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Dehn surgery, rational open books
and knot Floer homology

MATTHEW HEDDEN

OLGA PLAMENEVSKAYA

By recent results of Baker, Etnyre and Van Horn-Morris, a rational open book
decomposition defines a compatible contact structure. We show that the Heegaard
Floer contact invariant of such a contact structure can be computed in terms of the
knot Floer homology of its (rationally null-homologous) binding. We then use this
description of contact invariants, together with a formula for the knot Floer homology
of the core of a surgery solid torus, to show that certain manifolds obtained by
surgeries on bindings of open books carry tight contact structures.

57M25, 57M27, 57R17, 57R58

1 Introduction

Dehn surgery is the process of excising a neighborhood of an embedded circle (a
knot) in a 3–dimensional manifold and subsequently regluing it with a diffeomorphism
of the bounding torus. This construction has long played a fundamental role in the
study of 3–manifolds, and provides a complete method of construction. If the 3–
manifold is equipped with extra structure, one can hope to adapt the surgery procedure
to incorporate this structure. This idea has been fruitfully employed in a variety of
situations.

Our present interest lies in the realm of 3–dimensional contact geometry. Here, contact
surgery along Legendrian knots has been an invaluable tool for the study of 3–manifolds
equipped with a contact structure. For contact surgery, we start with a Legendrian knot
(a knot which is tangent to the contact structure), and perform Dehn surgery in such
a way that the contact structure on the knot complement is extended over the surgery
solid torus. To guarantee that the extension is unique a condition on the surgery slope
is required, and a sufficient condition is that the slope is of the form 1=k with respect
to the Legendrian framing; see Ding and Geiges [5] and Kanda [28]. The case when
k D�1 is perhaps the most well-known, and is often called Legendrian surgery.
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A central goal of this article is to study a different situation in which Dehn surgery
uniquely produces a contact manifold. For this we employ an important tool in 3–
dimensional contact geometry: open book decompositions. An open book decomposi-
tion of a 3–manifold Y is equivalent to a choice of fibered knot K � Y , by which we
mean a knot whose complement fibers over the circle so that the boundary of any fiber
is a longitude. We refer to K as the binding of the open book. From an open book
decomposition, one can produce a contact structure, which is unique, up to isotopy.
Note that for this contact structure, the knot K will be transverse to the contact planes.
Surgeries on transverse knots were studied in Gay [12], but our perspective is different
from [12].

Given a knot K�Y , denote the manifold obtained by Dehn surgery with slope p=q by
Yp=q . There is a canonical knot induced by the surgery; namely, the core of the solid
torus used in the construction. We denote this knot by Kp=q . If we perform surgery on
a fibered knot K � Y then the complement of the induced knot Kp=q � Yp=q fibers
over the circle; indeed, it is homeomorphic to the complement of K . However, Kp=q

is often not fibered in the traditional sense, as the boundaries of the fibers are not
longitudes. In fact Kp=q will be homologically essential if p¤ 1, and so will not have
a Seifert surface at all. If p ¤ 0, then K will be rationally null-homologous, meaning
that a multiple of its homology class is zero. We refer to a rationally null-homologous
knot whose complement fibers over the circle as a rationally fibered knot, and the
corresponding decomposition of the 3–manifold as a rational open book decomposition.
Baker, Etnyre and Van Horn-Morris [1] recently showed that a rational open book
gives rise to a contact structure, which is unique, up to isotopy. Thus a fibered knot
K � Y induces a unique contact structure � on Y , and Dehn surgery on K gives rise
to a rationally fibered knot Kp=q � Yp=q inducing a unique contact structure �p=q on
Yp=q . The purpose of this article is to investigate the relationship between these contact
structures.

Our investigation will rely on Heegaard Floer homology, which provides a powerful
invariant of contact structures. Denoted c.�/, this invariant lives in bHF .�Y /, the
Heegaard Floer homology of the manifold Y with its orientation reversed (F D Z=2Z
coefficients are used throughout, to avoid any sign ambiguities). We study �p=q by way
of its contact invariant, so it will be useful to understand how to compute the contact
invariant associated to a rational open book. Our first theorem states that, as in the
null-homologous case, the contact invariant is a function of the knot Floer homology
of the binding.

To understand the statement, recall that a rationally null-homologous knot K � Y

induces a Z–filtration of bCF .�Y /, that is, a sequence of subcomplexes with integer
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indices:
0� F.bottom/� F.bottomC 1/� � � � �bCF .�Y /:

(See Section 2 for more details on the filtration.) We have:

Theorem 1 Let K � Y be a rationally fibered knot, and �K the contact structure
induced by the associated rational open book decomposition. Then H�.F.bottom//Š
F � hci. Moreover, if

�W F.bottom/!bCF .�Y /

is the inclusion map of the lowest non-trivial subcomplex, then ��.c/ D c.�K / 2
bHF .�Y /.

In the case that K is fibered in the traditional sense (so that it induces an honest open
book decomposition of Y ), this agrees with Ozsváth and Szabó’s definition of c.�/.
We also remark that the definition of the filtration depends on a choice of relative
homology class, and the class used in the theorem comes from the fiber.

The proof of Theorem 1 uses a cabling argument. More precisely, an appropriate cable
of K is a fibered knot in the traditional sense, and results of Baker, Etnyre and Van
Horn-Morris [1] relate the contact structure of the resulting open book to that of the
original rational open book. We prove the theorem by developing a corresponding
understanding of the behavior of the knot filtration under cabling. This is aided by
techniques developed in Hedden [18]. We should point out that while the cabling
argument shows that H�.F.bottom//Š F , we give an alternate proof of this fact by
constructing an explicit Heegaard diagram adapted to a rational open book where the
subcomplex in question is generated by a single element, Proposition 3.4. This is a
rational analogue of the Heegaard diagram for fibered knots constructed in Ozsváth and
Szabó [39], and may be useful for understanding the interaction between properties
of the monodromy of a rational open book and those of the contact invariant. By
combining the theorem with results of Ni [32] and Hedden [21] (see also Rasmussen
[43]), we arrive at the following corollary.

Corollary 2 Suppose K �L.p; q/ is a knot in a lens space, and that integral surgery
on K yields the 3–sphere. Then K is rationally fibered, and the associated rational
open book induces a contact structure, �K , with c.�K /¤ 0. Regarding K in �L.p; q/,
the lens space with orientation reversed, we obtain a contact structure �K also satisfying
c.�K /¤ 0.

Remark [39, Theorem 1.4] shows that non-vanishing contact invariant implies tight-
ness, so the contact structures of the corollary are tight. The corollary also applies to
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knots in L–spaces that admit homology sphere L–space surgeries. The proof of the
corollary, contained in Section 3.2, is based on the fact that the Floer homology of
knots on which one can perform surgery to pass between L–spaces (manifolds with the
simplest Heegaard Floer homology) is severely constrained.

We find this corollary particularly intriguing, due not to the existence of a tight contact
structure on L.p; q/ induced by K , but the additional tight contact structure on
�L.p; q/. To put this in perspective, if a null-homologous fibered knot K�Y induces
a tight contact structure on both Y and �Y , then the monodromy of the associated
open book is isotopic to the identity (otherwise it could not be right-veering with both
orientations; see Honda, Kazez and Matić [24]). If one could show that, similarly, there
are but a finite number of rationally fibered knots that induce tight contact structures
on both L.p; q/ and �L.p; q/, this would lead to significant progress on the Berge
Conjecture, as it would imply that the number of knots in the 3–sphere giving rise to
any fixed lens space by Dehn surgery is finite (a fact that would follow from the Berge
Conjecture). In any event, we hope that the geometric information provided by the
contact structures induced by K �L.p; q/ can be of aid in the understanding of lens
space surgeries.

In another direction, we can use a surgery formula for knot Floer homology to understand
the contact invariant of rational open books induced by Dehn surgery. (Here, the 3–
manifolds involved do not have to be L–spaces.) Our second main theorem is a
non-vanishing result for the contact invariant in this situation.

Theorem 3 Let K�Y be a fibered knot with genus g fiber, and � the contact structure
induced by the associated open book. Let Kp=q � Yp=q be the rationally fibered knot
arising as the core of the solid torus used to construct p=q surgery on K , and �p=q
the contact structure induced by the associated rational open book. Suppose c.�/ 2
bHF .�Y / is non-zero. Then c.�p=q/ 2 bHF .�Yp=q/ is non-zero for all p=q � 2g .

Note that surgeries with sufficiently negative framings can be realized as Legendrian
surgeries. If .Y; �/ has non-trivial contact invariant, so will any contact structure
obtained by Legendrian surgery, regardless of fibering. For this reason, producing
tight contact structures on positive Dehn surgeries is typically more challenging, and
explains our focus on the realm of positive slope. We should point out, however, that
our results have analogues for negative slopes, which can be used to produce contact
structures with non-trivial invariants, even in situations where the slope is larger than
the maximal Thurston–Bennequin invariant.

Theorem 3 allows us to construct a number of interesting tight contact structures.
First, notice that surgeries on the binding of an open book with trivial monodromy
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produce rational open book decompositions for circle bundles over surfaces. Tight
contact structures on circle bundles are completely classified (Honda [23] and Giroux
[15]), but it is interesting to point out that an existence result follows immediately
from Theorem 3: a circle bundle of Euler number n � 2g over a surface of genus
g > 0 carries a tight contact structure with non-zero contact invariant. To list some
further families of contact manifolds whose tightness follows from Theorem 3, we
turn to the supply of tight contact structures compatible with the genus one open
books given in Baldwin [2; 3]. Indeed, tight contact structures supported by open
books .T; �/ (where T is a punctured torus) are completely classified (Baldwin [2],
and Honda, Kazez and Matić [25]) in terms of their monodromy. All of these tight
contact structures have non-vanishing contact invariants, so Theorem 3 produces, for
any p=q � 2, tight contact structures on manifolds obtained by p=q–surgery on the
bindings of corresponding open books. Many of these manifolds are L–spaces [3] and
thus carry no taut foliations (Ozsváth and Szabó [35, Theorem 1.4]); the family of tight
contact manifolds we obtain generalizes a result of Etgü [9]. (Note that an expanded
version of [9] extends the results to a wider class of open books than the original arXiv
version.) More generally, any L–space obtained by surgery on a fibered knot in an
L–space provides an example of a manifold with no taut foliations but a tight contact
structure by our theorem. This includes many hyperbolic 3–manifolds. Of course our
theorem also shows that performing surgery with slopes in Œ2g;1/ on the binding of
any pseudo-Anosov open book decomposition with non-zero contact invariant produces
infinitely many hyperbolic manifolds carrying tight contact structures, but presumably
many of these manifolds also carry taut foliations.

Our results should also be contrasted to those of Lisca and Stipsicz [31]. They prove
that for a knot K � S3 whose maximal self-linking number equals 2g.K/� 1, the
surgered manifold S3

r .K/ carries a tight contact structure for all r � 2g.K/. While
our theorem only applies to fibered knots, it can be used in arbitrary 3–manifolds. In
particular, combining Theorem 3 with Hedden [20, Theorem 5] produces:

Corollary 4 Let K � Y be a fibered knot with fiber F , and � a contact structure on
Y with c.�/ non-zero. Assume that K has a transverse representative in � satisfying

slF .K/D 2g.F /� 1:

Then Kp=q � Yp=q induces a contact structure �p=q with c.�p=q/ non-zero, for
p=q � 2g.F /.

