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Homology decompositions of the loops on 1–stunted
Borel constructions of C2–actions

MAN GAO

JIE WU

The Carlsson construction is a simplicial group whose geometric realization is the
loop space of the 1–stunted reduced Borel construction. Our main results are: (i)
given a pointed simplicial set acted upon by the discrete cyclic group C2 of order 2,
if the orbit projection has a section, then the loop space on the geometric realization
of the Carlsson construction has a mod 2 homology decomposition; (ii) in addition,
if the reduced diagonal map of the C2 –invariant set is homologous to zero, then
the pinched sets in the above homology decomposition themselves have homology
decompositions in terms of the C2 –invariant set and the orbit space. Result (i)
generalizes a previous homology decomposition of the second author for trivial
actions. To illustrate these two results, we compute the mod 2 Betti numbers of an
example.

55N91, 55P35; 55T05, 55U10

1 Introduction

A general problem in algebraic topology is to compute the homology of a loop space,
or failing that, to give a homology decomposition of the loop space. We show in
Theorem 1.1 that under some assumptions there is a mod 2 homology decomposition
of a certain loop space �.X ÌC2

W 1
1C2/. This generalizes a previous homology

decomposition of the second author for trivial actions (see [17] and Section 4 below).

The following notational conventions will be used throughout this paper. We reserve G

to denote the discrete cyclic group C2 of order 2, written multiplicatively with gen-
erator t . In particular t2 D 1. Let X denote a pointed simplicial G–set. Denote by
A the simplicial subset of X fixed under the G –action. Let F2 denote the finite field
with two elements.

The 1–stunted reduced Borel construction X ÌC2
W 1
1C2 is the homotopy cofiber of

the inclusion X into its reduced Borel construction. Carlsson constructed a simplicial
group J G ŒX � whose geometric realization is the loop space �.X ÌC2

W 1
1C2/. See

Section 2 for details.
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The orbit projection is the simplicial epimorphism X ! X=G onto the orbit space.
A section of the orbit projection is a simplicial map j W X=G ! X such that the
composite X=G

j
!X !X=G is the identity map on X=G . Simplicial G –sets whose

orbit projection has a section is characterized in Proposition 4.1.

Theorem 1.1 If the orbit projection has a section, then there is an isomorphism of
F2 –algebras:

(1-1) zH�.�.X ÌG W 1
1G/IF2/Š

1M
sD1

zH�..X=G/^s=z�sIF2/;

where z�0 D
z�1 WD � and

z�s WD fx1G ^ � � � ^xsG 2 .X=G/^s
j 9i D 1; : : : ; s� 1 .xi D xiC1 2A/g for s � 2:

To compute the direct summands in (1-1), we consider the long exact sequence associ-
ated to the cofiber sequence z�s! .X=G/^s! .X=G/^s=z�s :

(1-2) � � � ! zH�.z�s/! zH�..X=G/^s/! zH�..X=G/^s=z�s/! zH��1.z�s/! � � �

Our next result gives a sufficient condition for the existence of a homology decomposi-
tion of the pinched set z�s .

The reduced diagonal map of A is the simplicial map A!A^A given by a 7! a^a

for all a 2An . A pointed simplicial map f W Y !Z is mod 2 homologous to zero if
the induced map f�W zH�.Y IF2/! zH�.ZIF2/ is the zero map. We show that if the
reduced diagonal map of A is mod 2 homologous to zero, then the mod 2 homology
of z�s is completely determined by the mod 2 homology of the fixed set A and the
orbit space X=G .

We use the following multi-index notation. Let zbt .Y IF2/ WD dim zHt .Y IF2/ denote
the t th reduced mod 2 Betti number of Y . A multi-index ˛ D .˛1; : : : ; ˛d / is a
(possibly empty) sequence of positive integers. The length of this multi-index is j˛j D
˛1C� � �C˛d and its dimension is dim˛ D d . Given a multi-index ˛ D .˛1; : : : ; ˛d /,
we write for short the following product:

zb˛.Y IF2/ WD zb˛1
.Y IF2/zb˛2

.Y IF2/ � � � zb˛d
.Y IF2/:

Theorem 1.2 If the reduced diagonal map of A is mod 2 homologous to zero, then
the reduced mod 2 Betti numbers of z�s are given by

zbt .z�sIF2/Š
X

j�jCj�jDt�sCdim�Cdim�C1
2�dim�Cdim�C1�s

c�;�zb�.X=GIF2/zb�.AIF2/;

where c�;� D
�dim�Cdim�

dim�

��
s�dim��dim��1

dim��1

�
.
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The condition that the reduced diagonal map of A is mod 2 homologous to zero is
quite general. For example, this condition is satisfied if A is the reduced suspension
on some space (see Example 5.5).

The homology decompositions of Theorems 1.1 and 1.2 can be applied to compute
the mod 2 Betti numbers of �.X ÌG W 1

1G/ for certain pointed simplicial G –sets X .
These homology decompositions are particularly effective when the orbit space X=G

has many trivial homology groups. As an illustration, we compute the mod 2 Betti
numbers in the following example.

Proposition 1.3 Consider the G –space S2[S1 S2 formed by two 2–spheres S2 with
the antipodal action under which their equatorial circles are identified. The reduced
mod 2 Betti numbers of the loop space of its 1–truncated Borel construction are

zbn.�.ŒS
2
[S1 S2�ÌG E1

1G//

D

8̂̂̂<̂
ˆ̂:

1C
2kP

rDkC1

2r�3P
JD1

�
2k�rCJ

J

��
2r�2k�J�1

J�1

�
nD 2k; k � 1;

2kC1P
rDkC2

r�k�1P
JD1

�
2k�rCJC1

J

��
2r�2k�J�2

J�1

�
nD 2kC 1; k � 0:

The outline of this paper is as follows. Carlsson’s simplicial group construction J G ŒX �

and the reduced 1–stunted Borel construction are introduced in Section 2. In Section 3,
the augmentation ideal filtration of the group ring F2.J

G ŒX �/ is considered. We
construct simplicial algebras which are isomorphic to the graded algebra associated to
this filtration. Theorem 1.1 is proved in Section 4. Theorem 1.2 is proved in Section 5
using the Mayer–Vietoris spectral sequence. Section 6 is devoted to the example
X D S2[S1 S2 and the proof of Proposition 1.3.

