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The axioms for n–angulated categories

PETTER ANDREAS BERGH

MARIUS THAULE

We discuss the axioms for an n–angulated category, recently introduced by Geiss,
Keller and Oppermann in [1]. In particular, we introduce a higher “octahedral axiom”,
and show that it is equivalent to the mapping cone axiom for an n–angulated category.
For a triangulated category, the mapping cone axiom, our octahedral axiom and the
classical octahedral axiom are all equivalent.
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1 Introduction

Triangulated categories were introduced independently in algebraic geometry by
Verdier [7; 8], based on ideas of Grothendieck, and in algebraic topology by Puppe [6].
These constructions have since played a crucial role in representation theory, algebraic
geometry, commutative algebra, algebraic topology and other areas of mathematics
(and even theoretical physics). Recently, Geiss, Keller and Oppermann introduced
in [1] a new type of categories, called n–angulated categories, which generalize
triangulated categories: the classical triangulated categories are the special case nD 3.
These categories appear for instance when considering certain .n� 2/–cluster tilting
subcategories of triangulated categories. Conversely, certain n–angulated Calabi–Yau
categories yield triangulated Calabi–Yau categories of higher Calabi–Yau dimension.

The four axioms for n–angulated categories are generalizations of the axioms for
triangulated categories. In this paper, we discuss these axioms, inspired by works of
Neeman [4; 5]. First, we show that the first two of the original axioms can be replaced
by two alternative axioms. One of these alternative axioms requires that the collection
of n–angles be closed under so-called weak isomorphisms, but not under direct sums
and summands. The other axiom requires that the collection of n–angles be closed
only under left rotations, but not right rotations. Second, we discuss the axioms that
enable us to complete certain diagrams to morphisms of n–angles. The last of these
axioms says that we can complete diagrams to morphisms of n–angles in such a way
that the mapping cone is itself an n–angle. For triangulated categories (that is, when
nD 3), this axiom is equivalent to the octahedral axiom, which was one of Verdier’s
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2406 P A Bergh and M Thaule

original axioms. We show that this generalizes to n–angulated categories. Namely,
we introduce a higher “octahedral axiom” for n–angulated categories, and show that
this is equivalent to the mapping cone axiom. For n D 3, that is, for triangulated
categories, our new axiom is almost the same as the classical octahedral axiom. In fact,
it is apparently a bit weaker, but we show that they are equivalent. Therefore, for a
triangulated category, the mapping cone axiom, our octahedral axiom and the classical
octahedral axiom are all equivalent.

This paper is organized as follows. In Section 2, we recall the definition of n–angulated
categories from [1], and in Section 3, we discuss the first two axioms. Finally, in
Section 4, we introduce the higher octahedral axiom and prove our main theorem.

2 The axioms for n–angulated categories

Throughout Sections 2–4, we fix an additive category C with an automorphism
†W C! C , and an integer n greater than or equal to three. In this section, we recall
the set of axioms for n–angulated categories as described in [1].

A sequence of objects and morphisms in C of the form

A1

˛1
�!A2

˛2
�! � � �

˛n�1
���!An

˛n
�!†A1

is called an n–†–sequence; we shall frequently denote such sequences by A�;B� etc.
The n–†–sequence A� is exact if the induced sequence

� � � ! HomC.B;A1/
.˛1/�
���! HomC.B;A2/

.˛2/�
���! � � �

� � �
.˛n�1/�
�����! HomC.B;An/

.˛n/�
����! HomC.B; †A1/! � � �

of abelian groups is exact for every object B 2 C . The left and right rotations of A�
are the two n–†–sequences

A2

˛2
�!A3

˛3
�! � � �

˛n
�!†A1

.�1/n†˛1
�������!†A2;

†�1An

.�1/n†�1˛n
���������!A1

˛1
�! � � �

˛n�2
���!An�1

˛n�1
���!An;

respectively, and a trivial n–†–sequence is a sequence of the form

A
1
�!A! 0! � � � ! 0!†A

or any of its rotations.
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The axioms for n–angulated categories 2407

A morphism A�
'
�! B� of n–†–sequences is a sequence ' D .'1; '2; : : : ; 'n/ of

morphisms in C such that the diagram

A1 A2 A3 � � � An †A1

B1 B2 B3 � � � Bn †B1

'1 '2 '3 'n †'1

˛1 ˛2 ˛3 ˛n�1 ˛n

ˇ1 ˇ2 ˇ3 ˇn�1 ˇn

commutes. It is an isomorphism if '1; '2; : : : ; 'n are all isomorphisms in C , and
a weak isomorphism if 'i and 'iC1 are isomorphisms for some 1 � i � n (with
'nC1 WD†'1 ). Note that the composition of two weak isomorphisms need not be a
weak isomorphism. Also, note that if two n–†–sequences A� and B� are weakly
isomorphic through a weak isomorphism A�

'
�!B� , then there does not necessarily

exist a weak isomorphism B�!A� in the opposite direction.

