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Weak asymptotic hereditary asphericity
for free product and HNN extension of groups

JOANNA JAKUS

Asymptotic hereditary asphericity (AHA) is a coarse property of metric spaces and
groups, introduced by T Januszkiewicz and J Świa̧tkowski in [3]. Conjecturally, this
property is closed under amalgamated free products and HNN extensions over finite
subgroups. We prove this conjecture for a slightly weaker property, weak asymptotic
hereditary asphericity (AHA.�/), which is still strong enough for the purposes which
AHA was used for in [3].
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1 Introduction

Asymptotic hereditary asphericity .AHA/ is a property of metric spaces introduced by
T Januszkiewicz and J Świa̧tkowski [3]. Roughly, it says that all spheres (of dimension
greater than 1) in a Rips complex may be filled by balls in a Rips complex with a
larger constant. AHA is a quasiisometry invariant [3, Corollary 3.3], so it is also a
well defined property of discrete groups. This property is used in [3] to show the
existence of high-dimensional hyperbolic groups which contain no fundamental groups
of closed nonpositively curved Riemannian manifolds of dimension greater than two
as their subgroups. The examples of such groups are systolic groups, that is groups
which act by simplicial automorphisms, properly discontinuously and cocompactly
on systolic complexes (some simplicial analogues of CAT.0/ spaces). Januszkiewicz
and Świa̧tkowski used the fact that every systolic group is AHA (and hence every
finitely generated subgroup of a systolic group is AHA), but the fundamental group of
a nonpositively curved manifold of dimension greater than two is never AHA.

Apart from the facts mentioned above, not much is known about AHA. It is known that
metric spaces which uniformly embed in AHA spaces are also AHA [3, Proposition 3.2].
Another result, [3, Corollary 8.7], tells us that the Cartesian product of more than two
infinite groups is never AHA. In [5] the author showed that groups of asymptotic
dimension 1 are all AHA. Osajda and Świa̧tkowski [4] prove that the boundary of any
AHA group (hyperbolic or CAT.0/) contains no 2–disk.
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There is a natural question, is a free product of two AHA groups also AHA? It would
seem that the answer is positive. In fact however, an attempt to prove this conjecture
presents severe difficulties. The reason is that we do not have asymptotic analogues of
many (even basic) concepts and facts of algebraic topology.

In this paper we introduce weak asymptotic hereditary asphericity AHA.�/, which is
a slightly weaker property than AHA. Roughly, instead of filling the spheres in Rips
complex by balls, we require that they are filled by some simply connected manifolds.
For this new property we prove the following two theorems:

(1) Let G and H be two weakly asymptotically hereditarily aspherical .AHA.�//
groups, and let K be their common finite subgroup. Then G �K H (the free
product with amalgamation over K ) also has AHA.�/.

(2) Let G be AHA.�/ group and let K1 and K2 be isomorphic finite subgroups
of G . Then the HNN extension of G , G�.K1DK2/ , also has AHA.�/.

We also mention that for the purposes set out by Januszkiewicz and Świa̧tkowski [3],
for which AHA was invented, AHA.�/ is sufficient.
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2 Definition of asymptotic hereditary asphericity

Recall the definition of asymptotic hereditary asphericity in a form which was introduced
by Januszkiewicz and Świa̧tkowski [3]:

Definition 2.1 A metric space X is asymptotically hereditarily aspherical (shortly
AHA), if for every r > 0 there is R > r such that for every A�X , any simplicial map
f W S ! Ripsr .A/ (S is any triangulation of the sphere Sk , k > 2) has a simplicial
extension F W B ! RipsR.A/ for some triangulation B of the ball BkC1 such that
@B D S .

Clearly, the constant R depends only on r . We will denote by R.X; r/ the value of
R in a specific case.

AHA is a quasiisometry invariant property [3, Corollary 3.3]. Thus, it makes sense to
speak about AHA for finitely generated groups; we say that a group is AHA if some
its Cayley graph is AHA. Below we provide another definition which will turn out to
be equivalent for geodesic spaces.
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Definition 2.2 A geodesic space X has the property of AHA� if for every r > 0

there is R� > r such that for every path-connected set A � X , any simplicial map
f W S ! Ripsr .A/ (S is any triangulation of the sphere Sk , k > 2) has a simplicial
extension F W B! RipsR�.A/ for some triangulation B of the ball BkC1 such that
@B D S .

