
msp
Algebraic & Geometric Topology 13 (2013) 2809–2826

The head and tail conjecture
for alternating knots

CODY ARMOND

We investigate the coefficients of the highest and lowest terms (also called the head and
the tail) of the colored Jones polynomial and show that they stabilize for alternating
links and for adequate links. To do this we apply techniques from skein theory.

57M25, 57M27

1 Introduction

The normalized colored Jones polynomial JN;L.q/ for a link L is a sequence of
Laurent polynomials in the variable q1=2 , ie JN;L 2 ZŒq1=2; q�1=2�. This sequence is
defined for N � 2 so that J2;L.q/ is the ordinary Jones polynomial, and JN;U D 1

where U is the unknot. For links L with an odd number of components (including all
knots), JL;N is actually in ZŒq; q�1�. For links with an even number of components,
q1=2JL;N 2 ZŒq; q�1�.

In [4] and [5], Oliver Dasbach and Xiao-Song Lin showed that, up to sign, the first
two coefficients and the last two coefficients of JN;K .q/ do not depend on N for
alternating knots. They also showed that the third (and third to last) coefficient does not
depend on N so long as N � 3. This and computational data led them to conjecture
that the k th coefficient does not depend on N so long as N � k . The goal of this paper
is to prove this conjecture for all alternating links. It is also known that this property
of JN;L.q/ does not hold for all knots. In [2], with Oliver Dasbach, we examined the
case of the .4; 3/ torus knot for which this property fails.

Definition For two Laurent series P1.q/ and P2.q/ we define

P1.q/
�
Dn P2.q/

if after multiplying P1.q/ by ˙qs1 and P2.q/ by ˙qs2 , s1 and s2 some powers, to
get power series P 0

1
.q/ and P 0

2
.q/ each with positive constant term, P 0

1
.q/ and P 0

2
.q/

agree mod qn . For example �q�4C 2q�3� 3C 11q
�
D5 1� 2qC 3q4 .
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2810 Cody Armond

Another way of phrasing the above definition is that P1.q/ PDnP2.q/ if and only if their
first n coefficients agree up to sign.

In [2] we defined two power series, the head and tail of the colored Jones polynomial
HL.q/ and TL.q/.

Definition The tail of the colored Jones polynomial of a link L – if it exists – is a
series TL.q/, with

TL.q/
�
DN JL;N .q/ for all N:

Similarly, the head HL.q/ of the colored Jones polynomial of L is the tail of
JL;N .q

�1/, which is equal to the colored Jones polynomial of the mirror image
of L.

Note that TL.q/ exists if and only if JL;N .q/ PDN JL;NC1.q/ for all N . For example,
for the first few colors N the colored Jones polynomial of the knot 62 multiplied by
q2N 2�N�1 is:

N D 2W 1� 2qC 2q2
� 2q3

C 2q4
� q5
C q6

N D 3W 1� 2qC 4q3
� 5q4

C 6q6
C � � � � q14

C 3q15
� q16

� q17
C q18

N D 4W 1� 2qC 2q3
C q4

� 4q5
� 2q6

C � � � � 2q29
� 3q30

C 3q32
� q34

� q35
C q36

N D 5W 1� 2qC 2q3
� q4
C 2q5

� 6q6
C � � � � 2q53

� q54
C 4q55

� q58
� q59

C q60

N D 6W 1� 2qC 2q3
� q4
� 2q7

C q8
C � � � � 3q82

C 3q84
C q85

� q88
� q89

C q90

N D 7W 1� 2qC 2q3
� q4
� 2q6

C 4q7
C � � �C 4q119

C q121
� q124

� q125
C q126

This is exactly the property conjectured by Dasbach and Lin to hold for all alternating
knots, and the subject of the main theorem of this paper.

Theorem 1 If L is an alternating link, then JL;N .q/
�
DN JL;NC1.q/.

Because the mirror image of an alternating link is alternating, this theorem says that
the head and the tail exists for all alternating links. Theorem 1 was simultaneously
and independently proved by Stavros Garoufalidis and Thang Le in [6] using alternate
methods.

We are also able to prove a more general theorem about A–adequate links.

Theorem 2 If L is an A–adequate link, then JL;N .q/
�
DN JL;NC1.q/.
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The head and tail conjecture for alternating knots 2811

Because all alternating links are A–adequate, Theorem 2 implies Theorem 1.