Let N be a collection of n–†–sequences in C . Then the pair .C;N/ is a pre–n–
angulated category if N satisfies the following three axioms:

(N1) (a) N is closed under direct sums, direct summands and isomorphisms of
n–†–sequences;

(b) for all A 2 C , the trivial n–†–sequence

A
1
�!A! 0! � � � ! 0!†A

belongs to N;
(c) for each morphism ˛W A1!A2 in C , there exists an n–†–sequence in

N whose first morphism is ˛ ;

(N2) an n–†–sequence belongs to N if and only if its left rotation belongs to N;

(N3) each commutative diagram

A1 A2 A3 � � � An †A1

B1 B2 B3 � � � Bn †B1

'3 'n'1 '2 †'1

˛1 ˛2 ˛3 ˛n�1 ˛n

ˇ1 ˇ2 ˇ3 ˇn�1 ˇn

with rows in N can be completed to a morphism of n–†–sequences.

In this case, the collection N is a pre–n–angulation of the category C (relative to the
automorphism †), and the n–†–sequences in N are n–angles. If, in addition, the
collection N satisfies the following axiom, then it is an n–angulation of C , and the
category is n–angulated:
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(N4) in the situation of (N3), the morphisms '3; '4; : : : ; 'n can be chosen such that
the mapping cone

A2˚B1

h
�˛2 0
'2 ˇ1

i
�������!A3˚B2

h
�˛3 0
'3 ˇ2

i
�������! � � �

� � �

h
�˛n 0
'n ˇn�1

i
���������!†A1˚Bn

h
�†˛1 0
†'1 ˇn

i
���������!†A2˚†B1

belongs to N.

Note that in [1], it was not explicitly assumed that N be closed under isomorphisms, but
it follows implicitly from closure under direct sums. Since closure under isomorphisms
is a crucial part of many of our proofs, we have included it as a part of axiom (a). Note
also that by [1, Proposition 1.5], every n–angle in a pre–n–angulated category is exact.
Consequently, the composition of two consecutive morphisms in an n–angle is zero.

3 Axioms (N1) and (N2)

In this section, we discuss the first two defining axioms (N1) and (N2) for pre–n–
angulated categories. It turns out that we may replace these axioms by the following
ones:

(N1*) (a) if A�
'
�!B� is a weak isomorphism of exact n–†–sequences with A� 2N,

then B� belongs to N;
(b) for all A 2 C , the trivial n–†–sequence

A
1
�!A! 0! � � � ! 0!†A

belongs to N;
(c) for each morphism ˛W A1!A2 in C , there exists an n–†–sequence in

N whose first morphism is ˛ ;

(N2*) the left rotation of every n–†–sequence in N also belongs to N.

In axiom (N1*), we do not require that N be closed under direct sums and summands.
However, we do require that N be closed under weak isomorphisms (in one direction),
and this is stronger than requiring that N be closed under isomorphisms. In axiom
(N2*), we only require that N be closed under left rotations. This is sometimes done
when considering triangulated categories, cf Keller and Vossieck [3].
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Because of the new axiom (a), the exact n–†–sequences play an important role in the
proofs to come. We therefore need to determine which properties a collection N of
n–†–sequences must satisfy in order for all its elements to be exact. We do this in the
following result.

Lemma 3.1 If N is a collection of n–†–sequences satisfying the axioms (b), (N2*)
and (N3), then all the elements in N are exact.

Proof Let

A�W A1 A2 � � � An †A1

˛1 ˛2 ˛n�1 ˛n

be an n–†–sequence in N, and pick an integer 1� j � n. In the diagram

Aj Aj 0 � � � 0 †Aj

Aj AjC1 AjC2 � � � †Aj�1 †Aj

j̨

1

j̨ j̨C1 j̨C2 .�1/n† j̨�2 .�1/n† j̨�1

the two rows both belong to N: the top row by (b), and the bottom row by (re-
peated use of) (N2*). Here we have made the conventions ˛�1 D .�1/n†˛n�1; ˛0 D

.�1/n†˛n; ˛nC1 D .�1/n†˛1; ˛nC2 D .�1/n†˛2 . By (N3), we can complete the
diagram to a morphism of n–†–sequences, hence the compositions

˛2 ı˛1; ˛3 ı˛2; : : : ; ˛n ı˛n�1; .†˛1/ ı˛n

are all zero.

For objects X;Y 2 C , denote the abelian group HomC.X;Y / by .X;Y /. Since all the
possible compositions of morphisms from A� are zero, the doubly infinite sequence

� � � ! .B; †i�1An/
.†i�1˛n/�
�������! .B; †iA1/

.†i˛1/�
�����! � � �

� � �
.†i˛n�1/�
�������! .B; †iAn/

.†i˛n/�
�����! .B; †iC1A1/! � � �

of abelian groups and maps is a complex for every object B 2 C . Now pick an
integer 1� i � n, and let f be an element in Ker.†i

j̨ /� . Then f is a morphism in
HomC.B; †

iAj / with .†i
j̨ / ıf D 0. Applying the automorphism †�i , we obtain

j̨ ı .†
�if /D 0, where †�if is a morphism in HomC.†

�iB;Aj /. Now consider
the diagram
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2410 P A Bergh and M Thaule

†�iB 0 � � � †1�iB †1�iB

Aj AjC1 � � � †Aj�1 †Aj

g†�if †1�if

.�1/n

j̨ j̨C1 .�1/n† j̨�2 .�1/n† j̨�1

in which the two rows belong to N by (b) and (repeated use of) (N2*). By (N3), we
can complete this diagram to a morphism of n–†–sequences, and in particular we
obtain a morphism g 2 HomC.†

1�iB; †Aj�1/ with

.† j̨�1/ ıg D†1�if:

Applying the automorphism †i�1 gives

f D .†i
j̨�1/ ı .†

i�1g/;

hence f 2 Im.†i
j̨�1/� . This shows that the complex is exact, and so A� is an exact

n–†–sequence.