In this case the constant R� also depends only on r and we will denote it by R�.X; r/.

Lemma 2.3 Let X be a geodesic space. Then X has AHA if and only if it has AHA� .

Proof Clearly AHA implies AHA� . Suppose now X has AHA� . We need to
check that it has also AHA. Consider any r , S , A and f W S ! Ripsr .A/, as in
Definition 2.1. Since f is a continuous function on a connected set, its image is also
connected. Therefore Im.f / is included in one of connected components of Ripsr .A/.
Let A1 � A be the set of vertices of this component. Then Im.f / � Ripsr .A1/.
Consider the r –neighborhood Nr .A1/ D fx 2 X W .9a 2 A1/ .d.a;x/ 6 r/g of A1 .
Such a set is path-connected. To show this, let us notice two things. First, by the
definition of Nr .A1/, we can connect any point of Nr .A1/ with a point of A1 by a
geodesic which is not longer than r and consequently is included in Nr .A1/. Second,
notice that any two points x;y from A1 can be connected by a geodesic in Nr .A1/.
Indeed, since Ripsr .A1/ is connected, there exists a path along edges which connects
the vertices x and y . Since X is a geodesic space, for every two adjacent vertices of
this path there exists a geodesic which connects them and which is not longer than r

(since adjacent vertices in Ripsr .X / are at distance at most r in X ) and consequently
is included in Nr .A1/. It shows path-connectedness of Nr .A1/.

Now, view f as a simplicial map from S to Ripsr .Nr .A1//. By the assumption that
X has AHA� , there exists an extension F�W B ! RipsR�.Nr .A1// of the map f ,
for a constant R� DR�.X; r/ and for B such that @B D S .

For each x 2Nr .A1/ choose an element ax from the set A1 such that d.x; ax/6 r .
For x 2A1 we put ax D x .

Consider the map F W V .B/ ! A1 (with V . � / denoting the vertex set), given by
F.v/D aF�.v/ . Now check the distance between the images of vertices of any edge
Œv; w� in B . We have:

d.F.v/;F.w//D d.aF�.v/; aF�.w//

6 d.aF�.v/;F
�.v//C d.F�.v/;F�.w//C d.F�.w/; aF�.w//

6 r CR�C r DR�C 2r:

Hence the map F can be extended to a simplicial map B! RipsR.A1/� RipsR.A/,
with RDR�C 2r . Therefore X has AHA with the constant R.X; r/DR.
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3 Weak asymptotic hereditary asphericity

Definition 3.1 A metric space X is weakly asymptotically hereditarily aspherical
(AHA.�/) if for every r > 0 there is R > r such that for every A�X , any simplicial
map f W S!Ripsr .A/ (S is any triangulation of the sphere Sk , k >2) has a simplicial
extension F W E!RipsR.A/ for some triangulation E of a simply connected manifold
of dimension kC 1, such that @E D S .

AHA.�/ is a quasiisometry invariant. A proof of this is analogous to the proof of the
fact that AHA is a quasiisometry invariant [3, Corollary 3.3]. As before, for geodesic
spaces we have an equivalent definition of AHA.�/:

Definition 3.2 A geodesic space X has AHA.�/ if for every r > 0 there is R� > r

such that for every path-connected set A�X , any simplicial map f W S ! Ripsr .A/

(S is any triangulation of the sphere Sk , k > 2) has a simplicial extension F W E!

RipsR�.A/ for some triangulation E of a simply connected manifold of dimension
kC 1, such that @E D S .

A proof of equivalence of the two above definitions is analogous to the proof of
Lemma 2.3. The second definition will be more useful for us. We will use the notation
R�.X; r/ for the value of R� in a specific case. Clearly such R�.X; r/ is not unique.

Remark As we mentioned in Section 1, AHA.�/ is sufficient for the purposes [3]
for which AHA was invented. Indeed, Januszkiewicz and Świa̧tkowski needed only
the fact that systolic groups are S2FRC, which means that for every r > 0 there is
R > r such that any 2–spherical cycle f W S! Ripsr .X / which is nullhomologous in
Ripsr .X / has a filling D in RipsR.X / (ie a 3–chain such that @D is the image under
f of the fundamental cycle in S ) with the vertex set of D contained in the image
under f of the vertex set of S ; see [3, Section 6]. As we can easily see, S2FRC is
implied by AHA as well as by AHA.�/.