This paper is based on the results in the first author’s PhD thesis [6].

2 Preliminaries

To begin, we explain the concepts of the reduced Borel construction and its 1–stuntation.

Denote by W G any contractible simplicial set with a free G–action. Any two such
simplicial sets are equivariantly homotopy equivalent. In our case where G D C2 , we
take W G for the 1–sphere S1 with the antipodal action. Let EG WD jW Gj denote
the geometric realization of W G .

Algebraic & Geometric Topology, Volume 13 (2013)
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The simplicial set W G is filtered by simplicial G –subsets:

(2-1) G 'W0G �W1G � � � � �WpG � � � � �W1G DWW G;

where WpG is the pth skeleton of W G . In fact WpG can be taken to be the .pC1/th

fold join of G . In our case where G D C2 , it is standard to give WpG as the p–
sphere Sp with the antipodal action.

The bar construction of G is the orbit space W G WD W G=G . In our case W G is
homotopy equivalent to the infinite-dimensional real projective space:

W G 'RP1:

The classifying space of G is the geometric realization BG WD jW Gj. Since G is
discrete, its classifying space BG is the Eilenberg–Mac Lane space K.G; 1/.

Consider an action of G on a simplicial set X . The free simplicial G –set associated
to X is X �W G with the diagonal action. The Borel construction of X is the orbit
space X �G W G WD .X �W G/=G . For example, the Borel construction of the
G –action on the standard 0–simplex �Œ0�D � is the bar construction of G :

��G W G 'W G:

Suppose the G–action is pointed, that is to say, the simplicial set X has a basepoint
which is fixed under the G–action. The reduced Borel construction of this pointed
action, written X ÌG W G , is the homotopy cofiber of ��G W G!X �G W G .

More generally, let X �G WpG denote the orbit space .X �WpG/=G of the diag-
onal action. For pointed actions, let X ÌG WpG denote the homotopy cofiber of
� �G WpG ! X �G WpG . For q � p , define the .p; q/–stunted reduced Borel
construction X ÌG W

q
p G as the homotopy cofiber of X ÌG Wq�1G!X ÌG WpG . In

particular, when pD1, we call X ÌG W
q
1G the q–stunted reduced Borel construction

of the G –action on X .

In this paper, we are interested in the 1–stunted Borel construction X ÌG W 1
1G . Since

X ÌG W0G'X ÌG G' .X�G G/=.��G G/'X , the 1–stunted Borel construction is
just the homotopy cofiber of the inclusion X ,!X ÌG W G . Denote by jX jÌG E1

1G

the geometric realization of X ÌG W 1
1G .

Carlsson [4] constructed a simplicial group J G ŒX � whose geometric realization is the
loop space of the 1–stunted reduced Borel construction:

(2-2) jJ G ŒX �j '�.jX jÌG E1
1G/:

Algebraic & Geometric Topology, Volume 13 (2013)
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Carlsson’s construction is given in dimension n by

(2-3) J G ŒX �n WD
F ŒXn ^Gn�

h8x 2Xn8g; h 2Gn .x ^g/ � .xg^ h/� .x ^gh/i
;

where F ŒS � D coker.F.�/! F.S// is the reduced free group on a pointed set S ,
where F.�/ denotes the (unreduced) free group. The functor F Œ� �W PtSet! Grp is the
left adjoint to the inclusion functor Grp ,! PtSet that sends a group to its underlying
set with the identity element as basepoint.

Carlsson’s construction is the reduced universal simplicial group on the pointed simpli-
cial action groupoid X==G :

J G ŒX �Š U ŒX==G�:

For a pointed small groupoid H , its reduced universal monoid U ŒH � is defined by the
following cokernel:

U ŒH � WD coker.U.AutH .�//! U.H //:

Here AutH .�/ denotes the full subcategory of H whose only object is the basepoint
and H W Grpd! Grp is the left adjoint of the inclusion functor Grp ,! Grpd that sends
a group to the corresponding small groupoid with one object. The reduced universal
simplicial group U ŒG� of a small simplicial groupoid G is defined dimension-wise.
Further details can be found in the first author’s thesis [6]. This categorial viewpoint
led to a unification of Carlsson’s construction and a simplicial monoid construction
of the second author [17], which contains the classical constructions of Milnor [12]
and James [10] as special cases. An upcoming paper will further elaborate on this
viewpoint.

3 Augmentation quotients as free simplicial modules

In this section, we construct two simplicial algebras each of which is isomorphic
to the associated graded algebra of the augmentation ideal filtration of the group
ring F2.J

G ŒX �/ (see Proposition 3.5). In every dimension, each of these simplicial
algebras is a quotient of a tensor algebra by a homogeneous ideal. Therefore each
augmentation quotient is the reduced simplicial F2 –module of a pointed simplicial set
(see Corollary 3.6).

In our case where GDC2 , there is a natural isomorphism of pointed simplicial G –sets:

(3-1) J G ŒX �Š
F ŒX �

h8x 2X .x �xt � 1/i
:

Algebraic & Geometric Topology, Volume 13 (2013)
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Recall from Section 2 that F ŒX � is the reduced free group on X . Via this natural
isomorphism, we identify J G ŒX � with the right hand side of (3-1).

Let K be a field and H be a group. The elements of the group ring K.H / are finite
sums of the form

P
�2K ;h2H �hh. The augmentation map K.H /!K is generated

by h 7! 1 for h 2H . The kernel of this map is the augmentation ideal. Reserve I to
denote the augmentation ideal of the group ring F2.J

G ŒX �/. The augmentation ideal I

is generated by xh WD h� 1 where h 2 J G ŒX �. The powers of I filter the group ring

(3-2) � � � � I sC1
� I s

� � � � � I1
� I0

D F2.J
G ŒX �/

(Quillen [14] calls this the I –filtration). We denote the spectral sequence associated to
this filtration by fEr g. The E0 term is just the graded algebra

L1
sD0 I s=I sC1 .

One of the simplicial algebras we construct is AG ŒX �. For an F2 –module M , let
T .M /D

L1
sD0 M ˝F2

� � � ˝F2
M„ ƒ‚ …

s

denote the tensor F2 –algebra on M .

