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The maximal degree of the
Khovanov homology of a cable link

KEIJI TAGAMI

In this paper, we study the Khovanov homology of cable links. We first esti-
mate the maximal homological degree term of the Khovanov homology of the
.2kC1; .2kC1/n/–torus link and give a lower bound of its homological thickness.
Specifically, we show that the homological thickness of the .2kC1; .2kC1/n/–torus
link is greater than or equal to k2nC 2 . Next, we study the maximal homological
degree of the Khovanov homology of the .p;pn/–cabling of any knot with suffi-
ciently large n . Furthermore, we compute the maximal homological degree term of
the Khovanov homology of such a link with even p . As an application we compute
the Khovanov homology and the Rasmussen invariant of a twisted Whitehead double
of any knot with sufficiently many twists.

57M27; 57M25

1 Introduction

A knot is an embedding of a circle into the 3–sphere. A link is an embedding of a
disjoint union of finitely many circles into the 3–sphere.

In [6], for each link L, Khovanov defined a graded chain complex whose graded Euler
characteristic is equal to the Jones polynomial of L. Its homology group is a link
invariant and called the Khovanov homology. Khovanov homology has two gradings,
homological degree i and q–grading j . In this paper, we denote the homological
degree-i term of the Khovanov homology of L by KHi.L/ and denote the homological
degree-i and q–grading j term of the Khovanov homology of L by KHi;j .L/.

The .p; q/–cabling K.p; q/ of a knot K is the satellite link with companion K and
pattern the .p; q/–torus link Tp;q . The Alexander polynomial of a cable link satisfies
the following formula (see Lickorish [10]):

�K.p;q/.t/D�K .t
p/�Tp;q

.t/:

The Jones polynomial of a cabling of K is expressed in terms of the colored Jones
polynomial of K . Indeed, the colored Jones polynomial has a cabling formula (for
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example, see Kirby and Melvin [8]). However, there are few works about the Khovanov
homology (which is a categorification of the Jones polynomial) of cable links. The
.2k; 2kn/–torus link T2k;2kn can be regarded as the .2k; 2kn/–cabling of the unknot
and Stošić [15] showed that the maximal homological degree of the Khovanov homology
of T2k;2kn is 2k2n (Theorem 3.2). Moreover, he computed the homological degree-
2k2n term (see Theorem 3.3).

In this paper, we consider the .p;pn/–cabling of any knot. Our main results are
Theorems 1.1 and 1.3 below.

We first determine the maximal homological degree of the Khovanov homology of the
.2k C 1; .2k C 1/n/–torus link T2kC1;.2kC1/n by Stošić’s method. In addition, we
determine the dimension of the maximal homological term of the Khovanov homology
of such a link.

Theorem 1.1 Let k and n be positive integers. Denote the .2kC1; .2kC1/n/–torus
link by T2kC1;.2kC1/n . Assume that its orientation is given by the closure of the braid
.�1 � � � �2k/

.2kC1/n with all crossings positive, where the �i are the standard generators
of the braid group B2kC1 . Then, for i > 2k.kC 1/n, we have

KHi.T2kC1;.2kC1/n/D 0:

On the other hand,

dimQ KH2k.kC1/n.T2kC1;.2kC1/n/D

�
2kC 2

kC 1

�
:

Moreover, for i D 0; : : : ; kC 1, we have

KH2k.kC1/n;6k.kC1/nC1�2i.T2kC1;.2kC1/n/¤ 0:

From Theorem 1.1, we obtain the following.

Corollary 1.2 Let k and n be positive integers. Then we have

maxfi 2 Z j KHi.T2kC1;.2kC1/n/¤ 0g D 2k.kC 1/n:

Moreover, we also obtain an estimation of the homological thickness of T2kC1;.2kC1/n

(see Corollary 3.12).

Next we consider the .p;pn/–cabling K.p;pn/ of any oriented knot K . Assume that
each component of K.p;pn/ has an orientation induced by K , that is, each component
of K.p;pn/ is homologous to K in the tubular neighborhood of K . For such a link,
we obtain an analog of Theorem 1.1.
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Theorem 1.3 Let K be an oriented knot and D be a diagram of Kwith lC positive
crossings and l� negative crossings. Put l D lCC l� and f D lC� l� . Then for n� l

and any positive integer k , we obtain the following:

maxfi 2 Z j KHi.K.2k; 2k.nCf ///¤ 0g D 2k2.nCf /:

In addition, if n> l , we determine the dimension of the maximal homological degree
term of the Khovanov homology of the link:

dimQ KH2k2.nCf /.K.2k; 2k.nCf ///D

�
2k

n

�
:

Moreover, for n> l and i D 0; : : : ; k , we have

KH2k2.nCf /;6k2.nCf /�2i.K.2k; 2k.nCf ///¤ 0:

Corollary 1.2 and the first claim of Theorem 1.3 imply a relation between the number
of full twists and the maximal degree of the Khovanov homology.

We also estimate the maximal homological degree of the Khovanov homology of the
.2kC 1; .2kC 1/n/–cabling of any knot K .

Proposition 1.4 Let K be an oriented knot and D be a diagram of Kwith lC positive
crossings and l� negative crossings. Put l D lCC l� and f D lC� l� . Then for n� l

and any positive integer k , we have the following:

2k.kC 1/.nCf /�maxfi 2 Z j KHi.K.2kC 1; .2kC 1/.nCf ///¤ 0g

� 2k.kC 1/.nCf /C lC:

As an application, we can give a computation of the Khovanov homology of a twisted
Whitehead double of any knot with sufficiently many twists (Proposition 5.2), since
a cable link is obtained from such a knot by smoothing at a crossing. Moreover we
compute the Rasmussen invariant s [13] of such a knot (Corollary 5.6).

The paper is organized as follows: In Section 2, we recall the definition of Khovanov
homology and our main tools. In Sections 3 and 4, we prove Theorems 1.1 and 1.3,
and Proposition 1.4. In Section 5, we present our results on Whitehead doubles. The
appendix contains the proofs of several technical results.
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2 Khovanov homology

2.1 The definition of Khovanov homology

In this subsection, we recall the definition of the (rational) Khovanov homology. Let
L be an oriented link. Take a diagram D of L and an ordering of the crossings
of D . For each crossing of D , we define a 0–smoothing and a 1–smoothing as in
Figure 1. A smoothing of D is a diagram where each crossing of D is changed by
either 0–smoothing or 1–smoothing.

0–smoothing 1–smoothing

Figure 1: 0–smoothing and 1–smoothing

Let n be the number of the crossings of D . Then D has 2n smoothings. By using
the given ordering of the crossings of D , we have a natural bijection between the
set of smoothings of D and the set f0; 1gn , where, to any "D ."1; : : : ; "n/ 2 f0; 1g

n ,
we associate the smoothing D" , where the i th crossing of D is "i –smoothed. Each
smoothing D" is a collection of disjoint circles.

Let V be a graded free Q–module generated by 1 and X with deg.1/ D 1 and
deg.X /D�1. Let k" be the number of the circles of the smoothing D" . Put M" D

V ˝k" . The module M" has a graded module structure, that is, for v D v1˝ � � �˝ vk"

in M" , deg.v/ WD deg.v1/C � � �C deg.vk"
/. Then define

C i.D/ WD
M
j"jDi

M"fig;

where j"j D
Pm

iD1"i . Here, M"fig denotes M" with its gradings shifted by i (for
a graded module M D

L
j2Z M j and an integer i , we define the graded module

M fig D
L

j2Z M figj by M figj DM j�i ).

The differential map d i W C i.D/! C iC1.D/ is defined as follows. Fix an ordering
of the circles for each smoothing D" and associate the i th tensor factor of M" to the
i th circle of D" . Take elements " and "0 2 f0; 1gn such that "j D 0 and "0j D 1 for
some j and that "i D "

0
i for any i ¤ j . For such a pair ."; "0/, we will define a map

d"!"0 W M"!M"0 .
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In the case where two circles of D" merge into one circle of D"0 , the map d"!"0 is
the identity on all factors except the tensor factors corresponding to the merged circles,
where it is a multiplication map mW V ˝V ! V given by:

m.1˝ 1/D 1; m.1˝X /Dm.X ˝ 1/DX; m.X ˝X /D 0:

In the case where one circle of D" splits into two circles of D"0 , the map d"!"0 is the
identity on all factors except the tensor factor corresponding to the split circle where it
is a comultiplication map �W V ! V ˝V given by:

�.1/D 1˝X CX ˝ 1; �.X /DX ˝X:

If there exist distinct integers i and j such that "i ¤ "
0
i and that "j ¤ "0j , then define

d"!"0 D 0.

In this setting, we define a map d i W C i.D/!C iC1.D/ by
P
j"jDi d i

" , where the map
d i
"W M"! C iC1.D/ is defined by

d i.v/ WD
X

j"0jDiC1

.�1/l.";"
0/d"!"0.v/:

Here v 2M" � C i.D/ and l."; "0/ is the number of 1 in front of (in our order) the
factor of " which is different from "0 .

We can check that (C i.D/, d i ) is a cochain complex and we denote its i th homology
group by H i.D/. We call these the unnormalized homology groups of D . Since the
map d i preserves the grading of C i.D/, the group H i.D/ has a graded structure
H i.D/ D

L
j2Z H i;j .D/ induced by that of C i.D/. For any link diagram D , we

define its Khovanov homology KHi;j .D/ by

KHi;j .D/DH iCn�;j�nCC2n�.D/;

where nC and n� are the number of the positive and negative crossings of D , respec-
tively. The grading i is called the homological degree and j is called the q–grading.

Let D and D0 be link diagrams. The diagram D is equivalent to D0 if D0 is obtained
from D by the Reidemeister moves (see Figure 2) and isotopies of the plane. It is
known that two diagrams D and D0 are diagrams of the same link if and only if D is
equivalent to D0 .
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RI�

RI�1
�

RIC

RI�1
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RII

RII�1

RIII

RIII�1

Figure 2: Reidemeister moves

Theorem 2.1 (Bar-Natan [3] and Khovanov [6]) Let L be an oriented link and D be
a diagram of L. If D0 is equivalent to D , the homology groups KH.D/ and KH.D0/
are isomorphic. In this sense, we can denote KH.D/ by KH.L/. Moreover, the graded
Euler characteristic of the homology KH.L/ equals the Jones polynomial of L, that is,

VL.t/D .qC q�1/�1
X

i;j2Z

.�1/iqj dimQ KHi;j .L/
ˇ̌̌
qD�t

1
2
;

where VL.t/ is the Jones polynomial of L.

2.2 Main tools

Our main tools are the following (Theorems 2.2 and 2.3 and Proposition 2.4).

2.2.1 A long exact sequence Let D be a link diagram and Di be a diagram obtained
from D by i –smoothing at a crossing of D (see Figure 3). The following exact
sequence was introduced by Viro [18] (see also his [17]).

0–smoothing 1–smoothing

D0 D D1

Figure 3: D , D0 and D1

Theorem 2.2 [18] There is a long exact sequence of the unnormalized homology
groups:

� � � �!H i�1;j�1.D1/ �!H i;j .D/ �!H i;j .D0/ �!H i;j�1.D1/ �! � � � :
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2.2.2 Lee homology Let L be an oriented link. By Leei.L/, we denote the homo-
logical degree-i term of the Lee homology of L (for details, see Lee [9]).

Theorem 2.3 [9] There is a spectral sequence whose E1–page is the Lee homology
and E2 –page is the Khovanov homology.

Proposition 2.4 [9, Proposition 4:3] Let L be an oriented link with n components,
S1; : : : ;Sn . Then we have

dimQ.Leei.L//D 2

�E � f2; : : : ; ng

ˇ̌̌̌ X
j2E;k…E

2 lk.Sj ;Sk/D i

�;
where lk.Sj ;Sk/ is the linking number of Sj and Sk .

3 The maximal degree of the Khovanov homology of the
.2k C 1; .2k C 1/n/–torus link

In this section, we prove Theorem 1.1, which has three claims. The first, second and
third claims are Lemmas 3.7, 3.8 and 3.11 below, respectively. We first introduce some
results by Stošić.

Definition 3.1 We denote the .p; q/–torus link by Tp;q . Put Dp;q D .�1 � � � �p�1/
q ,

where the �i are the standard generators of the braid group Bp . The closure of the
braid Dp;q is a diagram of the .p; q/–torus link Tp;q . We give Tp;q the downward
orientation so that all crossings of Dp;q are positive.

Stošić [15] showed the following results (Theorems 3.2 and 3.3 and Corollaries 3.4
and 3.5).

