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A bound for orderings of Reidemeister moves

JULIAN GOLD

We provide an upper bound on the number of ordered Reidemeister moves required
to pass between two diagrams of the same link. This bound is in terms of the number
of unordered Reidemeister moves required.

57M25

In 1927 Kurt Reidemeister proved that any two link diagrams representing the same
link may be joined by a finite sequence of Reidemeister moves. The importance of this
theorem to knot theory cannot be overstated. Mathematicians like Alexander Coward [1;
2], Marc Lackenby [2], Bruce Trace [4], and Joel Hass and Jeffery Lagarias [3] have
all explored properties of sequences of Reidemeister moves.
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Figure 1: Reidemeister moves

In 2006, Alexander Coward showed in [1] that given any sequence of Reidemeister
moves between link diagrams D and D5, it is possible to construct a new sequence
ordered in the following way: first £2; moves, then Qg moves, then €23 moves, finally
Q% moves. We present, via the following theorem, an upper bound on the number of
moves required for an ordered sequence in terms of the number of moves present in
any sequence of Reidemeister moves.

Theorem 1 Let Dy and D, be diagrams for the same link that are joined by a
sequence of M Reidemeister moves. Let N = 6M 1 M . Then there exists a sequence
of no more than exp®™)(N') moves from D, to D, ordered in the following way: first
QI, then Qg, then 253, then Qi’ and finally Qf

Here the function exp is defined as exp(x) = 2* and exp")(x) is the function exp
iterated r times on input x.

We define a link diagram to be a 4—valent graph embedded in R? with crossing
information recorded at each vertex. All diagrams will be oriented, so that they
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represent oriented links. We regard two diagrams as the same if there is an ambient
isotopy of R? taking one diagram to the other, preserving crossing information and the
orientation of each link component. To prove Theorem 1, we will adapt the methods
Alexander Coward uses in [1] and borrow the following terminology.

Definition Let D be a link diagram and suppose c: [0, 1] — R? is an embedded path
whose image C intersects D transversely at finitely many points, where ¢(0) € D and
c(1) € D. We stipulate that no point of intersection of D and C is a vertex of D. At
each such point, apart from ¢(0), we designate whether C passes over or under D.

Let C x [—e¢, €] be a small neighborhood of C such that
(C x[—€,e])) N D =(CND)x[—e,cel.
Then define the diagram D’ as the 4—valent graph
DUI(C x[—e€,€]) \ (c(0) X (—¢€,€))

with crossing information induced by the path ¢. We write D ~ D’ and say that D’
is obtained from D by adding a tail along C. Additionally, we will call C the core of
this tail. We require that adding a tail to a diagram D produces a diagram D’ where
¢(D’) > ¢(D). Figure 2 illustrates the construction of a tail.

F oF7

Figure 2: Adding a tail

Definition Suppose D ~> D, via some path c: [0, 1] — R2. Suppose additionally
that ¢(1) lies in a small neighborhood of some crossing x of D;. Let D3 be as in
Figure 3, a diagram obtained from D, by performing two Qg moves followed by one
23 move.

We say Dj is obtained from D; by adding a lollipop and write Dy O— D3. The
lollipop itself is defined as D3 \ Dy. The tail part of the lollipop is (D3 N Dy) \ Dy,
and the closure of the rest of the lollipop is the circle part of the lollipop. We say that
the lollipop is centered at .
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Figure 3: Adding a lollipop

We think of a sequence S of Reidemeister moves, tails and lollipops between link
diagrams L and L, in the following way:

S:L1=D02>D12>"'2>Dn=142

Here each «a; is a Reidemeister move, a tail or a lollipop. A tail or lollipop may be
added from D; to D;yq (eg D; »> Dj4q) or from D;yq to D; (eg D; ¢~ D1 1). We
say the length of S is n. The intermediate link diagrams D; are often omitted from
the figures in this paper for clarity, but are implicit in any sequence.

If a link diagram D, is reached from D; by a sequence of Qg moves of length n, we
write Dy —" D,. The following lemma allows us to take a sequence S and produce
a sequence S’ with one less Q3 move.

Q
Lemma 2 Let Dy and D, be link diagrams such that D =3 D, . Then there exists
a diagram D5 such that D; —2 D3 and D, O— Ds.

Proof The diagram

N\ /7 Q; \/
Dly\ 7% D,

satisfies the required conditions. |

If an 23 move occurs in a sequence of Reidemeister moves, tails and lollipops

Q
SidosBIC D,
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we may apply Lemma 2 to S to get a new sequence

1 o
S:4d—>-+—>B-5B -%5B «0C—>---—D.

When we apply Lemma 2 to construct S’ from S, we call this capping the 23 move
from B to C. The following proposition and its corollary will also allow us to build
new sequences from old ones in a useful way.