Definition 3.1 Let X be a pointed simplicial G–set. Define the simplicial graded
F2 –algebra AG ŒX � dimension-wise by

.AG ŒX �/n WD
T .F2ŒXn�˝F2.G/ F2/

h8a 2An .a˝F2.G/ 1/2i
:

Here the G –action on Xn allows us to view F2ŒXn� as a right F2.G/–module, while F2

is viewed as an F2.G/–module where G acts trivially on the left. The tensor product
F2ŒXn�˝F2.G/ F2 is viewed as an F2 –module.

Proposition 3.2 The augmentation quotient I=I2 is generated by fxxC I2 j x ¤ �g.

Proof The identity xx xyDxy�xx� xy and the fact that xx xy 2 I2 implies that .xxCI2/C

.xyC I2/D xyC I2 .

The set S WD fxxC I2 j x ¤ �g thus generates

(3-3) fx1x2 � � �xnC I2
j x1 ¤ �; : : : ;xn ¤ �g:

By (3-1), each nonidentity element of J G ŒX � is (the equivalence class of) a reduced
word of the form x1 � � �xn , hence I=I2 is generated by (3-3) and thus also by S . This
completes the proof.

Proposition 3.3 Let B be a graded algebra. Let yB be the completion of B with
respect to the filtration by degree,

� � � � B�r � � � � � B�1 � B�0 D B;

Algebraic & Geometric Topology, Volume 13 (2013)
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where B�r WD
L1

iDr Bi . The above filtration induces a filtration on yB :

� � � � yB�r � � � � �
yB�1 �

yB�0 D
yB:

Then the map ‚W E0. yB/! B whose r th grade is given by ‚r .f C yB�rC1/ D fr ,
where fr is the r th degree component of f , is an isomorphism of graded algebras.

Proof An element of yB is a formal power series of the form f Df0Cf1C� � � fiC� � � ,
where fi is of degree i in B . An element of yB�r is a formal power series of the form
f D fr CfrC1C � � � whose lowest degree is at least r . The map ‚r is well-defined
since if f 2 yB�rC1 , then fr D 0.

Let ƒW B!E0. yB/ be the map whose r th grade is ƒr .f /D f C yB�rC1 . It is easy
to check that ‚ and ƒ are inverse to one another.

Lemma 3.4 There is an isomorphism of graded algebras natural in X :

ˆW AG ŒX �!E0;

x˝F2.G/ 1 7! xxC I2:

Proof Write ˝ WD˝F2.G/ for short.

We first verify that ˆ is well-defined, that is to say, that the map .x; 1/ 7! xxC I2 is
indeed F2.G/–linear. On the one hand, .x � t; 1/ 7! xt C I2 , and on the other hand
.x; t � 1/D .x; 1/ 7! xxC I2 . Since x �xt D 1,

xx �xt C xxCxt D .x� 1/.xt � 1/C .x� 1/C .xt � 1/D x �xt � 1D 0:

This implies xxC xt D �xx � xt 2 I2 so that xxC I2 D �xt C I2 D xt C I2 as the
ground field is F2 . Therefore both .x � t; 1/ and .x; t � 1/ are sent to the same thing
which verifies the F2.G/–linearity of the map .x; 1/ 7! xxC I2 .

Our definition ˆ.x˝1/D xxCI2 is given for x 2X , then it can be extended to a map
T .F2ŒXn�˝F2.G/F2/!E0 . This is because ˆ.�˝1/Dx�CI2D 1�1CI2D 0 and
the tensor algebra T .F2ŒXn�˝F2.G/ F2/ is generated by elements of the form x˝ 1.
We check that this map factors through the defining equivalence relation of AG ŒX �.
Given a 2 A, we have ˆ..a˝ 1/2/ D .xaC I2/2 D xa2C I3 . And xa2 D .a� 1/2 D

a2�1D 0 since a 2A implies a2 D a �at D 1. Thus ˆ..a˝1/2/D xa2C I3 D 0, so
we have a well-defined map ˆW AG ŒX �!E0 .

Next we show that ˆ is an epimorphism. It suffices to show that, when ˆ is restricted
to the first grade, the map ˆ1W A

G
1
ŒX �! I=I2 is an epimorphism, since I=I2 gener-

ates E0 . Using the isomorphism in (3-1), Proposition 3.2 implies that the augmentation
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ideal is generated by xx where �¤ x 2X . Since, for each x 2X , the element xxC I2

is the image of ˆ.x˝ 1/, this proposition implies that each element in I=I2 has a
preimage under ˆ. Therefore ˆ is an epimorphism.

To show that ˆ is a monomorphism, choose a subset B �X of elements not fixed by
the G–action that decomposes X into the disjoint union AtB tBt . Then the map
f W J G ŒX �! J G ŒA� �F.B/ that sends a 7! a for a 2 A and b 7! b; bt 7! b�1 for
b 2 B is a group isomorphism. The map

e1W J
G ŒA�! 1AG ŒX �

generated by a 7! a˝ 1C 1˝ 1 is well-defined, because e1.a � a/D .a˝ 1C 1˝ 1/

�.a˝1C1˝1/D .a˝1/.a˝1/C.1˝1/.1˝1/D .1˝1/ agrees with e1.1/D 1˝1.
Define

e2W F.B/!
1AG ŒX �; b 7! b˝ 1C 1˝ 1:

In particular, e2.b
�1/ D 1=.b˝ 1C 1˝ 1/ D

P1
iD0.�1/i.b˝ 1/i D

P1
iD0.b˝ 1/i

as the ground field is F2 . The universal property of the free product gives a map
e1�e2W J

G ŒA��F.B/! 1AG ŒX � . The universal property of the group ring then induces
a map Be1 � e2 W F2.J

G ŒX �/! 1AG ŒX � . This induces a map between the associated
graded algebras, E0.Be1 � e2 /W E

0.F2.J
G ŒA��F.B///!E0. 1AG ŒX �/. Consider the

composite

AG ŒX �
ˆ
�!E0.F2.J

G ŒX �//
E0.F2.f //
�������!E0.F2.J

G ŒA��F.B///

E0.Be1 � e2/
���������!E0.2AG ŒX �/

‚
�!AG ŒX �:

Here ‚ is the map given in Proposition 3.3. It is easy to check that this composite is
the identity map on AG ŒX � and hence the first map ˆ is a monomorphism, as required.

Finally, it is straightforward to check the naturality. This completes the proof.

