
msp
Algebraic & Geometric Topology 13 (2013) 2925–2946

High distance bridge surfaces

RYAN BLAIR

MAGGY TOMOVA
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Given integers b , c , g and n , we construct a manifold M containing a c –component
link L so that there is a bridge surface † for .M;L/ of genus g that intersects L

in 2b points and has distance at least n . More generally, given two possibly discon-
nected surfaces S and S 0 , each with some even number (possibly zero) of marked
points, and integers b , c , g and n , we construct a compact, orientable manifold M

with boundary S [S 0 such that M contains a c –component tangle T with a bridge
surface † of genus g that separates @M into S and S 0 , jT \ †j D 2b and T

intersects S and S 0 exactly in their marked points, and † has distance at least n .

57M25, 57M50

1 Introduction

In recent years, there have been a number of results concerning knots with high
distance bridge surfaces. For example, in [1] Bachman and Schleimer show that any
essential surface in the complement of such a knot must have high genus. This result
is generalized by Tomova in [5], where it was shown that any other bridge surface of
such a knot must also have high genus or a high number of marked points. Several
other recent constructions of interesting examples rely on such knots; in [2] Blair and
Tomova construct knots for which width is not additive, and in [4] Johnson and Tomova
construct examples of knots with two different bridge surfaces that require a high
number of stabilizations and perturbations to become isotopic.

We present the first construction of a knot with a high distance bridge surface. In fact,
given a collection of (surface, integer)–pairs with some minor restrictions, we show
how to construct a (3–manifold, tangle)–pair with the collection of surfaces being the
boundary of the manifold and with the prescribed number of boundary points of the
tangle on each surface. We can choose our (3–manifold, tangle)–pair to be of arbitrarily
high distance and have a given number of components.

Our construction is explicit and purely combinatorial. Many of the ideas in this paper
are rooted in [3] where Evans constructs 3–manifolds with arbitrarily high distance
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Heegaard splittings. We have made a number of generalizations and improvements to
Evans’ arguments. Some of these are necessitated by our more general setting, which
allows for marked surfaces (the definition is provided in Section 2), and some are
introduced to make the arguments more elegant and easier to follow. In particular, we
eliminate the language of stacks and partial stacks used by Evans and replace it with a
more intuitive description. We also develop tools to control the number of components
of the link we are constructing, a challenge that does not arise in the setup considered
by Evans.

In most of the paper, we will restrict our attention to a link L in a closed 3–manifold M .
In the last section of the paper, we will show that our results can be easily extended to
tangles in manifolds with boundary as long as each boundary component intersects the
tangle in an even number of points (possibly zero).

Acknowledgements We would like to thank the referee for many helpful comments.
The research of the second author is supported by an NSF CAREER grant.

2 Bridge surfaces and pants decompositions

Definition 2.1 Let M be a closed orientable manifold containing a link L. An
embedded surface † in M that is transverse to L is a bridge surface for .M;L/ if it
separates M into two handlebodies V1 and V2 and L\Vi is a collection of arcs Ai

parallel to @Vi .

Arcs parallel to the boundary of a handlebody are naturally associated with certain
compressing disks for the manifold obtained by removing a neighborhood of these arcs
from the handlebody.

Definition 2.2 Given a boundary parallel arc ˛ properly embedded in a handlebody V ,
the compressing disk associated to ˛ is the properly embedded disk given by the frontier
of the closed regular neighborhood of the disk of parallelism for ˛ in V .

We will often consider closed surfaces in M that intersect L transversely. We will
refer to these intersections as marked points to avoid confusion with other types of
boundary components the surface may have.

Definition 2.3 An n–marked surface is a surface together with n marked points.

Remark 2.4 In this paper, we will always assume that if the bridge surface is a sphere,
it has at least six marked points and if it is a torus, then it has at least two marked
points.
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Definition 2.5 A simple closed curve in an n–marked surface is essential if it is
disjoint from all marked points and it does not bound a disk with fewer than two
marked points.

Definition 2.6 Let † be an n–marked surface with marked points p1;p2; : : : ;pn .
Two essential curves x and y in † intersect efficiently if they intersect transversely
and every bigon they cobound in † contains at least one marked point. Note that this
is equivalent to x and y having minimal geometric intersection number (which we
will denote as i.x;y/) in †�fp1;p2; : : : ;png.

Definition 2.7 A pants decomposition of a closed 2b–marked surface † is a collection
of essential curves P such that †�P is a collection of open pants and 2–marked
open disks.

We can construct a pants decomposition for a marked surface as follows. Starting with
a closed 2b–marked surface †, select b disjoint simple closed curves q1; q2; : : : ; qb

that bound disjoint disks Q1;Q2; : : : ;Qb in † such that exactly one pair of points lie
in each disk. If we let R be any pants decomposition of the closure of †�

S
i Qi ,

then P DR[
�S

i qi

�
is a pants decomposition of †.

