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The hit problem for H �.BU.2/IFp/

DAVID PENGELLEY

FRANK WILLIAMS

The hit problem for a module over the Steenrod algebra A seeks a minimal set of
A–generators (“non-hit elements”). This problem has been studied for 25 years in a
variety of contexts, and although complete results have been notoriously difficult to
come by, partial results have been obtained in many cases.

For the cohomologies of classifying spaces, several such results possess two intriguing
features: sparseness by degree, and uniform rank bounds independent of degree. In
particular, it is known that sparseness holds for H�.BO.n/IF2/ for all n , and that
there is a rank bound for n� 3 . Our results in this paper show that both these features
continue at all odd primes for BU.n/ for n� 2 .

We solve the odd primary hit problem for H�.BU.2/IFp/ by determining an explicit
basis for the A–primitives in the dual H�.BU.2/IFp/ , where we find considerably
more elaborate structure than in the 2–primary case. We obtain our results by
structuring the A–primitives in homology using an action of the Kudo–Araki–May
algebra.

16W22, 55R40, 55R45, 55S10; 16W50, 55S05, 57T10, 57T25

1 Summary and statement of results

1.1 Summary

Let M� D H�.BU.2/IFp/, p odd. We consider the problem of determining the
subspace S of A–primitive elements for the (downward) A–action on M� , ie, the
kernel of the action by the positive dimensional elements of the Steenrod algebra A.
In the next section we give the background of this problem and explain its equivalence
to the hit problem.

It follows by counting from work of Janfada and Wood [3; 4] that the analogous
problem to ours at the prime 2 is trivial, in that all primitives in H�.BO.2/IF2/ are
the 2–fold products of primitives from H�.BO.1/IF2/. For p odd, by contrast, there
is a plethora of primitives in H�.BU.2/IFp/ that are not products of primitives in
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H�.BU.1/IFp/ (we use the product structure of H�.BUIFp/ throughout), providing
a pleasingly complex richness of structure.

We shall prove that all primitives are concentrated in (complex) degrees � such that
y̨.�C2/�3, where y̨.n/ denotes the number of non-zero digits in the p–ary expansion
of n. We shall further prove that for all degrees � , the rank of S� is bounded by p .
To accomplish this, we shall describe in the next section a specific vector space basis
for each S� .

Our primary tool in this description will be the self-map of S (whose definition we
shall recall in Section 2) given by the element d2 2K , the Kudo–Araki–May algebra.
As in [6] we shall see that S is a free module over d2 , and we shall solve the problem
of computing S by finding a d2 –basis for it. A key ingredient is that for � � p� 2

the map d2W S� ! Sp�C.2p�2/ is an isomorphism of vector spaces, which restricts the
degrees in which d2 –basis elements can occur.

Another valuable tool is that Ppn

is a derivation on ker P1\ � � � \ ker Ppn�1

. This is
crucial to establishing our main computational result (Theorem 3.5) on how ker Ppn

can intersect the kernels of lower operations.

Our d2 –basis splits into a “stable” range consisting of degrees above 2p2�2 and three
lower ranges. In the stable range, d2 –basis elements occur in exactly those degrees
� such that y̨.� C 2/ � 2. For each such � in the stable range, the d2 –basis has
very restricted cardinality, at most .pC 3/=2. In the unstable ranges, the situation
is somewhat more complicated, as we shall describe in the next section. In addition
to giving a complete description of the d2 –bases, at the end of the next section we
provide a table listing the ranks of S� for all � .

Section 2 will provide background and the structure of the organizing map d2 , Sections
3 and 4 assemble further the organizational basis for our approach, and the remaining
sections analyze the various degree ranges.

1.2 Statement of results

We shall see in Section 2 that we can write a basis for M� in the form aiaj , j � i � 0,
where the ai , i > 0, are standard polynomial generators of H�.BUIFp/ and a0 is
a zero-dimensional place-holder. And we shall see that a vector space basis for M�

is given by the monomials aiaj such that i C j D � and i � j . (By convention,
ai D 0 whenever i < 0.) In this section we shall give a complete description of the
primitives S by providing a d2 –basis, describe how the basis arises, and end with a
table giving ranks in all degrees. We begin with the easiest case to describe, the stable
range � � 2p2� 1.
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We start with the following definitions. For integers i;D0; l , let

v.i;D0; l/D

p�D0C1X
kD1

�
kCD0� 2

D0� 1

�
ap.iC1/C.D0�2/�.p�1/k ap.l�i�1/C.p�1/k ;

in degree � D pl CD0� 2. The formulas are clearly zero except when 1�D0 � p ,
and henceforth D0 will always be taken to lie in this range. These formulas span much
of the kernel of P1 , in fact in the stable range all of it.

As a peek ahead to Definition 3.2, we note that each monomial occurring in these
formulas has the sum of the “ones” digits of its subscripts at least p � 1. We call
monomials satisfying this property Type 1 for P1 . Each Type 1 monomial occurs in
exactly one v.i;D0; l/ formula, and we shall see (Theorem 3.5) that the v.i;D0; l/

that contains a monomial ar as is the smallest linear combination of monomials in
ker P1 that does. However, since ar as D asar , there will be a formula v.i 0;D0; l/

containing asar that represents the same element of M� (up to scalar multiple) as
v.i;D0; l/, but with subscripts reversed, and these two formulas will be called twins.
Further, sometimes a formula v.i;D0; l/ contains both ar as and asar , in which case
it is its own twin, and it is possible for it to represent zero in M� if the coefficients
produce cancellation. In the stable range ker P1 has as a basis the formulas v.i;D0; l/

except for the twinning and sometime zeroing just mentioned. Sometimes we will
implicitly identify a formula with the element in M� that it represents.

It will help in tracking the formulas v.i;D0; l/ and how they interact for each to have
an assigned label. Let the label of i;D0; l be the (unordered) set

LAB.i;D0; l/D fD0� 1C i; l � 1� ig .mod p� 1/:

Note that this set consists of the subscripts of the monomial summands of v.i;D0; l/,
which are all identical mod .p � 1/. Clearly twins have the same label set, and the
possible zeroing can happen only if a label set consists of a single element.

The elements represented by the individual formulas v.i;D0; l/ in ker P1 are generally
not in the kernels of the higher Ppn

. However, we can identify exactly which linear
combinations of them are, as follows.

For integers l and D0 and for each 0� c � p� 2, define

x.c;D0; l/D
X

r

v.cC r.p� 1/;D0; l/

in degree � D pl CD0 � 2 with 1 � D0 � p . Clearly every v.i;D0; l/ occurs in
exactly one of these formulas. Notice that all the v ’s in each formula have the same
label LAB.c;D0; l/. And as with the individual v ’s, reversing subscripts throughout
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produces a corresponding twin x.c0;D0; l/ with the same label, representing the same
element of M� up to scalar multiple.