Proposition 3.5 There are isomorphisms of simplicial graded F2 –algebras:
1M

sD0

I s=I sC1
ŠAG ŒX �Š T .F2ŒX=G�/=h8a 2A .aG/2i;

where T .F2ŒX=G�/=h8a 2A .aG/2i is the simplicial graded F2 –algebra whose nth

dimension is T .F2ŒXn=G�/=h8a 2An .aG/2i.

Proof Define ˆW AG ŒX �! E0.F2.J
G ŒX �// dimension-wise using Lemma 3.4. In

each dimension n, the map ˆn is an isomorphism of graded algebras. The naturality
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part of the same lemma implies that the map ˆ commutes with faces and degeneracies
and hence it is a simplicial map. Therefore ˆ is an isomorphism of simplicial algebras:

(3-4) ˆW AG ŒX �!E0.F2.J
G ŒX �//:

Denote the algebra T .F2ŒX=G�/=h8a 2A .aG/2i by T . Let �W F2ŒX ��F2!T send
.x; 1/ 7! xG . Since �.x � t; 1/D xtG D xG agrees with �.x; t � 1/D �.x; 1/D xG ,
this map factors to a map F2ŒX �˝F2.G/F2!T from the tensor product. The universal
property of the tensor algebra defines a map T .F2ŒX �˝F2.G/F2/! T . We check that
this map factors through the defining equivalence relations of AG ŒX �. Given a 2A,
indeed .a˝ 1/2 is sent to .aG/2 , which is in the quotient ideal of T . Thus we have a
map z�W AG ŒX �! T .

Let  W X=G! AG ŒX � send xG 7! x˝F2.G/ 1. This map  is well-defined since
xt ˝F2.G/ 1 D x ˝F2.G/ t � 1 D x ˝F2.G/ 1. The universal property of the tensor
algebra defines a map  W T .F2ŒX=G�/ 7! AG ŒX �. We check that this map factors
through the defining equivalence relations of T . Given a 2A, indeed .aG/2 is sent
to .a˝F2.G/ 1/2 , which is in the quotient ideal of AG ŒX �. Thus we have a map
z W T !AG ŒX �.

It is easy to check that z� and z are inverses to each other and give an isomorphism

(3-5) AG ŒX �Š T D T .F2ŒX=G�/=h8a 2A .aG/2i:

Combine the isomorphisms (3-4) and (3-5) to complete the proof.

Recall from the introduction that the pointed simplicial subset z�s of .X=G/^s is
defined as follows. Set z�0 D

z�1 WD � and

z�s WD fx1G ^ � � � ^xsG 2 .X=G/^s
j 9i D 1; : : : ; s� 1 .xi D xiC1 2A/g for s � 2:

Corollary 3.6 For s � 1, there is an isomorphism of simplicial F2 –modules

I s=I sC1 Š
�! F2

�
.X=G/^s=z�s

�
;

xx1 � � � xxsC I sC1
7! x1G ^ � � � ^xsG:

Proof The proof of Proposition 3.5 gives an isomorphism of simplicial graded algebras

z� ıˆ�1
W

1M
sD0

I s=I sC1 Š
�! T .F2ŒX=G�/=h8a 2A .aG/2i;

xxC I 7! xG:

Algebraic & Geometric Topology, Volume 13 (2013)
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The sth grade of this isomorphism is

I s=I sC1 Š
�!

�
T .F2ŒX=G�/=h8a 2A .aG/2i

�
s
;

xx1 � � � xxsC I sC1
7! x1G � � �xsG:

The sth grade of the tensor algebra Ts.F2ŒX=G�/ can be identified with F2Œ.X=G/^s �.
Via this identification, the terms of degree s in the ideal h8a 2A .aG/2i are linear
combinations of smash products x1G^� � �^xsG such that, for some i D 1; : : : ; s�1,
the elements xi and xiC1 are equal and belong to A. The result follows by the
definition of z�s .

4 Proof of Theorem 1.1

In this section, we show that the existence of a section of the orbit projection leads to a
mod 2 homology decomposition of J G ŒX �. There are two proof ingredients. First, we
show that the powers of the augmentation ideal of F2.J

G ŒX �/ have trivial intersection.
Second, we show that the exact sequences I sC1! I s ! I s=I sC1 are split. These
imply that F2.J

G ŒX �/ is isomorphic to E0 and that the long exact sequence associated
to I sC1! I s ! I s=I sC1 splits into short exact sequences. Therefore the spectral
sequence associated to the augmentation ideal filtration collapses at the E1 term and
converges to H�.J

G ŒX �IF2/.

We begin with a characterization of the G –sets whose orbit projection has a section.

Proposition 4.1 The orbit projection X ! X=G has a section if and only if, there
exist simplicial sets A and Y with A as a simplicial subset of Y , such that X is a
pushout Y [A Y t with the action of swapping Y with Y t .

Proof If j is a section of the orbit projection, then X D im j [A .im j /t where
A�X is the set fixed under the action.

Conversely, the orbit space of a pushout Y [A Y t is isomorphic to Y . Thus the map
Y ,! Y [A Y t that is the inclusion to the left copy of Y gives the required section.

For the G –set Y [A Y t , its orbit space is isomorphic to Y and the set fixed under the
action is A. There are two sections of the orbit projection. One section maps the orbits
space to Y , the other section maps the orbit space to Y t .

In the case where the coefficient ring is a field, there is a characterization of group
rings for which the powers of the augmentation ideal to have trivial intersection. We
recall below the characterization if the coefficient ring is a field of prime characteristic.
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We use the following terminology from group theory. A group has bounded exponent if
there exists an integer n� 0 such that every element of the group has order at most n.
We say P is a property of groups if (i) the trivial group has the property P and (ii) given
isomorphic groups G and H , the group G has property P if and only if the group H

has property P . A group G is residually P if, for each nonidentity element x2G , there
exists a group epimorphism �W G!H where H is a P –group such that �.x/¤ 1.

Proposition 4.2 (Passi [13, Theorem 2.26]) Let J be the augmentation ideal of a
group ring K.H / where K is a field of characteristic prime p . Then

T
n J n D 0 if

and only if H is residually nilpotent p–group of bounded exponent.

We will need the following result of Gruenberg [8].

Lemma 4.3 The free product of finitely many residually finite p–groups is a residually
finite p–group.

Let C1 denote the infinite cyclic group and Cp denote the cyclic group of order p .