Definition 2.8 Given a pants decomposition P for a closed 2b–marked surface † we
obtain a handlebody containing a collection of boundary parallel arcs in the following
way. Take †�I and attach a 2–handle to †�f1g along each curve in P . The boundary
of this resulting 3–manifold is composed of †� f0g and a collection of spheres. Note
that some of these spheres may contain two marked points coinciding with marked
points of †� f1g. Fill each sphere Si with a 3–ball Bi and denote this 3–manifold
as VP , where †D @VP . If the sphere Sj contains marked points, embed an arc �j
in Bj that is parallel to @Bj and has endpoints at the marked points. We can then
naturally extend �j to a properly embedded arc in VP by taking the union of �j with
the I –fibers of †� I corresponding to the endpoints of �j . Let AP be the collection
of these embedded arcs.

Remark 2.9 Note that the handlebody with boundary parallel arcs constructed above
is unique up to isotopies fixing the boundary.

Definition 2.10 If P is a pants decomposition for a 2b–marked surface †, let KP
be the collection of all essential curves in † that bound disks in VP disjoint from AP .

Given a handlebody containing a collection of boundary parallel arcs, we want to
choose a disjoint collection of compressing disks so that cutting the handlebody along
this collection yields components that are either
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� balls with exactly three “scars” coming from this collection and containing no
arcs, or

� balls with exactly one “scar” and containing a single boundary parallel arc.

Definition 2.11 Let .V;A/ be a handlebody V containing a collection of b boundary
parallel arcs A. A complete collection of disks for .V;A/ is a collection of disjoint
compressing disks D for the 2b–marked surface @V that is disjoint from A such that
each component of @V � @D is either an unmarked pair of pants or a 2–marked disk.
A pants decomposition of @V with marked points @V \A is any collection of curves
that is the boundary of a complete collection of disks. Notice that this is consistent
with our general definition of a pants decomposition.

If V is a genus g handlebody and A is a collection of b boundary parallel arcs, then
we can obtain a complete collection of disks for .V;A/ in the following way. Let
E D fE1;E2; : : : ;Ebg be a collection of disjoint disks that are compressing disks
associated to the arcs of A. Cut V along E to obtain a genus g handlebody V 0 � V ,
where a copy of E lies in @V 0 . Let F be a collection of 3g � 3 pairwise disjoint
compressing disks for V 0 such that @F is a pants decomposition of @V 0 . Using collars
of @V 0 in V , we can isotope F so that @F lies off of E � @V 0 . Then F is also a
collection of disks in V that is disjoint from E . Consequently, @V � .@E [ @F/ is
composed of either 2–marked disks or spheres with at least three punctures. For any
m–punctured sphere with m > 3, we can add a compressing disk D to F that is
disjoint from all other disks in E and F such that @D cuts this m–punctured sphere
into two punctured spheres, each with strictly fewer punctures than m. Repeating this
process, we obtain a collection of disks E [F that is a complete collection of disks
for .V;A/.

Given a pants decomposition, there are certain arcs in the complementary components
that will be of particular importance.

Definition 2.12 Let P be a pants decomposition of a 2b–marked surface † that is
the boundary of a handlebody containing boundary parallel arcs.

If P is the closure of a pair of pants component of .†�P/,

� a seam of P is a properly embedded arc in P that has endpoints on different
components of @P ,

� a wave of P is a properly embedded arc in P that has endpoints on the same
component of @P and is not @–parallel.
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If P is the closure of a 2–marked disk component of .†�P/, then a seam of P is a
properly embedded arc in P that has endpoints on @P and is not @–parallel.

Note that waves are only defined in pairs of pants and the definition of a seam is
dependent on the type of component of †�P we are considering. In particular, a
pair of pants component can contain at most three mutually distinct isotopy classes of
seams and a 2–marked disk has at most one isotopy class of seams.

Definition 2.13 Given a 2b–marked surface † with pants decomposition P , let 
be an embedded curve that intersects P efficiently. Then  is k –seamed with respect
to P if for each P , where P is the closure of a component in †�P , there are at
least k arcs of  \P representing each isotopy class of seams of P and the maximum
number of mutually distinct isotopy classes of seams of P are represented.

Definition 2.14 Similarly, a finite collection of disjoint curves � D 1[ 2[ � � � [ s

is k –seamed with respect to P if each i intersects P efficiently and for each compo-
nent P , where P is the closure of a component of †�P , there are at least k arcs of
� \P representing each isotopy class of seams of P and the maximum number of
mutually distinct isotopy classes of seams of P are represented.

These definitions imply that each component of P intersects a k –seamed curve  (or
k –seamed collection of curves � ) in at least 2k points.

Lemma 2.15 Let .V;A/ be a handlebody V containing a collection of b boundary
parallel arcs A and let † be the 2b–marked boundary of V . Additionally, let D be
a complete collection of disks for .V;A/ and denote by P the pants decomposition
of † resulting from the boundary of D . If  is an essential curve in † that bounds
a compressing disk E in V such that E \AD∅, then  is isotopic to a curve in P
or  contains a wave of a pair of pants component of †�P .

Proof Isotope E to intersect D minimally. If E\DD∅ then  is an essential curve
contained in a component of †�P , so  is isotopic to some curve in P . Hence we
can assume E intersects D minimally and E \D¤∅.