4 One property of maps from spheres to the wedge sum of
two spaces

Let .X;x0/ and .Y;y0/ be based geodesic spaces. Consider the space X _Y , that is
the wedge sum of X and Y (the disjoint union of spaces X and Y after identification
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of x0 with y0 ). Denote by p the point x0 D y0 in X _Y . If dX is the metric on X

and dY is the metric on Y , we define a metric d on X _Y in the following way:

d.x;y/D

8<:
dX .x;y/ if x;y 2X;

dY .x;y/ if x;y 2 Y;

dX .x;x0/C dY .y0;y/ if x 2X;y 2 Y:

Let S be a triangulation of the sphere Sk and let f W S!Ripsr .X_Y / be a simplicial
map. Denote by f 0 the map f jV .S/ . We can identify the vertex set of Ripsr .X _Y /

with the set X _Y , hence we can treat f 0 as a map from V .S/ to X _Y .

Consider the vertices of the preimage of the set Xnfpg (analogically, of the set Y nfpg)
under f 0 . The full subcomplex of S which is spanned on these vertices can consist of
several connected components. Such components for Xnfpg and Y nfpg form a family
Wf of connected and pairwise disjoint subcomplexes of S . The following observation
will be crucial for us: there exists a complex W 2Wf that we can enlarge by some
vertices from the preimage of fpg under f 0 in such a way that its regular neighborhood
has connected boundary. In other words, the complement of that neighborhood is
connected in S .

Before we will show it, we introduce some useful notations and definitions. For
a simplicial complex Z we denote by Bar.Z/ its barycentric subdivision. For a
subcomplex Z0 of a complex Z , we denote by NBar.Z0;Z/ the subcomplex of
Bar.Z/ which is the union of all simplices intersecting Z0 .

Definition 4.1 A peripheral subcomplex of a simplicial sphere S for a map f is such
a subcomplex W of S that

� either f 0.V .W //�X and f 0.v/2Y for each v adjacent to W , or f 0.V .W //�

Y and f 0.v/ 2X for each v adjacent to W ;

� the complement of NBar.W;S/ in S is connected.

Fact 4.2 There exists a peripheral subcomplex for f in S .

Proof Let us consider three cases.

Case 1 There is W 2Wf such that NBar.W;S/ does not disconnect S . Then W is
a desired peripheral subcomplex for f in S .

Case 2 For every W 2Wf , NBar.W;S/ disconnects S , but there is W 2Wf such
that vertices of all subcomplexes from Wf except W lie in one of the connected
components of the complement of NBar.W;S/. It indicates that f maps vertices
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of other components to p . Then the full subcomplex spanned on these vertices and
vertices of W is peripheral.

Case 3 Previous cases do not occur. Then for every W 2 Wf , the vertices of
subcomplexes from Wf except W lie in at least two connected components of the
complement of NBar.W;S/.

Choose a sequence Wn of elements from Wf in the following way. Let W1;W2

be any elements from Wf . For i > 2 we choose Wi recursively. Assume Wi�1

is chosen. Vertices of subcomplexes from the family Wf (except for Wi�1 ) lie
in at least two connected components of the complement of NBar.Wi�1;S/. The
subcomplex Wi�2 is contained in one of them. Choose any element of Wf which is
contained in any other component and denote it by Wi . Notice, that Wi is different than
W1; : : : ;Wi�1 , because W1; : : : ;Wi�3 are contained in the same connected component
of the complement of NBar.Wi�1;S/ as Wi�2 .

We obtain an infinite sequence Wn of disjoint subcomplexes of S , which is impossible
since S is the triangulation of a sphere.

Hence, only the first two cases can occur and the proof is complete.

5 AHA.�/ for a wedge sum

Theorem 5.1 If geodesic spaces X and Y have AHA.�/, then also X _Y has this
property. Moreover, for any fixed r the wedge sum X _Y satisfies the condition of
AHA.�/ with the constant R�.X _Y; r/ equal to the maximum of constants R�.X; r/

and R�.Y; r/.

Proof Denote by p the basepoint of X _Y . Fix any r and consider any A and S (a
sphere of dimension k ) as in Definition 3.2.

Define RDmaxfRx;Ryg, where Rx WDR�.X; r/ and Ry WDR�.Y; r/.