Proposition 4.4 A free product of arbitrarily many copies of C1 and Cp is a residu-
ally finite p–group.

Proof Let a group G which is a free product of copies of C1 and Cp . We write
G D �i2I Hi , where I is an index set and Hi is isomorphic to a copy of either C1
or Cp . For each i 2 I , fix a generator ti of Hi .

Let a word w D t
ni1

i1
� � � t

nik

ik
be given. Let H DHi1

� � � � �Hik
. Let  W G!H be

the group homomorphism given by

 .tj /D

(
tj if j D i1; : : : ; ik ;

1H otherwise.

Then  .w/ is a nonidentity element of H .

It is easy to show that Cp and C1 are both residually finite p–groups. Thus Lemma 4.3
implies that the group H is a residually finite p–group. Since  .w/ is a nonidentity
element of H , there exists a group epimorphism �W H ! K where K is a finite
p–group such that �. .w//¤ 1. Since for w , there is an epimorphism G

 
!H

�
!K ,

the group G is a residually finite p–group.

The following proposition is straightforward and its proof is omitted.
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Proposition 4.5 Let X be a pointed G–set. If X is written as a disjoint union
AtB tBt , then there is a group isomorphism

J G ŒX �! J G ŒA��F.B/;

a 7! a;

b 7! b:

In particular �.bt/D �.b/�1 D b�1 .

Corollary 4.6 Let X be a pointed G–set. The augmentation ideal I of F2.J
G ŒX �/

satisfies
T

n In D 0.

Proof Write X as a disjoint union AtB tBt , then Proposition 4.5 gives an isomor-
phism J G ŒX �Š J G ŒA��F.B/. The group J G ŒA� is a free product of copies of C2

while the free group F.B/ is a free product of copies of C1 . Proposition 4.4 applies
to show that J G ŒX � is a residually finite 2–group. Since a finite 2–group is a nilpotent
2–group of bounded exponent, the group J G ŒX � is a residually nilpotent 2–group of
bounded exponent. Then the result follows from Proposition 4.2.

This corollary implies that the spectral sequence fEr g is weakly convergent.

Proposition 4.7 Let J be the augmentation ideal of a group ring K.H / with coeffi-
cients in a field K . If

T
n J nD0 and the short exact sequence J sC1!J s!J s=J sC1

is split for all s , then there is an isomorphism of K–modules:

K.H /Š

1M
sD0

J s=J sC1:

Proof Since the coefficients are taken in a field, the split short exact sequences
imply that J s Š J sC1˚J s=J sC1 for all s . An easy induction shows that K.H /Š

J n˚
�Ln�1

sD0 J s=J sC1
�

for all n. Thus there is an isomorphism of K–modules for
each n:

n�1M
sD0

J s=J sC1
ŠK.H /=J n:

This allows us to identify the filtered system

K.H /=J 1
!

1M
sD0

J s=J sC1
! � � � !

n�1M
sD0

J s=J sC1
! � � �
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with the filtered system

K.H /=J 1
!K.H /=J 2

! � � � !K.H /=J n
! � � � :

Therefore the colimits are isomorphic as K–modules:

1M
sD0

J s=J sC1
Š lim
�!

n

n�1M
sD0

J s=J sC1

Š lim
�!

n

K.H /=J n

ŠK.H /
.\

n

J n

DK.H /;

where we used the assumption that
T

n J n is trivial in the last step.

Proof of Theorem 1.1 First we show that the following short exact sequence is split
for each s :

(4-1) I sC1
! I s

! I s=I sC1:

For s D 0, the short exact sequence (4-1) always splits for any group ring. For
s � 1, Corollary 3.6 gives an isomorphism I s=I sC1! F2

�
.X=G/^s=z�s

�
defined by

xx1 � � � xxs C I sC1 7! x1G ^ � � � ^ xsG . Via this isomorphism, it suffices to show that
the following map has a section:

˛W I s
! F2

�
.X=G/^s=z�s

�
;

xx1 � � � xxs 7! x1G ^ � � � ^xsG:

By Proposition 4.1, the assumption that the orbit projection has a section allows us
to write X D Y [A Y t . Then every orbit is of the form yG for some y 2 Y . Define
ˇW F2

�
.X=G/^s=z�s

�
! I s by ˇ.y1G^� � �ysG/D xy1 � � � xys for y1; : : : ;ys 2 Y . The

map ˇ is well-defined since if there exists some i D 1; : : : ; s � 1 such that both yi

and yiC1 are equal to some a2A, then xyi xyiC1D .a�1/.a�1/D a2�1D 1�1D 0

as a2 D 1 in J G ŒX � so that ˇ.y1G ^ � � � ^ysG/D 0. Then ˇ is a section of ˛ :

˛.ˇ.y1G ^ � � � ^ysG//D ˛.xy1 � � � xys/D y1G ^ � � � ^ysG:

Thus we have shown that the exact sequences (4-1) are split for each s .

We have shown that
T

n In D 0 in Corollary 4.6. Thus Proposition 4.7 implies

(4-2) F2.J
G ŒX �/Š

1M
sD0

I s=I sC1
Š F2˚

1M
sD1

I s=I sC1:
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Using Corollary 3.6 and taking homotopy, we have

��.F2.J
G ŒX �//Š ��.F2/˚

1M
sD1

��
�
F2

�
.X=G/^s=z�s

��
:

Using the Dold–Thom Theorem (see the last section in [17]), this becomes

Ht .J
G ŒX �IF2/Š

(
F2˚

�L1
sD1
zH0..X=G/^s=z�sIF2/

�
if t D 0;L1

sD1
zHt ..X=G/^s=z�sIF2/ otherwise:

Thus the reduced homology of J G ŒX � is

zH�.J
G ŒX �IF2/Š

1M
sD1

zH�..X=G/^s=z�sIF2/:

Now the homotopy equivalence (2-2) completes the proof.

Note that the splitting of the short exact sequence (4-1) implies that the associated
long exact sequence in homology splits into short exact sequences. Thus the spectral
sequence fEr g collapses at the E1 term. The isomorphism (4-2) between F2.J

G ŒX �/

and E0 implies that this spectral sequence converges to H�.J
G ŒX �IF2/.

Theorem 1.1 should be compared with the following result of the second author.