Let ˛ be an outermost arc of E \D in E so that ˛ together with an arc ˇ in @E
cobound a disk E� in E that is disjoint from D in its interior. Note that, since E

has been isotoped to intersect D minimally, ˛ is an essential arc in †�P . E� is
contained in some component N of V �D . A component of V �D is a 3–ball incident
to three, not necessarily distinct, disks in D or a 3–ball containing a single arc of A

and incident to a single disk of D . If N is a component of the first type then ˛ is a
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wave in a pair of pants component of †�P . If N is a component of the second type
then @E� separates the endpoints of the arc of A properly embedded in N . This is
impossible since E� �E is disjoint from A.

3 The Dehn twist operator

The following definition of the Dehn twist operator is adapted from [3, Definition 3.3]
to allow for † to be a marked surface. The construction presented in [3] to obtain the
image of the Dehn twist operator also works in our setting.

Definition 3.1 Suppose X Dx1[x2[� � �[xs and Y Dy1[y2[� � �[yt are collections
of simple closed curves on a possibly marked surface † such that xi \ xj D ∅,
yi \ yj D ∅ and X \ yj ¤ ∅ for all i; j and all intersections of X with Y are
efficient. An image of a collection X under the Dehn twist operator along a collec-
tion Y , denoted by �Y .X /, is the union of the images f�Y .x1/; �Y .x2/; : : : ; �Y .xs/g

of fx1;x2; : : : ;xsg where �Y D �y1
ı �y2

ı � � � ı �yt
.

Definition 3.2 Let X D x1[x2[ � � � [xs be a collection of pairwise disjoint curves
on a possibly marked surface †. Suppose A is an annulus in † disjoint from the
marked points of † and with an I –fibration such that A\X consists of I –fibers.
Let c be an essential properly embedded arc in A that intersects each I –fiber of A

transversely. Then c has circling number k with respect to X if it intersects each
component of A\X at least k –times.

Definition 3.3 Let X D x1[x2[ � � � [xs be a collection of pairwise disjoint curves
on a possibly marked surface † and let y be a simple closed curve on † with efficient
intersection with X . Suppose A is an annular neighborhood of y with an I –fibration
such that A\X are I –fibers. Then a simple closed curve  in † k –circles around y

with respect to X if  can be isotoped to have efficient intersection with X and y such
that a component of  \A has circling number k with respect to X (see Figure 1).

The following lemma is modified from Evans [3, Lemma 4.3].

Lemma 3.4 Let † be an orientable possibly marked surface. Suppose X Dx1[� � �[xs

and Y D y1[� � �[yt are collections of pairwise disjoint essential simple closed curves
in † such that X and Y intersect efficiently and i.xi ;yj / � 2 for all i; j . Let 
and  0 be essential simple closed curves in † such that each meets Y efficiently,
 \  0 D ∅,  meets Y nontrivially, and  meets X efficiently. If there exists a
component y1

m of �2
Y
.X / such that  0 1–circles around y1

m with respect to X , then
there exists a component yl of Y such that  1–circles around yl with respect to X .
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Figure 1:  2–circles around y

Proof Let Y 1 D y1
1
[ � � � [ y1

s D �
2
Y
.X /, ie, it is the collection of s disjoint curves

obtained by applying the double Dehn twist operator along Y to X . One way to
describe the result of the double Dehn twist is to define an annulus Aj that is a regular
neighborhood of yj for each j so that all the annuli are pairwise disjoint and xi \Aj

is a collection of transverse arcs for each i and j . By assumption, for each i and j ,
xi \Aj contains at least two arcs. Then y1

i coincides with xi in the complement of
the annuli and each arc xi \Aj is replaced by an arc with the same endpoints but
which 2–circles around yj .

Let y1
m be the component of Y 1 so that  0 1–circles around y1

m with respect to X . In
other words, there is a subarc of  0 that can be isotoped to coincide with a subarc ˇ of
y1

m via an ambient isotopy supported in a regular neighborhood of y1
m and transverse

to X so that all intersections between X and y1
m are contained in ˇ . We will assume

that this isotopy has been performed. Note that as the isotopy is transverse to X , it
does not change the fact that  and X intersect efficiently.

As  meets Y nontrivially, there exists some annulus Al so that  \Al ¤∅. Consider
the intersection of y1

m with Al . Since 2 � jxm \Al j D jy
1
m \Al j this intersection

consists of at least two arcs. At least one of these arcs, ˛ , is completely contained in ˇ ,
ie, ˛ �  0 so  0 also 2–circles around Al . As  is disjoint from  0 and intersects yl ,
it must 1–circle around yl (see Figure 2).

The following lemma makes use of the fact that Dehn twisting a pants decomposition
of a possibly marked surface † about a collection of curves in † still yields a pants
decomposition of †.
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Figure 2:  1–circles around yl

Lemma 3.5 If PDf�1; �2; : : : ; �sg is a pants decomposition of an orientable possibly
marked surface † and  is a curve k –seamed with respect to P , then

�  is k –seamed with respect to the pants decomposition �2
 .P/,

� each curve in �2
 .P/ is 4k2 –seamed with respect to P ,

� each curve in P is 4k2 –seamed with respect to �2
 .P/.