Theorem 3.2 [15, Theorem 1] Let k and n be positive integers. Then we have
KHi.T2k;2kn/D 0 if i > 2k2n.

Theorem 3.3 [15, Theorem 3] Let k and n be positive integers. Then we have

dimQ KH2k2n.T2k;2kn/D

�
2k

k

�
:

Moreover, we obtain

dimQ KH2k2n;6k2n�2i.T2k;2kn/D

8<:
�

2k

k � i

�
�

�
2k

k � i � 1

�
if i D 0; : : : ; k;

0 otherwise:
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From the above results, we can determine the maximal homological degree of the
Khovanov homology of the .2k; 2kn/–torus link.

Corollary 3.4 [15] Let k and n be positive integers. Then we obtain

maxfi 2 Z j KHi.T2k;2kn/¤ 0g D 2k2n:

Moreover we can estimate the homological thickness of the .2k; 2kn/–torus link.

Corollary 3.5 [15, Corollary 5] The homological thickness hw.T2k;2kn/ of the
.2k; 2kn/–torus link is greater than or equal to k.k � 1/nC 2, where the homological
thickness hw.L/ of a link L is defined as

1
2

�
maxfj � 2i j KHi;j .L/¤ 0g�minfj � 2i j KHi;j .L/¤ 0g

�
C 1:

The homological thickness of a link estimates a distance between the link and an
alternating link as follows. A link is k–almost alternating if it has a reduced diagram
which can be alternating after k crossing changes and no diagram which can be
alternating after k � 1 or less crossing changes (see [2]). Then we have the following
results.

Theorem 3.6 [4, Theorem 8] Let L be a k–almost alternating link. Then we obtain

k � hw.L/� 2:

Remark From Corollary 3.5 and Theorem 3.6, the .2k; 2kn/–torus link has no
diagram which is alternating after k.k � 1/n� 1 or less crossing changes.

Theorem 1.1 can be regarded as an analog of Theorems 3.2 and 3.3 and Corollary 3.4.
Theorem 1.1 follows from Lemmas 3.7, 3.8 and 3.11 below. We will prove these
lemmas.

Lemma 3.7 Let k and n be positive integers. Then we have KHi.T2kC1;.2kC1/n/D0

if i > 2k.kC 1/n.

Proof In Section 4, we prove Proposition 1.4, which implies Lemma 3.7.

Next we introduce Lemma 3.8. We can consider Lemma 3.8 to be an analog of the
first claim of Theorem 3.3.

Algebraic & Geometric Topology, Volume 13 (2013)
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Lemma 3.8 Let k and n be positive integers. Then we have

dimQ KH2k.kC1/n.T2kC1;.2kC1/n/D

�
2kC 2

kC 1

�
:

To prove Lemma 3.8, we use the same notation as Stošić’s in [14].

Definition 3.9 [14] Let K be any positive braid link, that is, K has a diagram which
is the closure of a positive braid. Let D be its diagram which is the closure of a positive
braid with p strands. The crossing c of D is of type �i .i < p/ if it corresponds to
the generator �i in the positive braid. Let ci

1
; : : : ; ci

li
be the type-�i crossings of D

and order them from top to bottom in the positive braid. Then we denote the crossing
ci
˛ by .i; ˛/, where 1� i � p and 1� ˛ � li .

Let 3 � p � q . Let E1
p;q and D1

p;q be the diagrams obtained from Dp;q by 1–
smoothing and 0–smoothing at the crossing .p � 1; 1/ of Dp;q , respectively. We
continue the same process. Let E2

p;q and D2
p;q be the diagrams obtained from D1

p;q

by 1–smoothing and 0–smoothing at the crossing .p � 2; 1/ of D1
p;q respectively.

Repeating this process p�1 times, that is, for any kD 1; : : : ;p�1, let Ek
p;q and Dk

p;q

be the diagrams obtained from Dk�1
p;q by 1–smoothing and 0–smoothing at the crossing

.p � k; 1/ of Dk�1
p;q respectively. Note that D0

p;q DDp;q and that D
p�1
p;q DDp;q�1 .

For example, see Figure 4.

We define H i;j .Ek
p;q/ WDH i;j .Ek

p;q/ and H i;j .Dk
p;q/ WDH i;j .Dk

p;q/, where Ek
p;q

and Dk
p;q are the closures of Ek

p;q and Dk
p;q , respectively.

D0
3;4
DD3;4 E1

3;4
D1

3;4
E2

3;4
D2

3;4
DD3;3

Figure 4: D3;4 DD0
3;4

, E1
3;4

, D1
3;4

, E2
3;4

and D2
3;4
DD3;3

From Theorem 2.2, we have the following long exact sequence for k D 1; : : : ;p� 1:

(3-1) � � �!H i�1;j�1.Ek
p;q/!H i;j .Dk�1

p;q /!H i;j .Dk
p;q/!H i;j�1.Ek

p;q/!� � � :

We use the following lemma, whose proof will be given in the appendix.
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Lemma 3.10 Let k and n be positive integers. Then we have

H 2k.kC1/n.D2kC1;.2kC1/n�1/D 0:

Proof of Lemma 3.8 To prove this lemma, it is sufficient to prove the following:

(3-2) dimQ H 2k.kC1/n.Dl
2kC1;.2kC1/n/D 2

�
2kC 1� l

kC 1

�
;

where 0 � l � 2k (for convenience, we define
�

a
b

�
D 0 if 0 � a < b ). Indeed, if we

put l D 0 in (3-2) then we have

dimQ KH2k.kC1/n.T2kC1;.2kC1/n/D dimQ H 2k.kC1/n.D0
2kC1;.2kC1/n/

D 2

�
2kC 1

kC 1

�
D

�
2kC 2

kC 1

�
:

To prove (3-2), we use induction on k .

For k D 1, we need to compute H 4n.D3;3n/, H 4n.D1
3;3n

/ and H 4n.D2
3;3n

/. Note
that D2

3;3n
D D3;3n�1 . The Khovanov homology of the .3; q/–torus link is known

(for example, see [15, Theorem 8] or [16, Theorem 3:1]). In particular,

dimQ H 4n.D2
3;3n/D dimQ H 4n.D3;3n�1/D 0

and
dimQ H 4n.D0

3;3n/D dimQ H 4n.D3;3n/D 6:

Next we compute the Khovanov homology of D1
3;3n

. We have the following long exact
sequence:

(3-3) � � � �!H 4n�1;j .D2
3;3n/ �!H 4n�1;j�1.E2

3;3n/ �!H 4n;j .D1
3;3n/ �! 0:

We can check that the closure of E2
3;3n

is a diagram of the unknot and that it has 4n�1

negative crossings and 2n� 1 positive crossings. From the definition of the Khovanov
homology, we obtain

H 4n�1;j�1.E2
3;3n/D KH0;j�6n.U /D

�
Q if j D 6n˙ 1;

0 if j ¤ 6n˙ 1;

where U is the unknot.

Hence, from (3-3), we have

dimQ H 4n.D1
3;3n/� 2:
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On the other hand, from Proposition 2.4, the dimension of Lee4n.D1
3;3n

/ is 2. Since
there is a spectral sequence whose E1–page is the Lee homology and E2 –page is the
Khovanov homology (Theorem 2.3), we have

dimQ H 4n.D1
3;3n/� 2:

Hence we obtain
dimQ H 4n.D1

3;3n/D 2:

Suppose that (3-2) is true for 1; : : : ; k � 1, that is, suppose that for 1� h< k , n> 0

and l D 0; : : : ; 2h, we have

dimQ H 2h.hC1/n.Dl
2hC1;.2hC1/n/D 2

�
2hC 1� l

hC 1

�
:(3-4)

We will show that (3-2) is true for k . For l D 0; : : : ; 2k � 1, we obtain the following
long exact sequence:

(3-5) � � � �!H 2k.kC1/n�1;j�1.ElC1
2kC1;.2kC1/n

/

gl
j

�!H 2k.kC1/n;j .Dl
2kC1;.2kC1/n/

f l
j

�!H 2k.kC1/n;j .DlC1
2kC1;.2kC1/n

/ �! � � � :

From the exact sequence (3-5), we obtain

(3-6)
X

j

dimQ H 2k.kC1/n;j .Dl
2kC1;.2kC1/n/

�

X
j

�
dimQ Im gl

j C dimQ Imf l
j

�
�

X
j

�
dimQ H 2k.kC1/n�1;j�1.ElC1

2kC1;.2kC1/n
/

C dimQ H 2k.kC1/n;j .DlC1
2kC1;.2kC1/n

/
�

� � � �

�

X
j

2kX
mDlC1

�
dimQ H 2k.kC1/n�1;j�1.Em

2kC1;.2kC1/n/

C dimQ H 2k.kC1/n.D2k
2kC1;.2kC1/n/

�
:

From Lemma 3.10, we have dimQ H 2k.kC1/n.D2kC1;.2kC1/n�1/D 0. To compute
dimQ H 2k.kC1/n�1.Em

2kC1;.2kC1/n
/, we consider the closure of Em

2kC1;.2kC1/n
. Note

Algebraic & Geometric Topology, Volume 13 (2013)
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that the closure of Ei
2kC1;.2kC1/n is equivalent to the closure of Di�2

2k�1;.2k�1/n for
i � 2 (see Figure 5). We give the closure of Ei

2kC1;.2kC1/n an orientation such that
all crossings of the closure of Di�2

2k�1;.2k�1/n are positive. Then we can check that the
closure of Ei

2kC1;.2kC1/n has 4kn� 1 negative crossings. Hence for i � 2 we have

H 2.kC1/kn�1.Ei
2kC1;.2kC1/n/D KH2.k�1/kn.Di�2

2k�1;.2k�1/n/:

Similarly, the closure of E1
2kC1;.2kC1/n is equivalent to the closure of

D2k�1;.2k�1/n t;

where  is a circle in the plane (see Figure 6). We give the closure of E1
2kC1;.2kC1/n

an orientation such that all crossings of the closure of D2k�1;.2k�1/nt are positive.
Then we can check that the closure of E1

2kC1;.2kC1/n also has 4kn � 1 negative
crossings. Hence we have

H 2.kC1/kn�1.E1
2kC1;.2kC1/n/D KH2.k�1/kn.D2k�1;.2k�1/n t/:

D2kC1;.2kC1/n�1

D2k�1;.2k�1/n�1

Di�2
2k�1;.2k�1/n

D

D

D

Ei
2kC1;.2kC1/n

1 2 3 : : :
2k�i

2kC1�i
2kC2�i

2kC1

1 2 3
2k�i

: : : 2kC1�i 2kC1

Figure 5: The closure of Ei
2kC1;.2kC1/n

is equivalent to the closure of
Di�2

2k�1;.2k�1/n
for i � 2
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D2kC1;.2kC1/n�1

D2k�1;.2k�1/n�1

D2k�1;.2k�1/n t

D

D

D

E1
2kC1;.2kC1/n

1 2 3 : : : 2k�1 2k 2kC1

1 2 3 : : : 2k�1 2k

Figure 6: The closure of E1
2kC1;.2kC1/n

is equivalent to the closure of D2k�1;.2k�1/n t

By the induction hypothesis (3-4), we obtain

dimQ H 2.kC1/kn�1.Ei
2kC1;.2kC1/n/D 2

�
2kC 1� i

k

�
.i � 2/;(3-7)

dimQ H 2.kC1/kn�1.E1
2kC1;.2kC1/n/D 2� 2

�
2k � 1

k

�
D 2

�
2k

k

�
:(3-8)

From (3-6), (3-7) and (3-8), we obtain

(3-9)
X

j

dimQ H 2k.kC1/n;j .Dl
2kC1;.2kC1/n/�

2kX
mDlC1

2

�
2kC 1�m

k

�

D 2

�
2kC 1� l

kC 1

�
:

Finally we will prove that the inequality in (3-9) is in fact an equality for l D 0; : : : ; 2k .
We first consider the case where lD0. The dimension of Lee2k.kC1/n.D2kC1;.2kC1/n/
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is
�
2kC2
kC1

�
. From Theorem 2.3, we have�

2kC 2

kC 1

�
D dimQ Lee2k.kC1/n.D2kC1;.2kC1/n/

� dimQ H 2k.kC1/n.D2kC1;.2kC1/n/�

�
2kC 2

kC 1

�
:

This implies that we have the equality in (3-9) for l D 0. Hence, for any j 2 Z
and m D 0; : : : ; 2k � 1, the maps gm

j and f m
j in (3-5) are injective and surjective,

respectively. In particular, we obtain

dimQ Im gm
j D dimQ H 2k.kC1/n�1;j�1.EmC1

2kC1;.2kC1/n
/;(3-10)

dimQ Imf m
j D dimQ H 2k.kC1/n;j .DmC1

2kC1;.2kC1/n
/:(3-11)

From (3-10) and (3-11), we have the equality in (3-9) for l D 0; : : : ; 2k and obtain

dimQ H 2k.kC1/n.Dl�1
2kC1;.2kC1/n/D 2

�
2kC 2� l

kC 1

�
:

The following lemma can be regarded as an analog of the second claim of Theorem 3.3.