Proposition 4.8 [17, Theorem 1.1] Let F DR;C or H and let X be a pointed space.
Suppose that H� is a multiplicative homology theory such that (1) both xH�.FP1/

and xH�.FP1
2
/ are free H�.pt/–modules; and (2) the inclusion of the bottom cell

Sd ! FP1 induces a monomorphism in the homology. Then there is a multiplicative
filtration fFr H��.FP1 ^X / j r � 0g of H��.FP1 ^X / such that F0 DH�.pt/
and

Fs=Fs�1 Š†
.d�1/s xH�.X

^s=y�s/;

where d D dimR F , † is the suspension, y�1 D � and y�s D fx1 ^ � � � ^ xs 2 X^s j

xi D xiC1 for some ig for s > 1. Furthermore, this filtration is natural with respect
to X .

Take F D R. In this case, the above result holds for the reduced mod 2 homology.
Since F2 is a field, the multiplicative filtration yields the homology decomposition:

(4-3) zH�.�.RP1 ^X /IF2/D

1M
sD0

zH�.X
^s=y�sIF2/:
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If G D C2 acts on X trivially, then X coincides with its orbit space X=G . This
induces an isomorphism of simplicial sets for each r :

.X=G/^s=z�s ŠX^s=y�s:

The 1–stunted reduced Borel construction has the following geometric realization for
the trivial action:

jX ÌG W 1
1Gj 'RP1 ^X:

Therefore our homology decomposition in Theorem 1.1 generalizes (4-3).

5 Proof of Theorem 1.2

We have shown in the previous section that, if the orbit projection has a section, then
zH�.J

G ŒX �IF2/Š
L
zH�..X=G/^s=z�sIF2/. The pinched set z�s can be written as

the following union (see Corollary 5.2):

(5-1)
�
x�.A/^ .X=G/^s�2

�
[
�
.X=G/^ x�.A/^ .X=G/^s�3

�
[ � � �

[
�
.X=G/^s�2

^ x�.A/
�
;

where x�.A/ WD faG ^ aG j a 2Ag � .X=G/^2 .

Given a pointed simplicial set Y written as a union Y1[� � �[YN of pointed simplicial
subsets, the Mayer–Vietoris spectral sequence allows one to approximate the homology
of Y in terms of the homology of the intersections of the Yi . Expression (5-1) suggests
using the Mayer–Vietoris spectral sequence to study the homology of z�s . This can be
combined with Theorem 1.1 to obtain further information about the mod 2 homology
of J G ŒX �. We illustrate this in Proposition 1.3.

We briefly review the Mayer–Vietoris spectral sequence. References for this spectral
sequence are Cai [3], Chen, Lü and the second author [5] and Hatcher [9]. Suppose
that Y D Y1[ � � � [YN is a pointed simplicial set with each Yi a pointed simplicial
subset of Y . Associated with Y is an abstract simplicial complex K with vertices
1; 2; : : : ;N and fi1; : : : ; ipg 2K for Yi1

\ � � � \Yip . For each I D fi1; : : : ; ipg 2K ,
define YI D Yi1

\ � � � \Yip . In particular Y∅ D Y .

For any simplicial set W , let ZW denote the free simplicial abelian group on W . One
has a chain complex .ZW; @/:

ZW0
@
 � ZW1

@
 � ZW2

@
 � � � � ;

where @D
Pn

iD0.�1/idi and di is the i th face of the simplicial abelian group ZW .
The homology of this chain complex is the integral homology of W (see Goerss and
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Jardine [7, page 5]):
H�.W IZ/ŠH�.ZW; @/:

If W is pointed, its mod 2 reduced homology of W is given by:

zH�.W IF2/D coker .H�.Z�˝F2; @/!H�.ZW ˝F2; @// :

Let Ep;q D
L

#IDp.ZYI ˝ F2/q where #I is the number of elements in the set I .
Then E D

L
p;q Epq is a double complex. For ˛Iq 2 .ZYI ˝ F2/q , we have that

the vertical differential is @v.˛Iq / WD @˛
I
q , which is the above differential of the chain

complex ZYI ˝ F2 . For ˛Iq 2 .ZYI ˝F2/q where I D fi1; : : : ; ipg, the horizontal
differential is then

@h.˛Iq / WD ˛
@I
q WD

pX
jD1

.�1/j˛
@jI
q ;

where @jI WD .i1; : : : ;yij ; : : : ; ip/ has p� 1 elements by omitting the j th term. Here
˛@jIq is an element of .ZY@jI ˝F2/q via the inclusion YI ,! Y@jI .

Write Ep D
L

q Ep;q . The homology of E0 is the mod 2 homology of Y (see [9]):

zH�.Y IF2/ŠH�.E0/:

There is an exact sequence (see Bott and Tu [2, page 94]):

0!EN

@h
N
��! � � �

@h
1
�!E0! 0:

Denote F0 D im @h
1
; : : : ;FN�2 D im @h

N�1
;FN�1 D im @h

N
. Then we have the short

exact sequences

0!EN ! FN�1! 0;

0! FN�1!EN�1! FN�2! 0;

0! FN�2!EN�2! FN�3! 0;

:::

0! F1!E1! F0! 0:

With respect to the differential @vW Ep;q!Ep;q�1 , we obtain long exact sequences

� � � !Hq.FN�2/
i
�!Hq.EN�2/

j
�!Hq.FN�3/

�
�!Hq�1.FN�2/! � � �

:::

� � � !Hq.F1/
i
�!Hq.E1/

j
�!Hq.F0/

�
�!Hq�1.F1/! � � �
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This long exact sequence can be written as an exact couple where i has bidegree .0; 0/, j

has bidegree .0;�1/ and � has bidegree .�1; 1/:

H�.F�/
.0;0/

i
// H�.E�/

j

.0;�1/

yy
H�.F�/:

.�1;1/

�

ee

The resulting spectral sequence is the Mayer–Vietoris spectral sequence

fEr
p;q.X1[ � � � [XN /; d

r
g)HpCq�1.E0/D zHpCq�1.X IF2/;

where the r th differential dr W Er
p;q!Er

p�r;qCr�1
is induced by iı��rC1ıj for r �1.

Note that Ht .E0/D
L

pCq�1Dt E1p;q . Let t be the dimension of the homology of E0 ,
the E1 term of this spectral sequence is

(5-2) E1
D

M
pCq�1Dt

M
XI¤∅

#IDp�1

zHq.XI IF2/;

where p and q range over nonnegative integers in the direct sum.