Proof Let y1
i D �

2
 .�i/ for each i . Observe that the Dehn twist about  can be chosen

so that  is fixed pointwise. So for each subarc of  connecting two components �i

and �j of P , the same subarc of  connects the components y1
i and y1

j of �2
 .P/.

Therefore every seam contained in  with respect to P is a seam contained in  with
respect to �2

 .P/ and therefore  is k –seamed with respect to �2
 .P/.

Let P be the closure of a component of † � P and let �` be a component of P
in @P . Since  is k –seamed with respect to P ,  meets �` in at least 2k points. By
the definition of the Dehn twist operator, y1

`
is formed by replacing each of the 2k

distinct subarcs of �` corresponding to a neighborhood of �` \  in �` with an arc
that 2–circles around  . Hence, y1

`
contains 2k copies of every seam of P for each

point in �` \  . This is clear for seams in pairs of pants not adjacent to �` . To see it
also holds for the seams in a pair of pants adjacent to �` ; see Figure 3. Thus, every
curve in �2

 .P/ is 4k2 –seamed with respect to P .

We can now apply ��2
 to the pants decomposition �2

 .P/. Since we showed  is
k –seamed with respect to �2

 .P/, by the previous argument any curve in P is 4k2 –
seamed with respect to �2

 .P/.
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�j

y1
j

Figure 3

Lemma 3.6 Let † be an orientable possibly marked surface. Suppose PDf�1; : : : ;�sg

and R D f!1; : : : ; !sg are pants decompositions for † such that P and R are 2–
seamed with respect to each other. Let  and  0 be essential simple closed curves in †
such that each meets R efficiently,  \  0 D ∅, and  meets P efficiently. If there
exists a component y1

m of �2
R.P/ such that  0 1–circles around y1

m with respect to P
then  must intersect R nontrivially.

Proof Let �m be the component of P such that y1
m D �2

R.�m/. By hypothesis,
each component of P , and in particular �m , is 2–seamed with respect to R. So by
Lemma 3.5, y1

m is also 2–seamed with respect to R. Moreover, as each component
of R intersects P at least twice, we can isotope y1

m so that each component of y1
m�R

contains at least one point of intersection with P (see Figure 4).

R R

y1
m

�m

Figure 4: Each component of y1
m�R intersects P

Algebraic & Geometric Topology, Volume 13 (2013)



2934 Ryan Blair, Maggy Tomova and Michael Yoshizawa

As  0 1–circles around y1
m with respect to P , there exists a subarc of  0 that can

be isotoped to coincide with a subarc ˇ of y1
m such that ˇ contains all points of

intersection between P and y1
m . Since each component of y1

m�R contains at least
one point of intersection with P , ˇ also contains all but at most one point of intersection
between R and y1

m . Thus, ˇ (and consequently  0 ) contains at most two fewer seams
than y1

m with respect to R.

If we suppose  is disjoint from R, then it must lie parallel to a component of R.
Since y1

m is 2–seamed with respect to R,  must intersect y1
m at least 4 times. Hence 

intersects  0 at least twice, a contradiction.

4 Main theorem

Definition 4.1 The curve complex for a marked surface † is the complex with vertices
corresponding to the isotopy classes of essential simple closed curves in † and a
collection of vertices v0; v1; : : : ; vk defines a k –simplex if representatives of the
corresponding isotopy classes can be chosen to be pairwise disjoint. We will denote
the curve complex for a surface † by C.†/.

Definition 4.2 Given two collections of essential simple closed curves X and Y in †,
the distance between X and Y , denoted dist.X;Y /, is the minimal number of edges in
a path in C.†/ from a vertex corresponding to a curve in X to a vertex corresponding
to a curve in Y .

Definition 4.3 Let † be a 2b–marked surface. If g.†/D 0 we require that b � 3

and if g.†/D 1 we require that b � 1. Let P and P 0 be pants decompositions for †.
Then VP and VP 0 are handlebodies containing a collection of boundary parallel arcs
and VP[†VP 0 is a closed orientable manifold M containing a (possibly empty) link L

with bridge surface †. Recall that KP (resp. KP 0 ) is the set of all essential simple
closed curves in the marked surface † that bound embedded disks in VP (resp. VP 0 )
that are disjoint from L. Then the distance of the bridge surface †, denoted dist.†;L/,
is equal to dist.KP ;KP 0/.

We will make extensive use of the following basic facts regarding collections of curves
on a surface. The proofs of these facts are left as an exercise to the reader.

Fact 1 Given essential collections of curves X1;X2; : : : ;Xn on a marked surface †
such that all pairwise intersections are efficient except for Xi \Xj , there exists an
isotopy of Xi fixing all other collections of curves setwise and resulting in all pairwise
intersections being efficient.
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Fact 2 If X1;X2 and Y are collections of curves on a marked surface † such that X1

intersects Y efficiently, X2 intersects Y efficiently, and X1 is isotopic to X2 , then
there is an ambient isotopy from X1 to X2 fixing Y setwise.

