projection pattern, there is no
torsion in Hs.�IC3/DH d�s.�/ for s > 2.� � 1/.

For the remainder of the paper we specialise to the case � D 2, whose details are
depicted in Diagram 6.1. The general case is similar, but with analogous extension
problems arising over a larger range of dimensions. The following summarises the
situation and follows immediately from the previous observations.

Theorem 6.9 For a codimension 3, dimension 3 almost canonical projection pattern
with finitely generated cohomology (that is, L0 finite), we have

H 3�s.�/DHs.�IC3/D

8̂<̂
:

0 for s > 4;

Z for s D 3;

Z6˚ ker
˚
�0

2
W
L
˛2I2

.ƒ4�
˛/!ƒ4�

	
for s D 2;
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and so there is no torsion in these degrees.

In homological degree 1 there is no torsion in ker�1 and we obtain

H 2.�/DH1.�IC3/D coker�02˚ ker�1:

The summand coker�0
2

may contain torsion, but this is computable from the description
of �0

2
as the homomorphism

L
˛2I2

.ƒ3�
˛/!ƒ3� induced by the inclusions �˛!

� .

In homological degree 0 (that is, computing H 3.�/) the computational problems are
considerable. Using this approach alone, we can only deduce the homology group as
the extension

(6-6) 0! coker�1!H0.�IC
3/! ker�0! 0:

Here torsion can arise in both coker�1 and ker�0 ; note that it is not necessarily the case
that even if there is torsion in ker�0 then it lifts to torsion elements in H0.�IC

3/: any
specific calculation therefore needs to determine the torsion in coker�1 and whether
any torsion of ker�0 lifts to H0.�IC

3/. Torsion in ker�0 can arise only from torsion
in ker�0

0
by Lemma 6.2.

However, even if �1D 0, neither is the determination of torsion in coker�1 straightfor-
ward. Torsion elements in this group may arise from either coker�0

1
or coker�00

1
, but

torsion in coker�00
1

itself does not immediately imply that it lifts to torsion in coker�1 ,
and there is another extension problem to solve on the way.

In general such extension problems need further geometric or topological input to solve.
To that end, we shall now assume that our pattern satisfies the rationality conditions
of Section 4. As the cohomology of a rational projection pattern is always finitely
generated, Corollary 4.13, the free abelian part of H�.�/ is completely determined by
Theorem 6.4 and Corollary 6.7. The torsion is described, as in Corollary 4.14, as the
torsion subgroup of coker

�
H 3.T /

˛�

�!H 3.A/
�
, or alternatively via an extension, as in

exact sequence (4-1), of the torsion in H2.A/ with coker.˛�/. We consider first the
computation of the homology and cohomology of the space A.

We start with the homology of A. For elementary reasons, H0.A/DZ and H1.A/D
H1.T /D Z6 . To compute the higher homology groups we use the Mayer–Vietoris
spectral sequence for the homology of the resolution space A� . This considers A
as the union of L2 4–tori, L1 2–tori and L0 0–tori (points). The E1 –page of the
spectral sequence has, as its r th column E1

r;� , the homology of the disjoint union of
those tori arising as .rC1/–fold intersections, as shown in Table 6.1.
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L
˛2I2

ƒ4�
˛L

˛2I2
ƒ3�

˛L
˛2I2

ƒ2�
˛˚

L
�2I1

ƒ2�
�

L
˛2I2

L
�2I ˛

1
ƒ2�

�L
˛2I2

ƒ1�
˛˚

L
�2I1

ƒ1�
�

L
˛2I2

L
�2I ˛

1
ƒ1�

�

ZL2˚ZL1˚ZL0
L
˛2I2

ZL˛
1˚

L
˛2I2

ZL˛
0˚

L
�2I1

ZL�
0

L
˛2I2

L
�2I ˛

1
ZL�

0

Table 6.1: First page of the Mayer–Vietoris spectral sequence for the homol-
ogy of A

Knowledge of Hs.A/ for r D 0 and 1 allows computation of the differentials, and the
only torsion that can arise is that in the cokernel of the differential d1

1;2
W E1

1;2
!E1

0;2
.