Special cases of Theorem 2 were also proven in [1; 3]. In [1] it was shown that for a
knot K , which can be expressed as the closure of a positive braid, TK .q/D 1. In [3]
Abhijit Champanerkar and Ilya Kofman show this for a knot expressed as a positive
braid with a full twist, and also determine a sequence of coefficients beyond the first N .

1.1 Plan of paper

In Section 2, we discuss definitions and basic results regarding adequate links and skein
theory. In Section 3, we present the main lemma, which is a slight generalization of
a lemma in [2] relating the lowest terms of the colored Jones polynomial to a certain
skein theoretic graph. Finally, in Section 4, we present the proofs of Theorems 1 and 2
using the graph discussed in Section 3.

Acknowledgments
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thank Pat Gilmer for teaching me all I know about skein theory.

2 Background

2.1 Alternating and adequate

B A

Figure 1: A and B smoothings

Given a link diagram D there are two ways to smooth each crossing, described in
Figure 1. A state of the diagram is a choice of smoothing for each crossing. Two states
are particularly important when dealing with the colored Jones polynomial; they are
the all-A state SA and the all-B state SB . The all-A (respectively all-B ) state is the
state for which the A (B ) smoothing is chosen for every crossing.

For a state S we can build a graph GS called the state graph for S . The graph GS

has vertices the circles in S , and edges the crossings in D . Each edge connects the
two vertices corresponding to the two circles that the crossing meets.

Algebraic & Geometric Topology, Volume 13 (2013)
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Definition A link diagram is A–adequate (B–adequate) if the state graph for SA

(SB ) has no loops.

A link diagram is adequate if it is both A and B –adequate.

A link is adequate if it has an adequate diagram.

The most important property of A–adequate diagrams is that the number of circles in
SA is a local maximum. In other words, any state that has only a single B smoothing
will have one fewer circle than the all-A smoothing. Similarly for B –adequate diagrams,
that the number of circles in SB is a local maximum.

It is a well-known fact that all alternating links are adequate links. In particular,
a reduced alternating diagram, that is an alternating diagram without any nugatory
crossings, is an adequate diagram.

Another important fact about adequate diagrams is that parallels of A–adequate di-
agrams are also A–adequate diagrams. Given a diagram D , the r th parallel of D

denoted Dr is the diagram formed by replacing D with r parallel copies of D .

2.2 Skein theory

For a more detailed explanation of skein theory, see Lickorish [7] or Masbaum and
Vogel [8].

The Kauffman bracket skein module, S.M IR;A/, of a 3–manifold M and ring R

with invertible element A, is the free R–module generated by isotopy classes of framed
links in M , modulo the submodule generated by the Kauffman relations:

DA CA�1 D�A2�A�2

If M has designated points on the boundary, then the framed links must include arcs
that meet all of the designated points.

In this paper we will take RDQ.A/, the field of rational functions in variable A with
coefficients in Q. As we are concerned with the lowest terms of a polynomial, we will
need to express rational functions as Laurent series. This can always be done so that
the Laurent series has a minimum degree.

Definition Let f 2Q.A/, define d.f / to be the minimum degree of f expressed as
a Laurent series in A.

Algebraic & Geometric Topology, Volume 13 (2013)
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Note that d.f / can be calculated without referring to the Laurent series. Any rational
function f expressed as P=Q, where P and Q are both polynomials has d.f / D

d.P /� d.Q/.

We will be concerned with two particular skein modules: S.S3IR;A/, which is
isomorphic to R under the isomorphism sending the empty link to 1, and S.D3IR;A/,
where D3 has 2n designated points on the boundary. With these designated points,
S.D3IR;A/ is also called the Temperley–Lieb algebra TLn .

We will give an alternate explanation for the Temperley–Lieb algebra. First, consider
the disk D2 as a rectangle with n designated points on the top and n designated points
on the bottom. Let TLMn be the set of all crossing-less matchings on these points, and
define the product of two crossing-less matchings by placing one rectangle on top of
the other and deleting any components that do not meet the boundary of the disk. With
this product, TLMn is a monoid, which we shall call the Temperley–Lieb monoid. It
has generators hi as in Figure 2, and following relations:

� hihi D hi

� hihi˙1hi D hi

� hihj D hj hi if ji � j j � 2

i i C 1

Figure 2: hi

Any element in TLn has the form
P

M2TLMn
cM M , where cM 2 Q.A/. Multipli-

cation in TLn is slightly different from multiplication in TLMn , because hihi D

.�A2�A�2/hi in TLn .