Our result overlaps with [31] for fibered knots in S3 with sl.K/D 2g.K/�1, but [31]
guarantees only the existence of a tight contact structure whereas our result describes
a specific supporting open book. In the present context the self-linking condition
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guarantees that the contact invariant of the contact structure induced by K is equal
to c.�/, which, by assumption, is non-zero. This fact follows from a kind of relative
adjunction inequality established in [20]. In fact, the contact structure induced by K is
the same as � : by Etnyre and Van Horn-Morris [11, Theorem 1.1], � can only differ
from �K by extra Giroux torsion, but by Ghiggini, Honda and Van Horn-Morris [13]
the presence of Giroux torsion would imply c.�/D 0, so we must have �K D � .

Our proof of Theorem 3 consists of several parts. The first is based on a detailed
examination of the knot Floer homology of the induced knot Kn � Yn for sufficiently
large integral surgeries, n 2 Z. Building on work of Hedden [19], and Ozsváth and
Szabó [36], we give a complete description of the knot Floer homology filtration
induced by Kn � Yn in terms of the filtration induced by K � Y . Coupled with the
description of the contact invariant given by Theorem 1, this proves the theorem for
n� 0. We then obtain the theorem for all integers n� 2g by using an exact sequence
for knot Floer homology together with an adjunction inequality. It is worth pointing
out that the restriction n � 2g is, in general, sharp (this can be seen from the .2; k/
torus knot; Etnyre and Honda [10], and Lisca and Stipsicz [30]). Finally, the theorem
is proved for rational slopes p=q � 2g by showing that �p=q is obtained from �n by
Legendrian surgery.

Outline The paper is organized as follows. In Section 2, we discuss the Alexander
grading in knot Floer homology, paying particular attention to the case of rationally
null-homologous knots. In particular, we discuss how to compute this grading with the
help of so-called relative periodic domains.

Section 3 is devoted the proof of Theorem 1. The proof relies on studying the relation-
ship between the knot Floer homology of the binding of an open book and that of its
cables. In this section we also produce an explicit Heegaard diagram for a rationally
fibered knot with a unique generator for the lowest non-trivial filtered subcomplex in
the knot filtration.

In Section 4 we prove Theorem 3. This section includes a detailed discussion of the
relationship between the knot Floer homology of K � Y and the Floer homology of
the induced knot Kp=q � Yp=q .
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2 Rationally null-homologous knots and the Alexander
grading

Let K�Y be knot. We say that K is rationally null-homologous if ŒK�D02H1.Y IQ/.
This implies that for some positive integer p , we have p �ŒK�D0 in H1.Y IZ/, and that
there exists a smooth, properly embedded surface F � Y n�K such that Œ@F �D p � ŒK�.
If p is minimal, we call it the order of K , and refer to the aforementioned surface as a
rational Seifert surface for K . Finally, we say that a rationally null-homologous knot is
rationally fibered if Y n�K fibers over the circle with fiber a rational Seifert surface. In
this section we discuss Alexander gradings in knot Floer homology, with an emphasis
on the case of rationally null-homologous knots. For such knots, an Alexander grading
can be defined with the help of the relative homology class coming from a rational
Seifert surface. This Alexander grading can, in turn, be computed from a so-called
relative periodic domain that represents the homology class of the Seifert surface.

Suppose that K is a rationally null-homologous knot in Y , represented by a doubly
pointed Heegaard diagram .†; ˛; ˇ ; w; z/. The knot induces a filtration of the chain
complex bCF .Y / by the partially ordered set of relative Spinc structures Spinc.Y;K/

on the knot complement (Ozsváth and Szabó [42, Section 2]). The partial ordering
comes from the fact that Spinc.Y;K/ is an H 2.Y n �K; @.Y n �K//–torsor, and this
latter group can be endowed with a partial order (note that there is no canonical partial
ordering on torsion cyclic summands in H 2.Y n �K; @.Y n �K//, so we simply pick
one). The partial ordering restricts to a total ordering on the fibers of the natural filling
map [42, Section 2.2]:

(1) GY;K W Spinc.Y;K/ �! Spinc.Y /;

where G�1
Y;K

.s/ consists of relative Spinc structures that differ by a multiple of the
Poincaré dual to the meridian PD.Œ��/.

Algebraic & Geometric Topology, Volume 13 (2013)



1822 Matthew Hedden and Olga Plamenevskaya

A relative homology class ˛ 2H2.Y n�K; @.Y n�K// allows us to collapse the partial
order on Spinc to a total order. Define A˛W Spinc.Y;K/! Z by

(2) A˛.s/D 1
2
hc1.s/�PD.Œ��/; ˛i;

where c1.s/ 2 H 2.Y n �K; @.Y n �K/ is the relative Chern class of the orthogonal
2–plane field to the relative Spinc structure, relative to a specific trivialization on the
boundary (Ozsváth and Szabó[41, page 627]). This function gives Spinc a total order,

and hence a total order on the set of generators for bCF .Y /, by the function

sz;w.�/W T˛ \Tˇ! Spinc.Y;K/:

For the purposes of knot Floer homology, the relevant ˛ 2H2.Y n �K; @.Y n �K// is
the class of a rational Seifert surface, ŒF; @F � 2H2.Y n �K; @.Y n �K//. In this case,
we refer to the function

(3) AŒF;@F �.x/D 1
2
.hc1.sz;w.x//; ŒF; @F �i � Œ�� � ŒF; @F �/

as the Alexander grading. This depends on the choice of rational Seifert surface,
but only through its relative homology class. We will often drop this choice from
the notation, letting A.x/ denote the Alexander grading of a generator, defined with
respect to an implicit choice of rational Seifert surface (when b1.Y /D 0 this choice
is canonical). The Alexander grading gives rise to a filtration F on bCF .Y / in the
standard way, ie, we let

F.s/D
M

fx2T˛\Tˇ jA.x/�sg

Fhxi

denote the subgroup of bCF .Y / generated by intersection points with Alexander grading
less than or equal to s 2Z. Positivity of intersections of J –holomorphic Whitney disks
with the hypersurfaces determined by z and w ensures that F.s/ is a subcomplex,
that is, @F.s/� F.s/ and hence F indeed defines a filtration. The associated graded
groups are the knot Floer homology groups:

1HFK�.Y; ŒF �;K; i/ WDH�

�
F.i/

F.i � 1/

�
The Alexander grading is slightly easier to study if Y is a rational homology sphere
(Ni [33]). In this case, if .Y;K/ is represented by a doubly pointed Heegaard diagram
.†; ˛; ˇ ; w; z/, and x, y are two generators of bCF .Y /, consider a curve a in T˛ �
Symg.†/ connecting x to y, and a curve b in Tˇ � Symg.†/ connecting y to x.
The union a[b is a closed curve in Symg.†/. Since b1.Y /D 0, a multiple k.a[b/
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bounds a Whitney disk � , and the filtration difference can be computed by means of
this Whitney disk. Indeed,

sw;z.x/� sw;z.y/D
1

k
.nz.�/� nw.�//PD.Œ��/;

and this quantity is independent of � [33, Lemma 4.2] (see also [41, Lemma 3.11]).

If b1.Y / > 0, some generators of bCF .Y / may not be related by a Whitney disk,
although the above formula still holds for x; y such that their relative Spinc –structures
differ by a multiple of PD.Œ��/; this is always the case if sz;w.x/ and sz;w.y/ are
in the same fiber of the filling map (1). To understand the Alexander grading in the
absence of rational Whitney disks we will use “relative periodic domains” to evaluate
the grading difference between two generators.

Let K � Y be a knot, and let .†; ˛; ˇ ; z; w/ be a Heegaard diagram for .Y;K/.
Connect z to w by an arc l1 in † disjoint from the ˛–curves, and w to z by an
arc l2 in † disjoint from the ˇ–curves. The union � D l1 [ l2 , when pushed into
the respective handlebodies, is a longitude for K . We will always consider Heegaard
diagrams where such a longitude is fixed for the given knot.

Definition 2.1 Let K � Y be a rationally null-homologous knot, and let

.†; ˛; ˇ ; z; w/

be a Heegaard diagram for .Y;K/ with a longitude �, as above. Let D1; : : : ;Dr

denote the closures of the components of †n .˛ [ ˇ [�/. A relative periodic domain
is a 2–chain P D

P
aiDi , whose boundary satisfies

@P D l�C
X

i

ni˛i C

X
i

miˇi ;

for l; ni ;mi 2 Z.

Remark 2.2 Our definition is a generalization of the notion of periodic domain
(Ozsváth and Szabó [38, Definition 2.14]). A periodic domain is a two chain as above,
satisfying l D 0 and nw.P/D 0. We drop this latter condition since our purpose for
relative periodic domains is to study the relative Alexander grading. This quantity
depends only on the relative multiplicities of P , and is not affected by the addition of
the homology class Œ†�.

A relative periodic domain P naturally gives rise to a relative homology class ŒP � 2
H2.Y n �K; @.Y n �K//, in the same way that periodic domains give rise to homology
classes in H2.Y /. Indeed, a relative periodic domain is a 2–chain whose boundary
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consists of a union of copies of � and complete ˛– and ˇ–curves. Capping off the
˛– and ˇ–curves with the disks that they bound in their respective handlebodies, we
arrive at a 2–chain whose boundary lies on � or, up to homotopy, on @.Y n �K/. In
other words, we obtain a cycle in the relative chain group C2.Y n �K; @.Y n �K//.
We denote the corresponding homology class by ŒP �. In fact, the correspondence is
reversible; that is, any relative homology class comes about by capping off a relative
periodic domain. Since we have no need for this fact we leave the details (a standard
Mayer–Vietoris argument) to the reader.

The Alexander grading is defined in terms of the relative homology class of a rational
Seifert surface. Thus our primary interest lies in those relative periodic domains whose
homology class agrees with some specific rational Seifert surface F . To this end,
observe that if K has order p , then @F will wrap p times around K . Thus for a
relative periodic domain P whose homology class agrees with F , the longitude � will
appear with multiplicity p in @P .

The following lemma shows that the relative Alexander grading difference between
generators x; y is determined by the multiplicities of P .

Lemma 2.3 Let K � Y be a rationally null-homologous knot and P be a relative
periodic domain whose homology class equals that of a fixed rational Seifert surface F .
Let x; y 2 T˛ \Tˇ . Then

A.x/�A.y/D nx.P/� ny.P/;

where A is the Alexander grading with respect to F , defined by (3).