Proposition 3 Suppose Dy ~> D} (or Dy O- D} ) and also that D, —1 D, . Then
there exists a diagram D, such that D, ~> D) (D, O— D) respectively) and D —*
D’,, where

(a) ¢(D3y) —¢(D2) =2(c(Dy) —c(D1))
(b) a = c(Dy) —c(Dy).
D, D, —“ D),
S
D1 — D2 D1 — D2

Proof The diagram D, is obtained from D by a single Q; move which takes place
over two (possibly non-distinct) edges ey and e of D;. Pick points p; and p, on
eq1 and e, respectively, so that p; and p, lie outside a small neighborhood of the tail
Dy » D/1 . We can perform the €2, move from D; to D; by adding a tail along a
path y, which starts at p; and ends slightly beyond p5.

o /A// /ﬂ

/

—W7 V/ —

Figure 4: Constructing D), by adding a tail along y

Diagram D/ contains the points p; and p,. We may arrange that the intersection of
y with the tail D; v D] contains at most 2|(c(D}) —c(Dy))/4] points. Figure 4
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. . . . ;o
depicts such an arrangement. Adding a tail along y, we construct a diagram D, with

¢(D}) — (D)) < ﬂwj +2.

Hence
¢(Dy) —c(D}) < ¢(D}) —c(Dy) + 2.

We note that ¢(D})—c(D1)+2 <2(c(D})—c(Dy)), because adding a tail to a diagram
must raise its crossing number by at least two. This implies the desired bound on a.
Also

¢(D)—c(D)) <c(D}) —c(Dy)+2

implies, by adding ¢(D}) to both sides and subtracting c(D5), that
c(D/z) —c(Dy) < 2c(D’1) —c(D1)+2—c(Dy).
Using ¢(D3) = c(Dy) +2 we get
c(D5) —c(Dy) <2¢(D]) —2¢(Dy).

In the case that Dy O— D!, choose p; and p, to be outside the circle part of the
lollipop, and the above considerations go through. |

Corollary 4 is a natural generalization of Proposition 3.

Corollary 4 Suppose D ~> D} (or Dy O— D} ) and also that D; —" D, . Then there
exists a diagram D, such that Dy ~> D) (Dy O— D] respectively) and D —»b D},
where

b < 2"(e(D}) —c(Dy)).

b
Dj Dj —»" D,
: — &
D, —" D, p, —'"' D,

Proof Let D;, D, and D’ be as in the statement of the theorem. We work in the
case Dy » D', but the proof for lollipops is identical. Let £ be the sequence of QT
moves of length n from D; to D5,

E:Dy=Ey—>"E;—>»'--->"E,=D,,
and let Ej; = D}. We use Proposition 3 to construct a diagram E| such that E| v E|
and E; — —»bo E’ , where by < c(E}) — c(Eo). Apply Proposmon 3 again to the

triple (Ey, E|, E 2) to build a diagram E’ . Iterate this, constructing the diagrams E’
through Ej, as below.
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) b 1
b() b1 bn—z bn—l
Di=Ey —» Ej —»' - E,_,— E,, — E, =D,
1 1 1 1
= Eo _9) E1 _9) En_z _9> En—l _9> En = D2

Proposition 3(b) gives us that b; < c(E}) — c(E;), while Proposition 3(a) tells us
c(E})—c(E;) <2 (c(Ey) —c(Ep)). The sequence of 2, moves from E{ to E, has
length b, where b = ZL& b;. Hence,

b < (2" —1)(c(Ey) —c(Ep)).

Take D) = E, to complete the proof. O

Theorem 5 below makes use of Lemma 2, Proposition 3 and Corollary 4 to begin
building an ordered sequence from an unordered sequence.

Theorem 5 Let D, be a link diagram obtained from D via a sequence of 2, and
Q3 moves of length M . Then there exists a diagram D5 such that Dy —¢ D3 with
D3 is obtained from D, by adding a sequence no more than M tails and lollipops.
Further, ¢ < exp™)(6M).

Proof Consider a sequence A of 2, and Q3 moves of length M from D; to D;,
of which N are Q3:
A:Di=A4Ag—> A1 —>--—> Ay = D,
Using Lemma 2, cap every €23 move to build a new sequence & :
&1:Dy=Ey—> Ey— = Epmyon = Dy,
where éil contains no €23 moves. This is depicted in Figure 5.

If E,-—2>E,-+1 , we relabel this as E; <~ E; 41, because a Q; move may be performed
by adding a tail. Define a local minimum of £; to be a diagram E; such that
o Q]
Ei e~ Ei— Eity or Ei | «OFE; — E;;;.