There is a special element in TLn of fundamental importance to the colored Jones
polynomial, called the Jones–Wenzl idempotent, denoted f .n/ . Diagrammatically this
element is represented by an empty box with n strands coming out of it on two opposite
sides. By convention an n next to a strand in a diagram indicates that the strand is
replaced by n parallel ones.

With

�n WD .�1/n
A2.nC1/�A�2.nC1/

A2�A�2
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and �n! WD�n�n�1 � � ��1 , the Jones–Wenzl idempotent satisfies:

nC 1

D

n 1

�

�
�n�1

�n

�
n

n� 1

n

1

1 1

D

1

with the properties:
n k

nC k

D

nC k

n m

1

nCmC 2

D 0

n

1 D

�
�nC1

�n

�
n

If M 2 TLMn , define fM 2R as the coefficient of M in the expansion of the Jones–
Wenzl idempotent. Thus f .n/ D

P
M2TLMn

fM M . If e is the identity element of
TLMn , then fe D 1.

Lemma 3 If M 2 TLMn , then d.fM / is at least twice the minimum word length of
M in terms of the hi .

Proof This follows easily from the recursive definition of the idempotent by an
inductive argument. The only issue is that terms of the form

n

n� 1

n

1

1

may have a circle that needs to be removed. In this situation, the minimum degree of
the coefficient is reduced by two, but the number of generators used is also reduced by
one.

Using Lemma 3 we can find a lower bound for the minimum degree of any element of
S.S3IR;A/ that contains the Jones–Wenzl idempotent. Before we do this, consider
a crossing-less diagram S in the plane consisting of arcs connecting Jones–Wenzl
idempotents. We will define what it means for such a diagram to be adequate in much
the same way that a knot diagram can be A or B –adequate.

Construct a crossing-less diagram xS from S by replacing each of the Jones–Wenzl
idempotents in S by the identity of TLn . Thus xS is a collection of circles with no
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crossings. Consider the regions in xS where the idempotents had previously been. S

is adequate if no circle in xS passes through any one of these regions more than once.
Figure 3(a) shows an example of a diagram that is adequate and Figure 3(b) shows an
example of a diagram that is not adequate. In both figures every arc is labeled 1.

(a) An adequate diagram (b) An inadequate diagram

Figure 3: Example of adequate and inadequate diagrams

If S is adequate, then the number of circles in xS is a local maximum, in the sense
that if the idempotents in S are replaced by other elements of TLMn such that there
is exactly one hook total in all of the replacements, then the number of circles in this
diagram is one less than the number of circles in xS .

If the diagram S happens to have crossings in it, we can still construct the diagram xS ,
which is now a link diagram. Denote D.S/ WD d. xS/.

Lemma 4 If S 2 S.S3IR;A/ is expressed as a single crossing-less diagram contain-
ing the Jones–Wenzl idempotent, then d.S/�D.S/.

If the diagram for S is also an adequate diagram, then d.S/DD.S/.

Proof We can get an expansion of S by expanding each of the idempotents that
appear in the diagram. Consider a single term T1 in this expansion. Unless all of the
idempotents have been replaced by the identity in this term, then there will be a hook
somewhere in the diagram. By removing a single hook, we get a different term T2 in
the expansion. The number of circles in T1 differs from the number of circles in T2

by exactly one. Lemma 3 and the fact that removing a circle results in multiplying by
�A2 �A�2 gives us a lower bound di of the degree of the term Ti (i D 1; 2), that
is, di is twice the number of hooks in Ti , minus twice the number of circles in Ti .
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Because there are fewer hooks in T2 , this gives the inequality d2 � d1C 2˙ 2. This
tells us that the lowest degree amongst terms in the expansion of S is the degree of the
term with the idempotents replaced by the identity, xS .

If S is adequate, then for any term T1 with only a single hook, T2 will be xS , and thus
T2 will have one more circle than T1 . Therefore, d.T1/ > d. xS/. This tells us that any
term T in this expansion will have d.T1/ > d. xS/, and thus d.S/D d. xS/DD.S/.

We can use trivalent graphs to express elements in a skein module using the following
correspondence:

D

Fusion is given by

ba

D

X
c

�c

�.a; b; c/

ba

c

a b

where the sum is over all c such that:

(1) aC bC c is even.