This differential runs

d1
1;2W

M
˛2I2

� M
�2I ˛

1

ƒ2�
�

�
!

�M
˛2I

2

ƒ2�
˛

�
˚

�M
�2I

1

ƒ2�
�

�

and is described explicitly on each component ƒ2�
� for � 2 I˛

1
via the canonical

embeddings of the stabiliser subgroups �� into the corresponding �˛ and �� in the
target components. We obtain

Lemma 6.10 For a rational projection pattern with �D 2, the only torsion which arise
in H�.A/ is in H2.A/ and is that which arises in the cokernel of the differential d1

1;2
.

The cohomology calculations are formally dual to the above; note now that the important
differential for torsion purposes runs d

1;2
1
W E

0;2
1
!E

1;2
1

, giving potential torsion in
its cokernel, the group E

1;2
2

, that is, in cohomological dimension 3. This corresponds,
via the universal coefficient theorem, to the identification of the torsion in H2.A/ with
that in H 3.A/.

In all the icosahedral tilings we consider below, this torsion group is non-trivial. For
larger values of � the corresponding Mayer–Vietoris spectral sequences are similar,
though have more rows. Again, torsion can only arise from the cokernel of differentials
d1

1;s
where now 2 6 s 6 � , and formulae for these differentials are given by the

analogues of the description for � D 2 above.

Finally we note the following useful observation concerning a criterion for the absence
of torsion in the group coker.˛�/. We state it for general values of � .

Lemma 6.11 For a codimension 3 rational projection pattern and s > 0, if coker�0s is
torsion free then �s D 0 and hence coker.˛�/ is torsion free.
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Proof By Lemma 6.6 we know that �s D 0 when working over R, and hence when
working over Z the image of �s can only be a torsion group. If coker�0s is torsion free
then �s D 0 integrally. The result concerning coker.˛�/ now follows from Lemma 6.3

6.3 Codimension 3 examples with icosahedral symmetry

We illustrate the above tools by considering the computations of the cohomology of
the four icosahedral tilings, the Danzer tiling [16], the Ammann–Kramer tiling (see
Kramer and Neri [32], the canonical D6 tiling (see Kramer and Papadopolos [33])
and the dual canonical D6 tiling [33], all of which are rational projection patterns.
Preliminary results were announced in [24], but, as we note below, at least in the case
of the Danzer tiling, the torsion component of the integral cohomology group H 3.�/

was incorrectly computed there, as possibly were also the corresponding computations
of H 3 for the other three examples; the lower cohomology groups announced in [24]
are correct. In this section we give details of these computations. These examples
also give a good overview of some of the different phenomena that can occur in the
determination of torsion.

We start by describing the relevant lattices � and families of singular planes W . In
three dimensions, there are three inequivalent icosahedral lattices of minimal rank 6.

The primitive lattice �P is generated by a star of vectors pointing from the center
to the vertices of a regular icosahedron. We choose any basis e1; : : : ; e6 from this
vector star. The lattice �F is then the sublattice of those integer linear combinations
of the ei , whose coefficients add up to an even integer. The lattice �I is given by
the Z–span of the vectors in �P , and the additional vector 1

2
.e1C � � � C e6/. These

lattices are analogues of the primitive, F –centered, and I –centered cubic lattices.2

�F is an index-2 sublattice of �P , which in turn is an index–2 sublattice of �I . The
action of the icosahedral group A5 on the three lattices gives rise to three integral
representations, which are inequivalent under conjugation in GL6.Z/.