We can now state the main theorem about d2 –bases in the stable range.

Theorem 1.1 If � � 2p2 � 1, then a d2 –basis for S is concentrated in degrees of
the form � D DmpmCD0 � 2, for some 1 � D0;Dm � p � 1. In these degrees, a
d2 –basis for the primitives is given by the monomial aDmpm�1aD0�1 together with
elements x.c;D0;Dmpm�1/ in the following way:

(1) If LAB.c1;D0;Dm/D LAB.c2;D0;Dm/, c1 ¤ c2 , then x.c1;D0;Dmpm�1/

is a unit multiple of x.c2;D0;Dmpm�1/ and so either will serve as a basis
element.

(2) If LAB.c;D0;Dm/ consists of a single number and D0 is odd, then we choose
x.c;D0;Dmpm�1/ as a basis element.

(If LAB.c;D0;Dm/ consists of a single number and D0 is even, then
x.c;D0;Dmpm�1/D 0.)

We note that since the x.c;D0;Dmpm�1/ are indexed by c , most with distinct twins,
there are about .p�1/=2 elements in the d2 –basis in the stable range. We further note
that every monomial of Type 1 for P1 in these degrees occurs as a summand of some
formula x.c;D0; l/, even though a monomial in the formula may cancel in M� with
the monomial that has reversed subscripts.

We remark on the special role played by Pp among all the higher Ppn

in determining
the d2 –basis inside ker P1 . Essentially Pp determines what the primitives must look
like and restricts degrees somewhat, and then the even higher Ppn

reject outright those
in most degrees.

We shall prove (Theorem 7.1) that in degrees � DplCD0�2 with D0¤p , ker P1\

ker Pp is concentrated in degrees where l is p–divisible. In such degrees, we shall also
prove (Corollary 7.4) that the sum x.c;D0; l/ is always in ker Pp , and is the smallest
expression of a ker P1\ker Pp element that contains any of its v ’s (except individual
primitive monomials like those mentioned at the beginning of the theorem). Combined
with the twinning and zeroing analysis above, this provides a complete description of
ker P1 \ ker Pp in the stable range; the intersection is spanned by the x ’s in those
degrees where l is p–divisible, along with one additional possible monomial. Then
we shall further see that the additional requirement that a primitive should also lie in
the kernels of Ppn

, n � 2, has the effect not of forcing the x ’s to combine further
(Remark 2.2), but of disallowing anything in degrees excepting when l is a power of
p , leaving only those in degrees DmpmCD0� 2 (Theorem 7.5).

We next consider the upper-low range p2Cp�1� � � 2p2�2. We have the theorem:
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Theorem 1.2 If p2Cp� 1� � � 2p2� 2, then a d2 –basis for S is concentrated in
degrees of the form �Dp2CD1pCD0�2, 1�D0;D1�p�1, where D0�D1�1. In
these degrees, a d2 –basis for the primitives is obtained from elements v.i;D0;pCD1/

for which p� .D0�D1/� i � p� 1 in the following way (similar to the stable case):

(1) If LAB.i1;D0; 1CD1/D LAB.i2;D0; 1CD1/, i1¤ i2 , then v.i1;D0;pCD1/

is a unit multiple of v.i2;D0;pCD1/ and so either will serve as a basis element.

(2) If LAB.i;D0; 1CD1/ consists of a single number and D0 is odd, then we
choose v.i;D0;pCD1/ as a basis element.

(If LAB.i;D0; 1CD1/ consists of a single number and D0 is even, then v.i;D0;pC

D1/D 0.)

In this case there are about .D0 �D1/=2 elements in the d2 –basis in these degrees.
Furthermore, in contrast with the stable case, we note that while all primitive elements
are sums of Type 1 monomials, not all such monomials occur in basis elements. The
v.i;D0;pCD1/ for i not in the range p� .D0�D1/� i � p�1 are not summands
of any element of ker Pp .

We next consider the mid-low range p� 1� � � p2Cp� 2. This range is the most
complicated for two reasons: (1) it is possible that more than two d2 –basis elements
v.i;D0; l/ in a given degree � can have the same label (so labels cannot be used to
specify d2 –basis elements), and (2) there is a new kind of basis element

w.u;D0; l/D

lC1X
kD1

.�1/kC1

�D0�uCk�3
k�1

��
u

k�1

� aplCD0�2�u�.p�1/.k�1/auC.p�1/.k�1/:

We have:

Theorem 1.3 In degrees � D lpCD0� 2, with 1� l � p and 1�D0 � p (so that
p � 1 � � � p2 C p � 2/, there are d2 –basis elements only if (1) D0 � p � 1, or
(2) D0� l � 2.

Basis elements in the range (1) are given by v.i;D0; l/, for 0� i � Œ.pCl�D0�2/=2�,
together with i D .pC l �D0� 1/=2 if � is even and D0 is odd.

Additional basis elements in the (overlapping) range (2) are given by w.u;D0; l/ for
l � u � l C Œ.D0 � l � 3/=2�, together with uD l C .D0 � l � 2/=2 if � and D0 are
both even.

We note that in this range, if � D lpCD0�2 is such that l is large and D0 is small, the
vector space dimension of the space of d2 –basis elements can be as large as p , roughly
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twice the maximum dimension in the other three ranges. Notice that the monomials
that occur in d2 –basis elements of the form w.u;D0; l/ have the sum of the “ones”
digits of their subscripts less than p� 1. Again peeking ahead to Definition 3.2, we
call monomials of this form Type 2 for P1 .

Finally we note that in the bottom range 0 � � � p� 2 all monomials are primitive
and none is in the image of d2 , so we have the (trivial) theorem:

Theorem 1.4 In degrees 0� � � p� 2, a d2 –basis can be taken to be all monomials
aiaj with i � j .

We close this section with the promised table giving the ranks of all S� , � � 0. To
organize this table, we use the map d2W Spkq�2 ! SpkC1q�2 (recall this is almost
always an isomorphism) to split the primitives over d2 into disjoint degree families S.q/ ,
for each q relatively prime to p . So S.q/D

L
k�0 Spkq�2 and S�D

L
gcd.q;p/D1S.q/ .

Theorem 1.5 The following table gives the rank of S� in every degree, always writing
� D pkq�2 (q relatively prime to p ). The table is arranged according to the size of q ,
corresponding to the division of our d2 –basis into ranges. In degrees not in the table
there are no non-zero primitives.