For the rest of this paper, we write zH .�/ as zH .�IF2/ for short. Recall from the
introduction that the pointed simplicial subset z�s of .X=G/^s is defined as follows.
Set z�0 D

z�1 WD � and

z�s WD fx1G ^ � � � ^xsG 2 .X=G/^s
j 9i D 1; : : : ; s� 1 .xi D xiC1 2A/g for s � 2:

These simplicial sets z�s have the following alternative inductive definition.

Proposition 5.1 The simplicial sets z�s can be defined inductively by:

z�0 D
z�1 D �;

z�2 D
x�.A/;

z�s D
�
z�s�1 ^ .X=G/

�
[
�
.X=G/^s�2

^ x�.A/
�

for s � 3:

Proof We have z�0 D
z�1 D� by definition. It is easy to check that z�2 D

x�.A/. We
will show that

z�s D
�
z�s�1 ^ .X=G/

�
[
�
.X=G/^s�1

^ x�.A/
�
:

Let an element x1G ^ � � � ^ xsG of z�s be given. There are two cases: either
xs�1 D xs 2 A or xi D xiC1 2 A for some 1 � i < s � 1. In the former case
x1G ^ � � � ^xsG belongs to .X=G/^s�1 ^ x�.A/. In the latter case x1G ^ � � � ^xsG
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belongs to z�s�1^ .X=G/. Hence in either case x1G^� � �^xsG belongs to the union
z�s�1 ^ .X=G/[ .X=G/^s�1 ^ x�.A/. This proves one inclusion.

The proof of the reverse inclusion is similar.

Corollary 5.2 For s � 2, the simplicial set z�s decomposes into the following union:�
x�.A/^.X=G/^s�2

�
[
�
.X=G/^ x�.A/^.X=G/^s�3

�
[� � �[

�
.X=G/^s�2

^ x�.A/
�
:

Before we prove this corollary, we introduce multi-index notation to abbreviate the
expressions. Recall from the introduction that a multi-index ˛ D .˛1; : : : ; ˛d / is
a (possibly empty) sequence of positive integers. The length of this multi-index is
j˛j D ˛1C � � �C˛d and its dimension is dim˛ D d .

Definition 5.3 For k�2, let x�k.A/ denote the pointed simplicial subset of .X=G/^k

whose elements are aG ^ � � � ^ aG for some a 2 A. We set x�1.A/ WD X=G . For
a multi-index ˛ D .˛1; : : : ; ˛d /, denote by x�˛ the pointed simplicial set x�˛1.A/^

� � � ^ x�˛d .A/.

The pointed simplicial set x�˛ is a subset of

.X=G/^˛1 ^ � � � ^ .X=G/^˛d D .X=G/^˛1C���C˛d D .X=G/^j˛j:

Proof of Corollary 5.2 We proceed by induction. For s D 2, the right hand side
reduces to x�.A/. Indeed Proposition 5.1 says that z�2 D

x�.A/.

Suppose the above decomposition holds for some s � 2. In the shorthand notation, the
induction hypothesis becomes

z�s D
x�.2;1;:::;1;1/[ x�.1;2;1;:::;1/[ � � � [ x�.1;1:::;1;2/;

where all the multi-indices are of length s . Thus

z�sC1 D
�
z�s ^ .X=G/

�
[
�
.X=G/^s

^ x�.A/
�

D
��
x�.2;1;:::;1;1/[ x�.1;2;1;:::;1/[ � � � [ x�.1;1:::;1;2/

�
^ .X=G/

�
[ x�.1;1;:::;1;2/

D x�.2;1;:::;1;1/[ x�.1;2;1;:::;1/[ � � � [ x�.1;:::;1;2;1/[ x�.1;1;:::;1;2/:

Then we can use x�ˇ ^ .X=G/ D x�.ˇ;1/ in the last line. This proves the induction
step.
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Recall from the introduction that a pointed simplicial map f W Y ! Z is mod 2
homologous to zero if the induced map on homology zH�.Y IF2/! zH�.ZIF2/ is the
zero map. Since we are using homology only with coefficients in F2 throughout, we
skip the reference to “mod 2”. Let f1; : : : ; fk be pointed simplicial maps. If fi is
homologous to zero for some i D 1; : : : ; k , then the smash product f1 ^ � � � ^ fk is
homologous to zero. This is because the induced map .f1^� � �^fk/� on homology is
just the tensor product .f1/�˝ � � �˝ .fk/� .

Proposition 5.4 Let ˛ and ˇ be multi-indices of length s . Suppose that the reduced
diagonal map of A is homologous to zero. If x�˛ is a proper subset of x�ˇ , then the
inclusion x�˛ ,! x�ˇ is homologous to zero.

Proof The higher reduced diagonal map dk W A!A^k is given by a 7! a^� � �^a for
a 2An . We first show that for k � 2, the higher reduced diagonal map dk W A!A^k

is homologous to zero. This map is a monomorphism with image x�k.A/Š A. We
can write dk as a composite:

dk W A!A^A
1A^dk�1
������!A^ x�k�1.A/ ,!A^k :

Since the first map is homologous to zero by assumption, dk is homologous to zero.

Now we return to the proposition. First consider the case where x�˛ is just x�s.A/,
that is the case where dim˛ D 1. Since x�˛ is a proper subset of x�ˇ by assumption,
e WD dimˇ � 2. There is a commutative diagram

x�s.A/ // // x�ˇ

A

ds Š

OO

de

// A^ � � � ^A„ ƒ‚ …
e

:

dˇ1
^���^dˇe

OO

Since e � 2, the reduced diagonal map de is homologous to zero from what we have
shown above. Since A

ds
�! x�s.A/ is an isomorphism, the inclusion x�s.A/ ,! x�ˇ is

homologous to zero.

Finally we prove the general case where dim˛ D d > 1. Since x�˛ is a proper subset
of x�ˇ by assumption, we can decompose the multi-index ˇ into ˇD . .1/; : : : ;  .d//
such that ˛1Dj

.1/j; : : : ; ˛d Dj
.d/j. Thus the inclusion map x�˛ ,! x�ˇ decomposes

into a smash product of the inclusions x� j̨ .A/ ,! x�
.j /

:

x�˛ // // x�ˇ

x�˛1.A/^ � � � ^ x�˛d .A/ // x�
.1/

^ � � � ^ x�
.d/

:
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Each inclusion x� j̨ .A/ ,! x�
.j /

reduces to the case above. Hence it is homologous
to zero. Thus after taking the smash product, the inclusion x�˛ ,! x�ˇ is homologous
to zero. (Actually one j is enough.)