We may now prove that axiom (N1) can be replaced with axiom (N1*).

Theorem 3.2 If N is a collection of n–†–sequences satisfying the axioms (N2) and
(N3), then the following are equivalent:

(1) N satisfies (N1);

(2) N satisfies (N1*).

Proof The implication (1) ) (2) is part of [1, Lemma 1.4], hence we must prove
that (1) follows from (2), ie that N satisfies (a) whenever it satisfies (N1*). Suppose
therefore that N satisfies (N1*).

Since the collection N satisfies the axioms (b), (N2) and (N3), the n–†–sequences
in N are exact by Lemma 3.1. Now let A� and B� be isomorphic n–†–sequences,
with A� in N. Then A� is exact, and so B� must also be exact since it is isomorphic
to A� . Since A� and B� are trivially weakly isomorphic through an isomorphism
A� ! B� , the n–†–sequence B� also belongs to N. This shows that N is closed
under isomorphisms.

Next, we show that N is closed under direct sums. Given two n–†–sequences

A�W

B�W

A1 A2 � � � An †A1 ,

B1 B2 � � � Bn †B1 ,

˛1 ˛2 ˛n�1 ˛n

ˇ1 ˇ2 ˇn�1 ˇn
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in N, the direct sum A�˚B� is exact, since each of the sequences is exact by the
above. Now use (c) to complete the first morphism in A�˚B� to an n–†–sequence

A1˚B1

h
˛1 0
0 ˇ1

i
������!A2˚B2

2
�! C3

3
�! � � �

n�1
���! Cn

n
�!†A1˚†B1

in N. By (N3), the two commutative diagrams

A1˚B1 A2˚B2 C3 � � � Cn †A1˚†B1

A1 A2 A3 � � � An †A1,

'3 'n

�
1 0

� �
1 0

� �
1 0

�

�
˛1 0

0 ˇ1

�
2 3 n�1 n

˛1 ˛2 ˛3 ˛n�1 ˛n

A1˚B1 A2˚B2 C3 � � � Cn †A1˚†B1

B1 B2 B3 � � � Bn †B1,

 3  n

�
0 1

� �
0 1

� �
0 1

�

�
˛1 0

0 ˇ1

�
2 3 n�1 n

ˇ1 ˇ2 ˇ3 ˇn�1 ˇn

can be completed to morphisms of n–†–sequences, since the sequences involved are
all in N. This gives a weak isomorphism

A1˚B1 A2˚B2 C3 � � �

� � � Cn †A1˚†B1

A1˚B1 A2˚B2 A3˚B3 � � �

� � � An˚Bn †A1˚†B1

�
'3

 3

�

�
'n

 n

�

�
˛1 0

0 ˇ1

�
2 3

n�1 n

�
˛1 0

0 ˇ1

� �
˛2 0

0 ˇ2

� �
˛3 0

0 ˇ3

�

�
˛n�1 0

0 ˇn�1

� �
˛n 0

0 ˇn

�

of n–†–sequences. The top sequence belongs to N and is therefore exact, whereas the
bottom sequence A�˚B� is also exact. From (a) we conclude that A�˚B� belongs
to N.
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Finally, we show that N is closed under direct summands. Suppose therefore that A�
and B� are n–†–sequences as above, that B� belongs to N (hence B� is exact), and
that A� is a direct summand of B� . Then there exists a diagram

A1 A2 A3 � � � An †A1

B1 B2 B3 � � � Bn †B1

A1 A2 A3 � � � An †A1

'1 '2 '3 'n †'1

 1  2  3  n † 1

˛1 ˛2 ˛3 ˛n�1 ˛n

ˇ1 ˇ2 ˇ3 ˇn�1 ˇn

˛1 ˛2 ˛3 ˛n�1 ˛n

of morphisms A�
'
�! B� and B�

 
�! A� of n–†–sequences, with  i ı 'i D 1Ai

for
all i . For every object Z in C , the sequence HomC.Z;A�/ of abelian groups and
maps is a direct summand of the exact sequence HomC.Z;B�/, and is therefore itself
exact. Consequently, the n–†–sequence A� is exact. Now use (c) to complete the
first morphism in A� to an n–†–sequence

D�W A1 A2 D3 � � � Dn †A1

˛1 ı2 ı3 ın�1 ın

in N (in particular, D� is exact). Using this sequence, we can obtain a diagram

A1 A2 D3 � � � Dn †A1

B1 B2 B3 � � � Bn †B1

A1 A2 A3 � � � An †A1

�3 �n'1 '2 †'1

 1  2  3  n † 1

˛1 ı2 ı3 ın�1 ın

ˇ1 ˇ2 ˇ3 ˇn�1 ˇn

˛1 ˛2 ˛3 ˛n�1 ˛n

whose rows are D� , B� and A� . The top half of this diagram is a morphism
� W D� ! B� , which we obtain from (N3), whereas the lower half is the morphism
 W B�! A� . Moreover, the composition  ı � W D�! A� is a weak isomorphism,
since  1ı'1D 1A1

and  2ı'2D 1A2
. Since both D� and A� are exact, and D� 2N,

the sequence A� belongs to N by (a). This shows that the collection N is closed under
direct summands. We have now proved that N is closed under isomorphisms, direct
sums and direct summands, which is axiom (a).
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Next, we study the rotation axiom (N2). The following result shows that when we
replace (N1) with (N1*), then we can also replace (N2) with the weaker version (N2*).
In other words, in the rotation axiom we only need to require that the left rotation of
an n–† sequence in N also belongs to N.