Lemma 3.11 For i D 0; : : : ; kC 1, we have

KH2k.kC1/n;6k.kC1/nC1�2i.T2kC1;.2kC1/n/¤ 0:

Proof To prove this lemma, we use induction on k .

For k D 1, it has already known that KH4n;12nC1.T3;3n/, KH4n;12n�1.T3;3n/ and
KH4n;12n�3.T3;3n/ are not zero (see [15, Theorem 8] or [16, Theorem 3:1]).

Suppose that Lemma 3.11 is true for 1; : : : ; k � 1, that is, suppose that for 1� h< k ,
n> 0 and i D 0; : : : ; hC 1, we have

(3-12) KH2h.hC1/n;6h.hC1/nC1�2i.T2hC1;.2hC1/n/¤ 0:

From the proof of Lemma 3.8 (recall that the inequality (3-6) is in fact an equality),
we obtain

(3-13) dimQ H 2k.kC1/n;j .D2kC1;.2kC1/n/

D

2kX
mD1

dimQ H 2k.kC1/n�1;j�1.Em
2kC1;.2kC1/n/

� dimQ H 2k.kC1/n�1;j�1.E1
2kC1;.2kC1/n/

C dimQ H 2k.kC1/n�1;j�1.E2
2kC1;.2kC1/n/:
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Note that the closure of E2
2kC1;.2kC1/n is equivalent to the closure of D2k�1;.2k�1/n

(see Figure 5). We give the closure of E2
2kC1;.2kC1/n an orientation such that all

crossings of the closure of D2k�1;.2k�1/n are positive. Then we can check that
the closure of E2

2kC1;.2kC1/n has 4kn� 1 negative crossings and 2k.2k � 1/n� 1

positive crossings. Similarly, the closure of E1
2kC1;.2kC1/n is equivalent to the closure

of D2k�1;.2k�1/n t, where  is a circle in the plane (see Figure 6). We give
the closure of E1

2kC1;.2kC1/n an orientation such that all crossings of the closure of
D2k�1;.2k�1/nt are positive. We can check that the closure of E1

2kC1;.2kC1/n has
4kn�1 negative crossings and 2k.2k�1/n positive crossings. From (3-13), we have

dimQ KH2k.kC1/n;6k.kC1/nC1�2i.D2kC1;.2kC1/n/

� dimQ KH2k.k�1/n;6k.k�1/nC2�2i.D2k�1;.2k�1/n t/

C dimQ KH2k.k�1/n;6k.k�1/nC1�2i.D2k�1;.2k�1/n/:

By the induction hypothesis (3-12), the first term of the last expression is not zero for
i D 1; : : : ; kC 1 and the second term is not zero for i D 0; : : : ; k .

From Lemma 3.11, we obtain the following.

Corollary 3.12 The homological thickness of the .2kC1; .2kC1/n/–torus link is
greater than or equal to k2nC2.

Proof From Lemma 3.11, we have

KH2k.kC1/n;6k.kC1/nC1�2.kC1/.T2kC1;.2kC1/n/¤ 0:

In [7], Khovanov determines the homological degree-0 term of the Khovanov homology
of a positive link (see Theorem 3.13 below). Note that in [7] he denotes KHi;�j by
Hi;j .

The closure of D2kC1;.2kC1/n is a positive diagram of T2kC1;.2kC1/n . The number
of its Seifert circles is 2kC 1 and the number of its crossings is 2k.2kC 1/n. From
Theorem 3.13, we have

KH0;2k..2kC1/n�1/C1.T2kC1;.2kC1/n/¤ 0:

Hence, by the definition of the homological thickness (cf Corollary 3.5), we obtain

hw.T2kC1;.2kC1/n/�
1
2

�
2k..2kC 1/n� 1/C 1� 2kn.kC 1/� 1C 2.kC 1/

�
C 1

D k2nC 2:

Remark From Corollary 3.12 and Theorem 3.6, the .2kC 1; .2kC 1/n/–torus link
has no diagram which is alternating after k2n� 1 or less crossing changes.
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Theorem 3.13 [7, Proposition 6:1] Let L be a positive link. Then KHi.L/D 0 if
i < 0,

KH0;j .L/D

�
Q if j D�s0.D/C cC 1˙ 1;

0 otherwise;

and KHi;j .L/ D 0 if i > 0 and j < c � s0.D/, where s0.D/ is the number of the
Seifert circles and c is the number of the crossings in a positive diagram D of L.

4 The maximal degree of the Khovanov homology of a cable
link

In this section, we prove Theorem 1.3 and Proposition 1.4. Recall that Theorem 1.3
has three claims. These claims follow from Lemmas 4.2, 4.8 and 4.9 below, which are
the first, second and third claims of Theorem 1.3, respectively. Hence, Theorem 1.3
immediately follows from these lemmas. Lemma 4.2 also implies Proposition 1.4. To
prove these lemmas, we define some notations.

Definition 4.1 Let K be an oriented knot and D be a knot diagram of K with writhe
f . Denote the .p;pn/–cabling of the knot K by K.p;pn/. Assume that each
component of K.p;pn/ has an orientation induced by K , that is, each component of
K.p;pn/ is homologous to K in the tubular neighborhood of K . Let D.p; qCpf /

be the diagram depicted in Figure 7. The diagram D.p; qCpf / is a diagram of the
.p; q C pf /–cabling K.p; q C pf / of K (see Figure 9). Let Dm.p; q C pf / and
Em.p; qCpf / be the diagrams depicted in Figure 8.

D.p; qCpf / D D Dp;q

Figure 7: The diagram D.p; qCpf / is obtained from p–parallel of D by
adding Dp;q , where f is the writhe of D . The diagram D.p; qCpf / is a
diagram of the .p; qCpf /–cabling of K .

We first prove Lemma 4.2, which implies Corollaries 1.2 and 3.4.
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Dm.p; qCpf / D D Dm
p;q

Em.p; qCpf / D D Em
p;q

Figure 8: The diagrams Dm.p; qCpf / and Em.p; qCpf /

D D.3; q� 9/

Dm.3; q� 9/ Em.3; q� 9/

D3;q

Dm
3;q

Em
3;q

Figure 9: Examples of D.p; q/ , Dm.p; q/ and Em.p; q/

Lemma 4.2 Let K be an oriented knot and D be a diagram of K with lC positive
crossings and l� negative crossings. Put l D lCC l� and f D lC� l� . Then, for n� l

and any positive integer k , we have the following:

maxfi 2 Z j KHi.K.2k; 2k.nCf ///¤ 0g D 2k2.nCf /

and

2k.kC 1/.nCf /�maxfi 2 Z j KHi.K.2kC 1; .2kC 1/.nCf ///¤ 0g

� 2k.kC 1/.nCf /C lC:
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We use Lemma 4.3 below to prove Lemma 4.2. Lemma 4.3 gives upper bounds of
maxfi 2 Z j KHi.K.p;p.nCf ///¤ 0g.

Lemma 4.3 Let k be a positive integer and n� 0.

(1) If i > 2k2.n� lC1/C l.2k/2 and n� l , or i > l.2k/2 and n< l , then we have
H i.Dm.2k; 2k.nCf /Cj //D 0 for any j D 1; : : : ; 2k and mD 0; : : : ; 2k�1.

(2) If i > 2k.kC1/.n� lC1/C l.2kC1/2 and n� l , or i > l.2kC1/2 and n< l ,
then we have H i.Dm.2kC1; .2kC1/.nCf /Cj /D0 for any j D1; : : : ; 2kC1

and mD 0; : : : ; 2k .

Proof of Lemma 4.3(1) We prove this by induction on k . For k D 1, there is the
following exact sequence:

(4-1) : : : // H i�1.E1.2; 2.nCf /Cj // // H i.D.2; 2.nCf /Cj // //

// H i.D.2; 2.nCf /Cj�1// // H i.E1.2; 2.nCf /Cj // // : : : ;

where j D 1; 2 and n� 0. To study

H i.D.2; 2.nCf /C j // and H i.D.2; 2.nCf /C j � 1//;

we consider the diagram E1.2; 2.nCf /C j /.

Note that for j D 1; 2, the diagram E1.2; 2.nCf /C j / is a diagram of the unknot
and has 2lC2nC j �1 negative crossings. Hence for i > 2lC2nC j �1 and n� 0,
we have H i.E1.2; 2.nCf /Cj //DKHi�.2lC2nCj�1/.U /D 0. From the long exact
sequence (4-1), if i > 2l C 2nC j and n� 0, then for j D 1; 2 we obtain

H i.D.2; 2.nCf /C j //DH i.D.2; 2.nCf /C j � 1//:

By repeating the same process, if i > 2l C 2nC j and n � 0, then for j D 1; 2, we
have

H i.D.2; 2.nCf /C j //DH i.D.2; 2.nCf /C j � 1//

DH i.D.2; 2.nCf /C j � 2//

D � � �

DH i.D.2; 2f C 1//

DH i.D.2; 2f //:

Since the diagram D.2; 2f / has 4l crossings, we obtain H i.D.2; 2f //D 0 for any
i > 4l . Hence if n � l and i > 2l C 2nC j , or n < l and i > 4l , then we obtain
H i.D.2; 2.nCf /C j //D 0, where j D 1; 2.
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Suppose that this lemma is true for 1; : : : ; k � 1, that is, suppose that for 1� g < k ,
j D 1; : : : ; 2g and mD 0; : : : ; 2g� 1, we have H i.Dm.2g; 2g.nCf /C j //D 0 if
i > 2g2.n� l C 1/C l.2g/2 and n� l , or i > l.2g/2 and n< l .

We will show that Lemma 4.3(1) is true for k . We obtain the following exact sequence:

(4-2) // H i�1.Em.2k; 2k.nCf /Cj // // H i.Dm�1.2k; 2k.nCf /Cj //

// H i.Dm.2k; 2k.nCf /Cj // // H i.Em.2k; 2k.nCf /Cj // // ;

where mD 1; : : : ; 2k � 1, j D 1; : : : ; 2k and n � 0. We use the following claim to
study H i.Dm�1.2k; 2k.nCf /C j // and H i.Dm.2k; 2k.nCf /C j //.

Claim 4.4 Under the induction hypothesis in the proof of Lemma 4.3(1), if i >

2k2.n� l C 1/C l.2k/2 � 1 and n � l , or i > l.2k/2 � 1 and n < l , then we have
H i.Em.2k; 2k.nCf /C j //D 0 for any j D 1; : : : ; 2k and mD 1; : : : ; 2k � 1.

We will give a proof of Claim 4.4 in the appendix.

From Claim 4.4 and the exact sequence (4-2), if i > 2k2.n� lC1/C l.2k/2 and n� l ,
or i > l.2k/2 and n< l , we have

H i.Dm�1.2k; 2k.nCf /C j //DH i.Dm.2k; 2k.nCf /C j //

for mD 1; : : : ; 2k � 1 and j D 1; : : : ; 2k .

By repeating this process, if i > 2k2.n� lC1/C l.2k/2 and n� l , or i > l.2k/2 and
n< l , for mD 0; : : : ; 2k � 1 and j D 1; : : : ; 2k , we have

H i.Dm.2k; 2k.nCf /C j //DH i.DmC1.2k; 2k.nCf /C j //

D � � �

DH i.D2k�1.2k; 2k.nCf /C j //

DH i.D0.2k; 2k.nCf /C j � 1//

DH i.D1.2k; 2k.nCf /C j � 1//

D � � �

DH i.D2k�1.2k; 2kf C 1//

DH i.D.2k; 2kf //D 0;

where the last equality follows from the fact that the diagram D.2k; 2kf / has l.2k/2

crossings.
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Proof of Lemma 4.3(2) This proof is the same as the proof of Lemma 4.3(1). We
prove this by induction on k . For k D 1, there is the following exact sequence:

(4-3) : : : // H i�1.Em.3; 3.nCf /Cj // // H i.Dm�1.3; 3.nCf /Cj // //

// H i.Dm.3; 3.nCf /Cj // // H i.Em.3; 3.nCf /Cj // // : : : ;

where mD 1; 2, j D 1; 2; 3 and n� 0.