(2) ja� bj � c � aC b .

To define �.a; b; c/, let a, b and c related as above and x , y and z be defined by
aD yC z , b D zCx and c D xCy then

�.a; b; c/ WD ca b

and one can show that

�.a; b; c/D
�xCyCz !�x�1!�y�1!�z�1!

�yCz�1!�zCx�1!�xCy�1!
:
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Furthermore one has:

ba

c

D .�1/.aCb�c/=2AaCb�cC.a2Cb2�c2/=2

c

ba

We are only interested in the list of coefficients of the colored Jones polynomial. In
particular we consider polynomials up to powers of their variable. Up to a factor of
˙As for some power s that depends on the writhe of the link diagram, the (unreduced)
colored Jones polynomial zJn;L.A/ of a link L can be defined as the value of the skein
relation applied to the link were every component is decorated by an n together with
the Jones–Wenzl idempotent. Recall that A�4 D q . To obtain the reduced colored
Jones polynomial we have to divide zJn;L.A/ by its value on the unknot. Thus:

JnC1;L.q/ WD
zJn;L.A/

�n

ˇ̌̌̌
ˇ
ADq�1=4

3 The main lemma

In this section we will relate the tail of the colored Jones polynomial to a certain
trivalent graph viewed as an element of the Kauffman bracket skein module of R3 .
This construction was used in [2] to prove interesting properties of the head and the
tail of the colored Jones polynomial.

Given a B –adequate diagram D of a link L, consider a negative twist region. Apply
the identities of Section 2 to get the equation:

m

n n

D

nX
jD0

. .n; n; 2j //m
�2j

�.n; n; 2j /

n n

2j

n n

Here  .a; b; c/ WD .�1/.aCb�c/=2AaCb�cC.a2Cb2�c2/=2 .

If we apply this equation to every maximal negative twist region, then we get an
embedded trivalent graph called � . We get a colored graph �n;.j1;:::;jk/ where k is
the number of maximal negative twist regions and 0� ji � n by coloring the edges
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coming from the i th twist region by 2ji and coloring all of the other edges by n. From
the previous equation, it is clear that we get:

zJn;L
�
D

nX
j1;:::;jkD0

kY
iD1

. .n; n; 2ji//
m

kY
iD1

�2ji

�.n; n; 2ji/
�n;.j1;:::;jk/

The following theorem is a useful tool to find properties of the head and tail of the
colored Jones polynomial. In this paper, it will be used to prove the existence of the
head and tail for all adequate links:

Theorem 5 If D is a B–adequate diagram of the link L, and �n;.n;:::;n/ is the
corresponding graph, then:

zJn;L
�
D4.nC1/ �n;.n;:::;n/:

This theorem was proved for the case when D is a reduced alternating diagram in [2,
Theorem 4.3]. The proof given there extends easily to B –adequate diagrams. We will
present the proof again here with the modifications. In later sections, we shall denote
�n WD �n;.n;:::;n/ .

For a rational function R, let d.R/ be the minimum degree of R considered as a
power series. The theorem will now follow from the following three lemmas.

Lemma 6 d. .n; n; 2n//D d. .n; n; 2.n� 1///� 4n

d. .n; n; 2j //� d. .n; n; 2.j � 1///

Lemma 7

d

�
�2j

�.n; n; 2j /

�
D d

�
�2.j�1/

�.n; n; 2.j � 1//

�
� 2

Lemma 8 If � is the graph coming from a B –adequate diagram, then:

D.�n;.j1;:::;ji ;:::;jk//DD.�n;.j1;:::;ji�1;:::;jk//˙ 2

d.�n;.n;:::;n;:::;n//DD.�n;.n;:::;n�1;:::;n//� 2

Proof of Lemma 6  .n; n; 2j /D˙AnCn�2jC.n2Cn2�.2j/2/=2D˙A2n�2jCn2�2j2

Clearly d. .n; n; 2j // increases as j decreases. Furthermore:

d. .n; n; 2n//D�n2

d. .n; n; 2.n� 1///D 2n� 2.n� 1/C n2
� 2.n� 1/2 D�n2

C 4n
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Proof of Lemma 7 To calculate �.n; n; 2j / note that in the previous formula for �
we get x D j , y D j and z D n� j . Using this and the fact that d.�n/D�2n, we
get:

d

�
�2j

�.n; n; 2j /

�
D d

�
�2j�n�1!�n�1!�2j�1!