Proof Recalling the definition of A, we need to evaluate the quantity

1
2
.hc1.sw;z.x//; ŒF; @F �i � hc1.sw;z.y//; ŒF; @F �i/D hsw;z.x/� sw;z.y/; ŒF; @F �i:

By [41, Lemma 3.11]

sw;z.x/� sw;z.y/D PD.�.x; y//D PD.Œx� y�/;

where x is the union of gradient trajectories connecting index 1 and index 2 critical
points of the Morse function that pass through the coordinates xi of xD .x1; : : : ;xg/,
and y is a similar union of gradient trajectories passing through the coordinates of y.
Therefore, it suffices to calculate the intersection number of the closed curve x� y
with the surface F . To this end, recall that the homology class of ŒF; @F � is constructed
from the periodic domain P by capping off any ˛– and ˇ–curves appearing in @P (with
multiplicity) with the compressing disks bounded by the curve in the corresponding
handlebody.
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If xi 2 x (resp. yi 2 y) lies in the interior of P �†, then the intersection of F with
x (resp. y ) equals the multiplicity xnxi

.P/ (resp. xnyi
.P/). If xi 2 @P then it does

not contribute to the intersection number, as the surface can be perturbed so that the
compressing disk for the corresponding ˛– or ˇ–curve is replaced by a normal translate
that is disjoint from x . It remains to observe that contributions from such boundary
points cancel in the expression nx.P/�ny.P/, since every ˛–curve and every ˇ–curve
contains exactly one coordinate of x and exactly one coordinate of y.

3 The contact invariant for rational open books

Let K � Y be a rationally fibered knot. Such a knot induces a rational open book
decomposition and, subsequently, a contact structure �K [1]. The purpose of this
section is to understand the Ozsváth–Szabó contact invariant of �K in terms of the
knot Floer homology of K . More precisely, the “bottom” filtered subcomplex in the
filtration of bCF .�Y / induced by K has homology F , generated by a vector c (this
can be seen in many ways, and follows from both Propositions 3.1 and 3.4 below). The
main result of this section, Theorem 1, shows that

c.�K /D ��.c/;

where �W F.bottom/!bCF .�Y / is the inclusion map. That is, the contact invariant
of �K is the image of the generator of the homology of the bottom filtered subcomplex
in the Floer homology of �Y , under the natural inclusion-induced map. When K

is fibered in the traditional sense, this is simply Ozsváth and Szabó’s definition [39,
Definition 1.2].

We prove Theorem 1 by considering an honest open book that results from an appropriate
cabling of K . Let KP;PnC1 denote the .P;PnC 1/–cable of K . It is clear that
ŒKP;PnC1� D P � ŒK� 2 H1.Y IZ/. Thus for P equal to the order of K , the cables
will be null-homologous. Moreover, such cables are fibered in the traditional sense,
provided that K is rationally fibered. When P; n> 0, it follows from [1, Theorem 1.8]
that �K is isotopic to �KP;PnC1

. The theorem will follow by understanding the relation
between the knot Floer complex of a given knot and its cable. This is accomplished
by Proposition 3.1, which generalizes the cabling result of [18]. While our results
show that H�.F.bottom//Š F , we conclude the section by constructing an explicit
Heegaard diagram adapted to a rational open book decomposition. For this Heegaard
diagram the bottom Floer homology group is represented by a complex with a single
generator. With the plan in place, we begin.
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3.1 The contact invariant and cabling

In this subsection we prove Theorem 1. The key tool is Proposition 3.1, which estab-
lishes a relationship between the Floer complex of a rationally null-homologous knot
and that of its sufficiently positive cables.

The result states that the knot Floer homology groups of a knot and its sufficiently
positive cables are equal in the “topmost” Alexander gradings. To make this precise,
recall that the Alexander grading depends on a choice; namely, the relative homology
class of a rational Seifert surface (3). To specify how this choice is made, fix a rational
Seifert surface F for the knot K . We construct a rational Seifert surface F 0 for the
cable K0 D KP;PnC1 as follows. If K has order p in H1.Y /, then F intersects
@�K in a curve s that wraps p times around the longitude. The cable K0 has order
p0 D p=gcd.P;p/. Thus a rational Seifert surface F 0 for K0 must meet �K0 in a
curve s0 that is null-homologous in Y n �K0 and wraps p0 times around the longitude.
We can assume that the neighborhood of the cable is contained inside that of the knot,
�K0 � �K . To construct F 0 , we take R D P=gcd.P;p/ parallel copies of F , and
glue them to an oriented properly embedded surface in �K n �K0 whose boundary
consists of s0 and R parallel copies of s .

Proposition 3.1 Let K�Y be a rationally null-homologous knot, and K0DKP;PnC1

its .P;Pn C 1/–cable. Fix a rational Seifert surface F for K , and consider the
corresponding rational Seifert surface F 0 for K0 , described above. Then for all n� 0

sufficiently large, we have

1HFK�.Y; ŒF �;K; top/D 1HFK�.Y; ŒF
0�;K0; top0/:

Remark 3.2 Disregarding gradings, an isomorphism between the groups above can
be shown for all n using sutured manifold decompositions [32, Corollary 5.9] (see also
Juhász [27]). However, the strategy of our proof will be essential for our understanding
of how the contact invariants of a rational open book and its cables are related.

Proof For the case where K is a knot in S3 , this statement was established in [18]
(see also [33] for a generalization to the case where Y is a rational homology sphere).
However, the proofs from [18] and [33] use Whitney disks to compare the Alexander
gradings of different generators of bCF .Y /; when b1.Y / > 0, this proof no longer
works since there may be no Whitney disks. Instead, we will use Lemma 2.3 to compare
the gradings in the Heegaard diagrams of [18; 33].

Let F be a rational Seifert surface for K . We can find a doubly pointed Heegaard
diagram .†; ˛; ˇ ; w; z/ for .Y;K/, together with a longitude �0 on † and a relative
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periodic domain P representing F . It will be convenient to enumerate the ˛– and
ˇ–curves by the index set f0; 1; : : : ;g�1g, and to suppress the indices of ˛0D ˛ and
ˇ0 D ˇ . We assume that �0 connects points z and w , intersects ˇ0 at a single point,
and is disjoint from all other ˇ–curves, so that ˇ represents a meridian for K . We also
require that ˇ intersects ˛ at a single point and is disjoint from the other ˛–curves.
The relative periodic domain P gives rise to the homological relation

(4) p�0C qˇC

g�1X
iD0

ri˛i C

g�1X
iD1

qiˇi D 0:

The multiplicities of P in the components of † n .˛ [ ˇ [�0/ can be determined as
follows: pick a component D0 2† n .˛ [ ˇ [ �0/ and assign the multiplicity of P
in D0 to be zero. The multiplicity of P in any other component Di is the algebraic
intersection number # \@P of an oriented arc from Di to D0 with the sum of curves
in (4). It is customary to fix the multiplicity of the component containing w to be zero;
however, in the argument below we find it convenient to fix the multiplicity of another
component (recall Definition 2.1 places no restriction on nw.P/).

We need to construct a Heegaard diagram representing the .P;PnC 1/–cable of K ,
and to understand the relation between the top filtration level of the homology of K

and its cable. To this end, we first replace the longitude �0 with an n–framed longitude
�D �0C nˇ . (See Figure 1.) Of course, � is still a longitude for the same knot K ,
but rewriting (4) as

(5) p�C .q�pn/ˇC

g�1X
iD0

ri˛i C

g�1X
iD1

qiˇi D 0;

we get a relation that gives rise to a new periodic domain for K . Note that the homology
class of this domain equals ŒF �, and its boundary includes �.

As the next step, we modify the curve ˇ by a finger move. This serves to produce a
diagram, which can represent both the knot K and its .P;PnC1/–cable, via different
placement of marked points. Indeed, we perform a .P�1/–fold finger move of ˇ along
�, and replace the basepoint z by z0 as in Figure 2. The diagram .†; ˛; ˇ ; w; z0/

now represents the cable K0 . The diagram also represents the original knot K if we
introduce another basepoint t , as in Figure 2. The longitude � can be now thought of
as a closed curve that passes through w to t so that it intersects ˇ once (on the short
arc segment joining w and t ) and is disjoint from the other ˇ ’s. A longitude ƒ for the
cable can be obtained in a similar fashion: connect w and z0 by a short arc intersecting
ˇ P times and disjoint from all ˛ ’s, then connect w and z0 by an arc disjoint from all
ˇ to construct a simple closed curve.
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ˇ

˛

�0

z w �

other ˛-curves

Figure 1: A diagram .†; ˛; ˇ ; w; z/ for the knot K . The meridian ˇ , the
longitude �0 , and the n–framed longitude � are shown. (Here, nD 2 .) Note
that �0 is drawn with a shift to make the figure clearer (both � and �0 must
pass through w and z ).

ˇ

˛

z0

w
t �x0

other ˛-curves

Figure 2: The diagram after a .P � 1/–fold finger move. In the figure,
P D 3 , nD 2 , so .†; ˛; ˇ ; w; z0/ represents a .3; 7/–cable of the original
knot represented by .†; ˛; ˇ ; w; t/ .

We use the diagram from Figure 2 to locate the generators of the highest filtration level
for K and for K0 . We begin with K . The relation (5) produces a periodic domain Pn

in this diagram; we compute the multiplicities of Pn . We are free to pick a multiplicity
zero component; we take the component D0 to be outside of the winding region (eg,
the top right corner in Figure 2). Then, it is obvious that the multiplicities of Pn are
independent of n outside of the winding region. Within the winding region, however,
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the multiplicities increase towards the center of the spiral formed by �. The finger
move creates a number of parallel copies of ˇ , and as one moves towards the center of
the finger the multiplicities of P decrease: this is clear if we examine multiplicities of
P in various regions as shown in Figure 3.

x0

˛

0r0

q�pnq�pnC r0

2.q�pn/2.q�pn/C r0

q�pnq�pnC r0

0r0

ppC r0

q�pnCp

2.q�pn/Cp

q�pnCp

p

2p

q�pn

C2p

Figure 3: A 2–fold finger and the multiplicities of the periodic domain Pn

given by equation (5). (The case P D 3 , nD 2 is illustrated.) The meridian
ˇ is shown in black, the longitude � in red. (The dots in the bottom regions
to the left of ˛ replace the multiplicities that are not shown to save space. The
multiplicities in these regions differ by r0 from the multiplicities in the corre-
sponding regions to the right of ˛ .) When n is large, the multiplicities inside
the finger are smaller than the multiplicities outside, and the multiplicities
increase as we move towards the center of the �–spiral in Figure 2.

These considerations show that of the intersection points of ˛ and ˇ , the point x0

(shown in Figure 2) has the highest multiplicity. Since this multiplicity is proportional
to n, making n large enough ensures that the generators of 1CFK .Y;K/ with the
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highest multiplicities are given by the set x0 � C , where C is the set of .g � 1/–
tuples of intersection points of ˛1; : : : ; ˛g�1 and ˇ1; : : : ; ˇg�1 that have the highest
multiplicities among all such .g� 1/–tuples.

To understand the Alexander gradings for the cable, K0 , we must find a relative periodic
domain representing F 0 in the same diagram. We now turn our attention to this task.