Note that

� E1.3; 3.n C f / C 1/ is equivalent to D and has 4n C 5l� C 4lC negative
crossings,

� E1.3; 3.nCf /C 2/ is equivalent to D and has 2C 4nC 5l�C 4lC negative
crossings,

� E1.3; 3.nCf /C3/ is equivalent to Dt and has 3C4nC5l�C4lC negative
crossings,

� E2.3; 3.nCf /C 1/ is equivalent to D t and has 4nC 5l�C 4lC negative
crossings,

� E2.3; 3.nCf /C 2/ is equivalent to D and has 1C 4nC 5l�C 4lC negative
crossings,

� E2.3; 3.nCf /C 3/ is equivalent to D and has 3C 4nC 5l�C 4lC negative
crossings.

Hence H i.Em.3; 3.nCf /C j // is isomorphic to KHi�n�.D/ or KHi�n�.Dt/,
where n� is the number of the negative crossings of Em.3; 3.nC f /C j /. Since
D has only lC positive crossings, we have KHi�n�.D/ D KHi�n�.D t/ D 0 if
i � n� > lC . Hence H i.Em.3; 3.nCf /C j //D 0 if i > 4nC 3C 5l and n� 0.

From the exact sequence (4-3), if i > 4nC 4C 5l and n� 0, we have

H i.Dm.3; 3.nCf /C j //DH i.Dm�1.3; 3.nCf /C j //

for j D 1; 2; 3 and mD 1; 2. By repeating this process, if n� l and i > 4nC 4C 5l ,
or n< l and i > 9l , we obtain

H i.Dm.3; 3.nCf /C j //DH i.D.3; 3f //D 0;

for j D 1; 2; 3 and mD 1; 2.

Suppose that this lemma is true for 1; : : : ; k�1, that is, suppose that for 1�g<k , j D

1; : : : ; 2gC1 and mD 0; : : : ; 2g , we have H i.Dm.2gC1; .2gC1/.nCf /Cj //D 0
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if i > 2g.gC1/.n� lC1/C l.2gC1/2 and n� l , or i > l.2gC1/2 and n< l . We
will show that Lemma 4.3(2) is true for k . We obtain the following exact sequence:

(4-4) � � � �!H i�1.Em.2kC 1; .2kC 1/.nCf /C j //

�!H i.Dm�1.2kC 1; .2kC 1/.nCf /C j //

�!H i.Dm.2kC 1; .2kC 1/.nCf /C j //

�!H i.Em.2kC 1; .2kC 1/.nCf /C j // �! � � � ;

where mD1; : : : ; 2k , j D1; : : : ; 2kC1 and n�0. We use the following claim to study
H i.Dm�1.2kC1; .2kC1/.nCf /Cj // and H i.Dm.2kC1; .2kC1/.nCf /Cj //.

Claim 4.5 Under the induction hypothesis in the proof of Lemma 4.3(2), if i >

2k.kC1/.n� lC1/C l.2kC1/2�1 and n� l , or i > l.2kC1/2�1 and n< l then
we have H i.Em.2kC 1; .2kC 1/.nC f /C j //D 0 for any j D 1; : : : ; 2kC 1 and
mD 1; : : : ; 2k .

We will give a proof of Claim 4.5 in the appendix.

From Claim 4.5 and the exact sequence (4-4), if i > 2k.kC1/.n� lC1/C l.2kC1/2

and n� l , or i > l.2kC 1/2 and n< l , we have

H i.Dm�1.2kC 1; .2kC 1/.nCf /C j //DH i.Dm.2kC 1; .2kC 1/.nCf /C j //

for mD 1; : : : ; 2k and j D 1; : : : ; 2kC 1.

By repeating this process, if i > 2k.k C 1/.n� l C 1/C l.2k C 1/2 and n � l , or
i > l.2kC 1/2 and n< l , then for mD 0; : : : ; 2k and j D 1; : : : ; 2kC 1, we obtain

H i.Dm.2kC 1; .2kC 1/.nCf /C j //DH i.D.2kC 1; .2kC 1/f //D 0:

From Lemma 4.3, we can prove Lemma 4.2.

Proof of Lemma 4.2 From Lemma 4.3, we obtain

maxfi 2 Z jH i.D.2k; 2k.nCf ///¤ 0g � 2k2.nC l/:

Hence we have

maxfi 2 Z j KHi.K.2k; 2k.nCf ///¤ 0g � 2k2.nC l/� l�.2k/2 D 2k2.nCf /:

On the other hand, the dimension of Lee2k2.nCf /.K.2k; 2k.nCf /// is not zero. This
implies that

maxfi 2 Z j KHi.K.2k; 2k.nCf ///¤ 0g D 2k2.nCf /:
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Similarly we see that

maxfi 2 Z j KHi.K.2kC 1; .2kC 1/.nCf ///� 2k.kC 1/.nCf /C lC

and that the dimension of Lee2k.kC1/.nCf /.K.2kC 1; .2kC 1/.nCf /// is not zero.
Hence, we obtain

2k.kC 1/.nCf /�maxfi 2 Z j KHi.K.2kC 1; .2kC 1/.nCf ///¤ 0g

� 2k.kC 1/.nCf /C lC:

We use Lemma 4.6 below to prove Lemmas 4.8 and 4.9.

Lemma 4.6 Let K be a knot and D be a knot diagram with lC positive crossings and
l� negative crossings. Put l D lCC l� and f D lC � l� . For any positive integer k

and any n> l , we have

dimQ KH2k2.nCf /.K.2k; 2k.nCf /� 1//

D dimQ H 2k2.nCl/.D.2k; 2k.nCf /� 1//D 0:

Proof We consider the following exact sequence:

� � � �!H 2k2.nCl/�1.Em.2k; 2k.nCf � 1/C j //

�!H 2k2.nCl/.Dm�1.2k; 2k.nCf � 1/C j //

�!H 2k2.nCl/.Dm.2k; 2k.nCf � 1/C j //

�!H 2k2.nCl/.Em.2k; 2k.nCf � 1/C j // �! � � � ;

where m D 1; : : : ; 2k � 1, n � 0 and j D 1; : : : ; 2k � 1. To study the groups
H 2k2.nCl/.Dm�1.2k; 2k.nCf �1/Cj // and H 2k2.nCl/.Dm.2k; 2k.nCf �1/Cj //

we use the following claim.

Claim 4.7 We have H i.Em.2k; 2k.nCf �1/Cj //D0 if i > l.2k/2C2k2.n�l/�2

and n> l for any mD 1; : : : ; 2k � 1 and j D 1; : : : ; 2k � 1.

Compare Claim 4.7 to Claim 4.4 (the main differences are the ranges of i and j ). We
will give a proof of Claim 4.7 in the appendix.

From Claim 4.7 and the above exact sequence, if i > l.2k/2C 2k2.n� l/� 1 and
n> l , we have

H i.Dm�1.2k; 2k.nCf � 1/C j //DH i.Dm.2k; 2k.nCf � 1/C j //;
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where m D 1; : : : ; 2k � 1 and j D 1; : : : ; 2k � 1. In particular, if i D 2k2.nC l/,
mD 1 and j D 2k � 1, we obtain

H 2k2.nCl/.D.2k; 2k.nCf /� 1//DH 2k2.nCl/.D0.2k; 2k.nCf � 1/C 2k � 1//

DH 2k2.nCl/.D1.2k; 2k.nCf � 1/C 2k � 1//:

By repeating this process, we have

H 2k2.nCl/.D.2k; 2k.nCf /�1//DH 2k2.nCl/.D1.2k; 2k.nCf �1/C2k�1//

DH 2k2.nCl/.D2.2k; 2k.nCf �1/C2k�1//

D � � �

DH 2k2.nCl/.D2k�1.2k; 2k.nCf �1/C2k�1//

DH 2k2.nCl/.D0.2k; 2k.nCf �1/C2k�2//

D � � �

DH 2k2.nCl/.D.2k; 2k.nCf �1///D 0;

where the last equality follows from Lemma 4.2.

By using Lemma 4.6, we will prove Lemmas 4.8 and 4.9. Lemma 4.8 is an extension
of Theorem 3.3.

Lemma 4.8 Let K be a knot and D be a diagram of K with lC positive crossings
and l� negative crossings. Put l D lCC l� and f D lC � l� . Then for any positive
integer k and any n> l , we have

dimQ KH2k2.nCf /.K.2k; 2k.nCf ///D

�
2k

k

�
:

Proof As in the proof of Lemma 3.8, in order to prove this lemma, it is sufficient to
prove the following:

dimQ H 2k2.nCl/.Di.2k; 2k.nCf ///D 2

�
2k � 1� i

k

�
;(4-5)

where 0 � i � 2k � 1 (for convenience, we define
�

a
b

�
D 0 if 0 � a < b ). To prove

(4-5), we use induction on k .

For k D 1, from Lemma 4.6 we obtain

dimQ H 2k2.nCl/.D1.2; 2.nCf ///D dimQ H 2k2.nCl/.D.2; 2.nCf /� 1//D 0:
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Hence we have the following exact sequence:

� � � �!H 2.nCl/�1;j�1.E1.2; 2.nCf /// �!H 2.nCl/;j .D.2; 2.nCf /// �! 0:

From the above exact sequence, we obtainX
j

dimQ H 2.nCl/;j .D.2; 2.nCf ///�
X

j

dimQ H 2.nCl/�1;j�1.E1.2; 2.nCf ///:

Since the diagram E1.2; 2.nCf // is equivalent to a diagram of the unknot and has
2.nC l/� 1 negative crossings, we haveX

j

dimQ H 2.nCl/�1;j�1.E1.2; 2.nCf ///D
X

j

dimQ KH0;j .U /D 2;

where U is the unknot. Hence we obtainX
j

dimQ H 2.nCl/;j .D.2; 2.nCf ///� 2:

On the other hand, the dimension of Lee2.nCf /.D.2; 2.nCf /// is 2. Hence we obtain

dimQ H 2.nCl/.D.2; 2.nCf ///D 2:

Suppose that (4-5) is true for 1; : : : ; k � 1, that is, suppose that for 1� h< k , n> 0

and i D 0; : : : ; 2h� 1 we have

dimQ H 2h2.nCl/.Di.2h; 2h.nCf ///D 2

�
2h� 1� i

h

�
:(4-6)

We will show that (4-5) is true for k . We have the following long exact sequence:

(4-7) � � � �!H 2k2.nCl/�1;j�1.EiC1.2k; 2k.nCf ///

gi
j

�!H 2k2.nCl/;j .Di.2k; 2k.nCf ///

f i
j

�!H 2k2.nCl/;j .DiC1.2k; 2k.nCf /// �! � � � :

From the exact sequence (4-7) and the same discussion in (3-6), we obtain

(4-8)
X

j

dimQ H 2k2.nCl/;j .Di.2k; 2k.nCf ///

�

X
j

2k�1X
mDiC1

dimQ H 2k2.nCl/�1;j�1.Em.2k; 2k.nCf ///

C dimQ H 2k2.nCl/.D.2k; 2k.nCf /� 1//:
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From Lemma 4.6, we have dimQ H 2k2.nCl/.D.2k; 2k.nCf /�1//D 0. To compute
dimQ H 2k2.nCl/�1.Em.2k; 2k.nCf ///, we consider Em.2k; 2k.nCf //.