In the table, 1�D0;Di � p� 1 for i � 2, 1�D1 � p and k � 0. Let

� D

8<:
�1 when q is even and D0 is even;
0 when q is odd;
1 when q is even and D0 is odd:

q, relatively prime to p � D pkq� 2 rank.S� /

Bottom range: 0< q < p

D0 k D 0
�

D0

2

�
k � 1 p�1

2

Mid-low range: p < q < p2Cp

D1pCD0, D1 <D0
p�1

2

D1pCD0, D1 �D0
p�D0CD1C�

2

Upper-low range: p2Cp < q < 2p2

p2CD1pCD0;D1 <D0
D0�D1C�

2

Stable range: q > 2p2

DM pM CD0, M � 2; .DM ;M /¤ .1; 2/ pC1
2
C �
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Remark 1.6 The separation of k � 1 for the bottom range results from the inclusion
of the Type 2 w ’s beginning with k D 1 from Theorem 1.3. And the value q D 1 is
special, in that k D 0 is irrelevant, being in negative degree; for k D 1 the degree is
still below p , and for k D 2 no w ’s are appended, since the degree is beyond them;
however, the table values still hold based on the theorems above.

2 Background and booting to organize primitives

2.1 Background

The hit problem for an unstable module over the Steenrod algebra A asks for a minimal
A–module generating set (ie, elements not “hit” by positive Steenrod operations). The
problem has been studied at the prime p D 2 for polynomial algebras with generators
in degree one (cohomology of products of projective spaces), and more recently for
algebras of symmetric polynomials in such generators, which are the cohomologies
of the classifying spaces BO.l/. The hit problem for various classifying spaces and
primes has received considerable attention, and partial results have been obtained in
Crossley [1; 2], Janfada and Wood [3; 4], Kameko [5], Pengelley and Williams [6],
Peterson [7], Singer [8] and Wood [9]. We refer to [6] for further background.

The few hit problem answers so far for polynomial algebras and their symmetric
subalgebras have two interesting features: sparseness by degree, and uniformly bounded
rank over all degrees, termed bounded type.

Regarding sparseness, Peterson conjectured [7] that mod 2 the A–generators for a
product of l real projective spaces could occur only in certain degrees. This was proven
true by Wood [9], and later also proven for the symmetric algebras corresponding to
the BO.l/, by Janfada and Wood [3]. Both results state that the A–generators are
concentrated in degrees � for which � C l has no more than l nonzero digits in its
binary expansion, ie, y̨.� C l/� l .

Regarding explicit ranks, the hit problem for l D 1 is easily solved, and the result has
rank one in each degree where it is nonzero. Janfada and Wood [4] determined the
ranks of A–generators of H�.BO.l/IF2/ for l D 2; 3, and found that they too are of
bounded type, with bounds 1 and 4, respectively.

Our results for H�.BU.2/IFp/ address analogous conjectures for p odd. For
H�.BU.1/IFp/ it is straightforward that the A–generators have rank one in each
complex degree � for which � C 1 has exactly 1 digit in its p–ary expansion, in
analogy to p D 2. (At odd primes our cohomology is concentrated in even degrees, so
we use ‘complex degree’, half the topological degree.)
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A Peterson-like sparseness conjecture analogous to p D 2 would be that the A–
generators of H�.BU.2/IFp/ are concentrated in complex degrees � such that
y̨.� C 2/ � 2. A bounded type conjecture would be that the ranks of A–generators
of H�.BU.2/IFp/ are uniformly bounded over all degrees by approximately p=2 or
p� 1. As announced in the summary, the table above shows that the first conjecture
is false, but is made true by a mild modification, and that the ranks of A–generators
are uniformly bounded by p . However, as stated in the summary, in a stable sense the
more ambitious conjectured bounds essentially hold, since the d2 –generators in the
stable range satisfy y̨.� C 2/� 2 as well as the degree rank bound .pC 3/=2.

It is instructive to compare our results on H�.BU.2/IFp/ with Crossley’s work [1;
2] on H�.CP .1/�CP .1/IFp/ and H�.CP .1/�CP .1/IFp/. In particular, the
ranges in which he finds primitives in H�.CP .1/�CP .1/IFp/ coincide with our
ranges for primitives in H�.BU.2/IFp/. There is a rough correspondence between
his monomial A–generators xiyj for H�.CP .1/�CP .1/IFp/ and our monomial
summands aiaj of primitive elements in H�.BU.2/IFp/. We have not been able to
find any way, however, to derive our results from his or vice versa.

2.2 The A–action on M�

Recall [6] that for any prime p , H�.BUIFp/ is the polynomial algebra with generators
an 2H2n.BUIFp/ for n� 1, dual to the powers cn

1
of the first Chern class, and that

H�.BU.l/IFp/ can be thought of as the subspace spanned by monomials in the an of
length at most l . It is convenient for us, and is usual in the literature, to introduce a place-
holder, a0 , of topological degree zero, so that a monomial ai1

� � � aik
2H�.BU.l/IFp/

may be written al�k
0

ai1
� � � aik

. Then M�DH�.BU.2/IFp/ is spanned by monomials
of length exactly 2.

Definition 2.1 We categorize monomials in M� by calling a monomial aiaj a 2–fold
if both i; j are strictly positive, and a 1–fold if one of i; j is zero and one of i; j is
strictly positive.

The downward right A–action on H�.BUIFp/ is determined via the Cartan formula
from

am �P r
D

�
m� r.p� 1/

r

�
am�r.p�1/;

the action for CP .1/ D BU.1/, in which a0 is both primitive and never hit by a
positive operation, ie, transparent to the A–action. So in M� the 1–fold and 2–fold
subspaces split apart over A. Nonetheless, we will often treat them in a unified way,
since they will be tied via our organizing map d2 .
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Note from the Cartan formula that the primitives for the A–action form a subalgebra
of H�.BUIFp/.

Remark 2.2 We may extend the definition of label to monomials via LAB.aiaj /D

fi; j g .mod p� 1/. Since Steenrod operations change subscripts only by multiples of
p� 1, the subspace spanned by monomials of all degrees having the same label is a
sub–A–module of M� , hence M� splits over A according to labels. This elucidates,
in our commentary after Theorem 1.1, why the kernels of the higher operations can
only eliminate but not combine the x ’s in ker P1\ ker Pp .

The operations Ppi

of (complex) degree pi.p�1/ generate A, for which it is easy to
compute using Lucas’s formula for mod p binomial coefficients, namely

(1) am �Ppi

D .mi C 1/am�pi .p�1/;

where mi is the i th p–ary digit of m (ie, mD
P

i�0 mip
i with 0�mi < p ).

2.3 One-fold primitives and S –decomposable two-fold primitives

The 1–fold A–primitives in M� are now obvious; they are the a0am in which m has
only trailing digits p� 1 after the leading digit, ie,

fa0ajpn�1 j 1� j � p� 1; n� 0; .j ; n/¤ .1; 0/g:

Definition 2.3 By two-fold S –decomposable primitives we mean the subspace
spanned by products of primitives in H�.BU.1/IFp/.