Consider the cable K0 and its longitude ƒ. The curve ƒ is homologous to P .�0C

nˇ/Cˇ D P�Cˇ . As we already remarked, ƒ can be drawn in Figure 2 as a union
of two arcs connecting w to z0 : one arc intersects ˇ P times and is disjoint from all
other ˛ ’s and ˇ ’s; the other arc only intersects the ˛–curves and is disjoint from all
ˇ ’s. We omit the figure illustrating ƒ; the region analogous to the one in Figure 3,
with ƒ replacing �, is shown in Figure 4. This figure will be useful for computing
multiplicities of the periodic domain that we now describe.

x0

˛

Figure 4: A portion of the Heegaard diagram for the cable for the cable K0 .
(A .3; 7/–cable is illustrated.) The longitude ƒ is shown in red.
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Multiplying Relation (5) by R and using the fact that ƒ is homologous to P�C ˇ

yields the relation

p0ƒC .Rq�Rpn�p0/ˇCR

� g�1X
iD0

ri˛i C

g�1X
iD1

qiˇi

�
D 0:

This relation produces a rational periodic domain P 0 for the cable K0 . It is clear that
ŒP 0�D ŒF 0� 2H2.Y n �K0; @.Y n �K0//.

We compute the multiplicities of P 0 in the winding region. As in Figure 3, we start
with 0 in the upper right corner of Figure 4. As we move down along ˛ on the right
hand side, the multiplicities, for the case of the .3; 7/–cable, are

0;Rq�Rpn�p0;Rq�Rpn; 2.Rq�Rpn/�p0; 2.Rq�Rpn/;Rq�RpnCp0; 2p0;

3p0;Rq�RpnC 2p0;Rq�RpnC 3p0; 2.Rq�Rpn/C 2p0; 2.Rq�Rpn/C 3p0;

Rq�RpnC 4p0; 5p0;

6p0;Rq�RpnC 5p0; : : :

To the left of ˛ , the multiplicities differ by Rr0 from those in the corresponding regions
to the right of ˛ . The pattern continues if n is larger, ie, if there is more winding; if
p is larger, ie, there are more folds on the finger, there will be additional summands
.Rq�Rpn�p0/ as we move towards the center of the finger.

Now we look for generators with highest multiplicities with respect to P 0 . As before,
outside of the winding region these multiplicities are independent of n. Moreover,
we have

(6) xnx.P 0/DRxnx.P/:

For the intersection points with one coordinate on ˇ , the above relation no longer
holds, but the multiplicities of P 0 behave similarly to the multiplicities of P , increasing
towards the center of the winding region and decreasing towards the center of the finger.
It follows that when n is large, the top filtration level of 1CFK .Y;K0/ is given by
x0 �C 0 , where C 0 is defined, analogous to C , as the set of .g� 1/–tuples with the
highest multiplicity. Moreover, (6) shows that the set C is identical to the set C 0 . This
identifies the generators in the top filtration levels of

1CFK .Y; ŒF �;K/ and 1CFK .Y; ŒF 0�;K0/:

To identify the homologies in the top grading level, observe that the differentials on
1CFK .Y; ŒF �;K; top/D1CFK .Y; ŒF 0�;K0; top0/ must both count holomorphic Whitney
disks with nw D nt D nz0 D 0 (see [18, Proof of Lemma 3.6]); thus, the chain
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complexes .1CFK .Y; ŒF �;K; top/; @/ and .1CFK .Y; ŒF 0�;K0; top0/; @/ are the same.
This completes the proof of the theorem in the case that the Heegaard diagram chosen
has the property that there are no generators with Alexander grading bigger than “top”,
where “top” means “largest number d such that

1HFK .Y; ŒF �;K; d/

is non-trivial”. Strictly speaking, it could be the case that the largest Alexander grading
represented by generators of the original Heegaard diagram (before the finger move)
has homology equal to zero. In this case, however, the full proof of [18, Theorem
1.2] could be copied and would produce the desired isomorphism for the topmost
non-vanishing Floer homology groups. Indeed, the proof of [18, Theorem 1.2] does not
require a Heegaard diagram where the knot Floer complex in the top Alexander grading
has non-trivial homology. This is because the theorem calculates the top M groups of
the cable in terms of the filtered subcomplexes of the companion knot K , where M

can be as large as one wishes (at the expense of increasing the cabling parameter n).
For a similar but more concise way to deal with the same issue, see [33, Proposition
5.5]. Alternatively, since we are only interested in the top non-vanishing knot Floer
homology group, it is sufficient to find a Heegaard diagram where this group has the
highest Alexander grading on the chain level. For the case relevant to this article, that of
a rationally fibered knot, we construct such a Heegaard diagram in Proposition 3.4.

3.2 Proof of Theorem 1

Let us recall the statement in a slightly more precise form:

Theorem 1 Let K � Y be a rationally fibered knot with rational fiber F , and let
c.�K / denote the contact invariant of the contact structure �K induced by the associ-
ated rational open book decomposition. Then H�.F.�Y; ŒF �;K; bottom//Š F � hci.
Moreover, c.�K /D ��.c/, where

�W F.�Y; ŒF �;K; bottom/!bCF .�Y /;

is the inclusion map of the subcomplex.

Proof Suppose K has order p in H1.Y /. To establish the lemma, we will consider a
cable K0 DKp;pnC1 , with large n> 0. Then K0 is a null-homologous fibered knot
inducing an honest open book compatible with �K [1, Theorem 1.8]. (The page F 0 of
the open book for K0 can be constructed from F by the procedure described before
the statement of Proposition 3.1, provided that we take a Thurston norm minimizing
surface in �K n �K0 as the interpolating surface between K0 and @F ).
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Since K0 is null-homologous, the results of [39] apply; thus

H�.F.�Y; ŒF 0�;K0; bottom//Š Fhci

and

(7) c.�K 0/D �
0
�.c/;

where �0 is the inclusion map for the cable. Moreover, since positive cabling doesn’t
change the contact structure, we have

(8) c.�K /D c.�K 0/:

If we now reverse the orientation of the Heegaard surface in the proof of Proposition 3.1,
this has the effect of changing the oriented manifold from Y to �Y . It also has the
effect of changing the sign of the multiplicities of the rational periodic domains. This
reverses the Alexander grading (up to a translation), and proves

F.�Y; ŒF �;K; bottom/D F.�Y; ŒF 0�;K0; bottom/:

Let c denote a generator of the homology of this complex. Since the (singly pointed)
Heegaard diagram for �Y is independent of the additional basepoint used to specify
K or K0 , we have

(9) ��.c/D �
0
�.c/:

Indeed, the respective inclusion maps can be obtained by taking a cycle representative
for c and considering the homology class it represents in bHF .�Y / by forgetting the
respective additional basepoint. Combining (7), (8) and (9) yields the result.

Proof of Corollary 2 Suppose that integer surgery on K �L.p; q/ is the 3–sphere.
Then there is an induced knot K0 � S3 on which ˙p surgery produces L.p; q/ (the
core of the surgery torus). In this situation, [32, Theorem 1.1] implies that K0 is fibered,
and hence K is rationally fibered. By reflecting K0 , if necessary, we may assume the
surgery slope is Cp (this may change the orientation of L.p; q/, but as we ultimately
consider both orientations on L.p; q/ this point will not affect the argument). Now
[21, Theorem 1.4] states that either p � 2g.K0/, in which case

(10) rk 1HFK .L.p; q/;K/D rk bHF .L.p; q//D p;

or pD2g.K0/�1, in which case rk 1HFK .L.p; q/;K/D rk bHF .L.p; q//C2DpC2.
The latter case, however, is ruled out by [17, Theorem 1.2], and thus the rank of the
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knot Floer homology of K is equal to the rank of the Floer homology of the manifold
in which it sits. This immediately implies that the inclusion

�W F.L.p; q/;K; bottom/!bCF .L.p; q//

is injective on homology: the homology of F.L.p; q/;K; bottom/ is the bottom
knot Floer homology group, which survives under the spectral sequence from the
knot Floer homology of K to bHF .L.p; q// by the equality of ranks (10). Thus
0¤ c.�K / 2

bHF .�.�L.p; q///. Since reversing the orientation of L.p; q/ changes
neither the rank of the Floer homology of K nor the ambient manifold, the inclusion

�W F.�L.p; q/;K; bottom/!bCF .�L.p; q//

is also injective on homology, indicating that the contact structure �K induced by K

on L.p; q/ also has non-vanishing invariant.

Remark 3.3 The corollary is somewhat more general. Indeed, let K � Y be a
knot in an integer homology sphere L–space whose complement is irreducible, and let
Kn�Yn be the induced knot. Then if Yn is an L–space and n� 2g.K/, the conclusion
holds, that is, Kn is rationally fibered and induces a tight contact structure on both Yn

and �Yn .

3.3 A Heegaard diagram for rationally fibered knots

We can mimic the construction in [39] to pinpoint c.�/ as the homology class of a
specific generator in a particular Heegaard diagram constructed from the open book.

Proposition 3.4 Let K � Y be a rationally fibered knot whose rational fiber surface
has a single boundary component. There is a Heegaard diagram adapted to .Y;K/ so
that F.�Y;K; ŒF �; bottom/ is generated by a single intersection point c 2 Tff \Tfi .
Thus c.�K /D Œc� 2 bHF .�Y /.

Proof We adapt [39, Theorem 1.1] to construct the required Heegaard diagram. Since
K is fibered, the complement of K has a Dehn filling Y0 , which fibers over S1 . We
first construct a Heegaard diagram for Y0 , and then recover the desired diagram for Y

by a rational surgery.

Let F be the rational Seifert surface for K ; capping it off, we obtain a closed surface yF
of genus g . We first follow the procedure from [39] to obtain the Heegaard diagram for
S1� yF . Start with a genus g surface A with two boundary components, ˛1 and ˇ1 . Let
�2; : : : ; �2gC1 and �2; : : : ; �2gC1 be two 2g–tuples of pairwise disjoint arcs in A such
that �i meets �i at a single point of transverse intersection, denoted ci , and �i\�j D∅

Algebraic & Geometric Topology, Volume 13 (2013)



Dehn surgery, rational open books and knot Floer homology 1835

ˇ1

˛1

ˇ2

˛2



�

A xA

Figure 5: Constructing a Heegaard diagram from rational open book. The
figure shows the Heegaard diagram arising form the open book with trivial
monodromy. (To avoid overloading the picture, we have not drawn some of
the ˛–curves here. The missing curves lie in the back of the surface, in the
top part of the diagram.) For a general open book, the ˇ–curves in the xA
region will be affected by the action of the open book monodromy (this is not
shown in the figure).

for i ¤ j . A Heegaard diagram .†; f˛1; ˛2; : : : ; ˛2gC1g; fˇ1; ˇ2; : : : ; ˇ2gC1g/ can
then be obtained by doubling A along its boundary; that is, we consider the surface xA
obtained by reflecting A across its boundary, and glue A and xA together to form a
closed surface †. This gluing produces closed curves ˛i , resp. ˇi , i D 2; : : : ; 2gC 1

by gluing �i to its copy x�i , resp. �i to its copy x�i . The result is a Heegaard diagram
for S1� yF . Moreover, removing ˇ1 results in a Heegaard diagram for the complement
of S1�fptg � S1� yF . This manifold is homeomorphic to the complement of the knot
B � #2gS1 �S2 , where B is the binding for the open book with trivial monodromy.
The meridian of B is represented by the curve  D ı[xı �†, formed by doubling an
arc ı �A connecting ˇ1 and ˛1 . These diagrams will be admissible after additional
isotopies (finger moves) of the attaching circles [39].
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To obtain a Heegaard diagram for Y0 , we must change the monodromy of the fibration.
The monodromy map for Y0 is the extension to yF of an automorphism �W F ! F .
Thinking of F as the complement of xı in xA, we extend it by the identity to get an
automorphism ˆW †! †. The diagram .†; ˛; ˇ D fˇ1; ˆ.ˇ2/; : : : ; ˆ.ˇ2gC1/g/

represents Y0 , and .†; ˛; fˆ.ˇ2/; : : : ; ˆ.ˇ2gC1/g/ represents the complement of a
fibered knot zK . With finger moves, these diagrams can be made weakly admissible for
all Spinc structures, as above.