Em.2k; 2k.nC f // is equivalent to the diagram Dm�2.2k � 2; .2k � 2/.nC f //

for m � 2. We give Em.2k; 2k.nC f // an orientation such that all crossings of
Dm�2.2k � 2; .2k � 2/.nCf // are positive. Then Em.2k; 2k.nCf // has

4kn� 2n� 1C 2.2k � 1/lCC ..2k/2� 2.2k � 1//l�

negative crossings, where lC and l� are the number of the positive and negative
crossings of D , respectively. Hence for m� 2 we obtain

(4-9) dimQ H 2k2.nCl/�1.Em.2k; 2k.nCf ///

D dimQ H 2.k�1/2.nCl/.Dm�2.2k � 2; .2k � 2/.nCf ///

D 2

�
2k � 1�m

k � 1

�
:

Similarly, E1.2k; 2k.nCf // is equivalent to D.2k�2; .2k�2/.nCf //t, where
 is a circle in the plane. We give E1.2k; 2k.nC f // an orientation such that all
crossings of D.2k � 2; .2k � 2/.nCf //t are positive. Then E1.2k; 2k.nCf //

has 4kn� 2n� 1C 2.2k � 1/lCC ..2k/2� 2.2k � 1//l� negative crossings. Hence
we obtain

(4-10) dimQ H 2k2.nCl/�1.Em.2k; 2k.nCf ///

D dimQ H 2.k�1/2.nCl/.Dm�2.2k � 2; .2k � 2/.nCf //t/

D 2

�
2k � 2

k � 1

�
:

From (4-8), (4-9) and (4-10), we have

(4-11)
X

j

dimQ H 2k2.nCl/;j .Di.2k; 2k.nCf ///

�

2k�1X
mDiC1

2

�
2k � 1�m

k � 1

�
D 2

�
2k � 1� i

k

�
:

Finally we will prove that the inequality in (4-11) is in fact an equality. At first, we
consider the case where i D 0. The dimension of Lee2k2.nCf /.D.2k; 2k.nCf /// is
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�
2k
k

�
. Hence, we have�

2k

k

�
D dimQ Lee2k2.nCf /.D.2k; 2k.nCf ///

� dimQ H 2k2.nCl/.D.2k; 2k.nCf ///�

�
2k

k

�
:

This implies that we have the equality in (4-11) for i D 0. This fact implies that for
any j 2 Z and mD 0; : : : ; 2k � 2, the maps gm

j and f m
j in (4-7) are injective and

surjective, respectively. Hence, we have the equality in (4-11) for i D 0; : : : ; 2k � 1

and we obtain

dimQ H 2k2.nCl/.Di.2k; 2k.nCf ///D
X

j

dimQ H 2k2.nCl/;j .Di.2k; 2k.nCf ///

D 2

�
2k � 1� i

k

�
:

Next we prove Lemma 4.9.

Lemma 4.9 Let K be a knot and D be a diagram of K with lC positive crossings
and l� negative crossings. Put l D lCC l� and f D lC� l� . Then for any n> l , any
positive integer k and i D 0; : : : ; k , we have

KH2k2.nCf /;6k2.nCf /�2i.K.2k; 2k.nCf ///¤ 0:

Proof We use induction on k . In the case where k D 1, we need to prove

KH2.nCf /;6.nCf /�1˙1.D.2; 2.nCf ///¤ 0:

We have the exact sequence

� � � �!H 2.nCl/�1;j�1.E1.2; 2.nCf /// �!H 2.nCl/;j .D.2; 2.nCf ///

�!H 2.nCl/;j .D1.2; 2.nCf /// �! � � � :

It follows from Lemma 4.6 that

H 2.nCl/;j .D1.2; 2.nCf ///DH 2.nCl/;j .D.2; 2.nCf /� 1//D 0:

The diagram E1.2; 2.nC f // is equivalent to a diagram of the unknot and has 2l

positive crossings and 2l C 2n� 1 negative crossings. Hence we have

H 2.nCl/�1;j�1.E1.2; 2.nCf ///D

�
Q if j D 2l C 4n� 1˙ 1;

0 otherwise:
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By Lemma 4.8, we have dimQ H 2.nCl/.D.2; 2.nCf ///D 2. From the above exact
sequence, we have H 2.nCl/�1;j�1.E1.2; 2.nC f ///DH 2.nCl/;j .D.2; 2.nC f ///

since dimQ H 2.nCl/.D.2; 2.n C f /// D 2 D dimQ H 2.nCl/�1.E1.2; 2.n C f ///.
Hence we obtain

KH2.nCf /;6.nCf /�1˙1.D.2; 2.nCf ///DH 2.nCl/;2lC4n�1˙1.D.2; 2.nCf ///

DH 2.nCl/�1;2lC4n�2˙1.E1.2; 2.nCf ///

DQ:

Suppose that Lemma 4.9 is true for 1; : : : ; k � 1, that is, suppose that for 1� h< k ,
n> 0 and i D 0; : : : ; h, we have

KH2h2.nCf /;6h2.nCf /�2i.K.2h; 2h.nCf ///¤ 0:(4-12)

From the proof of Lemma 4.8 (, recall that the inequality (4-8) is in fact an equality),
we have

(4-13) dimQ H 2k2.nCl/;j .D.2k; 2k.nCf ///

� dimQ H 2k2.nCl/�1;j�1.E1.2k; 2k.nCf ///

C dimQ H 2k2.nCl/�1;j�1.E2.2k; 2k.nCf ///:

The diagram E1.2k; 2k.nC f // is equivalent to D.2k � 2; .2k � 2/.nC f //t,
where  is a circle in the plane. We give E1.2k; 2k.nCf // an orientation such that
all crossings of D.2k�2; .2k�2/.nCf //t are positive. Then E1.2k; 2k.nCf //

has 2.2k�1/.f Cn/�1C l�.2k/2 negative crossings and .2k/2lC .2k�1/2kn�1

crossings. Similarly, the diagram E2.2k; 2k.nC f // is equivalent to the diagram
D.2k � 2; .2k � 2/.nCf //. We give E2.2k; 2k.nCf // an orientation such that all
crossings of D.2k � 2; .2k � 2/.nCf // are positive. Then E2.2k; 2k.nCf // has
2.2k � 1/.f C n/� 1C l�.2k/2 negative crossings and .2k/2l C .2k � 1/2kn� 2

crossings. From (4-13), we have

dimQ KH2k2.nCf /;6k2.nCf /�2i.D.2k; 2k.nCf ///

� dimQ KH2.k�1/2.nCf /;6.k�1/2.nCf /�2iC1.D.2k � 2; .2k � 2/.nCf //t/

C dimQ KH2.k�1/2.nCf /;6.k�1/2.nCf /�2i.D.2k � 2; .2k � 2/.nCf ///:

By the induction hypothesis (4-12), the first term of the last expression is not zero for
i D 1; : : : ; k , and the second term is not zero for i D 0; : : : ; k � 1. This completes the
proof.
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Remark In general Lemma 4.6 is not true for .2kC 1; .2kC 1/n/–cable links, that
is, dimQ KH2k.kC1/.nCf /.D.2kC 1; .2kC 1/.nC f /� 1//¤ 0 even though n> l .
The reason is that the maximal homological degree of the Khovanov homology of a
.2k C 1; .2k C 1/n/–cable link is not equal to that of the Lee homology of the link.
Since we need Lemma 4.6 to prove Lemmas 4.8 and 4.9, we cannot obtain results for
.2kC 1; .2kC 1/n/–cable links corresponding to these lemmas by the same methods.

From Lemma 4.9, we obtain the following.

Corollary 4.10 Let K be a positive knot and D be a positive diagram of K with l

crossings. Then for any n > l and any positive integer k , the homological thickness
hw.K.2k; 2k.nC l/// is greater than or equal to k.k�1/.nC l/C2Cks.K/, where
s.K/ is the Rasmussen invariant of K .

Proof By Lemma 4.9, we have

KH2k2.nCl/;6k2.nCl/�2k.K.2k; 2k.nC l///¤ 0:

Since D.2k; 2k.nC l// is also positive diagram, from Theorem 3.13, we obtain

KH0;4k2lC2kn.2k�1/�2ks0.D/C2.K.2k; 2k.nC l///¤ 0;

where s0.D/ is the number of Seifert circles of D . Hence

hw.K.2k; 2k.nC l///� k.k � 1/.nC l/C 2C k.l C 1� s0.D//:

It is known that the Rasmussen invariant s.K/ of a positive knot K is l C 1� s0.D/,
where D is a positive diagram of K with l crossings (see [13, Section 5:2]). Hence
we obtain

hw.K.2k; 2k.nC l///� k.k � 1/.nC l/C 2C k � s.K/:

Remark Corollary 4.10 is an extension of Corollary 3.5. From Theorem 3.6, if n is
sufficiently large, the .2k; 2kn/–cabling of any positive knot K has no diagram which
is alternating after k.k � 1/nC ks.K/� 1 or less crossing changes.

5 An application for twisted Whitehead doubles

In this section, we consider twisted Whitehead doubles of any knot and compute their
Khovanov homologies.
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Let K be a knot. A twisted Whitehead double of K is represented by the diagram
L.D; q/ in Figure 10, where D is a diagram of K and q is an integer. The right
picture in Figure 11 is a twisted Whitehead double of the left-handed trefoil.

A cable link is obtained from a twisted Whitehead double of any knot by smoothing
at a crossing. In Section 4, we give some computations of the Khovanov homology
groups of cable links. By applying these computations, we will calculate the Khovanov
homology groups of a twisted Whitehead double of any knot with sufficiently many
twists. Moreover we compute their Rasmussen invariants (Corollary 5.6).

Let D be a knot diagram with lC.D/ positive crossings and l�.D/ negative crossings.
Put l D lC.D/C l�.D/ and f D lC.D/� l�.D/. Let L.D; q/DL, L0 and L1 be
knot diagrams depicted in Figure 10, where q is a nonnegative integer (for example,
see Figure 11). In the case where q is negative, we define L.D; q/ as the mirror image
of L.�D;�qC 1/, where �D is the mirror image of D .

By the definition, we have

H i;j .L1/DH i�1;j�2.D.2; qC 2f //;

H i;j .L0/DH i�1;j�1.D.2; q� 1C 2f //:

To study the Khovanov homology of L.D; q/, we compute H i;j .D.2; q� 1C 2f //

for some i and j .

Lemma 5.1 For n> l C 1, we have

H 2.nCl/�1;j .D.2; 2.nCf /� 1//D

�
Q if j D 2l C 4n� 2;

0 if j ¤ 2l C 4n� 3˙ 1;

and for n> l and any i � 2.nC l/, we have

H i.D.2; 2.nCf /� 1//D 0:

Proof We obtain the following exact sequence:

� � � �!H 2.nCl/�2;j .D1.2; 2.nCf /� 1//

�!H 2.nCl/�2;j�1.E1.2; 2.nCf /� 1//

�!H 2.nCl/�1;j .D.2; 2.nCf /� 1//

�!H 2.nCl/�1;j .D1.2; 2.nCf /� 1// �! � � � ;

where Em.p; q/ and Dm.p; q/ are given in Figure 8. By Lemma 4.2 we have

H 2.nCl/�1;j .D1.2; 2.nCf /� 1//DH 2.nCl/�1;j .D.2; 2.nCf /� 2//D 0:
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D

D

D

L0 D

L1 D

L.D; q/DLD q crossings

Figure 10: L.D; q/DL , L0 and L1 , where q is nonnegative

D L.D; q/

q crossings

Figure 11: An example of L.D; q/

The diagram E1.2; 2.nC f /� 1/ is a diagram of the unknot and has 2l C 2n� 2

negative crossings and 2l positive crossings. Hence we have

H 2.nCl/�2;j�1.E1.2; 2.nCf /� 1//D

�
Q if j D 2l C 4n� 3˙ 1;

0 otherwise.

Algebraic & Geometric Topology, Volume 13 (2013)



The maximal degree of the Khovanov homology of a cable link 2875

By Lemmas 4.9 and 4.8, we obtain

H 2.nCl/�2;j .D.2; 2.nCf /� 2//D

�
Q if j D 2l C 4n� 5˙ 1;

0 otherwise.

From the above exact sequence, we have

H 2.nCl/�1;j .D.2; 2.nCf /� 1//D

�
Q if j D 2l C 4n� 2;

0 if j ¤ 2l C 4n� 3˙ 1:

The second claim follows from Lemmas 4.6 and 4.2.

By using Lemma 5.1, we can compute some Khovanov homology groups of L.D; q/.

Proposition 5.2 Let D be a knot diagram with lC.D/ positive crossings and l�.D/

negative crossings. Put l D lC.D/C l�.D/. Let n be an integer which is greater
than l .

(I) In the case where q D 2n, we have

KH0;j .L.D; q//D

�
Q if j D�2˙ 1;

0 otherwise:

(II) In the case where q D 2nC 1, we have

KH2;j .L.D; q//D

�
Q if j D 5;

0 if j ¤ 5; 3:

Proof Put f D lC.D/� l�.D/.

(I) Suppose that q D 2n.

From Lemma 4.8, we obtain dimQ H 2.nCl/.D.2; 2.f C n///D 2. From Lemma 4.9,
we have H 2.nCl/;4nC2l�1˙1.D.2; 2.f C n///¤ 0. Hence we obtain

H 2.nCl/C1;j .L1/DH 2.nCl/;j�2.D.2; 2.f C n///D

�
Q if j D 4nC 2l C 1˙ 1;

0 otherwise:

From Lemma 5.1, we obtain H i;j .L0/ D H i�1;j�1.D.2; 2.f C n/ � 1// D 0 if
i > 2.nC l/. Now there is the following exact sequence:

� � � �!H 2.nCl/C1;j .L0/ �!H 2.nCl/C1;j�1.L1/

�!H 2.nCl/C2;j .L/ �!H 2.nCl/C2;j .L0/ �! � � � :

Since H 2.nCl/C1;j .L0/DH 2.nCl/C2;j .L0/D 0, we have

H 2.nCl/C2;j .L/D

�
Q if j D 4nC 2l C 2˙ 1;

0 otherwise.
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The diagram L D L.D; 2n/ has 2n C 2 C 2l negative crossings and 2l positive
crossings. By the definition, we obtain

KH0;j .L.D; q//D

�
Q if j D�2˙ 1;

0 otherwise:

(II) Suppose that q D 2nC 1.