Definition 4.4 Let D be a disk with 2b marked points. The standard pants decompo-
sition for D is depicted in Figure 5. The basic warped pants decomposition for D is
depicted in Figure 6.

s

Figure 5: The standard pants decomposition for a 10–marked disk

s

Figure 6: The basic warped pants decomposition for a 10–marked disk

Definition 4.5 Let D be a disk with 2b marked points and, for i �2, let b1; b2; : : : ; bi

be an ordered collection of even integers such that b1Cb2C� � �CbiD2b . Let E be a 2i –
marked disk with the standard pants decomposition Q. Number each of the 2–marked
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disk components of E�Q from 1 to i . Replace the j th 2–marked disk component of
E �Q with a bj –marked disk with basic warped pants decomposition Bj . Then we
define the fb1; b2; : : : ; big–warped pants decomposition of D to be Q[

�Si
jD1 Bj

�
;

see Figure 7. Note that the f2bg–warped pants decomposition of D will just refer to
the basic warped pants decomposition for a 2b–marked disk.

s

Figure 7: An f8; 6g–warped pants decomposition for the marked disk

Definition 4.6 If S is an unmarked, closed surface we define the seed curve s � S

in the following ways.

� If S is a sphere, then s is any simple closed curve in S .

� If S is a torus with meridian m and longitude l , then s is a simple closed
curve of slope 1

2
(ie, s is homologous to mC 2l ).

� If S has genus 2 or higher and R is a pants decomposition for S , then s is
any curve that intersects each pants component of S �R in exactly 3 mutually
nonisotopic seams.

Given a surface S of genus at least 2 with pants decomposition R, we can construct a
seed curve s in the following way. For each pants component P determined by R,
properly embed 3 disjoint arcs in P so that they are mutually nonisotopic seams in P .
This produces a collection of seams embedded in S such that each component of R
contains the endpoints of exactly four seams, with two seams lying on either side. Then
for each component q 2R, we can isotope the four endpoints on q along q so that the
endpoint of each seam agrees with the endpoint of exactly one other seam on the other
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side q and the seams remain pairwise disjoint off of R. Observe that there are exactly
two ways to pair up the four seams adjacent to each component of R. The result is a
properly embedded 1–manifold  in S that contains 3 mutually nonisotopic seams in
each pants component of S �R. If  is disconnected, then since S is connected there
exists some p 2R that intersects two distinct components of  . Surger  along p so
that the opposite pairing of arcs at p is obtained. Note that this strictly reduces the
number of components of  by one. Repeat surgeries if necessary until  is a single
component and then set s D  .

Definition 4.7 Let S be a closed surface of genus at least 2, R a pants decomposition
for S , and ˛ 2R. Let ˛0 be a curve in S parallel to ˛ and disjoint from R. Let E be
the closed regular neighborhood of a point in s that lies in the annulus bounded by ˛
and ˛0 . Let † be the surface obtained from S by replacing E with a 2b–marked
disk D . Then there are two key pants decompositions for †:

� the standard pants decomposition of † induced by R is P D R[ ˛0 [RD ,
where RD is the standard pants decomposition for D ;

� the fb1; b2; : : : ; big–warped pants decomposition of † induced by R is given by
P 0DR[˛0[R0

D
, where R0

D
is a fb1; b2; : : : ; big–warped pants decomposition

for D .

Let S be a torus with meridian m and longitude l . Let E be the closed regular
neighborhood of a point in s disjoint from m. Let † be the surface obtained from S

by replacing E with a 2b–marked disk D . Then there are two key pants decompositions
for †:

� the standard pants decomposition of † induced by .m; l/ is P D m [RD ,
where RD is the standard pants decomposition for D ;

� the fb1; b2; : : : ; big–warped pants decomposition of † induced by .m; l/ is
P 0 D m[R0

D
, where R0

D
is a fb1; b2; : : : ; big–warped pants decomposition

for D .

Let S be a sphere. Let E be the closed regular neighborhood of a point in s . Let †
be the surface obtained from S by replacing E with a 2b–marked disk D . Then there
are two key pants decompositions for †:

� the standard pants decomposition of † is P , obtained from the standard pants
decomposition for D by removing curves that become inessential or redundant
after inclusion (see Figure 8);
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s

Figure 8: P for a marked sphere

� the fb1; b2; : : : ; big–warped pants decomposition of † is P 0 , obtained from the
fb1; b2; : : : ; big–warped pants decomposition for D by removing curves that
become inessential or redundant after inclusion.

Remark 4.8 In each of the pants decompositions described in the previous definition,
we insist that s persists as a curve in † that meets D in an arc as depicted in Figure 5
or 7.

Note that in our discussion we allow surfaces of genus greater than 1 to not have
any marked points. In this case D D ∅ and the warped and the standard pants
decompositions are identical to each other.

The following theorem is our version of [3, Theorem 4.4].