Theorem 3.3 If N is a collection of n–†–sequences satisfying the axioms (N1*) and
(N3), then the following are equivalent:

(1) N satisfies (N2);
(2) N satisfies (N2*).

Proof The implication (1) ) (2) is trivial. Thus assume N satisfies (N2*), and let

A�W A1 A2 � � � An †A1

˛1 ˛2 ˛n�1 ˛n

be an n–†–sequence in N. By repeatedly applying (N2*), we obtain the n–†–
sequence

An †A1 � � � †An�1 †An

˛n .�1/n†˛1 .�1/n†˛n�2 .�1/n†˛n�1

in N. Now use (c) to complete the morphism †�1An

.�1/n†�1˛n
���������! A1 to an n–†–

sequence

†�1An A1 B3 � � � Bn An

.�1/n†�1˛n ˇ2 ˇ3 ˇn�1 ˇn

in N. By repeated use of (N2*), we obtain the n–†–sequence

An †A1 †B3 � � � †Bn †An

˛n .�1/n†ˇ2 .�1/n†ˇ3 .�1/n†ˇn�1 .�1/n†ˇn

in N. By (N3), we may complete the diagram

An †A1 †B3 � � �

� � � †Bn †An

An †A1 †A2 � � �

� � � †An�1 †An

'3

'n

˛n .�1/n†ˇ2 .�1/n†ˇ3

.�1/n†ˇn�1 .�1/n†ˇn

˛n .�1/n†˛1 .�1/n†˛2

.�1/n†˛n�2 .�1/n†˛n�1
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and obtain a morphism of n–†–sequences. By applying the automorphism †�1 to
the rows, and multiplying the maps with .�1/n , we obtain a weak isomorphism

†�1An A1 B3 � � � Bn An

†�1An A1 A2 � � � An�1 An

.�1/n†�1˛n ˇ2 ˇ3 ˇn�1 ˇn

.�1/n†�1˛n ˛1 ˛2 ˛n�2 ˛n�1

†�1'3 †�1'n

of n–†–sequences. The top row belongs to N and is therefore exact by Lemma 3.1,
whereas the bottom row is the right rotation of A� . Since A� is exact, so is its right
rotation, and from (a) we conclude that this right rotation also belongs to N.

Collecting the results in this section gives the following.

Theorem 3.4 For a collection N of n–†–sequences, the following are equivalent:

(1) N satisfies (N1), (N2) and (N3);

(2) N satisfies (N1*), (N2) and (N3);

(3) N satisfies (N1*), (N2*) and (N3).

4 Axiom (N4)

For triangulated categories, it is a well known fact that Verdier’s original octahedral
axiom has several equivalent representations; see eg Holm and Jørgensen [2] for a
discussion. It is natural to ask whether this also holds true for general n–angulated
categories. We prove in this section that it does: we introduce a higher “octahedral
axiom” (N4*) for n–angulated categories, and show that it is equivalent to axiom (N4).

What is the essence of the classical octahedral axiom for triangulated categories? It
starts with three given triangles

A1!A2!A3!†A1;

A1! B2! B3!†A1;

A2! B2! C3!†A2;

that are connected, in that each pair of triangles share a common object. The axiom
then guarantees the existence of two new morphisms, and from these new morphisms
we obtain three things:
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(1) a morphism of triangles;

(2) a new triangle, whose objects are objects in the three original triangles;

(3) commutativity relations between morphisms.

The reason why the axiom is called the “octahedral axiom” is that everything fits into
an octahedron whose vertices are the objects, and where the edges are the morphisms.

The essence of the higher octahedral axiom for n–angulated categories that we now
introduce is exactly the same. It starts with three given n–angles, and guarantees the
existence of 3n�7 new morphisms. From these new morphisms we obtain a morphism
of n–angles, a new n–angle and a certain commutativity relation between morphisms.

(N4*) Given a commutative diagram

A1 A2 A3 � � � An�1 An †A1

A1 B2 B3 � � � Bn�1 Bn †A1

C3

:::

Cn�1

Cn

†A2

'2

2

3

n�2

n�1

n

˛1 ˛2 ˛3 ˛n�2 ˛n�1 ˛n

ˇ1 ˇ2 ˇ3 ˇn�2 ˇn�1 ˇn

whose top rows and second column are n–angles, there exist 3n�7 morphisms

Ai

'i
�! Bi .3� i � n/;

Ai

 i
�! Ci�1 .4� i � n/;

Bi
�i
�! Ci .3� i � n/;

with the following two properties:

(a) the sequence .1; '2; '3; : : : ; 'n/ is a morphism of n–angles;
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2416 P A Bergh and M Thaule

(b) the n–†–sequence

A3

h
˛3
'3

i
����!A4˚B3

�
�˛4 0
'4 �ˇ3

 4 �3

�
���������!A5˚B4˚C3

�2
��!A6˚B5˚C4

�3
��! � � �

� � �
�n�4
���!An˚Bn�1˚Cn�2

�
�! Bn˚Cn�1

Œ �n n�1 �
�������! Cn

†˛2ın
�����!†A3

is an n–angle where �i and � are the matrices

�i D

24 �˛iC3 0 0

.�1/iC1'iC3 �ˇiC2 0

 iC3 �iC2 iC1

35 ; �D

�
.�1/n'n �ˇn�1 0

 n �n�1 n�2

�
;

and n ı �n D†˛1 ıˇn .