We can prove this by the same method as in (I). It follows from Lemmas 4.2 and 5.1 that

H 2.nCl/C2;j .L1/DH 2.nCl/C1;j�2.D.2; 2f C 2nC 1//

D

�
Q if j D 4nC 2l C 4;

0 if j ¤ 4nC 2l C 3˙ 1;

and H i;j .L0/DH i�1;j�1.D.2; 2f C 2n//D 0 if i > 2.nC l/C 1. Now we have
the following exact sequence:

H 2.nCl/C2;j .L0/!H 2.nCl/C2;j�1.L1/!H 2.nCl/C3;j .L/!H 2.nCl/C3;j .L0/:

Since H 2.nCl/C2;j .L0/DH 2.nCl/C3;j .L0/D 0, we obtain

H 2.nCl/C3;j .L/DH 2.nCl/C2;j�1.L1/D

�
Q if j D 4nC 2l C 5;

0 if j ¤ 4nC 2l C 4˙ 1:

The diagram LDL.D; 2nC1/ has 2nC1C2l negative crossings and 2C2l positive
crossings. By the definition we have

KH2;j .L.D; q//D

�
Q if j D 5;

0 if j ¤ 5; 3:

Corollary 5.3 Let D be a knot diagram with lC.D/ positive crossings and l�.D/

negative crossings. Put l D lC.D/C l�.D/. Let n be an integer which is greater than l .
Then we have s.L.D; 2n//D�2, where s.K/ is the Rasmussen invariant of a knot K .

Proof From Proposition 2.4, we have dimQ Lee0.L.D; 2n//D 2. Let smax and smin

be its generators. Assume that the q–grading of smax is greater than that of smin . From
the definition of the Rasmussen invariant, the q–grading of smax is s.L.D; 2n//C 1

and that of smin is s.L.D; 2n//�1. Since there is a spectral sequence whose E1–page
is the Lee homology and E2 –page is the Khovanov homology, we have

KH0;s.L.D;2n//˙1.L.D; 2n//¤ 0:

From Proposition 5.2(I), we have s.L.D; 2n//D�2.
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In [12] Livingston and Naik showed Theorem 5.5 below, which gives a relation between
the values of the Rasmussen invariants of L.D; 2t/ and L.D; 2t C 1/.

Definition 5.4 We call an invariant � of Livingston–Naik type if � is an integer-valued
additive knot invariant which bounds the smooth 4–genus of a knot and coincides with
the 4–ball genera of positive torus knots, that is:

� � is a homomorphism from the smooth knot concordance group C to Z.

� j�.K/j � g4.K/, where g4.K/ is the 4–genus of a knot K .

� �.Tp;q/D .p� 1/.q� 1/=2, where p and q are coprime integers.

Remark For example the Ozsváth–Szabó invariant � and half of the Rasmussen
invariant s=2 are Livingston–Naik-type invariants.

Theorem 5.5 [12, Theorem 1] Let � be a Livingston–Naik type invariant. If
�.L.D; 2t//D˙1, then �.L.D; 2t C 1//D 0.

Remark In their paper, Livingston and Naik use the notation D�.K; t/ and DC.K; t/

instead of L.D; 2t � 2f / and L.D; 2t C 1� 2f / respectively.

Theorem 5.5 does not determine the value of the Rasmussen invariant of a twisted
Whitehead double of a knot. From Theorem 5.5 and Corollary 5.3, we can compute
the Rasmussen invariants of twisted Whitehead doubles of any knot with sufficiently
many twists.

Corollary 5.6 For any n> l , we have

s.L.D; 2n//D�2;

s.L.D; 2nC 1//D 0;

s.L.D;�2n//D 0;

s.L.D;�2nC 1//D 2:

Proof Let �D be the mirror image of the diagram D . From Proposition 5.2, we
have s.L.D; 2n//D�2. Since L.D;�2nC 1/ and the mirror image of L.�D; 2n/

are diagrams of the same knot, we obtain s.L.D;�2n C 1// D �s.L.�D; 2n//.
Since we can apply Proposition 5.2 to L.�D; 2n/, we have s.L.D;�2nC 1// D

�s.L.�D; 2n// D 2. It follows from Theorem 5.5 that s.L.D; 2n C 1// D 0 D

s.L.�D; 2nC 1//. Since L.D;�2n/ and the mirror image of L.�D; 2nC 1/ are
diagrams of the same knot, we have s.L.D;�2n//D 0.
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We can rewrite Corollary 5.6 as follows.

Corollary 5.7 For any knot K , we have s.DC.K; t// D 0 for t > 2lC.K/ and
s.DC.K; t//D2 for t <�2l�.K/, where lC.K/DminflC.D/ jD is a diagram of Kg

and l�.K/Dminfl�.D/ j D is a diagram of Kg (see Figure 12).

0

2

s.DC.K; t//

�2l�.K/ 2lC.K/
t

?

Figure 12: s.DC.K; t//

Remark Note that we use a relation between the Khovanov homology and the Ras-
mussen invariant s in Corollary 5.7 (or Corollary 5.6). We do not know whether another
Livingston–Naik-type invariant satisfies Corollary 5.7 or not.

We only compute the Khovanov homology groups of a twisted Whitehead double of
any knot with sufficiently many twists. Since the Rasmussen invariant s is obtained
from the Lee homology, the estimation in Corollary 5.7 may not be sharp. Livingston
and Naik [12] showed the following theorem, which is similar to Corollary 5.7.

Theorem 5.8 [12, Theorem 2] Let � be a Livingston–Naik-type invariant. For
each knot K , we have �.DC.K; t// D 1 for t � TB.K/ and �.DC.K; t// D 0 for
t � �TB.�K/, where TB.K/ is the maximal Thurston–Bennequin number of a knot
K and �K is the mirror image of K .

0

1

�.DC.K; t//

TB.K/ t.K; �/ �TB.�K/
t

Figure 13: �.DC.K; t//
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0

1

s.DC.K; t//=2

�2l�.K/�1 t.K; s
2
/ 2lC.K/

t

Figure 14: s.DC.K; t//=2

Remark For any Livingston–Naik-type invariant � and knot K , Livingston and
Naik show that �.DC.K; t// is a nonincreasing function of t . Hence, there exists an
integer t.K; �/ such that �.DC.K; t//D 1 for t � t.K; �/ and �.DC.K; t//D 0 for
t > t.K; �/ (see [12, Theorem 2]).

For any Livingston–Naik-type invariant � , we have TB.K/� t.K; �/ < �TB.�K/

from Theorem 5.8 (Figure 13). In particular, we obtain

TB.K/� t.K; s=2/ < �TB.�K/:

From Corollary 5.7, we have

�2l�.K/� 1� t.K; s=2/� 2lC.K/:

See also Figure 14. As far as the author knows, there is no relation between the maximal
Thurston–Bennequin number and the positive or negative crossing number. However
they have a similar property as above.

For the Ozsváth–Szabó invariant � , it is known that t.K; �/ D 2�.K/ � 1 (see
Theorem 5.10 below).

Example 5.9 For the right-handed trefoil T2;3 , we have l�.T2;3/D 0, lC.T2;3/D 3,
TB.T2;3/ D 1 and TB.�T2;3/ D �6. We have s.DC.T2;3; t// D 2 for t � 1 and
s.DC.T2;3; t// D 0 for t � 6 from Theorem 5.8. From Corollary 5.7, we have
s.DC.T2;3; t//D 2 for t � 1 and s.DC.T2;3; t//D 0 for t � 7. Hence, in this case,
Theorem 5.8 implies Corollary 5.7. However, in general, we do not know whether
Theorem 5.8 implies Corollary 5.7 or not.

Theorem 5.10 [5, Theorem 1:4] For any knot K , we have

�.DC.K; t//D

�
0 if t > 2�.K/� 1;

1 if t � 2�.K/� 1:
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Remark The negative half of the knot signature ��=2 is not of a Livingston–Naik
type since ��.Tp;q/=2 is not equal to .p � 1/.q � 1/=2. However it has similar
properties. We call such an invariant of weak Livingston–Naik-type (see Definition 5.11
below).

Definition 5.11 We call an invariant �0 of weak Livingston–Naik-type if �0 is an
integer-valued additive knot invariant which bounds the smooth 4–genus of a knot and
coincides with the 4–ball genus of right-handed trefoil knot, that is:

� �0 is a homomorphism from the smooth knot concordance group C to Z.

� j�0.K/j � g4.K/, where g4.K/ is the 4–genus of a knot K .

� �0.T2;3/D 1.

Remark In [1], Abe calls the properties in Definition 5.11 the L–property.

Remark For any Livingston–Naik-type invariant � , we only use the properties in
Definition 5.11 to prove that �.DC.K; t// is a nonincreasing function of t . Hence, for
any weak Livingston–Naik-type invariant �0 and knot K , �0.DC.K; t// is a nonin-
creasing function of t and there exists an integer t.K; �0/ such that �0.DC.K; t//D 1

for t � t.K; �0/ and �0.DC.K; t// D 0 for t > t.K; �0/ (see [12, Theorem 2] and
[11, Corollary 3]). In particular, the negative half of the knot signature � is of weak
Livingston–Naik-type and t.K;��=2/D 0.

Appendix

In this section, we prove Claims 4.4, 4.5 and 4.7 and Lemma 3.10.

Proof of Claim 4.4 We consider the diagram Em.2k; 2k.nCf /Cj /. If we slide an
arc (which is like a “cap” illustrated in the following figures) of Em.2k; 2k.nCf /Cj /,
the diagram Em.2k; 2k.nCf /Cj / may change to one of the four diagrams depicted
in Figures 15, 16, 17 and 18. If Em.2k; 2k.nC f /C j / changes to the diagram
depicted in Figure 17, then we continue the isotopic moves as depicted in Figure 19.
Similarly, if Em.2k; 2k.nC f /C j / changes to the diagram depicted in Figure 18,
then we continue the isotopic moves as depicted in Figure 20. No matter in which
of the four cases, there are an h 2 f1; : : : ; 2k � 2xg, an x 2 f1; : : : ; kg, an s 2

f1; : : : ; 2k�2x�1g and an " 2 f0; 1g such that Em.2k; 2k.nCf /Cj / is equivalent
to Ds.2k � 2x; .2k � 2x/.nC f /C h/tU" , where U0 is a circle in the plane and
U1 is the empty set. We give Em.2k; 2k.nC f /C j / an orientation such that all
crossings of Ds.2k�2x; .2k�2x/.nCf /Ch/tU" are positive. We call the diagram
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D2k;2knCj�1 D2k�2;.2k�2/nCj 0

D2k�2x;.2k�2x/nCh�1

Slide this arc

D

D : : : D

Figure 15: The diagram Em.2k; 2k.nCf /Cj / can be changed to a positive
diagram Ds.2k � 2x; .2k � 2x/.nCf /C h/tU" (type 1)

D2k;2knCj�1 D2k�2;.2k�2/nCj 0

D2k�2x;.2k�2x/nCh�1

Slide this arc

D

D : : : D

Figure 16: The diagram Em.2k; 2k.nCf /Cj / can be changed to a positive
diagram Ds.2k � 2x; .2k � 2x/.nCf /C h/tU" (type 2)

Em.2k; 2k.nC f /C j / of type 1, type 2, type 3 and type 4 if it changes to the
positive diagram as in Figures 15, 16, 19 and 20, respectively.