Since Y is a Dehn filling of the complement of zK � Y0 , we can obtain a Heegaard
diagram for Y by replacing ˇ1 by the meridian � of K � Y . If Y is obtained
by a p=q–surgery on zK (with respect to the longitude given by  ), then � can be
represented by a curve on † homologous to pˇ1C q . A longitude for the knot K is
now given by a curve � on † that intersects � transversely at a single point, and is
disjoint from the curves ˇ2; : : : ; ˇ2gC1 . Such a longitude is homologous to bˇ1Ca ,
for a; b satisfying pa�qbD 1. We may assume that, like �, the curve � is supported
in a small neighborhood of ˇ1[  .

The resulting Heegaard diagram is shown in Figure 5, and Figure 6 provides a closer
look at the region containing �, ˇ1 and  .

˛1

z

w

�

�

Figure 6: Zooming in on Figure 5: the meridian and the longitude of the
binding of rational open book. The gray circles represent the remaining parts
of Figure 5.

Observe that the Heegaard surface † is cut by the attaching circles �, � and ˛1 into a
large region lying in A, a large region lying in xA, a number of regions with boundary
on �, � and ˛1 , (see Figure 6), and a number of small regions in xA.
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Further observe that there is a 2–chain in † whose boundary is ˛1 C ˇ1 . Since
ˇ1D a��q�, we can find a relative periodic domain P whose homology class equals
that of the fiber, with @P D ˛1C a�� q�. The multiplicities of P are 0 in the large
region in A, and 1 in the large region in xA. The multiplicities in the regions in Figure 6
require a bit more work, but are also straightforward to compute. To find them, we
start with 0 in the top left corner of Figure 6, and then move to the neighboring regions,
changing the multiplicity by ˙1 when we cross ˛1 , by ˙q when we cross � and by
˙a when we cross �. (The signs depend on the direction in which the curves are
traversed. In Figure 6, if travel upwards, the multiplicity of P increases when we cross
�, and decreases when we cross �. When crossing ˛1 , the multiplicity increases by 1
from left to right.)

Our goal now is to show that there is a unique generator x that minimizes nx.P/. To
begin, note that any generator must use both ˛1 and � exactly once. We first argue
that any generator minimizing nx.P/ has the form x D .x;x2; : : : ;x2gC1/, where
x 2 ˛1\�. Assume, to the contrary, that there is a generator x0 with minimal nx0.P/,
and that the intersection point of x0 on � occurs on an ˛ curve that is not ˛1 . Denote
this intersection point by x0 2 ˛i \�, i ¤ 1. The four regions surrounding x0 have
local multiplicities given by m;m;mC a;mC a. This is because the boundary of P
contains � with multiplicity �a and does not contain ˛i . Then there is an oriented
arc along �, denoted � , which intersects ˛1 positively in a point x 2 �\ ˛1 , and
which does not intersect ˛1 in any other points along the way. We examine how the
multiplicities on either side of � change as we traverse its path from x0 to x . First
observe that if we intersect another ˛ curve along the way, then the multiplicities do
not change. This is because ˛1 is the only ˛ curve occurring in @P . The only other
possibility for an intersection point occurring on � between x0 and x is if � \�¤∅.
In this case, however, we can use the fact that jf�\�gj D 1 to perform an isotopy of
� supported in a neighborhood of � that moves the point � \� past the end of � to
the other side of ˛1 . Thus we may assume that the multiplicities on either side of �
are m and mC a. Since � intersects ˛1 positively, it follows that the multiplicities in
the regions around x are m;mCa;m�1;mCa�1. We would like to trade x for x0

to lower the multiplicities, thus arriving at a contradiction.

To do this, observe that the intersection point of x0 on ˛1 must

(1) be of the form y0 2 ˇi \˛1 , and

(2) have P multiplicities 0; 0; 1; 1.

The reason for .2/ is because y0 occurs away from the regions surrounding �[�, and
@P contains ˛1 once. The reason for .1/ is similar to Ozsváth and Szabó’s argument:
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the curve ˇi must be used somewhere in x0 . If it is not used for the intersection with
˛1 , then it must be used in the region xA where the multiplicities of P are 1 (since ˇi

intersects only the two curves ˛i and ˛1 inside A). This would result in the existence
of a generator with smaller nx.P/. We can now make our trade to complete the first part
of the argument. Indeed, consider the generator obtained from x0 by trading x0 2˛i\�

for x 2 ˛1\� and trading y0 2 ˇi \˛1 for the unique intersection point ci 2 ˛i \ˇi

in A (and keeping all other intersection points fixed). Calling this new generator x, we
have shown that nx.P/D nx0.P/� 1, contradicting the minimality of x0 .

Thus a generator xD .x;x2; : : : ;x2gC1/ minimizing nx.P/ will have x2; : : : ;x2gC1

contained in A, and x 2 ˛1\�. Moreover, fx2; : : : ;x2gC1g D fc2; : : : ; c2gC1g since
these latter points are the unique intersection points in A of the corresponding curves;
in particular, the last 2g coordinates of x are uniquely determined. The lowest value of
nx.P/ will therefore be attained by those generators xD .x; c2; : : : ; c2gC1/ for which
nx.P/ is the lowest among all x 2 ˛1\�.

To complete the proof of the proposition, we show that the values of nx.P/ are mutually
distinct for the various points x 2 ˛1\�. If nx.P/D nx0.P/, then the multiplicities at
the four corners of x and x0 would be the same, since the multiplicities in the corners
around x and x0 change in the same way when the curves ˛1 and � are crossed.
Consider, however, the shortest path from x to x0 along ˛1 . If we cross the curve
� a total of r� times and the curve � a total of r� times along this path, then we
have r�q � r�a D 0. However, since � intersects ˛1 at a points and � intersects
˛1 at q points, 0 < r� < a and 0 < r� < q . Thus r�q � r�a D 0 contradicts the
fact that gcd.a; q/ D 1. This shows that there is a unique point c 2 ˛1 \ � with
smallest nc.P/.

Remark 3.5 Theorem 1 and Proposition 3.4 provide two independent proofs of the
fact that a rationally null-homologous fibered knot has knot Floer homology of rank 1 in
the extremal Alexander grading. (This extends the analogous result for null-homologous
knots, [39].) Yet another proof can be obtained by the sutured Floer homology of
Juhász [26].

4 The contact invariant of rational open books induced by
surgery

In this section we prove our non-vanishing theorem for the contact invariant of the
contact structure induced by the rational open book that results from surgery on the
binding of an honest open book. More precisely, recall that if we perform surgery on
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the binding of an honest open book, then the core of the surgery torus is a knot in
the new manifold whose complement fibers over the circle (as it is homeomorphic to
the complement of the original binding). Theorem 3 says that if the contact invariant
associated to the original open book is non-zero, then the contact invariant of the
induced rational open book is also non-zero, provided that the surgery parameter is
sufficiently large.

Theorem 3 Let K�Y be a fibered knot with genus g fiber, and � the contact structure
induced by the associated open book. Let Kp=q � Yp=q be the rationally fibered knot
arising as the core of the solid torus used to construct p=q surgery on K , and �p=q
the contact structure induced by the associated rational open book. Suppose c.�/ 2
bHF .�Y / is non-zero. Then c.�p=q/ 2 bHF .�Yp=q/ is non-zero for all p=q � 2g .

We prove the theorem in steps, each step expanding the range of slopes for which the
theorem holds. The first step is to show that the theorem holds for all sufficiently large
integral slopes. This is accomplished by Theorem 4.4 below. The key tool in this step
is an understanding of the relationship between the knot Floer homology of a knot
K � Y and the knot Floer homology of the core of the surgery torus Kn � Yn . This
relationship was studied in [19], following the ideas of [36]. We begin this section with
a detailed discussion of these results, and prove a generalization (Theorem 4.2) which
will serve as the cornerstone of our proof.

Our next step is to establish the theorem for all integral slopes n� 2g . We accomplish
this with Theorem 4.5, whose proof relies on a surgery exact sequence for the knot
Floer homology of the core, together with an adjunction inequality.

Finally, we extend our results to all rational slopes p=q � 2g . This argument is
geometric, showing that the contact structures �p=q with rational slope can be obtained
from those with integral slope by a sequence of Legendrian surgeries.

4.1 The knot Floer homology of the core of the surgery torus

We begin by stating a slightly rephrased version of [19, Theorem 4.1]. We use notation
of [36].

Theorem 4.1 Let K � Y be a null-homologous knot, and let Yn denote the manifold
obtained by n–framed surgery on K . Then for all n� 0 sufficiently large, we have

bCF .Yn; sm/' C fmax.i; j �m/D 0g;

where C fmax.i; j�m/D0g denotes the subquotient complex of CFK1.Y;K/ whose
.i; j / filtration levels satisfy the stated constraint.
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Moreover, the core of the surgery torus induces a knot Kn � Yn and the filtration of
bCF .Yn; sm/ induced by (the reverse of) Kn is filtered chain homotopy equivalent to
the two-step filtration:

0� C fi < 0; j Dmg � C fmax.i; j �m/D 0g:

The first part of the theorem is simply [36, Theorem 4.4]. The second part, which deals
with the filtration induced by Kn , was stated for Y D S3 in the form above in [19,
proof of Theorem 4.1, page 2304]. The proof carries through verbatim to general Y .
We also note that the core of the surgery torus is isotopic to the meridian of K , viewed
as a knot in Yn . The original statement was phrased in these terms. We also remark
that the formula above is, as indicated, for the knot Kn with opposite the orientation it
inherits from K . This was not discussed in [19], but the results there are independent
of orientations. Here, too, knot orientation is not terribly important, but does affect the
coorientation of contact structure so we choose to be careful throughout.

Since the contact invariant associated to Kn is calculated using the bottom subcomplex
in the knot Floer homology filtration of Kn , we need to understand what “bottom”
means in the theorem above. Thinking of the filtration as a filtration by relative Spinc

structures on Yn n �Kn , the theorem above determines this difference in the case of
relative Spinc structures that project to the same absolute Spinc –structure on Yn under
the natural filling map (1).