For small values of n, objects Ai ;Bi ;Ci with i > n appearing in the axiom should be
interpreted as zero objects (and so should objects Ci with i < 3). Specifically, when
nD 3, that is, when C is a triangulated category, the triangle in (b) becomes

A3

'3
�! B3

�3
�! C3

†˛2ı3
�����!†A3

and for nD 4, the 4–angle in (b) becomes

A3

h
˛3
'3

i
����!A4˚B3

h
'4 �ˇ3

 4 �3

i
�������! B4˚C3

Œ �4 3 �
�����! C4

†˛2ı4
�����!†A3:

Our aim is to prove that axiom (N4) may be replaced by the new axiom (N4*). In other
words, we shall prove that if our category C is pretriangulated (that is, C satisfies (N1),
(N2) and (N3)), then it satisfies (N4) if and only if it satisfies (N4*). In order to prove
this, we need the following lemma.

Lemma 4.1 Suppose C is n–angulated, and let

A1 A2 A3 � � � An †A1

A1 B2 B3 � � � Bn †A1

'2

˛1 ˛2 ˛3 ˛n�1 ˛n

ˇ1 ˇ2 ˇ3 ˇn�1 ˇn

be a commutative diagram whose rows are n–angles. Apply axiom (N4) and complete
the diagram to a morphism
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A1 A2 A3 � � � An †A1

A1 B2 B3 � � � Bn †A1

'3 'n'2

˛1 ˛2 ˛3 ˛n�1 ˛n

ˇ1 ˇ2 ˇ3 ˇn�1 ˇn

of n–angles, in such a way that the mapping cone is also an n–angle. Then the
n–†–sequence

A2

h
�˛2
'2

i
�����!A3˚B2

h
˛3 0
'3 ˇ2

i
������!A4˚B3

h
˛4 0
�'4 ˇ3

i
�������! � � �

� � �

h
˛n�1 0

.�1/n'n�1 ˇn�2

i
��������������!An˚Bn�1

Œ .�1/nC1'n ˇn�1 �
�������������! Bn

†˛1ıˇn
�����!†A2

is an n–angle.

Proof The mapping cone is the middle n–†–sequence in the direct sum diagram

A2 A3˚B2 � � �

� � � An˚Bn�1 Bn †A2

A2˚A1 A3˚B2 � � �

� � � An˚Bn�1 †A1˚Bn †A2˚†A1

A2 A3˚B2 � � �

� � � An˚Bn�1 Bn †A2 .

�
1
0

� �
1 0
0 1

�

�
.�1/nC1 0

0 1

� �
�ˇn

1

� �
1
0

�

�
1 ˛1

� �
1 0
0 1

�

�
.�1/nC1 0

0 1

� �
0 1

� �
1 †˛1

�

�
�˛2

'2

� �
˛3 0
'3 ˇ2

�

�
˛n�1 0

.�1/n'n�1 ˇn�2

� �
.�1/nC1'n ˇn�1

�
†˛1 ıˇn

�
�˛2 0
'2 ˇ1

� �
�˛3 0
'3 ˇ2

�

�
�˛n�1 0
'n�1 ˇn�2

� �
�˛n 0
'n ˇn�1

� �
�†˛1 0

1 ˇn

�

�
�˛2

'2

� �
˛3 0
'3 ˇ2

�

�
˛n�1 0

.�1/n'n�1 ˇn�2

� �
.�1/nC1'n ˇn�1

�
†˛1 ıˇn

Therefore, by axiom (a), the top (bottom) row is also an n–angle.
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Now we prove that axioms (N4) and (N4*) are equivalent. We do this in two steps,
showing first that axiom (N4) implies axiom (N4*).

Theorem 4.2 If N is a collection of n–†–sequences in C satisfying axioms (N1),
(N2), (N3) and (N4), then it also satisfies (N4*).

Proof Suppose we are given a commutative diagram

A1 A2 A3 � � � An�1 An †A1

A1 B2 B3 � � � Bn�1 Bn †A1

'2

˛1 ˛2 ˛3 ˛n�2 ˛n�1 ˛n

ˇ1 ˇ2 ˇ3 ˇn�2 ˇn�1 ˇn

where the two rows are n–angles, and in addition an n–angle

A2

'2
�! B2

2
�! C3

3
�! � � �

n�1
���! Cn

n
�!†A2:

Apply axiom (N4) and complete the given diagram to a morphism .1; '2; '3; : : : ; 'n/

of n–angles, in such a way that the mapping cone is an n–angle. Then the first part of
axiom (N4*) is already satisfied.