The twofold S –decomposable primitives are then

faipm�1ajpn�1 j 1� i; j � p� 1; m; n� 0; .i;m/¤ .1; 0/¤ .j ; n/g:

Remark 2.4 The positive degrees � for which �C2 has no more than two nonzero dig-
its are precisely those containing nonzero 1–fold or S –decomposable 2–fold primitives.
The degrees for which � C 2 has three nonzero digits contain only indecomposable
2–fold primitives. They occur only in the upper-low band p2 C p < q < 2p2 of
Theorem 1.5.
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2.4 Booting with d2 to organize primitives

Recall [6] that for any prime p , the action of the element d22K on aiaj 2H�.BUIFp/

was defined by the formula d2.aiaj /D apiCp�1apjCp�1 for i; j � 1, and we extend
this definition to i; j � 0. Kameko [5] and Singer [8] initiated the use of similar
operations at the prime 2 for the hit problem, and these have been motivational for our
work [6]. It is easy to check that

(2) .d2.aiaj //�Pk
D d2.aiaj �Pk=p/:

This ensures that S� is closed under the action of d2 .

Remark 2.5 The map d2 takes one-folds to two-folds; d2.a0an/D ap�1apnCp�1 .

The following lemma is obvious.

Lemma 2.6 The map d2 preserves primitives, so

d2W Spkq�2� SpkC1q�2:

It is easy to see that d2 is monic and S� is a free Fp Œd2�–module, so in degrees not
congruent to �2 mod p , a Fp –basis for S� is also a d2 –basis.

Turning next to degrees � ��2 mod p , the following theorem (to be proved below)
and its corollary show that, except for low degrees, there are no d2 –generators for S� .

Theorem 2.7 In degrees � ��2 mod p with � � p2� 2, ker P1 D im d2 .

Corollary 2.8 In degrees � D pl C 2p� 2 with l � p� 2,

S� D d2.Sl/:

Thus the only d2 –generators that S� can have in degrees � ��2 mod p must occur
in degrees not exceeding p2�p� 2, ie, in degrees pq� 2 for q < p .

Proof That d2.Sl/� S� follows from (2) above. Now let y 2 S� . By the theorem,
y D d2.x/ for some x 2Ml . By (2) and the monicity of d2 we have x 2 Sl .

Thus we have:

Corollary 2.9 A d2 –basis for S� consists of a Fp –basis for primitives in degrees
q� 2 for q relatively prime to p , along with a Fp –basis complementary to the image
of d2W Sq�2! Spq�2 for q < p .
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Proof The lemma above ensures that for q relatively prime to p , in degree q � 2

a Fp –basis coincides with a d2 –basis. In degrees of the form pkq � 2, k � 1, the
previous corollary assures us that d2 –generators can exist only for kD 1 and q<p .

Our task then is to find a d2 –basis for the primitives as given by the corollary.

2.5 Monomial terminology and the A–action

When studying the A–action on M� , we exert care when negative-subscripted a’s
occur in formulas, since the resulting terms, which must be interpreted as zero, may
affect conclusions drawn from other terms in the formula. Also, we need to study
which monomials must occur together in representations of elements in the kernel
of a Steenrod operation. To assist, we use the following terminology. We note that
since p is odd, any element in M� can always be expressed in symmetric form in its
monomials, ie, the coefficient of aiaj is equal to the coefficient of aj ai .

Definition 2.10

(1) We call a monomial aiaj live if both its subscripts are nonnegative.

(2) Given x 2M� , we say that a live monomial aiaj appears in x (or x contains
aiaj ) if aiaj has nonzero Fp coefficient when x is expressed in its symmetric
form.

3 Fundamental theorem on ker P pn and links

3.1 A filtration of M� and the kernel of P pn

Throughout the rest of the paper we shall use the following notation.

Notation 3.1 If n is a nonnegative integer, we shall let ni denote the i th p–ary digit
of n. We shall sometimes write n in the form .n0; n1; � � � /.

Definition 3.2 Define nested subspaces M n
� of M� as follows. Set M 0

� DM� . For
n � 1, define M n

� to be the span of those aiaj with i C j D � and ik C jk � p� 1

for 0� k � n�1, ie, the monomials whose subscript digit sums are each at least p�1

for all digits from the 0th to the .n� 1/st .

We call the monomials in M n
� Type 1 for Ppn�1

, and monomials in M n�1
� that are

not in M n
� are called Type 2 for Ppn�1

.
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Remark 3.3 Alternatively, write � D pnl C ı� 1, 0� ı < pn , l � 1. Then M n
� is

the subspace of M n�1
� spanned by

fapnICtapnJCu j I CJ D l � 1; 0� t;u< pn; tn�1Cun�1 D ın�1C .p� 1/g:

This means that when adding the two subscripts along with 1 to obtain �C1, there are
“carries” in every digit addition through the one that obtains the nth digit, expressed
as tmC umC 1 D ımCp for all m � n� 1. This convenient formula will be used
frequently.

An important consequence of this definition is given by the following lemma.

Lemma 3.4 Ppn

is a derivation on M n
� .

Proof Let 1 � k � n and 1 � b � p � 1. Using the notation above for spanning
monomials for M n

� , we consider

.apnICt /P
BpkCbpk�1

.apnJCu/P
pn�Bpk�bpk�1

:

The coefficient of this term contains factors� tk�1Cb

b

�
and

� uk�1C.p�b/

p�b

�
:

Assume that tk�1C b � p . In this case the first of these binomial coefficients is zero.
Alternatively assume that tk�1 C b < p . Then uk�1 C .p � b/ > uk�1 C tk�1 D

ık�1C .p� 1/� p� 1, whence the second of these binomial coefficients is zero.

The next theorem gives the fundamental set of formulas of this paper.

Theorem 3.5 For � �pnC1�1, write � DpnC1lCı�1, 0� ı <pnC1; l � 1. Then
in degree � we have ker Ppn

\M n
� spanned by elements represented by the formulas�p�ınX

kD1

�kCınCp�1

ın

�
apnC1iCpnınCt�pn.p�1/.k�1/apnC1jCuCpn.p�1/kˇ̌̌̌

i C j D l � 1; i; j 2 Z; 0� t;u< pn; tmCum D ımC .p� 1/

�
S� lC1X

kD1

.�1/k
�

tnC k � 1

k � 1

�
�
�

un

k � 1

�
apnC1lCt�.p�1/.k�1/pnauC.p�1/.k�1/pnˇ̌̌̌

0� t;u< pnC1; tmCum D ımC .p� 1/ for m< n; l � un; tnCun D ın� 1

�
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(We shall refer to elements of the first set as being of Type 1 for Ppn

and those of the
second set as Type 2 for Ppn

, since the monomials that occur in the first set of formulas
are of Type 1 for Ppn

and those in the second set of formulas are of Type 2 for Ppn

.)

Proof For given aiaj 2M n
� , we shall completely analyze any ker Ppn

expression
containing it. From (1) and the lemma above we have

.aiaj /P
pn

D .inC 1/ai�pn.p�1//aj C .jnC 1/aiaj�pn.p�1/;

and the only monomials that could possibly cancel the resulting terms under Ppn

are
ai�pn.p�1/ajCpn.p�1/ and aiCpn.p�1/aj�pn.p�1/ , respectively.