Let Ey €{Eq,..., Epr+on—1} be the local minimum appearing in £; with greatest
index. Let r{ be the number of consecutive 2, moves in & to the right of E ;. Let
£, be the number of consecutive QT moves in 51 to the leftof Ej_;.
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Figure 5: Constructing &; from A
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Figure 6: Constructing F (in this case, Ejyr, = Ep+on)

Apply Corollary 4 to the triple (Ej_1, Ey, Ej4,,) to build a diagram F, where
EJ_1—>)r£F and where Ejy, O> Fif Ej O> Ej_yor Ej . » Fif Ej v
E j_;. Corollary 4 tells us ré <4.2" | in the worst case that £y O~ Ej_;. Figure 6
depicts the construction of F'. Define &, to be the following sequence:

& Dy=Ey—>FE—»-—E;j_1—>—>F—>Ej — = Eyion

Then &, is a sequence of diagrams with r, consecutive Q; moves to the right of its
last local minimum, where we have the following bound on r,:

ry 54,271 —|—£1 E 2r1+2—|—€1‘

Let & be the sequence obtained by k — 1 applications of Corollary 4, with r; the
number of Q; moves to the right of the last local minimum of & . Let £; be the
number of consecutive Q; moves preceding the diagram to the immediate left of the
last local minimum of & . Given the £ and ri, we may apply Corollary 4 as above to
produce a sequence & 41 and corresponding rg 41 with rg4q < 2" k+2+0k and hence

k
(1) Frt1 < exp(k) (r1 + 2k + Zﬂi).

i=1

Iterate the constructions of the (&, r¢) until we produce a sequence Ex with no local
minima and with rg consecutive Q; moves following E(. The number of times we
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Figure 7: Repeatedly applying Corollary 4 to build D3

apply Corollary 4 to construct £ from &7 is exactly the number of tails and lollipops
in £, which is less than or equal to M. So K < M + 1, and via (1) above,

rg < exp(M)(6M),

where we've used that 1y <M and Y X1 ¢, <M +2N <3M.

i=1
There are rx moves of type Q; following Dy = Eq in g, so let D3 be the diagram

obtained by performing these moves on D;. Because D3 is obtained from Eps4ony =
D, by at most M tails and lollipops, Theorem 5 holds. O

The following theorem allows us to construct an ordered sequence of 2, and 23
moves from the tails and lollipops arising in Theorem 5.

Theorem 6 Suppose D, is obtained from D1 by a sequence T of tails and lollipops
of length M :

T:D1=T02>T12>"'—‘I—A/I—)TM=D2

where either T; » T; 1 or T; O— T; 1. Then there exists a diagram D3 obtained from
D, by a sequence of Qg moves of length no more than %(C(Dz) —c(Dy))+2M,
followed by a sequence of 23 moves of length no more than M . Additionally D,
is obtained from D3 by a sequence of Qi moves of length at most @(C(Dz) —
C(Dl)) +2M.
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Proof Consider a crossing y of the diagram D, about which the circle part of any
lollipop in 7 is centered. There may be multiple lollipops (suppose there are k)
centered at x, so consider a point pj on the outermost one. Let ¢ be a point in a small
enough neighborhood of x such that a straight line segment from ¢ to y does not
intersect D, except at x.

Consider a path c: [0, 1] = R? such that ¢(0) = p and ¢(1) = ¢. Choose ¢ in such
a way that its image C intersects each concentric lollipop at only one point. The point
of intersection of C and the 7 th concentric lollipop is denoted p;. Let §; = 0 and let
Op—1 <O8p_g <---<81 €(0,1) such that ¢(6;) = p;.

Figure 8: Adding concentric tails at the crossing x

As in the proof of Proposition 3, we also choose ¢ so that C N D, consists of no more
than 2LMJ points, excluding the points p; through py.

Add a tail along the path c|fs, 1] to construct a diagram E; from D,, where ¢(E;) —
c(Dy) < c(D3)—c(Dy). Perturb this tail slightly, so that it is closer to the crossing
X and now add a second tail disjoint from the first tail along the path c|s, ;7. This
second tail introduces no more than ¢(D,) —c¢(D1) crossings.

Repeating this process of perturbing and adding tails along c|s, 17 forall i € {1,...,k},
we produce a diagram Ej where ¢(Ey) —c(D;) < k(c(Dy)—c(Dy)). We then build
the diagram E by adding nested tails in the same way for every crossing of D, that
is the center of some lollipop, so that ¢(E) — c(D;) < M(c(D3) —c(Dy)). The
construction of E is depicted in Figure 8. The diagram E may be obtained from D,
by a sequence of Qg moves of length at most %(C(Dz) —c(Dy)).