We will consider a map f W S ! Ripsr .A/ together with the map f 0 (f jV .S/ viewed
as a map V .S/!A) and the family Wf (of connected disjoint subcomplexes of S ).
We will show the existence of an appropriate extension of f by induction on jWf j.

If f is such that jWf j6 1, then f 0.V .S//�X or f 0.V .S//� Y and the existence
of an appropriate extension of f is an immediate consequence of the fact that X and
Y are AHA.�/.

Assume that appropriate extensions exist for maps f such that jWf j6 n. We will show
that we can extend in an appropriate way also f with jWf j D nC1. If f 0.V .S//�X
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or f 0.V .S// � Y , then the existence of an appropriate extension of f is again a
consequence of the fact that X and Y are AHA.�/. Notice that in the opposite case
the basepoint p belongs to A. Indeed, if f 0.V .S//\X ¤∅ and f 0.V .S//\Y ¤∅
then let x 2X and y 2Y be points from these intersections respectively. Then x;y 2A

and it follows from path-connectedness of A that there exists a path from x to y .
Every such a path has to pass through the point p , so p 2A.

Choose a peripheral subcomplex of S for f and denote it by S1 . Let S2 be the
subcomplex of S spanned on the rest of vertices. Without loss of generality we can
assume that the image of the vertex set of S1 by f 0 is included in X .

Now consider Bar.S/. Let

S0 WDNBar.S1;S/\NBar.S2;S/:

S0 is equal to @NBar.Si ;S/ (for i D 1; 2), so it is a closed manifold of dimension
k � 1. Notice that it may be not a sphere Sk�1 , because S1 may be not a disk Dk .

Define the map f �W V .Bar.S//! Ripsr .A/, such that

f �.v/D

8<:
f .v/ for v 2 V .S/;

p for v 2 V .S0/;

f .w/ for v 2 V .Bar.S//n.V .S/[V .S0//;

where w is any of the vertices from V .S/ which are closest to v . It is easy to check that
the distance in A of the images of vertices of any edge from Bar.S/ is not bigger than
r . For that reason f � can be extended in a simplicial way to f �W Bar.S/!Ripsr .A/.

Let us construct a new complex, starting from Bar.S/. Along S0 � Bar.S/ we glue
So

1
(a copy of NBar.S1;S/), and So

2
(a copy of NBar.S2;S/). Consequently we obtain

three spheres: NBar.S1;S/[So
2

, So
2
[So

1
, So

1
[NBar.S2;S/, whose intersection is

S0 , and the first sphere is glued with the second along So
2

and the second sphere is
glued with the third along So

1
.

With the use of f � , we will construct auxiliary simplicial maps defined on spheres
described above. By the inductive assumption we will be able to extend these maps
to simply connected manifolds such that boundaries of these manifolds will be those
spheres. With the use of the obtained extensions we will construct an extension of f �

which we will use to construct an extension of f .

Let f �
1
W NBar.S1;S/ [ So

2
! Ripsr .A/ be an auxiliary simplicial map defined on

vertices as follows:

f �1 .v/D

�
f �.v/ for v 2 V .NBar.S1;S//;

p for v 2 So
2
:
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It is clear that f �
1

is well defined. After identifying V .Ripsr .A// with A we observe
that f �

1
ŒV .NBar.S1;S//� � X \ A. Since f �

1
ŒV .So

2
/� D fpg, the whole image of

f �
1
jV .NBar.S1;S/[So

2
/ is contained in X \A. Notice that X \A is path-connected.

Indeed, if x1;x2 2 X \A, then it follows from path-connectedness of A that there
exists a path in A from x1 to x2 . If this path is not contained in X , then its segments
are contained in Y . However, every time when such a path exits X or comes back
to X , it passes also through the point p . For that reason every segment, which is
contained in Y may be deleted, to obtain a path that is completely contained in X .

The space X has AHA.�/, so there exists an extension F1W E1! RipsRx
.A\X /

of f �
1

, for some triangulation E1 of a simply connected manifold EkC1
1

such that
@E1 DNBar.S1;S/[So

2
.