Thus we need to understand the difference between the relative Spinc structures (or, if
the reader prefers, the Alexander grading difference) associated to knot Floer homology
groups for the varying sm 2 Spinc.Yn/. Since the difference of two relative Spinc

structures lies in H 2.Yn n �Kn; @.Yn n �Kn//ŠH 2.Y /˚Z, we should make a few
remarks about the algebraic topology of this situation. The first is to remind the
reader that Yn n �Kn Š Y n �K , so the algebraic topology is, in a sense, identical.
The key conceptual difference is that we have changed the natural framing on the
boundary of this manifold. Thus, while �K generates the additional Z factor in
H1.Y n �K/ Š H1.Y /˚Z, the meridian of Kn does not generate the Z factor in
H1.Ynn�Kn/ŠH1.Y /˚Z. Indeed, Œ�Kn

�Dn�� for a class generating this summand,
and it is easy to see that � D ŒKn�, the homology class of a push-off of Kn into its
complement.

Before stating the refined version of Theorem 4.1 we establish some notation. Let

Sm D C fi < 0; j Dmg

Qm D C fi D 0; j �mg
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be the sub- and quotient complexes in the filtration of C fmax.i; j �m/D 0g given by
the theorem. The direct sum of all the knot Floer homology groups of Kn (without the
Alexander grading) is then given by

1HFK .Yn;Kn/D

bn=2cM
mD�bn=2cC1

H�.Sm/˚H�.Qm/:

A complete description of the knot Floer homology of the core of the surgery is given
by:

Theorem 4.2 Let K � Y be a null-homologous knot and Kn � Yn be the (reverse of
the) core of the surgery torus, viewed as a knot in the manifold obtained by n–framed
surgery on K . Then for all n� 0 sufficiently large, the Alexander grading difference
between the various knot Floer homology groups is given by

A.Sm/�A.Qm/D�n

A.Si/�A.Sj /D�.i � j /

A.Qi/�A.Qj /D�.i � j /

for all �bn=2cC 1�m; i; j � bn=2c.

Remark 4.3 The filtration on bCF .Yn/ induced by Kn is most easily understood
graphically. For this we refer the reader to Figure 7.

Proof The proof is a straightforward extension of the proof of [19, Theorem 4.1],
which, in turn, was an extension of the proof of [36, Theorem 4.4]. Both proofs were
local, and involve an examination of the winding region in a Heegaard triple diagram
representing the 2–handle cobordism from Yn to Y . See Figure 8 for a depiction of
this region.

Given this Heegaard triple diagram, a chain map

bCF .Yn; sm/ �! C fmax.i; j �m/D 0g

is defined in [36] by counting pseudo-holomorphic triangles. The obvious small
triangles present in the winding region (together with their extensions to g–tuples of
small triangles in the rest of the triple diagram) induce a bijection of groups, provided
that n is large enough to ensure that all the intersection points for sm have ˛g –
component in the winding region. Moreover, these small triangles constitute the lowest
order terms of the chain map with respect to the area filtration, and this latter fact shows
that the chain map induces an isomorphism on homology.
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i D 0

Q1

S0

S1

S2

j D 0

Figure 7: Shown is CFK1.S3;K/ , for K the .2; 5/ torus knot. Dots equal
F , and arrows are non-trivial terms in the differential. The Z˚Z filtration
is given by the .i; j / coordinates. The non-trivial knot Floer homology
group for Kn � S3

n .K/ with lowest Alexander grading is the homology of
the subcomplex S1 (while S2 has lower Alexander grading, its homology
is trivial). The homology of S0 is the knot Floer homology group with
Alexander grading 1 greater than that of S1 . The homology of Q1 is the
knot Floer homology group in Alexander grading n greater than S1 .

To understand the filtration of bCF .Yn; sm/ induced by Kn , we observe that the
placement of a third basepoint z0 on the Heegaard triple diagram has the property that
.†; ˛; ˇ ; z0; w/ represents the reverse of Kn . The bijection induced by small triangles
from the last paragraph is such that:

(1) If an intersection point for bCF .Yn/ has ˛g \ˇg –component lying to the right
of x0 2 ˛g \ g , then it is sent to a subcomplex Sm , with the distance to x0

proportional to �m.

(2) If the ˛g \ˇg –component is to the left of x0 2 ˛g \ g , the intersection point
is sent to a quotient Qm , with the distance to x0 proportional to �m.
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x0 x1 x2 x3x�1x�2x�3

˛

ˇ 

z w

z0

 �1  2

Figure 8: The “winding region” of the Heegaard triple diagram. A small
triangle  �1 connects x�1 to x0 and a small triangle  2 connects x2 to x0 .

Finally, any two intersection points x; y representing sm can be connected by a Whitney
disk � that satisfies:

nz0.�/� nw.�/D˙1

if the ˛g \ˇg –components of x and y are on opposite sides of x0 , and

nz0.�/� nw.�/D 0

otherwise. Since

.nz0.�/� nw.�// � Œ�Kn
�D �.x; y/ 2H1.Yn n �Kn/ŠH1.Y /˚ZhŒKn�i;

hPD.Œ�Kn
�/; ŒF; @F �i D nŒKn� � ŒF; @F �D n;and

this proves Theorem 4.1 (and the first part of the present generalization).

To complete the theorem, we must understand the filtration difference between the
subcomplexes Si ; Sj (respectively, the quotient complexes Qi ;Qj ) with i ¤ j . By
the transitivity of the filtration, it will suffice to understand the difference between
Si and SiC1 . Consider a generator xD fx�l ; sg lying in the subcomplex Si , where
x�l 2 ˛g \ˇg and s is the remaining .g� 1/–tuple of intersection points. There is a
corresponding generator x0 D fx�lC1; sg, which lies in SiC1 , according to .1/ above.
These two generators can be connected by a curve that wraps once around the neck of
the winding region; that is, �.x; x0/D ŒKn�, since this curve represents the generator of
H1.Yn nKn/. Thus we have

A.x/�A.x0/D hPD.ŒKn�/; ŒF; @F �i D 1:
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This proves the second line in the theorem. The third is given by a mirror argument on
the left side of x0 .

4.2 Non-vanishing for sufficiently large integral slopes

With a firm understanding of the relationship between the knot Floer homology of
K � Y and Kn � Yn , we can easily establish a non-vanishing theorem for sufficiently
large integral surgeries.

Theorem 4.4 Suppose that the contact structure � , compatible with an open book
.Y;K/, has c.�/¤ 0. For n> 0, perform n–surgery on K , and consider the induced
rational open book .Yn;Kn/ and the compatible contact structure �n . Then c.�n/¤ 0

if n is sufficiently large.

Proof Let � be a contact structure compatible with an open book associated to a
fibered knot K � Y , and let �n be the contact structure compatible with the rational
open book associated to Kn � Yn . By definition, the Ozsváth–Szabó contact element
c.�/ is the image in bHF .�Y / of the generator of H�.F.�Y;K; bottom//Š F , under
the map induced by the inclusion:

�W F.�Y;K; bottom/ ,!bCF .�Y /:

By Theorem 1, this definition extends to rational open books. That is, the contact ele-
ment c.�n/ is equal to the image in bHF .�Yn/ of the generator of F.�Yn;Kn; bottom/
under the corresponding inclusion

�nW F.�Yn;Kn; bottom/ ,!bCF .�Yn/:

To prove the theorem, we need only understand the relationship between the inclusion
maps �; �n , as governed by Theorem 4.2. Indeed, the theorem follows immediately from:

Claim Let n be sufficiently large so that Theorem 4.2 holds. Then

�� ¤ 0 ” �n� ¤ 0:

To prove the claim, we first translate it into a statement about the topmost knot Floer
homology group by a duality theorem. Throughout, we will use Kr

n to denote the
reverse of Kn . Consider the short exact sequence

0 �! F.Y;K; top� 1/ �!bCF .Y / �!1CFK .Y;K; top/! 0;

and the associated connecting homomorphism

1HFK .Y;K; top/
ı�
�!H�.F.Y;K; top� 1//:
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A duality theorem [37, Proposition 2.5] states that the Floer homology of �Y is the
Floer cohomology of Y . The knot K can be viewed in �Y , and there is a corresponding
duality theorem for the filtrations [36, Proposition 3.7] (see also [20, Proposition 15]
for the formulation we use here). In particular, the short exact sequence for K � Y

above is dual to the short exact sequence for K ��Y :

0 �
bCF .�Y /

F.�Y;K; bottom/
 �bCF .�Y /

�
 � F.�Y;K; bottom/ 0;

and so the connecting homomorphism @� for �Y is dual to ı� . It follows that the kernel
of ı� is isomorphic to the cokernel of @� which, together with exactness, implies that:

�� ¤ 0 ” ker ı� ¤ 0

The duality theorem holds for rationally null-homologous knots, and thus the claim
reduces to showing that

ker ı� ¤ 0 ” ker ın
� ¤ 0:

To do this, observe that Theorem 4.2 shows that 1HFK .Yn;K
r
n; top/ŠH�.Q�g/, the

homology of the �gth quotient in the notation of that theorem, where gD g.K/ is the
minimal genus of any embedded surface in the same homology class as F (to see this,
observe that F.Qi/ > F.Sj / for all i; j , and that H.Qi/D 0 for all i < �g.K/, by
the adjunction inequality [36, Theorem 5.1]). The map

ın
�W

1HFK�.Yn;K
r
n; top/ŠH�.Q�g/ �!H��1.F.Yn;K

r
n; top� 1//

factors through the map induced by inclusion S�g ,! F.Yn;K
r
n; top� 1/. Again, this

follows from Theorem 4.2, as there are simply no generators in any other filtration
levels that could be connected to those in H�.Q�g/ by Whitney disks. Thus ker ın

�¤ 0

if and only if
H�.Q�g/ �!H��1.S�g/

has non-trivial kernel or, equivalently, if

H�.C fi D 0; j D�gg/ �!H��1.C fi < 0; j D�gg/

has non-trivial kernel. But this map is the same, as a relatively graded map, as the map

H�.C fi D 0; j D gg/ �!H��1.C fi D 0; j < gg/

for the reverse of K , since reversing the orientation of K interchanges the roles of i

and j in the filtration [36, Proposition 3.8]. This last map is ı� for the reverse of K .
Thus Kr

n has non-trivial invariant if and only if Kr has non-trivial invariant. Reversing
orientations a final time completes the proof of Theorem 4.4.
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4.3 Non-vanishing for integral slopes n � 2g

Theorem 4.5 Suppose that the contact structure � , compatible with an open book
.Y;K/ of genus g , has c.�/ ¤ 0. Then for all n � 2g the contact structure �n
compatible with the induced rational open book .Yn;Kn/ has c.�n/¤ 0.

Proof Perhaps the most aesthetically appealing proof would be to show that Theorem
4.2 holds for all n � 2g , regardless of the knot. We will take the easier route, and
content ourselves to prove what is necessary for our application.