Now we have supposed that for 1�g<k , j D1; : : : ; 2g and mD0; : : : ; 2g�1 we have
H i.Dm.2g; 2g.nCf /Cj //D0 if i >2g2.n�lC1/Cl.2g/2 and n� l , or i > l.2g/2
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D2k;2knCj�1 D2k�2;.2k�2/nCj 0

D2k�2;.2k�2/nCh

Slide this arc
D

D : : : D

Figure 17: The diagram Em.2k; 2k.nCf /C j / can be changed to a diagram (type 3)

D2k;2knCj�1 D2k�2;.2k�2/nCj 0

D2k�2x;.2k�2x/nCh�1

Slide this arc

D

D : : : D

Figure 18: The diagram Em.2k; 2k.nCf /C j / can be changed to a diagram (type 4)

and n< l (recall the induction hypothesis in the proof of Lemma 4.3(1)). From this
induction hypothesis, if i �n�C l�.2k � 2x/2 > 2.k �x/2.n� lC 1/C l.2k � 2x/2

and n� l , or i � n�C l�.2k � 2x/2 > l.2k � 2x/2 and n< l , then we have

H i.Em.2k; 2k.nCf /C j //

D KHi�n�.Ds.2k � 2x; .2k � 2x/.nCf /C h/tU"/

DH i�n�Cl�.2k�2x/2.Ds.2k � 2x; .2k � 2x/.nCf /C h/tU"/D 0;
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D

D

D

D

D

D2k�2x;.2k�2x/nCh

D2k�2x;.2k�2x/nCh�1

D2k�2x;.2k�2x/nCh�1

D2k�2x;.2k�2x/nCh�1

D2k�2x;.2k�2x/nCh�1

D2k�2x;.2k�2x/nCh�1

Slide this block

Turn 180ı
on the plane

Figure 19: The diagram Em.2k; 2k.nCf /Cj / can be changed to a positive
diagram Ds.2k � 2x; .2k � 2x/.nCf /C h/tU" (type 3)

where n� is the number of the negative crossings of Em.2k; 2k.nCf /C j /. Hence,
to prove Claim 4.4, it is sufficient to prove the following:

(A-1) l.2k/2C 2k2.n� l C 1/� 1

� 2.k �x/2.n� l C 1/C lC.2k � 2x/2C n� .n� l/;

and

(A-2) l.2k/2� 1� lC.2k � 2x/2C n� .n< l/:

To prove (A-1) and (A-2), we need to count the number of the negative crossings of
Em.2k; 2k.nCf /C j /.

We first count its positive crossings by dividing it into four parts: part 1, part 2, part 3

and part 4 (see Figure 21).

Algebraic & Geometric Topology, Volume 13 (2013)



2884 Keiji Tagami

D

D D

D

Slide this block

Turn 180ı
on the plane

D2k�2x;.2k�2x/nCh�1
D2k�2x;.2k�2x/nCh�1

D2k�2x;.2k�2x/nCh�1

D2k�2x;.2k�2x/nCh�1

D2k�2x;.2k�2x/nCh�1

Figure 20: The diagram Em.2k; 2k.nCf /Cj / can be changed to Ds.2k�

2x; .2k � 2x/.nCf /C h/tU" (type 4)

Step 1 Suppose Em.2k; 2k.nCf /C j / is either of type 1 or type 2: In part 1, we
apply

Px�1
iD0 .l.2k�2i/C l.2k�2i�2// times RII moves to Em.2k; 2k.nCf /Cj /

to obtain the diagram Ds.2k � 2x; .2k � 2x/.nC f /C h/tU" . Then the diagram
Em.2k; 2k.nCf /C j / loses

Px�1
iD0 .l.2k � 2i/C l.2k � 2i � 2// positive crossings.

Moreover, Ds.2k�2x; .2k�2x/.nCf /Ch/tU" has lC.2k�2x/2 positive crossings
in a part corresponding to part 1. Hence, in part 1, Em.2k; 2k.nCf /C j / has

x�1X
iD0

.l.2k � 2i/C l.2k � 2i � 2//C lC.2k � 2x/2

positive crossings.
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D D2k;j�1

D2k;2kn

2k

part 1

part 2

part 3

part 4

Figure 21: The diagram Em.2k; 2k.nCf /C j / divided into four parts

In part 2, Em.2k; 2k.n C f / C j / has x arcs directed upward and 2k � x arcs
directed downward (see Figure 22). Hence, in part 2, Em.2k; 2k.nC f /C j / has
x.x� 1/nC .2k �x/.2k �x� 1/n positive crossings.

D2k;2kn

�x

� 2k �x

Figure 22: If Em.2k; 2k.nC f /C j / is either type 1 or type 2 , in part 2 ,
Em.2k; 2k.nCf /Cj / has x arcs directed upward and 2k�x arcs directed
downward

2k

m

" �x and # � .2k�m�x�1/

Figure 23: If Em.2k; 2k.nC f /C j / is either type 1 or type 2 , in part 3 ,
Em.2k; 2k.nCf /C j / has at least 2k�m�1�x positive crossings. This
figure is a minimal case.

In part 3, Em.2k; 2k.nCf /C j / has at least 2k �m� 1�x positive crossings (see
Figure 23).
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In part 4, note that there are x arcs directed upward and 2k�x arcs directed downward.
Assume that b is the number of the positions where the leftmost arc is directed upward
and that a is the number of the positions where the leftmost arc is directed downward
(see Figure 24). Note that aC b D j � 1 and that b � x .

D2k;j�1

" �x and # � .2k �x/

� a

� b

.aC b D j � 1/

Figure 24: In the case where the diagram Em.2k; 2k.nC f /C j / is of
type 1 or type 2 . In part 4 , Em.2k; 2k.nC f /C j / has x arcs directed
upward and 2k � x arcs directed downward. The number of the positions
where the left most arc is directed upward is b . The number of the positions
where the left most arc is directed downward is a .

Then, in part 4, Em.2k; 2k.nCf /C j / has

b.x� 1/C a.2k �x� 1/D b.x� 1/C .j � 1� b/.2k �x� 1/

positive crossings.

Hence the diagram Em.2k; 2k.nCf /C j / has at least X1 positive crossings, where

X1 D

x�1X
iD0

.l.2k � 2i/C l.2k � 2i � 2//C lC.2k � 2x/2

Cx.x� 1/nC .2k �x/.2k �x� 1/n

C 2k � 1�m�x

C b.x� 1/C .j � 1� b/.2k �x� 1/:

From the above discussion Em.2k; 2k.nCf /Cj / has at most X2 negative crossings,
where

X2 D l.2k/2C .2k � 1/.2knC j /�m�X1:

Then for j ¤ 2k we can check the following.

l.2k/2C 2k2.n� l C 1/� 1� 2.k�x/2.n� l C 1/C lC.2k � 2x/2CX2 .n� l/;

l.2k/2� 1� lC.2k � 2x/2CX2 .n< l/:
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Indeed, we can compute

l.2k/2C 2k2.n� l C 1/� 1� .2.k �x/2.n� l C 1/C lC.2k � 2x/2CX2/

D 2.k �x/.x� b/Cx.2k � j /� 1:

We obtain 2.k � x/.x � b/C x.2k � j /� 1 � 0 since 0 < j < 2k , b � x � k and
x � 1. Similarly lC.2k�2x/2CX2 � l.2k/2�1 for j ¤ 2k . This implies that (A-1)
and (A-2) are true if j ¤ 2k and Em.2k; 2k.nCf /Cj / is either of type 1 or type 2.

Finally we consider the case j D2k . If j D2k , then xD1 and Em.2k; 2k.nCf /Cj /

has n�D2.2k�1/.nC1/�1C2lC.2k�1/Cl�..2k/2�2.2k�1// negative crossings.
In this case we have lC.2k�2/2C2.k�1/2.n�lC1/Cn�D l.2k/2C2k2.n�lC1/�1.
Similarly, in this case, we obtain l.2k/2 � 1 � lC.2k � 2x/2C n� for n < l . These
imply that (A-1) and (A-2) are true for j D 2k .

Step 2 Suppose Em.2k; 2k.nCf /C j / is either of type 3 or type 4: By the same
discussion, in part 1, Em.2k; 2k.nCf /C j / has

x�1X
iD0

.l.2k � 2i/C l.2k � 2i � 2//C lC.2k � 2x/2

positive crossings.

In part 2, Em.2k; 2k.n C f / C j / has 2k � x arcs directed upward and x arcs
directed downward (see Figure 25). Hence, in part 2, Em.2k; 2k.nC f /C j / has
x.x� 1/nC .2k �x/.2k �x� 1/n positive crossings.

D2k;2kn

� 2k �x

�x

Figure 25: If Em.2k; 2k.nC f /C j / is either type 3 or type 4 , in part 2 ,
Em.2k; 2k.nCf /Cj / has 2k�x arcs directed upward and x arcs directed
downward

In part 3, Em.2k; 2k.nCf /C j / may have no positive crossing.

In part 4, note that there are 2k�x arcs directed upward and x arcs directed downward.
Assume that a is the number of the positions where the left most arc is directed upward
and that b is the number of the positions where the left most arc is directed downward
(see Figure 26). Note that aCbD j �1 and that b < x (we have b¤ x since in part 4

the left most bottom arc is directed downward).
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D2k;j�1

" � 2k �x and # �x

� b

� a

.aC b D j � 1/This arc is definitely
directed downward

Figure 26: In the case where the diagram Em.2k; 2k.nCf /C j / is type 3

or type 4 . In part 4 , Em.2k; 2k.nCf /Cj / has 2k�x arcs directed upward
and x arcs directed downward. The number of the positions where the left
most arc is directed upward is a . The number of the positions where the left
most arc is directed downward is b . The left most bottom arc is directed
downward since we give Em.2k; 2k.nCf /C j / such an orientation, (see
Figures 19, 20 or 21).

Then, in part 4, Em.2k; 2k.nCf /C j / has

b.x� 1/C a.2k �x� 1/D b.x� 1/C .j � 1� b/.2k �x� 1/

positive crossings.

Hence the diagram Em.2k; 2k.nCf /C j / has at least X 0
1

positive crossings, where

X 01 D

x�1X
iD0

.l.2k � 2i/C l.2k � 2i � 2//C lC.2k � 2x/2

Cx.x� 1/nC .2k �x/.2k �x� 1/n

C b.x� 1/C .j � 1� b/.2k �x� 1/:

From the above discussion, Em.2k; 2k.nCf /Cj / has at most X 0
2

negative crossings,
where

X 02 D l.2k/2C .2k � 1/.2knC j /�m�X 01:

Then for j ¤ 2k we can also check the following:

l.2k/2C 2k2.n� l C 1/� 1� 2.k �x/2.n� l C 1/C lC.2k � 2x/2CX 02 .n� l/;

l.2k/2� 1� lC.2k � 2x/2CX 02 .n< l/:

Indeed, we can compute

l.2k/2C 2k2.n� l C 1/� 1� .2.k �x/2.n� l C 1/C lC.2k � 2x/2CX 02/

D 2.k �x/.x� b� 1/Cx.2k � j � 1/Cm:
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We obtain 2.k�x/.x�b�1/Cx.2k�j �1/Cm�m> 0 since we have 0< j < 2k ,
b < x � k and x � 1. Similarly lC.2k � 2x/2CX 0

2
� l.2k/2� 1.

From Steps 1 and 2, we finish this proof.

Proof of Claim 4.5 The proof of Claim 4.5 is the same as that of Claim 4.4.

By the same discussion, there are an h 2 f1; : : : ; 2kC 1� 2xg, an x 2 f1; : : : ; kg, an
s 2 f1; : : : ; 2k�2xg and an " 2 f0; 1g such that Em.2kC1; .2kC1/.nCf /C j / is
equivalent to Ds.2kC 1� 2x; .2kC 1� 2x/.nC f /C h/tU" , where U0 is a circle
in the plane and U1 is the empty set. We give Em.2kC 1; .2kC 1/.nC f /C j / an
orientation such that all crossings of Ds.2kC1�2x; .2kC1�2x/.nCf /Ch/tU"
are positive.

Now we have supposed that for 1� g < k , j D 1; : : : ; 2gC 1 and mD 0; : : : ; 2g we
have H i.Dm.2gC1; .2gC1/.nCf /Cj //D0 if i >2g.gC1/.n�lC1/Cl.2gC1/2

and n� l , or i > l.2gC 1/2 and n< l (recall the induction hypothesis in the proof
of Lemma 4.3(2)). From this induction hypothesis, if i � n�C l�.2kC 1� 2x/2 >

2.k�x/.k�xC1/.n�lC1/Cl.2kC1�2x/2 and n� l , or i�n�Cl�.2kC1�2x/2>

l.2kC 1� 2x/2 and n< l , then we have

H i.Em.2kC 1; .2kC 1/.nCf /C j //D 0;

where n� is the number of the negative crossings of Em.2kC1; .2kC1/.nCf /Cj /.
Hence, to prove Claim 4.5, it is sufficient to prove the following:

(A-3) l.2kC 1/2C 2k.kC 1/.n� l C 1/� 1

� 2.k �x/.kC 1�x/.n� l C 1/C lC.2kC 1� 2x/2C n� .n� l/;

and

(A-4) l.2kC 1/2� 1� lC.2kC 1� 2x/2C n� .n< l/:

To prove (A-3) and (A-4), we need to count the number of the negative crossings of
Em.2kC 1; .2kC 1/.nCf /C j /.