Define the next auxiliary map as follows. Let f �
2
W NBar.S2;S/[So

1
! Ripsr .A/ be

a simplicial extension of the map defined on the vertex set in the following way:

f �2 .v/D

�
f �.v/ for v 2 V .NBar.S2;S//;

p for v 2 So
1
:

It is clear that f �
2

is well defined. Notice that jWf �
2
jDn, so by the inductive assumption

there exists an extension F2W E2! RipsR.A/ of f �
2

, for some triangulation E2 of a
simply connected manifold EkC1

2
such that @E2 DNBar.S2;S/[So

1
.

Let Bo be the simplicial cone over the sphere So
1
[ So

2
. We will show that E0 WD

E1 [Bo [E2 is a simply connected manifold of dimension k C 1. To do this, we
will use Van Kampen’s Theorem; see Hatcher [2, Theorem 1.20]. E1 , Bo and E2 are
path-connected and simply connected. Also, the intersection of any pair as well as
the intersection of all three of these complexes are path-connected. By Van Kampen’s
Theorem, �1.E0/ is trivial, since it is isomorphic to the free product of fundamental
groups of complexes E1 , Bo and E2 , which are trivial.

Now we will construct an auxiliary map which will be a simplicial extension of f � ,
defined on E0 . Since RDmaxfRx;Ryg, we have RipsRx

.A\X /� RipsRx
.A/�

RipsR.A/, so we can view F1 as a function to RipsR.A/. Define F0W E0!RipsR.A/

on the vertex set of E0 :

F0.v/D

8<:
F1.v/ for v 2 V .E1/;

F2.v/ for v 2 V .E2/;

p for v 2 V .Bo/:

It is easy to see that for edges of E0 the distance in A between the images of their
vertices is not bigger than R. For this reason we can extend F0 to a simplicial map.
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In this way we have constructed E0 — a triangulation of the manifold EkC1
0

such
that the triangulation of the boundary of E0 is equal to the barycentric subdivision
Bar.S/ of the simplicial sphere S — and we have defined the simplicial map F0 on
E0 , which is an extension of f � . We will join E0 with the product Sk � Œ0; 1� to
obtain a manifold with the simplicial sphere S as its boundary.

We triangulate Sk � f0g and Sk � f1g as S ; for v 2 V .S/ let v0 (respectively v1 )
define the corresponding vertex in Sk � f0g (respectively in Sk � f1g). For a simplex
Œv0; : : : ; vi � (for i 6 k ) Œv0

0
; : : : ; v0

i ; v
1
0
; : : : ; v1

i � defines a prism in Sk � Œ0; 1�. We
triangulate each prism in such a way that on Sk� f1g we have the initial triangulation,
on Sk � f0g, the barycentric subdivision of S , and that we do not have any new
additional vertices except for these in Sk � f0g (for a precise description of such a
triangulation, see Hatcher [2, pages 121–122]). We join Sk � Œ0; 1�, triangulated in this
way, with E0 (by identifying Sk �f0g with @E0 ) and as a result we obtain a manifold
with S as a triangulation of its boundary. Denote it by E .

Since @EDS , f is defined on @E . We define a simplicial extension F W E!RipsR.A/

of f , on the vertex set of E :

F.v/D

�
f .v/ for v 2 V .S/;

F0.v/ for v 2 V .E0/:

To see that it is well defined it is sufficient to check what happens for edges Œv; w�,
where v 2 V .S/ and w 2 V .@E0/. According to our notation, v D v1 and

w 2 V
�
BarŒv0; v0

1 ; : : : ; v
0
k �
�

for some simplex Œv; v1; : : : ; vk � in S . Then the distance in A between the images of
v and w under F is

d.F.v/;F.w//D d.f .v/;F0.w//6 max
˚
d.f .v/; f .x// W x 2 fv; v1; : : : ; vkg

	
6 r;

since f is a simplicial map, so F.v/ and F.w/ span an edge in RipsR.A/.

Consequently, F is a required extension of f , which completes the inductive step. This
proves that X _Y satisfies the condition of AHA.�/ with the constant R�.X _Y; r/

equal to RDmaxfRx;Ryg.

Now consider an infinite iterated wedge sum of spaces Xn (nD 1; 2; : : : /, that is the
space

X D
[

X 0n;
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where X 0
1
WDX1 and X 0

nC1
WDX 0n _XnC1 for n > 1 (in this wedge sum we identify

any distinguished points of X 0n and XnC1 ). The metric on X 0
nC1

, restricted to X 0n , is
equal to the metric on X 0n , so we can define a metric on X in the following way: for
x;y 2X there exists n such that x;y 2X 0n and we put dX .x;y/ WD dX 0n

.x;y/.