The proof makes use of a surgery exact sequence, together with an adjunction inequality.
Recall the integer surgeries long exact sequence for the Floer homology of closed
manifolds, which differ by surgery along a null-homologous knot K� Y [37, Theorem
9.19]:

� � � !

nM
iD1

bHF .Y /! bHF .Y0/! bHF .Yn/! � � �

This sequence holds for any framing n> 0. Moreover, the sequence decomposes as
a direct sum of n exact sequences corresponding to the Z=nZ factor in H 2.Yn/ Š

H 2.Y /˚Z=nZ,

� � � ! bHF .Y / �!
M

fsjhc1.s/;Œ yF �iD2m mod 2ng

bHF .Y0; s/ �! bHF .Yn;m/! � � �

where bHF .Yn;m/ denotes the direct sum of the Floer homology groups associated to
Spinc structures on Yn that extend over the negative definite 2–handle cobordism W

from Yn to Y to t 2 Spinc.W / satisfying hc1.t/; Œ yF �iCnD 2m. Note we have stated
the splitting in a somewhat more concrete form than [37, Theorem 9.19], implicitly
using [34, Section 7; particularly Lemma 7.10]. We also note that the exact sequence
further decomposes along s 2 Spinc.Y /, but we will not need this structure.

We use a generalization of this exact sequence to the case of knot Floer homology. Let
K � Y be a null-homologous knot, and let �� Y denote its meridian. We can view
� as knot in each of the three 3–manifolds of the sequence above, and consider their
knot Floer homologies. Note that �� Y is an unknot, and �� Y0 (resp. �� Yn ) is
isotopic to the core of the surgery, K0 (resp. Kn ). We have an exact sequence relating
the knot Floer homology groups of these three knots

� � � !

nM
iD1

bHF .Y /! 1HFK .Y0;K0/! 1HFK .Yn;Kn/! � � �
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where the first term is simply the Floer homology of Y , as � is unknotted in this
manifold. While such an exact sequence has not, to our knowledge, appeared explicitly
in the literature, it is implicit from Ozsváth and Szabó’s proof and nearly explicit in
Eftekhary [8]. In any event, the sequence is easily obtained by adding an additional
basepoint in the handle region of the Heegaard quadruple diagram where the surgery
curve is being varied (recall Figure 8). It is then straightforward to go through the
now standard technique for proving the existence of surgery exact sequences (see,
for instance [40, Proof of Theorem 4.5]), requiring that all differentials, chain maps,
chain homotopies, etc. are defined by counting J –holomorphic Whitney polygons that
avoid both basepoints. As with the case of the Floer homology of closed 3–manifolds,
we have a splitting of this exact sequence into n sequences according to the Spinc

structures on Yn :

� � � !bHF .Y /!
M

fsjhc1.s/;Œ yF �iD2m mod 2ng

1HFK .Y0;K0; s/! 1HFK .Yn;Kn;m/! � � �

In addition, we know that the maps in the exact sequence are defined by counting J –
holomorphic Whitney triangles associated to a doubly pointed Heegaard triple diagram.
In each case there is a 4–manifold naturally associated to the triple diagram, and the
first map is a sum over the triangle maps associated to homotopy classes whose Spinc

structure extends over the cobordism to s2 Spinc.Y0/ satisfying hc1.s/; Œ yF �i D 2m. In
particular, the component of the map coming from a fixed homotopy class of triangles
is independent of n. Note that while these chain maps are likely an invariant of the
embedded cylinder in the cobordism coming from the trace of �, we are not using
this. We only use that the Heegaard triple diagram defining the first map is independent
of n.

Given these exact sequences, we now apply Theorem 4.2. This tells us that

(11) 1HFK .Yn;Kn;m/ŠH�.Sm/˚H�.Qm/;

for sufficiently large n. The exact sequence, however, tells us that this group is also
the homology of the mapping cone ofX

tm

yFWtm
W bHF .Y / �!

M
fsjhc1.s/;Œ yF �iD2m mod 2ng

1HFK .Y0;K0; s/

where the sum is over all Spinc structures on the 2–handle cobordism whose Chern
class is congruent to 2m, modulo 2n, and yFWtm

is the map defined by counting
J –holomorphic triangles representing these Spinc structures whose domains avoid
both basepoints.

Algebraic & Geometric Topology, Volume 13 (2013)



1848 Matthew Hedden and Olga Plamenevskaya

The groups 1HFK .Y0;K0/ were first studied by Eftekhary [7], who referred to them
as the longitude Floer homology groups. He showed [7, Theorem 1.1] that they satisfy
an adjunction inequality, stating that 1HFK .Y0;K0; s/D 0, unless

(12) �2gC 2� hc1.s/; Œ yF �i � 2g:

Here g denotes the minimal genus of any Seifert surface in the relative homology
class of a fixed surface F , and yF denotes this latter surface capped off by the disk
in the solid torus of the zero surgery. Note that we have only stated the adjunction
inequality aspect of [7, Theorem 1.1], which in fact says that the bounds above are
sharp. Note, too, that our inequality is asymmetric, due to the fact that we used the map
sw.�/W T˛ \Tˇ ! Spinc.Y0/ coming from the basepoint w , whereas [7] uses the
average 1

2
.c1.sw.�//C c1.sz.�///, obtaining a symmetric inequality. The important

aspect of the inequality is that it implies there are at most 2g distinct Spinc structures
on Y0 for which the middle term in the exact sequence is non-trivial. It follows that
for n� 2g , the groups under consideration 1HFK .Yn;Kn;m/, are isomorphic to the
mapping cone of

yFWtm
W bHF .Y / �! 1HFK .Y0;K0; sm/;

where tm , sm are the Spinc structures on the cobordism and zero surgery, respectively,
whose Chern classes satisfy (12). Since these maps are independent of n, it follows
that (11) holds for all n� 2g . Note, however, that the groups above are the knot Floer
homology groups associated to all relative Spinc structures on Yn nKn that project to
sm 2 Spinc.Yn/, under (1). Since our description of the contact invariant is in terms of
the differential on the spectral sequence that starts at these groups and converges to
bHF .Yn;m/, we must show that the filtration of bCF .Yn;m/ induced by Kn agrees
with the description of Theorem 4.2. (Note that (11) states only that the associated
graded homology groups agree. We need to understand the entire filtration, and not
simply the E1 –term of the corresponding spectral sequence.) In the case at hand,
however, identification of filtrations is immediate. We are interested in the inclusion of
the bottom subcomplex of the knot Floer homology filtration into the Floer homology
of �Yn when Kn is rationally fibered; namely, we would like to know whether the
map on homology induced by the inclusion map

�nW F.�Yn;Kn; bottom/ ,!bCF .�Yn;m/

is non-trivial. As in the proof of Theorem 4.4, this is the same question (via duality) as
whether the kernel of the connecting homomorphism

ın
�W

1HFK .Yn;Kn; top/ �!H�.F.Yn;Kn; top� 1//
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is non-trivial. Since the top group has rank one homology, this is determined by the
homologies bHF .Yn/ and

1HFK .Yn;Kn/ŠH�.Stop/˚H�.Qtop/ŠH�.Stop/˚F :

Here we have suppressed the relevant Spinc –structures on Yn in

bHF .Yn/ and 1HFK .Yn;Kn/

to avoid a notational conflict: in both cases we sum over Spinc structures on Yn that
extend over the two-handle cobordism to structures satisfying hc1.t/; Œ yF �iCnD 2.top/.
Bearing this in mind, the adjunction argument given above shows that for n � 2g ,
1HFK .Yn;Kn/ can have at most two Alexander gradings with non-trivial knot Floer

homology, ie, the filtration has at most two steps, with the quotient complex having
rank 1 homology. The differential on 1HFK .Yn;Kn/ that computes bHF .Yn/ is then
identified with ın

� . The group bHF .Yn/, however, is independent of n once n� 2g�1,
by [36, Remark 4.3], so ın

� is the same for all n� 2g . This completes the proof.

Remark 4.6 The key ingredient in our proofs of Theorems 4.4 and 4.5 is the un-
derstanding of the filtered chain homotopy type of 1CFK .Yn.K/;Kn/. For surgeries
on a knot in S3 (or more generally, in an integer homology L–space), this filtered
chain complex can be understood via bordered Floer homology (Lipshitz, Ozsváth and
Thurston [29, Sections 10, 11]); in fact, the techniques of [29] provide the answer for
an arbitrary knot and arbitrary surgery coefficient. However, [29] doesn’t provide the
answer for knots in an arbitrary 3–manifold Y ; in any case, we find that a simple direct
argument works better for our purposes.

4.4 From integer to rational surgeries

We have established Theorem 3 for the case of integral surgery. The following lemma
extends Theorem 3 to rational surgeries. The proof of this lemma was explained to us
by John Etnyre and Jeremy Van Horn-Morris.

Lemma 4.7 Let .Y;K/ be an open book decomposition compatible with the contact
structure � . If p=q > n> 0, the contact manifold .Yp=q; �p=q/ can be obtained from
.Yn; �n/ by Legendrian surgery on a link.

Since the contact invariant is natural with respect to Legendrian surgeries, we have:

Corollary 4.8 If p=q > n> 0 and c.�n/ does not vanish, then c.�p=q/ is non-zero.
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Proof of Lemma 4.7 We will prove the lemma by doing Legendrian surgery in certain
toric slices (thickened tori) T 2 � I inside .Yn; �n/. (I D Œ0; 1� is a closed interval.)
We will take T 2 to be the boundary of a tubular neighborhood of the binding. In
the argument below, we will be considering tori that are either convex (ie, those that
are transverse to some vector field whose flow preserves the contact structure) or
pre-Lagrangian (ie, those with linear characteristic foliation). Tight contact structures
on T 2 � I with convex boundary with fixed dividing set were classified in [22]. We
will be using both Honda’s classification and techniques from his paper. We assume
that the reader is somewhat familiar with the convex surface theory (see Giroux [14],
Honda [22] and Kanda [28]).

Before proceeding, we fix some notation. Consider the standard (Stein fillable) contact
structure �stdD ker.sin.2�z/dxCcos.2�z/dy/ on the 3–torus T 3D T 2�S1 , where
z is the coordinate on S1 . Inside T 3 , consider a convex torus isotopic to T 2

x;y � f0g.
The dividing set on such a torus consists of two parallel curves; let s denote their
slope. (We write s D y=x for the slope of the line through .0; 0/ and .x;y/.) Note
that any s 2 Œ�1;C1� can be realized as a slope of some convex 2–torus inside
.T 3; �std/. Given two slopes s0 and s1 with s1 > s0 , we can find the convex tori T0

and T1 with corresponding slopes. They cut out a slice T 2 � I out of T 3 , such that
T0 is a front side of this slice and T1 is the back side (with respect to the orientation
given by t on S1 ). (The precise parametrization of I is unimportant to us, so we will
write I for any interval, and abuse notation sometimes by using the same letter for a
half-interval of I .) The contact structure �std is of course tight on this T 2�I slice and
linearly rotating, ie, the dividing curves on the convex tori between T0 and T1 rotate
linearly from slope s0 on T to slope s1 on T1 . (Note the direction of rotation: it goes
through large negative slopes, vertical slope, and then through large positive slopes.)
Let .T 2 � I; s0; s1; �std/ denote the toric slice we cut out of the Stein fillable T 3 ; we
will always mean �std when we talk about a linearly rotating contact structure on a
toric slice. In fact, there are two linearly rotating contact structures on a given slice;
the 2–plane field is the same for both contact structures, but the co-orientation (the sign
of the relative Euler class, [22, Sections 4.2, 4.3]) is different. Below, we consider a
toric slice whose co-orientation is the same as that induced by the open book on our
manifold.