�nCj !�j�1!�j�1!�n�j�1!

�
D d

�
�2j�2j�1�n�j

�nCj�j�1�j�1

�
C d

�
�2.j�1/!�n�1!�n�1!

�nCj�1!�j�2!�j�2!�n�j !

�
D�4j � 2.2j � 1/� 2.n� j /C 4.j � 1/C 2.nC j /

C d

�
�2.j�1/

�.n; n; 2.j � 1//

�
D�2C d

�
�2.j�1/

�.n; n; 2.j � 1//

�
Proof of Lemma 8 Consider the graph �n;.j1;:::;jk/ viewed as an element in the skein
module S.S3IQ.A/;A/. We must compare

D.�n;.j1;:::;ji ;:::;jk// with D.�n;.j1;:::;ji�1;:::;jk//:

Recall that D.S/ is �2 times the number of circles in xS , where xS is obtained
from S by replacing the idempotents in the diagram by the identity in TLm . For
�n;.j1;:::;ji ;:::;jk/ and �n;.j1;:::;ji�1;:::;jk/ , the number of circles in each diagram differ
by 1. Thus D.�n;.j1;:::;ji ;:::;jk//DD.�n;.j1;:::;ji�1;:::;jk//˙ 2.

For �n;.n;:::;n/ , replacing the idempotents with the identity results in the all B smoothing
of the diagram Dn . Since D is a B –adequate diagram, so is Dn . For �n;.n;:::;n�1;:::;n/ ,
the replacement results in a smoothing of Dn with exactly one A smoothing. Thus the
result of the replacement for �n;.n;:::;n/ will have one more circle than the result of the
replacement for �n;.n;:::;n�1;:::;n/ , which give us

D.�n;.n;:::;n;:::;n//DD.�n;.n;:::;n�1;:::;n//� 2:

Finally, since Dn is B –adequate, �n;.n;:::;n/ is adequate. Thus by Lemma 4,

d.�n;.n;:::;n;:::;n//DD.�n;.n;:::;n;:::;n//:

4 Proof of the main theorem

Using Theorem 5, the main theorem can be rewritten as follows:

Theorem 9 If D is a B–adequate diagram for a link L and �n its corresponding
graph, then

�n
�
D4.nC1/ �nC1:
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Proof We will first prove Theorem 9 in the case of D being a reduced alternating
diagram, and then we will show how the proof can be modified to apply to any B–
adequate diagram in general.

Interpreting �n as a skein element, we may use the following simplification:

2n

n n

D

nn

0

2n

n n

D

nn

2n

n n D

2n

n n

In general, �n will reduce to a collection of circles coming from the all-B smoothing
SB , “fused” together with the Jones–Wenzl Idempotent colored 2n for each maximal
negative twist region. We will call this reduced form S

.n/
B

.

(a) The knot 62

�!

n

n

n

n

n

n

n n
2n 2n

n n

n n

2n

2n

2n 2n

(b) �n

�!

n

n

n

n

n

n

n n

n n

n n

(c) S
.n/
B

Figure 4: Example of the knot 62 along with �n and S
.n/
B

We would now like to consider S
.nC1/
B

and show that we can reduce it to S
.n/
B

without
affecting the lowest 4.nC 1/ terms. To do this we will first show a local relation that
we will be able to use repeatedly.
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Lemma 10

nC1

k

D

1

n

k

�

�
�k�1

�nCk

� 1

1

n

kk�1

Proof Using the recursive formula for the Jones–Wenzl idempotent on the left of the
left hand side of the identity, we get:

nC1

k

D

1

n

k

�

�
�nCk�1

�nCk

� 1

n

1

knCk�1

Applying the recursive formula again on the middle idempotent of the rightmost diagram,
we get:

1

n

1

knCk�1

D

1

n�1

1

knCk�1

�

�
�nCk�2

�nCk�1

� 1
1
1

k
n�1

D�

�
�nCk�2

�nCk�1

� 1
1
1

k
n�1

D�

�
�nCk�2

�nCk�1

� 1
1
1

k
n�1

nCk�2

Now when we apply this recursive formula again, the first term will again be zero, and
we can continue this process until we get:

1

n

1

knCk�1

D�

�
�k�1

�nCk�1

� 1

1

n

kk�1

Consider a circle s in SB . The circle s appears in S
.nC1/
B

, although it runs through
several idempotents. The goal of the argument is to remove one copy of the circle s

from the idempotents. Once this is done for each circle in SB , then S
.nC1/
B

will have
been reduced to S

.n/
B

.