By Lemma 4.1, the n–†–sequence

A2

h
�˛2
'2

i
�����!A3˚B2

h
˛3 0
'3 ˇ2

i
������!A4˚B3

h
˛4 0
�'4 ˇ3

i
�������! � � �

� � �

h
˛n�1 0

.�1/n'n�1 ˇn�2

i
��������������!An˚Bn�1

Œ .�1/nC1'n ˇn�1 �
�������������! Bn

†˛1ıˇn
�����!†A2

is an n–angle. Then by axiom (N4) again, we have that there exist morphisms
 i W Ai! Ci�1 .4� i � n/ and �i W Bi! Ci .3� i � n/ such that the mapping cone
of the morphism

A2 A3˚B2 A4˚B3 � � �

� � � An˚Bn�1 Bn †A2

A2 B2 C3 � � �

� � � Cn�1 Cn †A2

�
0 1

� �
 4 �3

�

�
 n �n�1

�
�n

�
�˛2

'2

� �
˛3 0

'3 ˇ2

� �
˛4 0

�'4 ˇ3

�

�
˛n�1 0

.�1/n'n�1 ˇn�2

� �
.�1/nC1'n ˇn�1

�
†˛1 ıˇn

'2 2 3

n�2 n�1 n
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is an n–angle. In other words, the n–†–sequence

A3˚B2˚A2

�
�˛3 0 0
�'3 �ˇ2 0

0 1 '2

�
�����������!A4˚B3˚B2

�1
��!A5˚B4˚C3

�2
��! � � �

� � �
�n�4
���!An˚Bn�1˚Cn�2

�
�! Bn˚Cn�1 � � �

h
�†˛1ıˇn 0

�n n�1

i
�������������!†A2˚Cn�
†˛2 0
�†'2 0

1 n

�
���������!†A3˚†B2˚†A2

is an n–angle, where �i and � are the matrices

�i D

24 �˛iC3 0 0

.�1/iC1'iC3 �ˇiC2 0

 iC3 �iC2 iC1

35 ; �D

�
.�1/n'n �ˇn�1 0

 n �n�1 n�2

�
:

This n–angle is the middle n–†–sequence in the direct sum diagram shown in Figure 1.
Note that since the composition of the last two morphisms in the middle n–angle is
zero, the equality

n ı �n D†˛1 ıˇn

holds, and this in turn implies the commutativity of the square �. Consequently, by (a),
the top (bottom) n–†–sequence is an n–angle. This shows that the second part of
axiom (N4*) is satisfied.

We now prove the converse to Theorem 4.2, namely that the octahedral axiom (N4*)
implies axiom (N4).

Theorem 4.3 If N is a collection of n–†–sequences in C satisfying axioms (N1),
(N2), (N3) and (N4*), then it also satisfies (N4).

Proof Given a commutative diagram

A1 A2 A3 � � � An †A1

B1 B2 B3 � � � Bn †B1

˛1 ˛2 ˛3 ˛n�1 ˛n

ˇ1 ˇ2 ˇ3 ˇn�1 ˇn

'1 '2 †'1
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A3 A4˚B3 A5˚B4˚C3

A6˚B5˚C4 � � � An˚Bn�1˚Cn�2 Bn˚Cn�1

Cn †A3

A3˚B2˚A2 A4˚B3˚B2 A5˚B4˚C3

A6˚B5˚C4 � � � An˚Bn�1˚Cn�2 Bn˚Cn�1

†A2˚Cn †A3˚†B2˚†A2

�

A3 A4˚B3 A5˚B4˚C3

A6˚B5˚C4 � � � An˚Bn�1˚Cn�2 Bn˚Cn�1

Cn †A3

24�1
0
0

35 241 0
0 1
0 0

35

�
�n

1

� 24�1
0
0

35

�
�1 0 ˛2

� �
1 0 0
0 1 ˇ2

�

�
0 1

� �
�1 0 †˛2

�

�
˛3

'3

� 24�˛4 0

'4 �ˇ3

 4 �3

35

�2 �3 �n�4 �

�
�n n�1

�
†˛2 ın

�
�˛3 0 0

�'3 �ˇ2 0

0 1 '2

�
�1

�2 �3 �n�4 �

h
�†˛1ıˇn 0

�n n�1

i �
†˛2 0

�†'2 0

1 n

�

�
˛3

'3

� 24�˛4 0

'4 �ˇ3

 4 �3

35

�2 �3 �n�4 �

�
�n n�1

�
†˛2 ın

Figure 1
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where the two rows are n–angles: we denote these by A� and B� . We want to prove
that we can complete the above diagram to a morphism of n–angles in such a way that
the mapping cone of that morphism is again an n–angle.

From the given diagram we build the diagram

A1˚B1 B2˚A2˚B1 A3˚B2 A4 � � �

� � � An�1 An †A1˚†B1

A1˚B1 B2 B3 B4 � � �

� � � Bn�1 †A1˚Bn †A1˚†B1

0

:::

0

†A2˚†B1

†B2˚†A2˚†B1

�
0 0

.�1/n˛1 0

0 �1

� h
0 �˛2 0

1 0 0

i
Œ�˛3 0 � ˛4

˛n�2 ˛n�1

�
.�1/n˛n

0

�
Œ .�1/nC1'2ı˛1 ˇ1 � ˇ2 �ˇ3 �ˇ4

�ˇn�2

�
0

�ˇn�1

� h
�1 0

.�1/nC1†'1 .�1/nC1ˇn

i

�
1 �'2 �ˇ1

�

�
.�1/n†'2 .�1/n†ˇ1

.�1/n 0

0 .�1/n

�

in which the top left square commutes. Let X� , Y� and Z� denote the three n–†–
sequences