Theorem 5.2 Let X be an infinite iterated wedge sum of geodesic spaces Xn (n2N ),

X D
[

X 0n:

Assume that each space Xn has AHA.�/ and for fixed r the sequence of constants
R�.Xn; r/ is bounded above by R0 . Then X has AHA.�/. Moreover, for any fixed
r the space X satisfies the condition of AHA.�/ with the constant R�.X; r/ equal
to R0 .

Proof Let us fix any positive real number r .

First we observe that for each n>1, X 0n has AHA.�/. Indeed, by Theorem 5.1, X 0
2

has
AHA.�/ and the constant R�.X 0

2
; r/ is equal to maxfR�.X1; r/;R

�.X2; r/g 6 R0 .
Assume that for n 6 k the space X 0n has AHA.�/ and the constant R�.X 0n; r/ is equal
to R0 . Then, since X 0

kC1
is the wedge sum X 0

k
_XkC1 , it also has AHA.�/ (by

Theorem 5.1) and R�.X 0
kC1

; r/DmaxfR0;RkC1g DR0 .

Consider any simplicial map f W S ! Ripsr .A/ for a path-connected set A�X and
for S ; a triangulation of Sm , m > 2. The triangulation S has always finitely many
vertices, so f ŒV .S/� is contained in X 0

k
for some k . Notice that the set A\X 0

k
is

path-connected. Indeed, for x;y 2 A\X 0
k

it follows from the path-connectedness
of A that there exists a path in A which connects these points. If this path is not
contained in X 0

k
, then notice that every time this path exits X 0

k
, it has to pass through

the basepoint of the wedge sum X 0
k
_Xi for some i > k and afterwards it has to come

back also through this point. Consequently, every segment which is not contained in
X 0

k
can be deleted, to obtain a path which is completely contained in X 0

k
.

Since X 0
k

has AHA.�/, there exists F W E! RipsR0
.A\X 0

k
/� RipsR0

.A/ for E ;
a triangulation of EmC1 such that @E D S .

6 AHA.�/ for a free product

Analogously as for AHA, we say that a group is AHA.�/ if some its Cayley graph is
AHA.�/. Since AHA.�/ is quasiisometry invariant it is a well defined property for
groups.
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Theorem 6.1 Let G and H be groups with AHA.�/. Then the free product G �H

also has this property.

Proof Fix any generating sets BG , BH for G , H respectively. As a generating set
of G �H we take BG [BH . Consider the Cayley graph of the product G �H with
respect to this generating set (we denote it by Cay.G �H;BG [BH /).

Notice that Cay.G�H;BG[BH / is an infinite iterated wedge sum of spaces which are
copies of Cay.G;BG/ and Cay.H;BH / (one can see the construction of the Cayley
graph of G �H in Cannon [1, page 280], taking trivial K in the amalgamated free
product G �K H which is considered there). By Theorem 5.2, Cay.G �H;BG [BH /

has AHA.�/, where for fixed r we have

R�.Cay.G �H;BG [BH /; r/Dmax
˚
R�.Cay.G;BG/; r/;R

�.Cay.H;BH /; r/
	
:

We want to prove the analogous theorem for a free product with amalgamation over
nontrivial finite subgroup, that is for G �K H with a nontrivial finite K .

First, we describe the Cayley graph of G �K H . As a generating set for K we take
the whole group. Then we extend K to a generating set BG of the group G and to a
generating set BH of the group H . We take BG [BH as a generating set of G �K H .
Consider the Cayley graph Cay.G �K H;BG [BH /. It is constructed from copies
of Cayley graphs of groups G and H . We can reconstruct it by taking Cay.G;BG/

and next gluing along each subgraph corresponding to some left coset of the subgroup
K in G the subgraph corresponding to the left coset eK in the graph Cay.H;BH /

together with the whole new copy of Cay.H;BH /. In the second step, along each
subgraph corresponding to some (other than eK ) left coset of the subgroup K in the
glued copy of Cay.H;BH /, we glue the subgraph corresponding to the left coset eK

together with a new copy of Cay.G;BG/. We continue the construction in this fashion.
More details of the construction of a Cayley graph of a free amalgamated product can
be seen in, eg, Cannon [1, page 280].