Because the diagram D is alternating, the circle s bounds a disk which does not contain
any of the other circles in SB . This means that in S

.nC1/
B

, the circle s looks like
Figure 5. Here all of the arcs are labeled nC 1.

Algebraic & Geometric Topology, Volume 13 (2013)



2822 Cody Armond

.  .  .

Figure 5: A circle from SB seen in S
.nC1/
B

Apply Lemma 10 to get the following relation:

nC 1

k

D 1n

n
k

�

�
�k�1

�nCk

�
1

1

n

n

k � 1

This argument will be applied to each circle in succession, so k is either n or nC 1

depending on whether the argument has been applied to that circle yet. All non-labeled
arcs are either n or nC 1.

Now S
.nC1/
B

is expressed as the sum of two terms, and the claim is that the minimum
degree of the second term is at least the minimum degree of the first term plus 4.nC1/.
Thus the equation simplifies to:

nC 1

k

�
D4.nC1/ 1n

n
k

To see that the claim is true, first note that:

d

�
�k�1

�nCk

�
D 2.nC 1/:

Now we need to compare the degree of the two diagrams involved. By Lemma 4 we
can get a lower bound for the minimum degrees of these diagrams, and since the knot
diagram that these came from was B–adequate, the first term will be an adequate
diagram, and thus, the lower bound will be equal to the actual minimum degree. Note
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that the element in TLnC2 shown in Figure 6 can be expressed as hnC1hn � � � h1 . In
the previous equation, this element appears in the rightmost term. When comparing
this terms to the first term, each hi merges two circles into one circle. Thus the number
of circles in the diagrams differ by nC 1. And, finally, a circle can be removed and
replaced with a factor of �A2�A�2 . This tells us that the difference in the minimum
degrees of the diagrams is at least 2.nC1/. Putting this together with the difference in
degrees of the coefficients, the difference in minimum degrees of the terms themselves
is at least 4.nC 1/.

n

D D

Figure 6: Multiple pictures expressing hnC1hn � � � h1

Apply this argument around the circle up to the final idempotent connected to that
circle. Now the diagram looks like Figure 7.

n n

n
1

D n n

n

1
D

�
�nCkC1

�nCk

�
n n

n

Figure 7: Reducing S
.nC1/
B

to S
.n/
B

We can rewrite the coefficient here:�
�nCkC1

�nCk

�
D .�1/

A2.nCkC2/�A�2.nCkC2/

A2.nCkC1/�A�2.nCkC1/
D .�A�2/

A4.nCkC2/�1

A4.nCkC1/�1

�
D4.nC1/ 1

Now applying this argument to every circle in S
.nC1/
B

, we see that

S
.nC1/
B

�
D4.nC1/ S

.n/
B
;
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and thus,

�n
�
D4.nC1/ �nC1:

This proves Theorem 9 in the case of reduced alternating diagrams. For the case when
the diagram D is B –adequate, most of the proof still applies. The main difference is
that Figure 5 is not accurate because a circle s in SB might not bound a disk, and thus
in S .nC1/ may have idempotents that alternate which side of the circle it fuses to other
circles. Figure 8 shows a non-alternating B –adequate diagram of the trefoil where the
dotted circle is an example of such a circle s . We would still like to pull out one copy
of s , but in this case we must be more careful while doing so.

�!

Figure 8: Example of a non-alternating B –adequate knot diagram

First we will modify the diagram as in Figure 9 by adding crossings along the circle
s between any pair of idempotents which alternate which side of s is the outer side.
The procedure is to modify the diagram so that the outer strand passes over all of the
other copies of s , so that it is still the outer strand when it meets the next idempotent
in line. Call this new diagram T . When expanding T by summing over all possible
smoothings of the crossings, only one state is non-zero, and that state is S .nC1/ . Since
this particular smoothing has an equal number of A and B smoothings, we get that
S .nC1/ D T .
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Figure 9: Modifying S .nC1/ to get T
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Now we will again apply the procedure to pull out one copy of s as in the alternating
case, giving us the following equation:
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Finally, there is a strand that can be pulled over all other strands and idempotents until
it is just a loop, which can be removed.
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This completes the argument.
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