To begin, consider an honest open book .Y;K/ with the induced contact structure
� . Remove a small neighborhood of K with convex boundary. For the torus T 2 D

@.Y n �K/ (oriented as the boundary of Y n �K ), fix the identification T 2 DR2=Z2

so that the longitude corresponds to .1; 0/, and the meridian to .0; 1/. There are two
parallel dividing curves on this torus; let s0 denote their slope. Notice that since K is
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a transverse knot, we can assume that s0D�n0 for some integer n0 > 0. (The number
n0 gets larger if we choose a smaller neighborhood of K .)

We will perform n–surgery on .Y; �/ by adding “extra rotation” in the neighborhood of
the binding. Consider a toric slice T 2 � I with a tight, minimally twisting, positively
co-oriented contact structure � whose dividing curves rotate linearly from slope s0 on
T0 D T 2 � f0g through larger negative slopes, vertical slope, and then through large
positive slopes to a slope s1 < n. Inside this T 2 � Œ0; 1�, we can find a pre-Lagrangian
torus with slope s for any s in .s0; s1/ (this is easy to see because the contact structure
is linearly rotating). Note that since s0 > s1 in our case, the interval .s0; s1/ passes
through ˙1, ie, is to be interpreted as s 2 .s0;C1/[ f˙1g[ .�1; s1/. Taking
s D n, we find a slice isomorphic to T 2 � Œ0; 1� such that T0 D T 2 � f0g is convex
with slope s0 , T1 D T 2 � f1g is pre-Lagrangian with slope s1 D n, and the contact
structure is tight, minimally twisting, and linearly rotating as before.

Giroux’s Flexibility Theorem [14; 22, Section 3.1.4] allows one to glue together contact
manifolds along convex boundaries, provided that the dividing curves on the boundary
surfaces match. Thus, we can attach the T 2�I slice described above to Y n�K so that
T 2D @.Y n�K/ is glued to T0 , and the dividing curves match. (Note that we pick the
co-orientation of � to match that of the open book.) Now, T1 D T 2�f1g becomes the
boundary torus; recall that it is pre-Lagrangian and has a linear characteristic foliation
given by curves of slope n. The fibration of Y n �K by the pages of the open book
.Y;K/ extends into T 2 � Œ0; 1� (compatibly with the contact structure). Collapsing to
a point each leaf of the foliation of T1 , we get the surgered manifold Yn , equipped
with a well-defined contact structure and an open book decomposition. The contact
structure is isotopic to �n and compatible with the open book: this is clear away from
the binding, and we know that a contact structure extends uniquely over the binding [1,
Theorem 1.7].

We will now perform Legendrian surgeries inside the slice T 2 � I � .Y n �K/[T0

T 2 � Œ0; 1� to change the slope on T1 to p=q . Collapsing the image of T1 in the
resulting contact manifold to circle as above, we will get an open book compatible
with .Yp=q; �p=q/, together with a sequence of Legendrian surgeries that begin with
.Yn , �n/ and terminate at .Yp=q; �p=q/.

By [22, Section 3.4.3], contact structures on T 2 � Œ0; 1� can be conveniently described
using the Farey tessellation of the unit disk. By [22, Lemma 4.12], the contact structures
we are interested in decompose into “bypass layers” as dictated by the Farey tessellation
and the boundary slopes. (See [22] for details on how the decomposition works.) Each
bypass layer is isomorphic to a “basic slice”, ie, to .T 2�I; 1; 0; �std/. Each basic slice
comes with a sign [22, Proposition 4.7]. Since we have fixed the co-orientation on the
linearly rotating contact structures above, all the bypass layers have the same sign.
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The tessellation picture (Figure 9) will help keep track of the effect that Legendrian
surgeries have on the slope of T1 . Our toric slice T 2� I corresponds to the arc of the
unit circle sweeping clockwise from �n0

1
to n

1
; thus we will be focusing on the left

side of the tessellation disk.

0
1

1
0

1
1

�
1
1

1
2

�
1
2

2
1

�
2
1

3
2

3
1

5
312

7

Figure 9: The Farey tessellation

Observe that if a toric slice with a linearly rotating contact structure has boundary
slopes s0 and s1 , then for any given rational slope s between s0 and s1 there exists
a pre-Lagrangian torus Ts such that the leaves of its (linear) characteristic foliation
have slope s . (This is easy to see because we consider a linearly rotating, ie, standard,
contact structure.) Note that in our case, s1 is always greater than s0 , so s can vary in
.�1; s0�[ .s1;1/; this means that s lies on the clockwise arc from s0 to s1 .) We
perform Legendrian surgery on a leaf of Ts . Here is the key observation.

Claim 4.9 Let .T 2 � I; s0; s1; �std/ be a toric slice with a linearly rotating contact
structure as considered above and a back slope s1 D

w
t

. Inside this slice, consider a
pre-Lagrangian torus of slope s D u

v
> s1 such that there is a tessellation edge from s

to s1 , and perform a Legendrian surgery on a leaf of its foliation. Then after surgery,
we obtain a toric slice .T 2�I; s0; s

0; �std/, where the new back slope is s0D uCw
vCt

. (In
other words, the new slope s0 is the midpoint of the arc between s and s1 , and can be
reached from s1 by hopping in the counterclockwise direction along a shorter edge.)

A similar claim can be found in Baldwin and Etnyre [4, Lemma 3.8]. It easy to see that
the slope must transform as stated because the surgery can be interpreted as splitting
along Ts and regluing after a Dehn twist. The existence of an edge from s to s1 ensures
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that the curves corresponding to .v;u/ and .t; w/ intersect in T 2 homologically once.
Thus, after the Dehn twist the slope on the boundary must be s0 D .v C t;uCw/.
Having found the boundary slopes of the resulting contact structure on T 2 � I , we
appeal to [22, Lemma 4.12] again to see that the contact structure decomposes into the
bypass layers dictated by the Farey tessellation. The decomposition is clearly the same
as that of .T 2 � I; s0; s

0; �std/. To complete the proof of the claim, we have to check
that all bypass layers in the decomposition are negative (ie, have the same sign as the
layers of the linearly rotating contact structure). The required analysis of signs can be
found in [4, Lemma 3.8].

Since we work with open books obtained by collapsing the foliation on a pre-Lagrangian
boundary of a toric slice, we need a slight variation of the claim above. Namely, we
need to see that Legendrian surgery transforms the boundary slopes as stated in the
claim for toric slices with pre-Lagrangian boundary (or for toric slices where the front
boundary is convex and the back is pre-Lagrangian). However, this easily follows from
the claim, because we can apply surgery to a smaller linearly rotating toric slice that
is contained in our slice and has convex boundary. For this, recall that a basic slice
(corresponding to an edge Œr; s� of the Farey tessellation) can be split into two halves
corresponding to the two smaller edges connecting r resp. s to the midpoint of Œr; s�.
Each of the halves is isomorphic to the basic slice of the same sign as the original
basic slice. Now, consider a toric slice whose front (convex) torus has slope s0 and
whose back (pre-Lagrangian) torus has slope s1 . Perform Legendrian surgery in a
pre-Lagrangian torus of slope s with a Farey edge from s to s1 . Let s0 be the midpoint
of the arc Œs; s1�. We split the toric slice spanning the arc Œs; s1� (with pre-Lagrangian
boundary in the back) along the convex torus with slope s0 . The two resulting halves are
“almost” basic slices (except that one of the boundary tori for each is pre-Lagrangian,
not convex). Now, we can set aside the half corresponding to the arc Œs0; s1� and apply
the claim to surgery in the pre-Lagrangian torus of slope s inside the toric slice with
convex boundary spanning the arc Œs0; s

0� in the Farey disk. The result of the surgery
is .T 2 � I; s0; s

00; �std/, where s00 is the midpoint of the arc between s and s0 . Notice
that all the basic slices we have here are of the same sign. Now, glue back the half-slice
we set aside. Since this half-slice is isomorphic to the one spanning the arc Œs00; s0�,
when we glue it to the half-slice spanning the arc Œs; s00�, we get a “basic slice” Œs; s0�
(quotation marks are due to pre-Lagrangian boundary). It follows we recover the
linearly rotating T 2 � I with the front slope s0 (for the convex boundary torus) and
the back slope s0 (for the pre-Lagrangian boundary torus).

Therefore, we have shown that Legendrian surgeries on leaves of the characteristic
foliation on pre-Lagrangian tori relate our model contact structures to one another,
changing the boundary slopes as predicted by the edges of the Farey tessellation. Now
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it remains to find the shortest sequence of edges connecting n
1

to p
q

in the tessellation
picture, and perform the corresponding Legendrian surgeries. Suppose that m is an
integer such that mC 1> p=q >m. If m> n, the sequence starts with hopping from
n
1

to m
1

through integer slopes. Each of these hops corresponds to Legendrian surgery
on a leaf in the pre-Lagrangian torus with slope 1

0
. Next, we continue along the edges

from m to p=q .

We illustrate this process by an example, describing a sequence of Legendrian surgeries
that produces .Y12=7; �12=7/ from .Y1=1; �1=1/. Constructing the point 12

7
in the

tessellation disk, we get from 1
1

to 12
7

by moving along three edges: the edge from
1
1

to 3
2

(the midpoint of 1
1

and 2
1

), then the edge from 3
2

to 5
3

(the midpoint of 3
2

and 2
1

), then the edge from 5
3

to 12
7

(the midpoint of 5
3

and 7
4

). These edges are
shown on Figure 9. Therefore, .Y12=7; �12=7/ can be obtained from .Y1=1; �1=1/ by
performing Legendrian surgery on the 3–component link consisting of two leaves of
the characteristic foliation in the pre-Lagrangian torus with slope 2

1
, and a leaf of the

foliation in the torus with slope 7
4

. The general case is treated similarly.

Remark 4.10 It is easy to see that under the hypotheses of Lemma 4.7, the manifold
Yp=q carries a tight contact structure (with a non-vanishing invariant) for every p=q>n.
Indeed, by the slam-dunk move [16], performing p=q–surgery on K is equivalent to
performing n–surgery on K , followed by r –surgery on the meridian of K , where
rD q

qn�p
. Since r <0, by [6] an r –surgery can be realized by a sequence of Legendrian

surgeries, which results in a contact structure with non-vanishing contact invariant.

Lemma 4.7 establishes a stronger result: a specific contact structure �p=q , arising from
the given open book, has non-vanishing contact invariant c.�p=q/.
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