Let us modify the graph described above. Since AHA.�/ is a quasiisometry invariant,
it suffices to show AHA.�/ for a graph quasiisometric to Cay.G �K H;BG [BH /.

First, modify the graph Cay.G;BG/. To each subgraph which is contained in this
graph and corresponds to some left coset of the subgroup K in G let us add one new
vertex and join it by edges with the rest of vertices of the subgraph. Assume that all
edges in the graph have length equal to 1. Denote the resulting graph by CG .

Fact 6.2 The graph CG is quasiisometric to the graph Cay.G;BG/.
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We skip the proof since it is easy to see that the embedding Cay.G;BG/! CG is a
quasiisometry.

We modify the graph Cay.H;BH / in the same way as we did with Cay.G;BG/,
obtaining the graph CH .

Now, instead of the graph Cay.G�K H;BG[BH / consisting of copies of Cay.G;BG/

and copies of Cay.H;BH / joined in the appropriate way along copies of Cay.K;K/,
consider a graph which consists of copies of CG and CH joined in single vertices. That
is, for each copy of Cay.G;BG/ and Cay.H;BH / in Cay.G �K H;BG [BH / we
consider a copy of CG and CH respectively, and we make the following identifications:
If a copy of Cay.G;BG/ and a copy of Cay.H;BH / in Cay.G�K H;BG[BH / have
nonempty intersection (equivalently, their intersection is a copy of Cay.K;K/), then
their corresponding copies of CG and CH are adjacent in the new graph, meaning that
they are joined by identifying appropriate vertices added to copies of Cay.K;K/ in
CG and CH (which correspond to a copy of Cay.K;K/ mentioned above). Denote
this new graph by CGH .

Fact 6.3 The graph CGH is quasiisometric to the graph Cay.G �K H;BG [BH /.

Proof Since a graph with the standard geodesic metric is quasiisometric to its vertex
set (with the restricted metric), it suffices to find a quasiisometry between vertex sets
of Cay.G �K H;BG [BH / and CGH (with restricted metrics). Define

f W V .Cay.G �K H;BG [BH //! V .CGH /

in the following way. All copies of V .Cay.G;BG// and V .Cay.H;BH //, included
in V .Cay.G �K H;BG [BH //, are mapped by identity to V .CGH / (onto their corre-
sponding copies). Since each vertex of V .Cay.G �K H;BG [BH // is either a vertex
of some copy of Cay.G;BG/ or of some copy of Cay.H;BH /, the map f is defined
in this way on all vertices.

Let us check that f is a quasiisometric embedding. Take any

x;y 2 V .Cay.G �K H;BG [BH //:

It is clear that d.x;y/6 d.f .x/; f .y// by the construction of CGH and the definition
of f . Consider g.x;y/, a geodesic with endpoints x and y in Cay.G�K H;BG[BH /.
A geodesic g.f .x/; f .y// in CGH is not longer than g.x;y/ lengthened by two edges
in each vertex. The reason is that in all vertices where g.x;y/ goes from a copy of
Cay.G;BG/ to a copy of Cay.H;BH / (or the opposite) the corresponding path in
CGH is two edges longer. These two edges connect a vertex in a copy of Cay.G;BG/
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with a vertex in a copy of Cay.H;BH / in CGH . Thus we have d.f .x/; f .y// 6
jg.x;y/jC 2jV .g.x;y//j D 3d.x;y/C 2.

Consequently we have 1
3
d.x;y/�2 6 d.x;y/6 d.f .x/; f .y//6 3d.x;y/C2, which

shows that f is a quasiisometric embedding.

It remains to check that every vertex in CGH is within a constant distance from the
image of f . Notice that each vertex of CGH is either in a copy of V .Cay.G;BG//

or V .Cay.H;BH // (so in the image of f ), or it is one of additional vertices (so its
distance from the image of f is 1). Hence we see that every vertex in CGH is within
the distance 1 from the image of f . It completes the proof that f is a quasiisometry.

Theorem 6.4 Assume that groups G and H have AHA.�/ and that a group K is
their common finite subgroup. Then G �K H has also AHA.�/.

Proof It suffices to show that the graph CGH has AHA.�/.

Notice that CGH is an infinite iterated wedge sum of spaces which are copies of CG

and CH . Graphs CG and CH have AHA.�/ and they are geodesic spaces (since they
are connected graphs). By Theorem 5.2 the space CGH has AHA.�/ and for a fixed
r the constant R�.CGH ; r/ is equal to maxfR�.CG ; r/;R

�.CH ; r/g.