The singular planes of all four examples have special orientations, being perpendicular
either to a 5–fold, a 3–fold, or a 2–fold axis of the icosahedron (the latter are also
parallel to a mirror plane). Moreover, each �–orbit of singular planes contains a
representative which passes through the origin. We therefore define the families of
planes Wn , nD 5; 3; 2, consisting of all planes perpendicular to an n–fold axis, and
passing through the origin. The arrangements of singular planes of the icosahedral
examples are then given by the pair .�P ;W2/ for the Ammann–Kramer tiling, the

2strictly speaking, 1
2
�F is a centering of �P
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pair .�F ;W2/ for the dual canonical D6 tiling, the pair .�F ;W5/ for the Danzer
tiling, and the pair .�F ;W5[W3/ for the canonical D6 tiling. Interestingly, the sets
�P CW2 and �F CW2 are invariant even under all translations from �I , which
means that they are both equal to �I CW2 . In other words, the sets of singular planes
of the Ammann–Kramer tiling and the dual canonical D6 tiling are the same, only the
lattices acting on it by translation are different. On the other hand, the sets of singular
planes of the Danzer tiling and the canonical D6 tiling have a lattice of translation
symmetries which is equal to the lattice �F they are constructed from. With these
data is it now straightforward to evaluate the formulæ of Theorem 6.4 for the ranks
of the rational homology groups. The results are summarized in Table 6.2. As can be
seen, compared to previously published results the rational ranks of H0 and H1 of the
Ammann–Kramer tiling and the dual canonical D6 tiling have been increased by 1, in
agreement with Kalugin [28], whereas all other rational ranks remain the same.

H 3˝Q H 2 H 1 H 0 t 0
1

t 00
1

t 0
0

Danzer Q20 Z16 Z7 Z 0 Z2 0

Ammann–Kramer Q181 Z72˚Z2 Z12 Z 0 Z2 0

canonical D6 Q205 Z72 Z7 Z 0 Z2
2

0

dual canonical D6 Q331 Z102˚Z4
2
˚Z4 Z12 Z Z6

2
Z7

2
Z15

2

Table 6.2: Integral cohomology H 2 , H 1 and H 0 , and rational H 3 of
icosahedral tilings from the literature. Also indicated are details of the
torsion arising at various points in the calculation via Diagram 6.1. We use
the notation that t 01 , t 001 and t 00 denote the torsion components of coker�01 ,
coker�00

1
and ker�0

0
respectively.

Next, we discuss the determination of torsion, which is potentially non-trivial only for
H 2 and H 3 , as noted by Proposition 6.8. The torsion in H 2 is relatively straight-
forward, and can be computed, as in Theorem 6.9, as the torsion in the cokernel
of

�2W

M
˛2I2

ƒ4�
˛
!ƒ4�:

Both the Ammann–Kramer and dual canonical D6 tilings have 2–torsion in H 2.�/

arising from this map; coker�0
2

is torsion free for the Danzer and canonical D6 tilings,
making their H 2 groups free abelian.
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This situation concerning the groups H 3 is as follows. In each of the first three tilings
coker�0

1
is torsion free and so by Lemma 6.11 the map �1 is zero. This is not so for

the dual canonical D6 tiling where additional geometric computation (such as that
described in [24]) is needed to deduce that nevertheless coker.˛�/ is still free. By
Lemma 6.3, this implies that the map �1 is non-trivial, having image the whole of the
torsion subgroup Z6

2
of coker�0

1
.

In every case there are 2–torsion components in coker�00
1

. For the first three examples
there is no other torsion arising in the computation via Diagram 6.1, but there remains
an extension problem of the form

0 �! free abelian group �! coker�1 �! coker�001 �! 0

which has more than one potential solution.

For the dual canonical D6 tiling, the situation is more complicated. There is torsion,
Z7

2
, in coker�00

1
, and an extension problem to decide its lift to coker�1 , but there is

also torsion, Z15
2

, in ker�0 , arising as the torsion in ker�0
0

. Then H 3 is given by a
further extension (6-6) running

(6-7) 0 �! coker�1 �!H 3.�/ �! Z328
˚Z15

2 �! 0:

There is no direct way of solving such extension problems without some additional
geometric input, for example via the geometric realisation of the rational projection
pattern and computation of the corresponding torus arrangement A. Using the Mayer–
Vietoris computation of H�.A/, it can be shown that, for this example, at least one of
these extension is non-trivial.