Now construct the diagram E’ from E by performing the following at each crossing:
if there are k concentric circles centered at a crossing yx, perform 2k type Q; moves,
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Figure 9: Perform 2k type Q; moves, so that each tail ‘forks’ over the crossing

forking the previously constructed tails over the edges of the crossing y, as Figure 9
illustrates.

The diagram E’ may be reached from D, via a sequence of Qg moves with length at
most %(c(Dz) —c(Dy)) +2M . Finally, construct the diagram D3 by performing at
most M moves of type 23, as in Figure 10.

Figure 10: Performing €23 moves to pass from E’ to Ds

We may now pass from D3 to D; by performing Q% moves as follows. Each tail
and lollipop of 7 in D is still present in D3, with the circle parts of each lollipop
modified. We remove them one at a time starting with the last tail or lollipop aps in
the sequence. If aps is a lollipop, it now has the form depicted by Figure 11 in D3,
and may be removed by Qi moves. If aps is a tail, it may likewise be removed by Qi’
moves. We continue to remove tails and lollipops in the reverse order they are added in
T until we obtain D .

Figure 11

Because ¢(D3) =c(E’), we know ¢(D3)—c(Dy) is exactly ¢c(E’)—c(Dy)+c(Ds)—
c¢(D1), which is at most M (c(Dy) —c(D1)) +4M + c¢(D3) — c(Dy). Halving this
gives us a bound on the number of Qj moves from D3 to D;. O
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We consolidate previous results into Theorem 7, a special case of Theorem 1.

Theorem 7 Let D, be a link diagram obtained from D, by a sequence of 2, and €23
moves of length M . Then there is a sequence of at most exp*M) (6 M) Reidemeister
moves from Dy to D, ordered in the following way: first 2, moves, then 23 moves
and finally Q% moves.

Proof Given D and D,, construct a diagram D3 using Theorem 5, where Dj is
obtained from D; by no more than exp(M ) (6M) type Q; moves, and where D3 is
obtained from D, by no more than M tails and lollipops. Note that ¢(D3) —c(D3) <
2-exp™M)(6M) +2M .

From D, and Dj3, apply Theorem 6 to construct a diagram D, with the following
properties: there is a sequence of Q; moves whose length is no more than M -
exp™)(6M) + M2 +2M , followed by a sequence of €23 moves of length no more
than M from Dj; to Dy4. There is also a sequence of Qj moves whose length is at
most (M + 1)-exp™) (6 M) + M2 +3M from D4 to D,.

Following the sequences of moves constructed from D; to D3, then to D4 and finally
to D,, we have a sequence of no more than (2M + 2) -exp™) (6 M) + M (2M + 6)
Reidemeister moves ordered as desired. For M > 1, exp®M)(6M) > QM + 2) -
exp™M)(6M) + M(2M + 6). o

Before considering the more general case of an arbitrary sequence of M Reidemeister
moves, we need two lemmas relating to €2; moves. These lemmas allow us to take a
sequence of Reidemeister moves and build a new sequence in which the €2; moves
occur only at the beginning and end.

Lemma 8 Let A, B and C be link diagrams such that
Q e
A= B—-5C
where S is an arbitrary Q, or Q3 move. Then there exists a diagram B’ which may
be obtained from A by a single SZI move, and where C is obtained from B’ by no
more than six 2, or €23 moves. Additionally, if instead 2 = Qf, there is a diagram

B’ such that
4 ot

A— B 5 C.
QY Q
Lemma9 Let A, B and C be link diagrams such that A—I—>B—>C, where Q2 is an
Q, or Q3 move. Then there exists a diagram B’ such that B’ is obtained from A by
no more than six €, or 23 moves and where C may be obtained from B’ by a single
Qf move.
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The proofs of Lemma 8 and Lemma 9 are left to be verified by the reader, and
Corollary 10 is a rapid consequence of these lemmas:

Corollary 10 Let D, be obtained from D1 by an arbitrary sequence of M Reidemeis-
ter moves, a of which are QI and B of which are Qf Then there exist diagrams D/
and D, such that D is obtained from D; by « type QI moves and D, is obtained
from D), by B type Qf moves. Additionally, D, is obtained from D} by no more
than 6M M Reidemeister moves of type 2, and Q3.

We conclude by proving Theorem 1.

Proof of Theorem 1 Begin with an arbitrary sequence of M Reidemeister moves from
diagram D, to diagram D5, « of which are QI and B of which are Qf Construct
D and D) as in Corollary 10. Apply Theorem 7 to the sequence of Q5 and Q3
moves from D/ to D) to obtain a sorted sequence of Reidemeister moves from D; to
D5 of length at most

exp(2'6MM)(6-6MM)+a—|—,3Sexp(6M+1M)(6M+1M). O
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