Theorem 4.9 Let † be an orientable surface of genus g with 2b marked points. If †
is a sphere, assume b � 3 and if † is a torus, assume b � 1. Let s be the seed curve
for † with pants decompositions P and P 0 as in Definition 4.7. For n� 1 let

Y 0
D �2

s
.P/D fy0

1 ; : : : ;y
0
3g�3C2bg;

Y 1
D �2

Y 0.P/D fy1
1 ; : : : ;y

1
3g�3C2bg;

:::

Y n
D �2

Y n�1.P/D fyn
1 ; : : : ;y

n
3g�3C2bg:

Then dist.KP 0 ;KY n/� n and dist.KP ;KY n/� n.
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Proof In search of a contradiction, assume dist.KP 0 ;KY n/ D d where d � n� 1.
Hence, there exist curves 0; 1; : : : ; d such that 0 2 KP 0 and d 2 KY n and
i \ iC1 D ∅ for each i . By Lemma 2.15, d is isotopic to a curve in Y n or d

contains a wave of a pair of pants component of †�Y n . Let ! be the isotopic copy
of d that is disjoint from Y n if we are in the first case and let ! be the wave subarc
of d if we are in the second case.

By inductively applying Lemma 3.5, every curve of Y n�1 is 2–seamed with respect
to Y n . Hence, yn�1

l
\! ¤∅ for all l .

By construction, yn
j 2–circles around yn�1

l
with respect to P for every j and l . Fix

an r and s , then yn
r 2–circles around yn�1

s with respect to P . As illustrated in Figure 9,
since the interior of ! is disjoint from yn

r , yn
r 2–circles around yn�1

s with respect
to P , and yn�1

s \!¤∅, it follows that d 1–circles around yn�1
s . As i\iC1D∅

for each i and we know by Lemma 3.6 that the hypotheses of Lemma 3.4 hold, we
can inductively apply Lemma 3.4 to conclude that 0 1–circles around y

n�.dC1/

l
with

respect to P for some fixed l .

yn�1
s

!

yn
r

!

yn�1
s

yn
r

yn
r

!
P

yn�1
s

Figure 9: In either case, ! (and therefore d ) 1–circles around yn�1
s

We now describe how to simultaneously establish the following list of criteria.

(1) 0 1–circles around y
n�.dC1/

l
with respect to P .

(2) y
n�.dC1/

l
has efficient intersection with P .

(3) 0 has efficient intersection with P .

(4) 0 has efficient intersection with y
n�.dC1/

l
.

(5) P has efficient intersection with P 0 .
(6) 0 has efficient intersection with P 0 .
(7) y

n�.dC1/

l
has efficient intersection with P 0 .
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Criteria (2), (3) and (4) follow from criteria (1) by the definition of k –circling. Cri-
teria (5) follows from Fact 1 applied to P and P 0 . Criteria (6) follows from Fact 1
applied to P , P 0 and 0 . Criteria (7) follows from Fact 1 applied to P , P 0 , 0 and
y

n�.dC1/

l
. Notice that in each case we can choose to isotope P 0 , thus preserving

criteria (1). Hence, we can assume that all of the above criteria simultaneously hold.

Since 0 2 KP 0 , by Lemma 2.15 0 is contained in some component of †�P 0 or
contains a wave of a pair of pants component of P 0 . If we are in the first case, !0

refers to 0 . If we are in the second case, !0 refers to some wave of P 0 contained
in 0 . In either case, 0 will intersect any curve that is 1–seamed with respect to P 0 .

Recall that D refers to the 2b–marked disk used to define P and P 0 in Definition 4.7.

Claim 1 Every curve y in Y n meets D in at least two arcs isotopic to s \D and is
2–seamed with respect to P 0 for each n.

Proof of claim Suppose y D �2
s
.�i/ is a curve in Y 0 . Since P and P 0 are identical

outside of D , for each pants component P of †�P 0 with interior disjoint from D , y

contains at least four arcs representing each of 3 mutually nonisotopic classes of seams
in P by an argument identical to Lemma 3.5. If �i is not contained in D then y \D

consists of four arcs parallel to s \D . If �i �D , then y \D consists of two arcs
parallel to s \D and two additional arcs that are essential in D ; see Figure 10.
Hence y is 2–seamed with respect to P 0 .

y

D

Figure 10

Assume that every curve in Y n�1 contains at least 4 copies of every seam represented
by s with respect to P 0 outside of D and y \D consists of at least 2 arcs isotopic
to s \D . If y 2 Y n then y D �2

Y n�1.�i/ for some i . Since P and P 0 are identical
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outside of D , for each pants component of †�P 0 with interior disjoint from D , y

contains at least 4� 22 D 16 arcs representing each of 3 mutually nonisotopic classes
of seams in P by an argument identical to Lemma 3.5. If �i is not contained in D

then y \D consists of at least 16 arcs parallel to s \D . If �i � D then y \D

consists of at least 8 arcs parallel to s \D and additional arcs that are essential in D .
By induction, every curve y in Y n is 2–seamed with respect to P 0 for each n.

In particular, y
n�.dC1/

l
meets D in at least two arcs isotopic to s\D and is 2–seamed

with respect to P 0 .