This creates great rigidity, so that if aiaj appears in a ker Ppn

expression, there will
be a minimal such sum of monomials, uniquely determined up to scalar multiple, and
whose subscripts vary consecutively by pn.p� 1/.

For cancellation to produce such a sum, the two end terms must each produce a zero
coefficient under Ppn

, as shown in the part of the cancellation sequence

aiaj

jnC1

��
inC1

��

ai�pn.p�1/ajCpn.p�1/

jn

��
inC2

��

: : :

0

��
ai�pn.p�1/aj

leading to the right end. The arrows point to monomials arising from Ppn

. The
resulting coefficients label the arrows, and must be nonzero until the ends.

Redisplaying with each subscript replaced by its nth digit placed in braces yields

afingafjng

inC1

��

afinC1gafjn�1g

jn

��
inC2

��

: : : afp�1gaf�g

0

��
afinC1gafjng

in which the digits step consecutively to the ends. Notice that since the sum of the two
subscript digits is constant for all the monomials, and is at least p� 1 at the ends, that
this cancellation process completes successfully for any aiaj of Type 1 for Ppn

, and
fails for Type 2, showing exactly how the Type 1 ker Ppn

expressions form.

Thus the minimal possible ker Ppn

monomial sums arising from cancellation are the
Type 1 formulas listed, normalized to have first coefficient 1, with binomial coefficients
proceeding so as to produce the coefficient ratios required for cancellations. Note that
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it is possible that some monomials in these sums are zero because their indices are
negative.

A monomial of Type 2 can still occur in a ker Ppn

sum, but only provided indices
in the sequence shown drop below zero in both directions before an obstruction to
cancellation arises. The obstructions arise as shown in

afingafjng

inC1

��

: : :

jn

��

af�gaf0g

�C1¤0

��
afinC1gafjng af�C1gaf0g

because the uncancellable term af�C1gaf0g occurs before the cancellation completes
successfully, since inC jn < p� 1.

Thus such a sequence can produce a sum in ker Ppn

precisely if the first subscript of
the uncancellable term is negative, and similarly at the other end. The Type 2 formulas
above describe exactly this, with every term live, ie, not listing any terms with a negative
subscript.

Definition 3.6 We shall refer to the formulas given in Theorem 3.5 as Ppn

–links.

Remark 3.7 Type 2 links for Ppn

lie in degrees less than pnC2�pnC1�1< pnC2 .
Hence they are in the kernels of all Ppi

for i � nC 1.

Corollary 3.8 In degrees � such that � � pn.p� 2/ we have

ker P1
\ � � � \ ker Ppn�1

�M n
� :

Proof Consider a monomial summand of an element in ker Ppn�1

\M n�1
� , say

apniCpn�1.ın�1�.k�1/.p�1//CtapnjCpn�1.p�1/kCu;

where i C j D l � 1, tmCum D ımC .p� 1/, 0� t;u< pn�1 , 0� tm;um � p� 1

and 1� k � p� ın�1 . We may write

pni Cpn�1.ın�1� .k � 1/.p� 1//C t D pn.i � kC 1/Cpn�1.ın�1C k � 1/C t

where we see that

0� ın�1� 1� ın�1C k � 1� ın�1C .p� ın�1/� 1D p� 1:

And we may write

pnj Cpn�1.p� 1/kCuD pn.j C k � 1/Cpn�1.p� k/Cu
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where, again, 0� p� k � p� 1. So ın�1C k � 1 and p� k are the .n� 1/st digits
of their respective subscripts. Hence M n�1

� \ ker Ppn�1

�M n
� . We may assume,

inductively, that ker P1\ � � � \ ker Ppn�2

�M n�1
� , whence the corollary.

3.2 Link terminology

Each Ppn

–link determines an element of the kernel of Ppn

, and each monomial occurs
in at most one link. Recall from Section 1 that each link formula twins with another
formula (possibly itself), obtained by beginning a new link formula by reversing the
subscripts of the last monomial of the given formula.

Remark 3.9 A link and its twin must be identical in M� up to a scalar multiple,
which must be given by the last coefficient, since the first coefficient is always one.

Definition 3.10 A symmetric link is one that is its own twin. That is, monomials
ar as and asar always occur together in the link formula, but possibly with different
coefficients.

Remark 3.11 One checks that any Type 1 link formula, and any symmetric Type 2
link, has its last coefficient simply .�1/rC1 , where r is the number of monomials in
the link. Hence a symmetric link with an even number of terms represents the zero
element of M� , while a symmetric link with an odd number of terms has nonzero
symmetric coefficients, ie, the coefficients of ar as and asar are the same. Then since
two non-twin links have no monomials in common, the nonzero link twins produce a
basis for ker Ppn

\M n
� . We also remark that the formulas show that every symmetric

link lies in an even degree.

Remark 3.12 A monomial aiaj is the summand of a Type 1 Ppn

–link with largest
(resp. smallest) first index if and only if jn D p� 1 (resp. in D p� 1).

Definition 3.13 We call the monomial that has the largest (resp. smallest) first index
in a link the left (resp. right) end of the link.

4 The kernel of P 1 and booting

We specialize Theorem 3.5 to the case nD 0, setting ı0 DD0� 1.
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Theorem 4.1 In degree � D pl CD0 � 2, l � 1, 1 �D0 � p , we have a spanning
set for ker P1�p�D0C1X

kD1

�kCD0�2

D0�1

�
apiCD0Cp�2�.p�1/k apjC.p�1/k

ˇ̌̌̌
i C j D l � 1; i; j 2 Z

�
S� lC1X

kD1

.�1/kC1
�D0�uCk�3

k�1

�
�
� u

k�1

�
aplCD0�2�u�.p�1/.k�1/auC.p�1/.k�1/ˇ̌̌̌

l � u�D0� 2

�
:

(Note that these are just the Type 1 elements v.i;D0; l/ and the Type 2 w.u;D0; l/

defined in the introduction. We further note that since elements of Type 2 lie in degrees
� � p2�p� 2 from Remark 3.7, they are all primitive.)

We can now prove the booting Theorem 2.7.

Proof of Theorem 2.7 In these degrees, ker.P1/ has only Type 1 formulas. Letting
D0 D p in these formulas, we get� 1X

kD1

�
kCp� 2

p� 1

�
apiC.2p�2/�.p�1/kapjC.p�1/k

ˇ̌̌̌
i C j D l � 1

�
;

reducing to
fapiC.p�1/apjC.p�1/ j i C j D lg;

which is just fd2.aiaj / j i C j D lg.