Clearly each example at this point must be handled on a case by case basis. The Danzer
tiling, arguably the simplest of these four, involves sufficiently small cell complexes
that a complete solution is available. Computations using either Diagram 6.1 or the
exact sequence in Corollary 4.10 yield an extension problem for H 3 with a single Z2

in the quotient: there is a simple dichotomy, that H 3 is either Z20˚Z2 (the trivial
extension), or is Z20 (the non-trivial one). However, for this tiling, a modified version
of the Anderson–Putnam complex gives H 3.�/ as the direct limit of the cohomology
H 3.K/ of a certain cell complex under an iterated self map f WK ! K . Machine
computation shows that there is no torsion in H 3.K/, and consequently there can be
none in the direct limit H 3.�/D lim

�!
H 3.K/. This determines the extension problem:

it is the non-trivial one.

Corollary 6.12 The integral cohomology of the Danzer tiling is given by

H 0.�/D Z; H 1.�/D Z7; H 2.�/D Z16; H 3.�/D Z20:
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6.4 K–theory and general codimension

We conclude with some remarks on the general codimension case and the consequences
of our work for the K–theory of cut and project patterns. The first observation is an
extension of the result of Corollary 4.12.

Proposition 6.13 For a general dimension d , codimension n, rational projection
tiling, the groups H s.�/ are free abelian of rank

�
N
s

�
if s < � � 1, but the possibility

of torsion exists for all s > � � 1. For these values of s the torsion subgroup contains
the torsion part of

coker
�M

˛

ƒN�s�
˛ ˛�
�!ƒN�s�

�
and if s < 2� � 1 then this is precisely the torsion term.

Sketch of Proof By Corollary 4.10 we have an exact sequence

� � � �!HN�s.A/
˛�
�!HN�s.T / �!H s.�/ �!HN�s�1.A/ �! � � � :

If s < � � 1, then N � s� 1> .n� 1/� and HN�s�1.A/D 0 since A is constructed
as the union of .n�1/�–dimensional tori. This proves the first part of the statement, a
restatement of Corollary 4.12. The exact sequence also shows that the cokernel term
in the statement clearly injects in H s.�/, which forms the second part, and the final
observation follows from a more detailed computation of H�.A/. In brief, in the range
s< 2��1, the groups HN�s�1.A/ are free abelian; this follows from a Mayer–Vietoris
spectral sequence computation of H�.A/ as in Kalugin [28], and uses the observation
that the highest homological dimension of intersection of the component .n�1/�–tori
making up A is of dimension .n� 2/� .

Examples lead us to conjecture that where this proposition indicates that there might
be torsion, examples can be found where there is torsion.

We turn to consider the various forms of K–theory used in the study of aperiodic
tilings. Initial interest was in the K–theory of various noncommutative C �–algebras
associated to the tilings; see Bellissard [7]. At the level of graded abelian groups, as
noted by Forrest and Hunton [19], the values of this K–theory is (modulo regrading)
the same as the topological K–theory of the tiling space, which we denote K�.�/.
The Atiyah–Hirzebruch spectral sequence (AHSS) provides a way of computing the
K–theory of � from its cohomology, and in the absence of torsion in H�.�/ it is a
standard fact that this spectral sequence collapses and the K–theory is just the direct
sum of the cohomology groups, K0.�/D

L
s H 2s.�/ and K1.�/D

L
s H 2s�1.�/.
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This is not necessarily so in the presence of torsion. However, for small values of d

the situation remains straightforward. Standard topological arguments with the AHSS,
using characterisation of the possible differentials yield

Proposition 6.14 For a dimension d 6 3 rational projection pattern, K0.�/ DL
s H 2s.�/ and K1.�/D

L
s H 2s�1.�/.

Sketch of Proof The smallest possible non-zero differential that can lead to the failure
of this result is d3W H

s.�/! H sC3.�/ and there must be 2–torsion in H sC3.�/.
However, as H 0.�/DZ and represents the connectivity element, d3 can be non-trivial
only for positive values of s ; as we need a non-trivial value of H sC3.�/ for d3 6D 0,
we need the cohomology of � to be non-zero in some dimensions at least 4. This
cannot happen if the tiling is only 3–dimensional.