7 AHA.�/ for HNN extension

To study the behavior of AHA.�/ under HNN extensions over finite subgroups let us
look at first at a Cayley graph of HNN extension.

Let K1 , K2 be finite subgroups of a group G and let 'W K1!K2 be an isomorphism.
Fix a generating set BG for G , which contains K1 [K2 . If G has a presentation
hBG jRi, then HNN extension G�' has the presentation

hBG ; t jR; t'.k/t
�1
D k W k 2K1i:

The reader is referred to Cannon [1, page 281] for the detailed description of the
graph Cay.G�' ;BG [ ftg/, we only outline the construction. Notice that the graph
Cay.G�' ;BG[ftg/ consists of copies of graphs Cay.G;BG/ joined in an appropriate
way. To reconstruct it take a copy of Cay.G;BG/. Consider a subgraph of Cay.G;BG/

corresponding to some left coset of the subgroup K1 in G . We connect this subgraph
with the subgraph corresponding to the left coset eK2 in a new copy of Cay.G;BG/

by a family of edges corresponding to multiplying by t , in a manner corresponding
to the isomorphism ' . We do the same for all subgraphs corresponding to left cosets
of K1 in the initial copy of Cay.G;BG/. We repeat the analogous process for all
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subgraphs corresponding to the left cosets of K2 in the initial copy of Cay.G;BG/,
connecting them with subgraphs corresponding to the left cosets eK1 in subsequently
added copies of Cay.G;BG/. We repeat the process for all new copies of Cay.G;BG/,
considering all subgraphs corresponding to left cosets of K1 and K2 they contain. We
continue the construction in this fashion and after infinite number of steps we obtain
the graph Cay.G�' ;BG [ftg/.

Consider the graph with vertices corresponding to copies of Cay.G;BG/ contained
in Cay.G�' ;BG [ftg/ and edges joining the vertices which correspond to copies of
Cay.G;BG/ joined by a family of edges in Cay.G�' ;BG [ ftg/. Such a graph is a
tree (see Cannon [1, page 281]).

Instead of the graph Cay.G�' ;BG [ftg/ we want to consider another graph which is
quasiisometric to it. To describe it, consider at first any copy of Cay.G;BG/ embedded
in Cay.G�' ;BG [ ftg/, together with edges which have one endpoint in this copy.
As we mentioned, these edges correspond to multiplying by t or t�1 . We can group
them into families in such a way that every family consists of all edges connecting the
initial copy of Cay.G;BG/ with another copy. For each such family separately we
take the vertex set, choose all vertices that are not in the initial copy of Cay.G;BG/

and identify them with each other. Denote the resulting graph by CG .

Fact 7.1 The graph CG is quasiisometric to Cay.G;BG/.

We skip the proof since it is easy to see that the embedding Cay.G;BG/! CG is a
quasiisometry.

Now, instead of the graph Cay.G�' ;BG [ ftg/ consisting of copies of Cay.G;BG/

connected in the appropriate way by families of edges, consider the graph which consists
of copies of CG joined in single vertices. That is, for each copy of Cay.G;BG/

in Cay.G�' ;BG [ ftg/ we consider a copy of CG . For two adjacent copies in
Cay.G�' ;BG [ftg/ of Cay.G;BG/ (meaning these copies are connected by a family
of edges) we join their corresponding copies of CG by identifying appropriate vertices
(in which edges corresponding to edges from the family mentioned above are glued
together). Denote the resulting graph by C .

Fact 7.2 The graph C is quasiisometric to Cay.G�' ;BG [ftg/.

We omit a proof of this fact, because it is a repetition of the proof of Fact 6.3.

Theorem 7.3 Let K1 , K2 be finite isomorphic subgroups of a group G and let ' be
an isomorphism between K1 and K2 . If G has AHA.�/, then its HNN extension
G�' also has AHA.�/.
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Proof It suffices to show that the graph C , which we described above, has AHA.�/.
Notice at first that C is an infinite iterated wedge sum of spaces which are copies of
CG . Since G has AHA.�/, CG also has this property (as a consequence of Fact 7.1).
By Theorem 5.2 the graph C has AHA.�/ and R�.C; r/DR�.CG ; r/.
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