5 The mid-low range: proof of Theorem 1.3

To prove Theorem 1.3, we first note that in the mid-low degrees p�1� � �p2Cp�2,
the primitives are exactly the kernel of P1 . This is because the only possible action
of higher pth powers would be Pp on degrees from p2 to p2Cp� 2. In that range
there are no Type 2 formulas for ker P1 (Remark 3.7), and it is easy to see that Type 1
monomials for P1 in that range all have both subscripts less than p2 , hence are in the
kernel of Pp . Thus we need only identify a d2 –basis for ker P1 in the mid-low range,
accomplished by the following two lemmas.

Lemma 5.1 Let p� 1� � � p2Cp� 2. Write � D lpCD0� 2, where 1� l � p

and 1�D0 � p . The Type 1 d2 –basis elements are given by v.i;D0; l/, for 0� i �
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Œ.pC l �D0�2/=2�, together with i D .pC l �D0�1/=2 if � is even and D0 is odd,
except when D0 D p , for which there are no d2 –basis elements.

Proof We may arrange the live Type 1 monomials in a l � .p �D0C 1/ matrix in
which the .r; s/th entry (r; s � 1) is ap.l�rC1/�sap.r�1/CD0�2Cs . Then the P1 –links
correspond to the upper right to lower left diagonals of this matrix (Theorem 4.1). A
Fp –basis for ker P1 follows by checking which of these diagonals represent the same
basis element of ker P1 , and which cancel to zero, per Remark 3.11. In degrees with
D0 ¤ p , Corollary 2.9 ensures that this forms a d2 –basis. In degrees with D0 D p ,
the proof of Theorem 2.7, which clearly applies to Type 1 P1 –links in any degree,
shows that the Fp –basis is in the image of d2 .

Lemma 5.2 Let � D pl CD0 � 2, 1 � l � p and 1 � D0 � p . (So p � 1 � � �

p2Cp� 2.) Then a d2 –basis for the Type 2 ker P1 elements consists of w.u;D0; l/

for l � u � l C Œ.D0 � l � 3/=2�, together with uD l C .D0 � l � 2/=2 if � and D0

are both even.

Proof From the definition of d2 it is clear that its image involves only monomials
of Type 1 for P1 . Thus a d2 –basis for the Type 2 ker P1 elements is the same as a
F2 –basis. In the formulas for Type 2 elements (Theorem 4.1), we see these formulas
are indexed by the variable u, which ranges l � u�D0� 2, so there are D0� 1� l

of them, if D0 � 1� l is non-negative. By Remark 3.11, if � is odd, none of these
can be symmetric, so there are .D0 � 1 � l/=2 basis elements. If � is even, there
will be exactly one symmetric formula, leaving D0� 2� l non-symmetric ones, from
which .D0 � 2� l/=2 basis elements. Since there are l C 1 terms in the symmetric
formula, if l is even the symmetric terms in this formula cancel pair-wise, so this
formula represents the zero element. Similarly, if l is odd, the symmetric terms double
up, producing one additional basis element.

6 The intersection ker P 1\ker P p and the upper-low range

We have the following fundamental theorem, from which we will prove Theorem 1.2.

Theorem 6.1 Let � D p2lCD1pCD0� 2, with 1�D0 � p� 1; 0�D1 � p� 1

and l � 1. Suppose a live monomial aiaj , with j � p2 , appears in the symmetric
expression of an element x 2 ker P1\ ker Pp in degree � . Then D1 D 0.

The proof of this theorem follows a sequence of technical lemmas.
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Lemma 6.2 Let � Dp2lCD1pCD0�2, with 1�D0�p�1, 0�D1�p�1 and
l � 1. Suppose that aiaj and aiC.p�1/aj�.p�1/ both appear in the link v.I;D0; l/,
and that aiCp.p�1/aj�p.p�1/ and aiC.p2�1/aj�.p2�1/ appear in v.IC.p�1/;D0; l/.
Then if both of these links are nonzero summands of an element x expressed in
symmetric form of ker P1\ ker Pp , we must have D1 D 0.

Proof Recall that “appear” means a monomial is live with nonzero coefficient in the
symmetric form of an element. Let A and B be the coefficients in v.I;D0; l/ of aiaj

and aiC.p�1/aj�.p�1/ (necessarily the same, respectively, as those of

aiCp.p�1/aj�p.p�1/ and aiC.p2�1/aj�.p2�1/

in v.I C .p� 1/;D0; l/). And let M and N be the coefficients in x of v.I;D0; l/

and v.I C .p� 1/;D0; l/.

We calculate the coefficients arising from Pp acting on the four monomials. We have:
.MAaiaj /P

p has the summand

MA
� j�p.p�1/

p

�
ai;j�p.p�1/ DMA.j1C 1/ai;j�p.p�1/;

and .NAaiCp.p�1/aj�p.p�1//P
p has the summand

NA
� i

p

�
ai;j�p.p�1/ DNA.i1/ai;j�p.p�1/;

whence, noting that ai;j�p.p�1/ is live,

MA.j1C 1/CNA.i1/D 0

for x to be in the kernel of Pp . To calculate further, we first need to note that
j0¤ p�1 since aiaj is not the left end of its P1 link, and that therefore i0¤ 0 since
i0C j0 � p� 1.

In similar fashion we now compute that for x to be in the kernel of Pp , we need

MB.j1/CNB.i1C 1/D 0:

Combining these two equations, we see that M DN , and so

.j1C 1/C .i1/� 0 mod p:

Now since aiaj is Type 1 for P1 , we also have i0C j0 DD0� 2Cp (Remark 3.3).
Combining the latter two equations with p.i1Cj1/Ci0Cj0� pD1CD0�2 mod .p2/

yields
p.i1C j1C 1/� pD1 mod p2; 0�D1 mod p;

thus D1 D 0.
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We can now eliminate Type 2 links for Pp from consideration in ker P1\ ker Pp .

Lemma 6.3 No Type 2 nonzero monomial of ker Pp in any degree � D p2l C

D1pCD0 � 2; 1 �D0 � p� 1; 0 �D1 � p� 1; l � 1, appears in any element of
ker P1\ ker Pp .

Proof If our monomial is not part of a Pp –link, we are done. So consider the Type 2
Pp –link� lC1X

kD1

.�1/kC1

�
t1C k � 1

k � 1

�
�
�

u1

k � 1

�
ap2lCt�.p�1/.k�1/pauC.p�1/.k�1/pˇ̌̌̌

0� t;u< p2; t0Cu0 DD0C .p� 2/; l � u1; t1Cu1 DD1� 1

�
:

We may assume that D1 ¤ 0, since from these formulas there are no Type 2 elements
for Pp when D1 D 0. Since l � 1, there are always at least two nonzero summands.
When k D 1, we have

ap2lCtau;

and when k D 2, we have

�ap2.l�1/CpCtap2�pCu:

Write
i D p2.l � 1/CpC t and j D p2

�pCu:

Case 1 Assume u0 ¤ p � 1. In this case, if aiaj appears also in some v.I;D0; l/

(from Theorem 4.1 there are no w ’s in these degrees), then aiC.p�1/aj�.p�1/ also
appears in v.I;D0; l/. Similarly with aiCp.p�1/aj�p.p�1/ and aiCp2�1aj�.p2�1/ ,
which are live since u1 � 1. Hence we have the hypotheses of Lemma 6.2, and arrive
at a contradiction to D1 ¤ 0.