B2˚A2˚B1

Œ1 �'2 �ˇ1 �
���������! B2! 0! � � �

� � � ! 0!†A2˚†B1

�
.�1/n†'2 .�1/n†ˇ1

.�1/n 0
0 .�1/n

�
�����������������!†B2˚†A2˚†B1;

A1˚B1

�
0 0

.�1/n˛1 0
0 �1

�
�����������! B2˚A2˚B1

h
0 �˛2 0
1 0 0

i
��������!A3˚B2

Œ�˛3 0 �
�����!A4

˛4
�! � � �

� � �
˛n�1
���!An

h
.�1/n˛n

0

i
��������!†A1˚†B1;
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A1˚B1

Œ .�1/nC1'2ı˛1 ˇ1 �
��������������! B2

ˇ2
�! B3

�ˇ3
���! � � �

� � �
�ˇn�2
����! Bn�1

h
0

�ˇn�1

i
�������!†A1˚Bn

h
�1 0

.�1/nC1†'1 .�1/nC1ˇn

i
�������������������!†A1˚†B1;

respectively. In order to apply (N4*) we need to prove that these n–†–sequences are
n–angles.

It can easily be shown that X� is isomorphic to the direct sum of the trivial n–angle
on B2 and the left rotations of the trivial n–angles on A2 and B1 . Next, the n–†–
sequence Y� is isomorphic to the direct sum of the n–angle A� , the trivial n–angle
on B1 and the right rotation of the trivial n–angle on B2 . Similarly, the n–†–
sequence Z� is isomorphic to the direct sum of the n–angle B� and the left rotation of
the trivial n–angle on A1 . Hence, by (a) it follows that X� , Y� and Z� are n–angles.

Since X� , Y� and Z� are n–angles, we may apply axiom (N4*) to the above dia-
gram. Consequently, there exist morphisms �3; �4; : : : ; �n and a morphism � with the
following three properties:

(1) the sequence
�
1;
�
1 �'2 �ˇ1

�
; �3; �4; : : : ; �n

�
is a morphism Y� ! Z� of

n–angles;

(2) � is a morphism †A1˚Bn!†A2˚†B1 with24.�1/n†'2 .�1/n†ˇ1

.�1/n 0

0 .�1/n

35 ı � D
24 0 0

.�1/n†˛1 0

0 �1

35 ı � �1 0

.�1/nC1†'1 .�1/nC1ˇn

�
I

(3) the n–†–sequence

A3˚B2

h
�˛3 0
�3;1 �3;2

i
��������!A4˚B3

h
�˛4 0
�4 ˇ3

i
�������!A5˚B4

h
�˛5 0
��5 ˇ4

i
�������! � � �

� � �

h
�˛n�1 0

.�1/nC1�n�1 ˇn�2

i
����������������!An˚Bn�1

h
.�1/n�n;1 0

.�1/n�n;2 ˇn�1

i
�������������!†A1˚Bn

�
�!†A2˚†B1

h
.�1/nC1†˛2 0
.�1/n†'2 .�1/n†ˇ1

i
�������������������!†A3˚†B2

is an n–angle.

Observe that the n–angle X� consists of the zero object at positions 3 through n� 1.
Therefore the morphisms  i .4 � i � n/ and �i .3 � i � n/ given by (N4*) are all
zero, except for �n , which we have called just � .
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From property (1) the diagram

A1˚B1 B2˚A2˚B1 A3˚B2 A4 � � �

� � � An�1 An †A1˚†B1

A1˚B1 B2 B3 B4 � � �

� � � Bn�1 †A1˚Bn †A1˚†B1

�
0 0

.�1/n˛1 0

0 �1

� h
0 �˛2 0

1 0 0

i �
�˛3 0

�
˛4

˛n�2 ˛n�1

�
.�1/n˛n

0

�
�
.�1/nC1'2 ı˛1 ˇ1

�
ˇ2 �ˇ3 �ˇ4

�ˇn�2

h
0

�ˇn�1

i h
�1 0

.�1/nC1†'1 .�1/nC1ˇn

i

�
1 �'2 �ˇ1

�
�3 �4

�n�1 �n

is commutative. Using the commutativity, we can conclude that�
�3;1 �3;2

�
D
�
'3 ˇ2

�
;

�4 D '4;

�5 D�'5;

:::

�n�1 D .�1/n�1'n�1;�
�n;1

�n;2

�
D

�
.�1/nC1˛n

.�1/n'n

�
;

for some morphisms 'i W Ai!Bi (3� i�n) making the sequence 'D.'1; '2; : : : ; 'n/

into a morphism 'W A�! B� of n–angles.