We first count its positive crossings by dividing it into four parts as the proof of
Claim 4.4.

Step 1 Suppose Em.2kC 1; .2kC 1/.nCf /C j / is either of type 1 or type 2: In
part 1, Em.2kC 1; .2kC 1/.nCf /C j / has

x�1X
iD0

.l.2kC 1� 2i/C l.2k � 2i � 1//C lC.2kC 1� 2x/2
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positive crossings.

In part 2, Em.2kC1; .2kC1/.nCf /C j / has x.x�1/nC .2kC1�x/.2k�x/n

positive crossings.

In part 3, Em.2kC1; .2kC1/.nCf /Cj / has at least 2k�m�x positive crossings
(cf Figure 23).

In part 4, Em.2kC 1; .2kC 1/.nCf /C j / has

b.x� 1/C a.2k �x/D b.x� 1/C .j � 1� b/.2k �x/

positive crossings.

Hence the diagram Em.2kC1; .2kC1/.nCf /Cj / has at least Y1 positive crossings,
where

Y1 D

x�1X
iD0

.l.2kC 1� 2i/C l.2k � 2i � 1//C lC.2kC 1� 2x/2

Cx.x� 1/nC .2kC 1�x/.2k �x/n

C 2k �m�x

C b.x� 1/C .j � 1� b/.2k �x/:

From the above discussion, Em.2kC1; .2kC1/.nCf /Cj / has at most Y2 negative
crossings, where

Y2 D l.2kC 1/2C 2k..2kC 1/nC j /�m�Y1:

Then for j ¤ 2kC 1 we can check the following:

l.2kC 1/2C 2k.kC 1/.n� l C 1/� 1

� 2.k �x/.k �xC 1/.n� l C 1/C lC.2kC 1� 2x/2CY2 .n� l/;

and
l.2kC 1/2� 1� lC.2kC 1� 2x/2CY2 .n< l/:

Finally we consider the case where j D 2k C 1. If j D 2k C 1 then x D 1 and
Em.2kC1; .2kC1/.nCf /Cj / has n�D 4k.nC1/�1C4lCkCl�..2kC1/2�4k/

negative crossings. In this case we have

lC.2k � 1/2C 2k.k � 1/.n� l C 1/C n� D l.2kC 1/2C 2k.kC 1/.n� l C 1/� 1:

Similarly, in this case, we obtain l.2kC 1/2� 1� lC.2kC 1� 2x/2C n� for n< l .
These imply that (A-3) and (A-4) are true for j D 2kC 1.
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Step 2 Suppose Em.2kC 1; .2kC 1/.nCf /C j / is either of type 3 or type 4:

By the same discussion, in part 1, Em.2kC 1; .2kC 1/.nCf /C j / has

x�1X
iD0

.l.2kC 1� 2i/C l.2k � 2i � 1//C lC.2kC 1� 2x/2

positive crossings.

In part 2, Em.2kC1; .2kC1/.nCf /C j / has x.x�1/nC .2kC1�x/.2k�x/n

positive crossings.

In part 3, Em.2kC 1; .2kC 1/.nCf /C j / may have no positive crossing.

In part 4, Em.2kC 1; .2kC 1/.nCf /C j / has

b.x� 1/C a.2k �x/D b.x� 1/C .j � 1� b/.2k �x/

positive crossings.

Hence the diagram Em.2kC1; .2kC1/.nCf /Cj / has at least Y 0
1

positive crossings,
where

Y 01 D

x�1X
iD0

.l.2kC 1� 2i/C l.2k � 2i � 1//C lC.2kC 1� 2x/2

Cx.x� 1/nC .2kC 1�x/.2k �x/n

C b.x� 1/C .j � 1� b/.2k �x/:

From the above discussion, Em.2kC1; .2kC1/.nCf /Cj / has at most Y 0
2

negative
crossings, where

Y 02 D l.2kC 1/2C 2k..2kC 1/nC j /�m�Y 01:

Then for j ¤ 2kC 1 we can also check the following:

l.2kC 1/2C 2k.kC 1/.n� l C 1/� 1

� 2.k �x/.k �xC 1/.n� l C 1/C lC.2kC 1� 2x/2CY 02 .n� l/;

and
l.2kC 1/2� 1� lC.2kC 1� 2x/2CY 02 .n< l/:

From Steps 1 and 2, we finish this proof.
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Proof of Claim 4.7 In the proof of Claim 4.4, we have proved that:

� There are an h2f1; : : : ; 2k�2xg, an x 2f1; : : : ; kg, an s 2f1; : : : ; 2k�2x�1g

and an " 2 f0; 1g such that Em.2k; 2k.nCf /Cj / is equivalent to the diagram
Ds.2k�2x; .2k�2x/.nCf /Ch/tU" , where U0 is a circle in the plane and
U1 is the empty set.

� If Em.2k; 2k.nCf /C j / is either of type 1 or type 2, then it has at most X2

negative crossings.

� If Em.2k; 2k.nCf /C j / is either of type 3 or type 4, then it has at most X 0
2

negative crossings.

From Lemma 4.3, if i �n�C l�.2k�2x/2 > 2.k�x/2.n� lC1/C l.2k�2x/2 and
n� l , then we have

H i.Em.2k; 2k.nCf /C j //

DH i�n�Cl�.2k�2x/2.Ds.2k � 2x; .2k � 2x/.nCf /C h/tU"/D 0;

where n� is the number of the negative crossings of Em.2k; 2k.nC f /C j /. In
particular, if i > 2.k �x/2.n� l C 1/C lC.2k � 2x/2C n� and n� l , then we have

H i.Em.2k; 2k.nCf /C j //D 0:

From the above results, to prove Claim 4.7, it is sufficient to prove that:

(1) If Em.2k; 2k.nCf /C j / is either of type 1 or type 2, then

l.2k/2C 2k2.n� l/� 2� 2.k �x/2.n� l C 1/C lC.2k � 2x/2CX2:

(2) If Em.2k; 2k.nCf /C j / is either of type 3 or type 4, then

l.2k/2C 2k2.n� l/� 2� 2.k �x/2.n� l C 1/C lC.2k � 2x/2CX 02:

We have already proved (2) in the proof of Claim 4.4. Let us prove (1). Recall
j D 1; : : : ; 2k � 1, b � x � k and x � 1. Hence, if j � 2k � 2 or x � 2, we obtain

l.2k/2C 2k2.n� l/� 2� .2.k �x/2.n� l C 1/C lC.2k � 2x/2CX2/

D�2Cx.2k � j /C 2.k �x/.b�x/� 0:

If j D 2k � 1 and x D 1, then Em.2k; 2k.nCf /C j / is either of type 3 or type 4.
Hence we obtain l.2k/2C2k2.n�l/�2�.2.k�x/2.n�lC1/ClC.2k�2x/2CX2/�0

if Em.2k; 2k.nCf /C j / is either of type 1 or type 2.
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Proof of Lemma 3.10 To prove Lemma 3.10, we use Lemma A.1 below. It follows
from Lemma A.1 that

H 2k.kC1/n.D2kC1;.2kC1/n�1/DH 2k.kC1/n.D2kC1;.2kC1/.n�1//

for any positive integers n and k . From Lemma 4.2, the right-hand side is zero.

Lemma A.1 Let K be a knot and D be a knot diagram with lC positive crossings
and l� negative crossings. Put l D lCC l� and f D lC � l� . Then for any positive
integer k and any n> l , we obtain

H 2k.kC1/.nCl/Cl.D.2kC 1; .2kC 1/.nCf /� 1//

DH 2k.kC1/.nCl/Cl.D.2kC 1; .2kC 1/.nCf � 1///:

Proof We first compute H i.Em.2kC 1; .2kC 1/.nC f � 1/C j //. In the proof of
Claim 4.5, we have proved that:

� There are an h2f1; : : : ; 2kC1�2xg, an x 2f1; : : : ; kg, an s 2f1; : : : ; 2k�2xg

and an " 2 f0; 1g such that Em.2kC 1; .2kC 1/.nC f /C j / is equivalent to
Ds.2kC 1� 2x; .2kC 1� 2x/.nCf /C h/tU" , where U0 is a circle in the
plane and U1 is the empty set.

� If Em.2kC1; .2kC1/.nCf /C j / is either of type 1 or type 2, then it has at
most Y2 negative crossings.

� If Em.2kC1; .2kC1/.nCf /C j / is either of type 3 or type 4, then it has at
most Y 0

2
negative crossings.

From Lemma 4.3, if

i � n�C l�.2kC 1� 2x/2 > 2.k �x/.k �xC 1/.n� l C 1/C l.2kC 1� 2x/2

and n� l , then we have

H i.Em.2kC 1; .2kC 1/.nCf /C j //

DH i�n�Cl�.2kC1�2x/2.Ds.2kC 1� 2x; .2kC 1� 2x/.nCf /C h//D 0;

where n� is the number of the negative crossings of Em.2kC1; .2kC1/.nCf /Cj /.
In particular, if i > 2.k�x/.k�xC1/.n� lC1/C lC.2kC1�2x/2Cn� and n� l ,
then we have

H i.Em.2kC 1; .2kC 1/.nCf /C j //D 0:

Then we can prove the following claim.
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Claim A.2 For j D1; : : : ; 2k and mD1; : : : ; 2k , if Em.2kC1; .2kC1/.nCf /Cj /

is either of type 1 or type 2, then

(A-5) l.2kC 1/2C 2k.kC 1/.n� l/� 2

� 2.k �x/.k �xC 1/.n� l C 1/C lC.2kC 1� 2x/2CY2

� 2.k �x/.k �xC 1/.n� l C 1/C lC.2kC 1� 2x/2C n�;

and if Em.2kC 1; .2kC 1/.nCf /C j / is either of type 3 or type 4, then

(A-6) l.2kC 1/2C 2k.kC 1/.n� l/� 2

� 2.k �x/.k �xC 1/.n� l C 1/C lC.2kC 1� 2x/2CY 02

� 2.k �x/.k �xC 1/.n� l C 1/C lC.2kC 1� 2x/2C n�:

We prove Claim A.2 later. From the above discussion and Claim A.2, if

i > l.2kC 1/2C 2k.kC 1/.n� l/� 2;

then H i.Em.2kC1; .2kC1/.nCf /Cj //D 0 for j D 1; : : : ; 2k and mD 1; : : : ; 2k .
Now there is the following exact sequence:

� � � �!H i�1.Em.2kC 1; .2kC 1/.nCf � 1/C j //

�!H i.Dm�1.2kC 1; .2kC 1/.nCf � 1/C j //

�!H i.Dm.2kC 1; .2kC 1/.nCf � 1/C j //

�!H i.Em.2kC 1; .2kC 1/.nCf � 1/C j // �! � � � ;

where mD 1; : : : ; 2k , n� 0 and j D 1; : : : ; 2k . From the above result and this exact
sequence, we obtain

H 2k.kC1/.nCl/Cl.D.2kC 1; .2kC 1/.nCf /� 1//

DH 2k.kC1/.nCl/Cl.D1.2kC 1; .2kC 1/.nCf � 1/C 2k � 1//

D � � �

DH 2k.kC1/.nCl/Cl.D2k..2kC 1; .2kC 1/.nCf � 1/C 2k � 1//

DH 2k.kC1/.nCl/Cl.D0.2kC 1; .2kC 1/.nCf � 1/C 2k � 2//

D � � �

DH 2k.kC1/.nCl/Cl.D.2k; 2k.nCf � 1///:

Proof of Claim A.2 We have already proved (A-6) in the proof of Claim 4.5. Let us
prove (A-5). Recall j D 1; : : : ; 2kC 1, b � x � k and x � 1. Hence if j � 2k � 1
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or x � 2, we obtain

l.2kC1/2C2k.kC1/.n�l/�2�.2.k�x/.k�xC1/.n�lC1/ClC.2kC1�2x/2CY2/

D�2Cx.2kC 1� j /C 2.k �x/.b�x/Cx� b � 0:

If j D2k and xD1, then Em.2kC1; .2kC1/.nCf /Cj / is either of type 3 or type 4.
Hence if Em.2kC 1; .2kC 1/.nC f /C j / is either of type 1 or type 2, we obtain
l.2kC1/2C2k.kC1/.n�l/�2�2.k�x/.k�xC1/.n�lC1/ClC.2kC1�2x/2CY2

for j D 1; : : : ; 2k .
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