Case 2 Assume u0 D p� 1, so then t0 ¤ p� 1 (since D0 ¤ p/. We use a similar
calculation to Case 1, this time using the terms for which k D l and k D l C 1.

Lemma 6.4 Suppose � Dp2lCD1pCD0�2, with 1�D0;D1�p�1 and l � 1. If
a live monomial appears in the symmetric expression of an element x 2 ker P1\ker Pp

as the leftmost monomial in a Pp –link, then the monomial must lie at the right end of
its P1 –link.

Proof First, from Remark 3.7 and Lemma 6.3 above, all links are Type 1 for both P1

and Pp . Since the monomial aiaj is at the left end of a Type 1 Pp link, it must have
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j1 D p� 1. Suppose the monomial lies elsewhere in its P1 link than at the right end.
Then i0 ¤ p� 1. The adjacent term to the right in the P1 link is ai�.p�1/ajC.p�1/ .
It is live since aiaj is Type 1 for Pp , ie, i1C j1 DD1Cp� 1 (Remark 3.3), which
is in turn at least p by the hypothesis D1 � 1. So i1 > 0, and therefore i � p .

Since ai�.p�1/ajC.p�1/ is live, appearing in our symmetric expression of x , it must
also appear in a Type 1 Pp link. We compute next from its subscripts. Since i0¤p�1,
we have j0 ¤ 0, since aiaj lies in M 1

� . Now since j0 ¤ 0, we have j C .p� 1/D

.�; 0; : : : /. Thus the sum of the p ’s digits of i � .p � 1/ and j C .p � 1/ cannot
exceed p � 1. On the other hand, from Remark 3.3, this sum equals D1C .p � 1/,
contradicting our hypothesis that D1 ¤ 0.

Proof of Theorem 6.1 Suppose D1¤ 0, and consider the nonzero P1 –link that aiaj

lies in, v.I;D0;pl CD1/, necessarily of at least two terms since D0 < p .

Case 1 v.I;D0;plCD1/ includes the monomial aiC.p�1/aj�.p�1/ , necessarily live
since j � p2 . Since x lies in ker Ppn

as well as ker P1 , aiC.p�1/aj�.p�1/ also ap-
pears in a Pp –link. Since aiC.p�1/aj�.p�1/ is not the right end of v.I;D0;plCD1/,
by Lemma 6.4 it is not the left end of its Pp –link. Thus its Pp –link must contain
aiC.p�1/Cp.p�1/aj�.p�1/�p.p�1/ , which is live since j � p2 .

Clearly aiC.p�1/Cp.p�1/aj�.p�1/�p.p�1/ appears in v.IC.p�1/;D0;plCD1/ in
the same relative position that aiC.p�1/aj�.p�1/ does in v.I;D0;pl CD1/. Hence
aiCp.p�1/aj�p.p�1/ also appears in v.I C .p � 1/;D0;pl CD1/. We now apply
Lemma 6.2, obtaining the desired contradiction to the supposition D1 6D 0.

Case 2 The P1 –link does not include the monomial aiC.p�1/aj�.p�1/ . In this case,
the P1 link that aiaj lies in contains a monomial to the right of aiaj , so we can
replace aiaj by the monomial ai�.p�1/ajC.p�1/ (provided this monomial is nonzero)
and make the argument exactly as above. If the monomial ai�.p�1/ajC.p�1/ is zero,
we must have i < p . Thus i D .i0; 0; 0; : : : / and j D .j0; j1; : : : /, and so, since aiaj

was hypothesized to be of Type 1 for Pp , we have D1C p � 1 D 0C j1 � p � 1,
whence again D1 D 0.

Theorem 6.5 Consider a degree p2Cp� 1� � � 2p2� 1 that is of the form

� D p2
CD1pCD0� 2; 1�D0;D1 � p� 1:

Suppose a monomial aiaj appears in the symmetric expression of an element of
ker P1 \ ker Pp . Then i; j < p2 . Hence ker P1 \ ker Pp is spanned by those P1 –
links, all of whose nonzero monomials have both indices less than p2 .
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Proof Suppose a monomial aiaj appears in the symmetric expression of an element
of ker P1 \ ker Pp , and assume without loss of generality that i � j , and j � p2 .
We apply Theorem 6.1 with l D 1 to show D1 D 0, a contradiction.

We can now prove Theorem 1.2.

Proof of Theorem 1.2 Consider a P1 –link in degree � . By the previous theorem, the
smallest possible second index of a monomial in this link is of the form .D1C q/pC

.p � 1/ for some q � 0, and the largest second index of this link is .D1 C q/p C

.p� 1/C .p�D0/.p� 1/. We must also have this index less than p2 . Solving the
inequality

.D1C q/pC .p� 1/C .p�D0/.p� 1/� p2
� 1;

for q , we obtain q �D0�D1�1. The number of links is thus D0�D1 . The theorem
follows by using Remark 3.11 to see when these links double up or cancel out, and
noting that in this range of degrees the primitives are exactly ker P1\ ker Pp .

7 The stable range

We assume � � 2p2�1 with �Dp2lCD1pCD0�2, 1�D0�p�1, 0�D1�p�1

and l � 2. First we see why the primitives all lie in degrees where D1 D 0.

Theorem 7.1 Consider a degree � � 2p2� 1 that is of the form

� D p2l CD1pCD0� 2; 1�D0;D1 � p� 1:

Then ker P1\ ker Pp D 0. Hence there are no primitives in degree � .

Proof Suppose a live monomial aiaj appears in the symmetric expression of an
element of ker P1\ ker Pp , and assume without loss of generality that i � j . Hence
j � �=2� p2 . We apply Theorem 6.1 to show D1 D 0, a contradiction.

Remark 7.2 When D1 D 0, all monomials are of Type 1 for Pp .

Lemma 7.3 If � D p2l CD0 � 2, 1 � D0 � p � 1, l � 2, then any P1 –link in
which the terms aiaj and aiC.p�1/aj�.p�1/ appear has at least one of these two also
appearing in a Pp –link that has a monomial (not necessarily live) with greater first
index, and at least one of these two appearing in a Pp –link that has a monomial (not
necessarily live) with smaller first index.
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Proof Note first that i1 C j1 D p � 1 by Remark 3.3. Note next that i0 ¤ 0 and
j0 ¤ p� 1 since aiC.p�1/aj�.p�1/ is not the right end of its P1 –link.