Next, consider the morphism †A1˚Bn
�
�!†A2˚†B1 . Using property (2), we see

that24.�1/n†'2 .�1/n†ˇ1

.�1/n 0

0 .�1/n

35 ı � D
24 0 0

.�1/n†˛1 0

0 �1

35 ı � �1 0

.�1/nC1†'1 .�1/nC1ˇn

�

D

24 0 0

.�1/nC1†˛1 0

.�1/n†'1 .�1/nˇn

35 :
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Thus the morphism � is given by the matrix

� D

�
�†˛1 0

†'1 ˇn

�
:

Finally, from property (3) and what we have shown so far, the n–†–sequence

A3˚B2

h
�˛3 0
'3 ˇ2

i
�������!A4˚B3

h
�˛4 0
'4 ˇ3

i
�������! � � �

� � �

h
�˛n 0
'n ˇn�1

i
���������!†A1˚Bn

h
�†˛1 0
†'1 ˇn

i
���������!†A2˚†B1h

.�1/nC1†˛2 0
.�1/n†'2 .�1/n†ˇ1

i
�������������������!†A3˚†B2

is an n–angle. Its right rotation

A2˚B1

h
�˛2 0
'2 ˇ1

i
�������!A3˚B2

h
�˛3 0
'3 ˇ2

i
�������! � � �

� � �

h
�˛n 0
'n ˇn�1

i
���������!†A1˚Bn

h
�†˛1 0
†'1 ˇn

i
���������!†A2˚†B1

is the mapping cone of ' , and this is an n–angle by axiom (N2). This completes the
proof.

Collecting Theorems 4.2 and 4.3 gives the following.

Theorem 4.4 If N is a collection of n–†–sequences satisfying axioms (N1), (N2)
and (N3), then the following are equivalent:

(1) N satisfies (N4);

(2) N satisfies (N4*).

We now discuss the case when nD 3, that is, when our category C is a triangulated
category. In this case, the classical octahedral axiom, which was introduced by Verdier
in [7; 8], is the following:

(TR4) Given a commutative diagram
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A1 A2 A3 †A1

A1 B2 B3 †A1

C3

†A2

'2

2

3

˛1 ˛2 ˛3

ˇ1 ˇ2 ˇ3

in which the top rows and second column are triangles. Then there exist
morphisms '3W A3!B3 and �3W B3!C3 with the following properties: the
diagram

A1 A2 A3 †A1

A1 B2 B3 †A1

C3

†A2

C3

†A3

‚

'2 '3

2 �3

3 †˛2 ı3

˛1 ˛2 ˛3

ˇ1 ˇ2 ˇ3

†˛2

is commutative, the third column is a triangle and 3 ı �3 D†˛1 ıˇ3 .

This is almost the same as our axiom (N4*): there is one difference. Namely, axiom
(N4*) does not guarantee that the square ‚ commutes. However, when nD 3 and we
start with the diagram given in (TR4), then in the proof of Theorem 4.2 we obtain the
commutative diagram

A2 A3˚B2 B3 †A2

A2 B2 C3 †A2 .

�
0 1

�
�3

�
�˛2

'2

� �
'3 ˇ2

�
†˛1 ıˇ3

'2 2 3
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The commutativity of the middle square implies that the square ‚ in (TR4) commutes.
Therefore, we recover the original octahedral axiom (TR4) from axioms (N1), (N2),
(N3) and (N4). Conversely, Neeman proves in [4, Theorem 1.8] that axioms (N1),
(N2), (N3) and (TR4) together imply axiom (N4). Consequently, when n D 3 and
the collection N of 3–†–sequences satisfies axioms (N1), (N2) and (N3), then the
following are equivalent:

(1) N satisfies (N4);

(2) N satisfies (TR4);

(3) N satisfies (N4*).

We end this section with a discussion of homotopy cartesian diagrams. Recall that
when nD 3, then a commutative square

A1 A2

B1 B2

'1 '2

˛

ˇ

is homotopy cartesian if there exists a triangle

A1

h
�˛
'1

i
�����!A2˚B1

Œ '2 ˇ �
����! B2

@
�!†A1

for some morphism B2
@
�!†A1 . Now let (TR4*) be the axiom which is the same as

(TR4), but with the additional requirement that the commutative square

A2 A3

B2 B3

'2 '3

˛2

ˇ2

is homotopy cartesian. Neeman shows in [4; 5] that (TR4) is equivalent to the stronger
(TR4*). Consequently, the axioms (N4), (N4*), (TR4) and (TR4*) are all equivalent.

Now let C be n–angulated. Motivated by the above, we say that a commutative diagram

A1 A2 � � � An�2 An�1

B1 B2 � � � Bn�2 Bn�1

'1 '2 'n�2 'n�1

˛1 ˛2 ˛n�3 ˛n�2

ˇ1 ˇ2 ˇn�3 ˇn�2
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is homotopy cartesian if the n–†–sequence

A1

h
�˛1
'1

i
�����!A2˚B1

h
˛2 0
'2 ˇ1

i
������!A3˚B2

h
˛3 0
�'3 ˇ2

i
�������! � � �

� � �

h
˛n�2 0

.�1/n'n�2 ˇn�3

i
��������������!An�1˚Bn�2

Œ .�1/nC1'n�1 ˇn�2 �
���������������! Bn�1

@
�!†A1

is an n–angle for some morphism Bn�1
@
�!†A1 . In the proof of Theorem 4.2, when

we showed that axiom (N4*) follows from axiom (N4), we proved in addition that the
commutative diagram

A2 A3 � � � An�1 An

B2 B3 � � � Bn�1 Bn

'2 '3 'n�1 'n

˛2 ˛3 ˛n�2 ˛n�1

ˇ2 ˇ3 ˇn�2 ˇn�1

is homotopy cartesian. In fact, that was precisely Lemma 4.1. Consequently, axiom
(N4*) (and then also axiom (N4)) is equivalent to the stronger axiom which requires
the above commutative diagram to be homotopy cartesian.
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