As we know that � must be an integer, the codimension of the pattern is 3 or less,
and torsion can only exist in cohomological dimensions 2 or 3; this is enough to be
sure that there are no extension problems and the K–theory splits as the direct sum as
claimed.

The possibility nevertheless exists for tilings in higher dimensions demonstrating
significant differences between their cohomology and K–theory.

Appendix A Realisation of H �.�/ as group (co)homology

We sketch briefly here the argument that H�.�/ can be realised as the group coho-
mology H�.�ICn/ as noted at the start of Section 3. This identification lies at the
heart of the approach of Forrest, Hunton and Kellendonk [20; 21] and we direct the
reader to [21] in particular for full details. It also enables us to justify the identification
of the homomorphisms ��W H�.T /!H�.�/ and m�W H

�.�IT�/!H�.�ICnŒn�/

as mentioned in Remark 4.11.

We recall from Section 2 that � can be considered as the completion of q.NS/� T ,
the image of the non-singular points in the N –torus, with respect to the pattern metric.

The translation action of Ek on E passes to an action on T DE=� . Moreover, this
action preserves S and NS and the resulting action on q.NS/ is continuous in the
pattern metric. Thus the dynamical system .q.NS/;Ek/ extends to the completion
yielding the dynamical system .�;Ek/. Since .q.NS/;Ek/ is a sub-system of a flow
on the torus T , the system .�;Ek/ is the flow on the mapping torus of a Zd action.
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To make this explicit, choose a splitting � D �1˚�2 where �1 is of rank n, and �2

is of rank d . Then �1 spans a linear space F � E and we can pick a fundamental
domain X � F . Let Xc be the completion of q.X \NS/ in the pattern metric and
Fc the corresponding completion of q.F \NS/. Then � is the mapping torus of the
action of �2 Š Zd on Xc given on q.x/ 2 q.X \NS/ by  � q.x/D q.x��F . //,
where �F is the projection onto F along Ek .

Identifying � with this mapping torus, it follows that the Cech cohomology of � can
be identified with H�.�2IC.Xc ;Z// the group cohomology of �2 with values in the
representation module C.Xc ;Z/, the continuous Z–valued functions on Xc , defined
by this action. This can be seen, for example, by viewing the mapping torus as a fibre
bundle over the d –torus B�2 with fibre Xc : then the Serre spectral sequence of the
bundle has E2 D E1–term H�.�2IH

�.Xc//, and the Cech cohomology H�.Xc/

of the totally disconnected space Xc is precisely C.Xc ;Z/. Moreover, as �1 acts
freely on C.Fc ;Z/ by the analogous action, we can identify H�.�2IC.Xc ;Z// with
H�.�IC.Fc ;Z//. Finally, the assumption of total irrational position allows us to
identify C.Fc ;Z/ with C.E?c ;Z//, as � –modules, where E?c is the completion of
E?\NS in the pattern metric, as in Section 3. Summing up, we have the string of
identifications

H�.�/ŠH�.�2IC.Xc ;Z//ŠH�.�IC.Fc ;Z//ŠH�.�IC.E?c ;Z//:

As noted after Definition 3.1, we may identify C.E?c ;Z// with the �–module Cn .
The equivalence H s.�ICn/ŠHd�s.�ICn/ in (3-1) follows from the Poincaré duality
property of the group �2 .

We turn to the map �W �!T . The identifications above allow us to view � cohomo-
logically as the fibre bundle over B� with fibre E?c ; in the same way, we can replace
the space T by the bundle over B� with fibre E? and the homomorphism �� is
represented in cohomology by H�.�IC.E?IZ//!H�.�IC.E?c IZ// induced by
the natural quotient E?c ! E? . By the analogous argument along the lines of the
proof of Theorem 4.9, this is the same map in cohomology as induced in H�.�I �/ by
the map T�! CnŒn�.
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