If neither i1 nor j1 is p � 1, then the Pp –link of which aiaj is a summand has
monomial summands with both larger and smaller first indices, by Remark 3.12.

Otherwise, if i1 D p�1, then j1 D 0 and the p ’s–digit of iC .p�1/ is 0, hence the
Pp –link of which aiaj is a summand has a monomial summand with larger first index
and the Pp –link of which aiC.p�1/aj�.p�1/ is a summand has a monomial summand
with smaller first index.

Finally, if j1 D p � 1, then the p ’s digit of j � .p � 1/ is p � 2 and i1 D 0, so
the Pp –link of which aiC.p�1/aj�.p�1/ is a summand has a monomial summand
with larger first index and the Pp –link of which aiaj is a summand has a monomial
summand with smaller first index.

Corollary 7.4 As a consequence, if � � 2p2 � 1 is of the form � D p2l CD0 � 2,
with 1�D0 � p� 1 and l � 2, then ker P1\ ker Pp is spanned by the set

fx.c;D0; l/ j 0� c � p� 2g;

together with ap2l�1aD0�1 .

Proof First, the elements x.c;D0; l/ are all in ker P1 \ ker Pp , as one sees from
the equality of the coefficients M and N on the v ’s in the proof of Lemma 6.2. The
rigidity explained in the proof of Theorem 3.5 dictates that ker P1\ker Pp is spanned
by a set of minimal nonoverlapping sums of monomials. The lemma above ensures
that each x is minimal, except when the formula has a v with just one live monomial
ap2l�1aD0�1 (or its twin), to which the lemma does not apply. This monomial is a
separate spanning element of ker P1 \ ker Pp , but we may also still leave it in the
formula of its x as a convenience. Every Type 1 monomial for P1 appears in one of
the x ’s, so the listed formulas span.

Not all of the elements x.c;D0; l/ in the spanning set given in the previous corollary
are nonzero, nor are they all distinct. We now proceed to determine a basis for
ker P1\ ker Pp in the degrees of the corollary.

Since both the entries in LAB.c;D0; l/ vary through all the integers mod .p�1/, we see
that if LAB.c;D0; l/ has two elements, there exists a c1¤ c such that LAB.c;D0; l/D

LAB.c1;D0; l/ and x.c;D0; l/ is a unit multiple of x.c1;D0; l/. Hence we may
choose exactly one of these as a basis element for ker P1\ ker Pp .
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Alternatively, if LAB.c;D0; l/ consists of a single element, then we have cCD0�1�

l � c � 1 mod .p � 1/. In this case, � must be even, since if l �D0 is odd, this
congruence has no solution. With l�D0 even, there are two solutions, c� .l�D0/=2

and c � .l �D0C .p � 1//=2 mod .p � 1/, with different labels. For one of these,
there will be a single symmetric v in the formula for x ; in the other the v ’s all match
in twin pairs. Whether or not these cancel or double up depends as in Remark 3.11 on
whether the final coefficient in each v is 1 or �1. So if D0 is even, both values of c

give x.c;D0; l/D 0, while for D0 odd, each of these values of c gives us a distinct
basis element for ker P1\ ker Pp .

This gives us our desired basis for ker P1 \ ker Pp in all degrees of the form � D

p2l CD0� 2, 1�D0 � p� 1, l � 2. The next theorem determines the primitives in
these degrees.

Theorem 7.5 Let m� 2 and pm�1� � � pmC1�3, where � D p2lCD0�2; 1�

D0 � p� 1; l � 2. Under these hypotheses, M� has primitive elements if and only if
� is of the form � DDmpmCD0� 2 for some 1�D0;Dm � p� 1. Conversely, if
� DDmpmCD0� 2 for some 1�D0;Dm � p� 1, then S� D ker P1\ ker Pp .

Proof Let 2�n<m. Inductively suppose that if a nonzero linear combination of basis
elements from ker P1\ker Pp is in ker P1\� � �\ker Ppn�1

, then � D qpnCD0�2

for some q � 1, and 1 �D0 � p � 1. Furthermore assume that if � is of this form,
that ker P1\ � � � \ ker Ppn�1

D ker P1\ ker Pp .

Now, to prove the inductive step, we consider Ppn

on an element of ker P1\ ker Pp .

Assume that a nonzero linear combination of basis elements for ker P1 \ ker Pp is
in ker P1\ � � � \ ker Ppn�1

, equivalently by our inductive hypothesis, that � has the
form above. Let x.c;D0; l/ be any of these basis elements. Since � � pnC1� 1, this
element is in M n

� , by Corollary 3.8. Write

RD p.cC r.p� 1/C 1/� .p� 1/kCD0� 2:

Applying Ppn

to the element x.c;D0; l/, we obtain

X
r

p�D0C1X
kD1

�
kCD0� 2

D0� 1

���
R�pn.p� 1/

pn

�
aR�pn.p�1/a��R

C

�
� �R�pn.p� 1/

pn

�
aRa��R�pn.p�1/

�
:

We note, by examining the subscripts mod .p � 1/ in this expression, that they are
just those of LAB.c;D0; l/, so, since the basis elements have distinct labels, the linear
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combination lies in ker Ppn

if and only if the individual elements x.c;D0; l/ lie in
ker P1\ � � � \ ker Ppn

. Re-indexing the first of the bracketed terms, we get

p�D0C1X
kD1

�
kCD0� 2

D0� 1

�X
r

��
R

pn

�
C

�
� �R�pn.p� 1/

pn

��
aRa��R�pn.p�1/:

For the x.c;D0; l/ to be in ker Ppn

, it is necessary and sufficient that for all such R,
the sum �

R

pn

�
C

�
� �R�pn.p� 1/

pn

�
is zero.

Case 1 Assume that D0 D 1, so that � D .p� 1; : : : ;p� 1; �n;�;�; : : : /. Then�
� �R�pn.p� 1/

pn

�
D �nC 1�Rn;

so the sum �
R

pn

�
C

�
� �R�pn.p� 1/

pn

�
D �nC 1;

and hence will be zero for all such R if and only if �n D p � 1, ie, if and only if
� D q1pnC1� 1 for some q1 � 1.

Case 2 Assume that D0 � 2, so that � D .D0 � 2; 0; : : : ; �n;�;�; : : : /. Here, from
the form of R above, and since k � p�D0C 1, we have

R0 DD0C k � 2>D0� 2D �0;

and get �
� �R�pn.p� 1/

pn

�
D �n�Rn;

whence �
R

pn

�
C

�
� �R�pn.p� 1/

pn

�
D �n;

and so we are in ker Ppn

if and only if �nD 0, ie, if and only if � D q1pnC1CD0�2

for some q1 � 1. This accomplishes the inductive step.

Finally, note that if nDm�1, since � � pmC1�2 we have 1� q1 � p�1, so taking
q D q1 completes the proof.
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