Let A be an annular neighborhood of y
n�.dC1/

l
. As 0 1–circles around y

n�.dC1/

l

with respect to P , let ˛ be the arc in A�P depicted in Figure 11 so that the endpoint
union of ˛ with a subarc of 0 is a curve y� which is isotopic in A to yn�.dC1/

l
.

˛

0

P

y�

0

P

Figure 11: The curve y�

Claim 2 After an isotopy of P 0 that preserves criteria (1)–(7), y� meets P 0 efficiently.

Proof of claim Let D1 and D2 be the subdisks of A with boundary in y
n�.dC1/

l
[y�

as depicted in Figure 12. Let ˇ be an outermost arc of P 0\Di in Di . By criteria (6), ˇ
cannot have both endpoints in 0 . By criteria (7), ˇ cannot have both endpoints in
y

n�.dC1/

l
. If ˇ has both endpoints in ˛ , eliminate ˇ via an isotopy of P 0 along the

subdisk of Di with boundary ˇ union a subarc of ˛ . Since this isotopy is supported
in a region disjoint from yn�.dC1/

l
[ 0[P , we can assume criteria (1)–(7) still hold.

If ˇ has one boundary point in 0 and one in ˛ then we can eliminate ˇ via an isotopy
of P 0 as in Figure 13. This isotopy preserves criteria (1)–(7). We conclude that all arcs
of P 0 \Di have one endpoint in y

n�.dC1/

l
and the other in either ˛ or 0 . Hence,

jy�\P 0j D jyn�.dC1/

l
\P 0j and y� meets P 0 efficiently.
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D1 D2

y�

0

P

Figure 12: The disks D1 and D2

P 0

Di

P 0

Di

Figure 13: An isotopy of P 0 in a neighborhood of Di

By Fact 2 and the above claim, there is an ambient isotopy from y� to y
n�.dC1/

l

fixing P 0 setwise. Since y
n�.dC1/

l
meets D in at least two arcs isotopic to s \D

and is 2–seamed with respect to P 0 , then y� meets D in at least two arcs isotopic to
s \D and is 2–seamed with respect to P 0 . Since ˛ is contained in †�P , then 0

contains at least one copy of every seam of P 0 outside of D and at least one copy of
s\D . Thus 0 is 1–seamed with respect to P 0 . However, we observed 0 contains a
subarc !0 that will intersect any 1–seamed curve and therefore we have a contradiction.
Hence, dist.KP 0 ;KY n/� n.

By choosing P D P 0 , the above argument simplifies considerably and shows that
dist.KP ;KY n/� n.

Corollary 4.10 Let † be a genus g surface with 2b � 6 marked points. Additionally,
let P be a pants decomposition for †. Let p1; : : : ;pk be a collection of marked points
such that 1 < k < 2b � 1 and let n be any positive integer. Then there is a curve 
that bounds a disk in † containing exactly the marked points p1; : : : ;pk such that
dist.KP ;  /� n.
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Proof There are two cases to consider. In the first case, assume that there exists a
curve �i in P such that �i bounds a 2–marked disk in † containing marked points
p;p0 2 fp1; : : : ;pkg. For the purposes of applying the construction in the proof of
Theorem 4.9, let P D P 0 . By the proof of Theorem 4.9, dist.KP ;y

nC1
i / � nC 1

where ynC1
i D �2

Y n.�i/. Let E be the disk in † with boundary ynC1
i that contains p

and p0 . Connect each of the remaining k � 2 marked points in fp1; : : : ;pkg to E via
a collection of k�2 disjoint arcs. Let  be the boundary of a regular neighborhood of
the union of these arcs and the disk E . We have  is an essential curve in † bounding
a disk containing exactly the marked points p1; : : : ;pk and disjoint from ynC1

i . Hence,
dist.KP ;  /� n.

In the second case, suppose that no component of P bounds a 2–marked disk in †
containing two marked points in fp1; : : : ;pkg. So assume instead that �i is a curve in P
that bounds a 2–marked disk in † containing the marked points p;p0 where p is an
element of fp1; : : : ;pkg and p0 is not. For the purposes of applying the construction
in the proof of Theorem 4.9, let P D P 0 . By the proof of Theorem 4.9, we have
dist.KP ;y

nC2
i / � nC 2, where ynC2

i D �2
Y nC1.�i/. Let E be the disk in † with

boundary ynC2
i and containing p and p0 . Connect each of the remaining k � 1

marked points in fp1; : : : ;pkg to E via a collection of k � 1 disjoint arcs. Let ˛ be
the boundary of a regular neighborhood of the union of these arcs and the disk E .
Since k � b , ˛ is an essential curve in † bounding a disk containing exactly the
marked points p0;p1; : : : ;pk . E contains in its interior a disk E0 which contains
exactly the marked points p1; : : : ;pk . Let  D @E0 . Since  is disjoint from ˛ and ˛
is disjoint from ynC2

i , dist.KP ;  /� n.

From the above corollary we can immediately also conclude the following.

Corollary 4.11 Let B be a ball containing a b–strand tangle T with b � 3. Let
p1; : : : ;pk be a collection of points T \@B such that 1< k < 2b�1 and let n be any
positive integer. Then there is a curve  that bounds a disk in @B containing exactly
the marked points p1; : : : ;pk such that for every compressing disk D for @B � T

contained in B , dist.@D;  /� n.

5 High distance bridge surfaces

The definition of a bridge surface for a knot in a closed manifold has a natural general-
ization to tangles properly embedded in a manifold with boundary.
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Definition 5.1 Let T be a tangle properly embedded in a manifold M . An embedded
closed surface † transverse to T is a bridge surface for .M;T / if the closure of the
complementary components of † in M are two compression bodies V1 and V2 with
† D @CVi and Vi \ T is a collection of arcs that are either boundary parallel to †
or lie vertical (ie, agree with an I –fiber) in @�Vi � I � Vi . In the case where T is a
link, Vi \T are all boundary parallel to † and jT \V1j D jT \V2j. In this case, if
b D jT \Vi j, then T is b–bridged with respect to †.

Definition 5.2 Given a bridge surface † for a tangle T in a manifold M splitting M

into compression bodies V1 and V2 , let Pi be the set of simple closed curves in †
that bound compressing disks in Vi �T . Then dist.†;T /D dist.P1;P2/ in C.†/.

Corollary 5.3 Given nonnegative integers b , c , d , and g with c � b such that if
g D 0, then b � 3, and if g D 1, then b � 1, there exists a closed orientable 3–
manifold M containing a c–component link L and a bridge surface † of genus g for
.M;L/ so that L is b–bridge with respect to † and dist.†;L/� d .

Proof Let P be a standard pants decomposition for a closed, genus g , 2b–marked
surface †. Let P 0 be the fb1; b2; : : : ; bcg–warped pants decomposition for †. Let Y d

be the pants decomposition for † produced using P as in Theorem 4.9. Then we
can construct a 3–manifold M using Y d and P 0 as in Definition 4.3. Moreover, †
is a bridge surface of a link L such that † separates .M;L/ into .VP 0 ;AP 0/ and
.VY d ;AY d /. By Theorem 4.9, dist.†;L/D dist.KP 0 ;KY d /� d .

To see that L has c components, pair marked points in † with respect to some pants
decomposition Q by the rule x is paired with x0 if x and x0 are contained in a
common component of †�Q. Note that the Dehn twist operator applied to a pants
decomposition preserves this pairing. Hence, P and Y d induce the same pairing on
marked points of †. Since the pairing induced by Y d (resp. P 0 ) corresponds to which
pairs of points of †\L are connected via a subarc of L in VY n (resp. VP 0 ), then,
by the definition of a fb1; b2; : : : ; bcg–warped pants decomposition, L has exactly c

components. Compare Figures 5 and 7.

Corollary 5.4 Given two possibly disconnected surfaces S and S 0 with 2pS and 2pS 0

marked points respectively so that g.S/ D gS and g.S 0/ D gS 0 and integers p , d

and g such that 2p �maxf2pS ; 2pS 0g, g �maxfgS ;gS 0g, if g D 0, then b � 3, and
if g D 1, then b � 1, there exists an orientable manifold M containing a tangle T so
that there is a bridge surface † for .M;T / so that all of the following conditions are
satisfied:
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(1) @M D S [S 0 .

(2) † separates @M into the sets S and S 0 .

(3) genus.†/D g .

(4) jT \†j D 2p .

(5) T intersects each surface in @M exactly in the marked points.

(6) dist.†;T /� d .

Proof By Corollary 5.3 there exists a closed manifold M containing a c–component
link L so that there is bridge surface † for .M;L/ with 2p marked points and with
dist.M;L/� d . Let V1 and V2 be the closures of the two components of M �† and
let �1 and �2 be their spines. Recall that a spine �i of Vi is a (nonunique) graph
embedded such that Vi deformation retracts to it. In particular we may assume that �i

is homeomorphic to a disjoint collection of loops 1; : : : ; g and edges ti connecting i

and iC1 for i D 1; : : : ;g� 1.

Let g1; : : : ;gr be the genera of the components of S . Remove from V1 a regular
neighborhood of the loops g1

; : : : ; gr
and all arcs ti between them except the arcs

tg1
; tg1Cg2

; : : : ; tg1C���Cgr
. The result is a compression body zC1 with @C zC1 D† and

@� zC1DS so that zC1\L is a collection of boundary parallel arcs. Now replace pS of
these boundary parallel arcs with pairs of vertical (in the product structure of V1��1 )
arcs with one endpoint coinciding with the endpoints of the replaced arc and the other
endpoint in the marked points of S . Let C1 be the new compression body containing
the new arcs. Note that C.@CV1/D C.@CC1/D C.†/ and if a curve in † bounds a
disk in C1 it also bounds a disk in V1 .

Perform the analogous operations on V2 . The resulting manifold contains a tangle T

which has all of the desired properties.

Remark 5.5 Note that the previous corollary generalizes so that we can construct
.M;T / with the additional flexibility that T has c components for any integer satisfying
the inequalities pS CpS 0 � c �min.2pS ; 2pS 0/Cp . The proof is left as an exercise
for the reader.
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