Example 5.5 There are spaces whose reduced diagonal map is homologous to zero.
For example, if AD†Y , then the reduced diagonal map of A is null-homotopic and
thus homologous to zero. The weak category of a space A is the least k such that
the k –fold reduced diagonal A!A^k is null-homotopic (see Berstein and Hilton [1,
Definition 2.2]). For example, a noncontractible suspension space has weak category 2.

Given a subset I of f.2; 1; : : : ; 1; 1/; : : : ; .1; 1 : : : ; 1; 2/g, define x�I D
T
˛2I
x�˛ .

Proposition 5.6 The collections

fx�I j I � f.2; 1; : : : ; 1; 1/; : : : ; .1; 1 : : : ; 1; 2/g; #I D pg

and fx�˛ j dim˛ D s �pg are equal for p D 1; : : : ; s � 1. Here all the multi-indices
are of length s .

Proof We proceed by induction on p . The base step p D 1 is obvious.

Let I D f .j1/; : : : ;  .jp/g where j1 < � � � < jp and  .j/ is the multi-index
.1; : : : ; 2; : : : ; 1/ with 2 as the j th entry. By the inductive hypothesis, there exists
some ˇ of dimension s�.p�1/ such that x�J D x�

ˇ where J Df .j1/; : : : ;  .jp�1/g.
Recall that x�J D x�

 .j1/ \ � � � \ x�
.jp�1/ . Since jp�1 is the largest term in this

intersection, we can decompose ˇ into .ˇ0; 1; : : : ; 1/ where there are .s�jp�1�1/ 1s.
Since ˇ has dimension s�pC 1, ˇ0 has dimension

.s�pC 1/� .s� jp�1� 1/D jp�1�pC 2:

There are two cases: either jp D jp�1C 1 or jp > jp�1C 1.

Consider the case where jp D jp�1C 1. Then x�I D x�
ı where, writing e WD dimˇ0 ,

ı D .ˇ01; : : : ; ˇ
0
e�1; ˇ

0
eC 1; 1; : : : ; 1„ ƒ‚ …

s�jp�1�2

/:

Then

dim ı D eC .s� jp�1� 2/D .jp�1�pC 2/C .s� jp�1� 2/D s�p;

which proves the induction step for this case.

Next consider the case where jp > jp�1 C 1. Recall ˇ D .ˇ0;

s�jp�1�1‚ …„ ƒ
1; : : : ; 1 /. Then

x�I D x�
� . Here � is modified from ˇ by contracting an adjacent pair of 1s at the j th

p

and .jpC 1/th places into a 2. In any case dim � D dimˇ� 1D s �p . This proves
the induction step for this cases and completes the whole proof.
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Corollary 5.7 Let I � f.2; 1; : : : ; 1; 1/; : : : ; .1; 1 : : : ; 1; 2/g where the multi-indices
are of length s . For each j D 1; : : : ; #I , the inclusion map x�I ,! x�@jI is homologous
to zero.

Recall that if I D f .1/; : : : ;  .k/g, then x�@jI D
T

i¤j
x�

.i/

is the intersection omit-
ting the j th term.

Proof Proposition 5.6 shows that there exists the multi-indices ˛ and ˇ of length s

such that x�I D x�
˛ and x�@jI D x�

ˇ . Since x�I is a proper subset of x�@jI , then
Proposition 5.4 shows that the inclusion x�I ,! x�@jI is homologous to zero, as
required.

Lemma 5.8 If the reduced diagonal map of A is homologous to zero, then the Mayer–
Vietoris spectral sequence of z�s D

x�.2;1;:::;1;1/[ � � �[ x�.1;1:::;1;2/ collapses at the E1

term so that
zHt .z�s/Š

M
#ICq�1Dt

#I�1

zHq.x�I/:

Here I ranges over the nonempty subsets of f.2; 1; : : : ; 1; 1/; : : : ; .1; 1 : : : ; 1; 2/g.

Proof The differential of the E1 –term is given as the following composition:

d1
p;qW E

1
p;q

j
�!Hq.Fp�1/

i
�!E1

p�1;q:

The homology class of ˛Iq in zHq.x�I/ is mapped to the homology class of

#IX
jD1

.�1/j˛
@jI
q

in
L#I

jD1
zHq.x�@jI/. Since the reduced diagonal is homologous to zero, Corollary 5.7

tells us that each map zHq.x�I/ ! zHq.x�@jI/ is zero. Therefore ˛@jIq D 0 andP#I
jD1.�1/j˛@jIq D 0 so that the differential d1 is the zero map. Therefore the

Mayer–Vietoris spectral sequence collapses at the E1 term.

Using the expression (5-2) for the E1 term,

zHt .z�s/ Š
M

pCq�1Dt

M
x�I¤∅

#IDp�1

zHq.x�I/ Š
M

#ICq�1Dt
#I�1

zHq.x�I/;

since no x�I is empty.
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Proof of Theorem 1.2 The above lemma implies the following expression for the
mod 2 Betti numbers:

zbt .z�s/ D
X

#ICq�1Dt
#I�1

zbq.x�I/:

To simplify this expression, recall Proposition 5.6 which states that for pD 1; : : : ; s�1,
the collections fx�I j #I D pg and fx�˛ j dim˛D s�pg are identical. Thus the above
expression becomes:

(5-3) zbt .z�s/ D
X
j˛jDs

.s�dim˛/Cq�1Dt
dim˛�s�1

zbq.x�
˛/ D

X
j˛jDs

q�dim˛Dt�sC1
dim˛�s�1

zbq.x�
˛/:

Notice if dim˛ D d , then

zbq.x�
˛/D

X
j�jDq

zb�1
.x�˛1.A// � � � zb�d

.x�˛d .A//:

Since x�1.A/D X=G by convention and x�k.A/ is isomorphic to A for k � 2, the
homology of z�s depends only on the homology of A and X=G . There must exists
constants c�;� depending on the multi-indices � and � such that

zbt .z�s/D
X
�;�

c�;�zb�.X=G/zb�.A/:

Let I denote dim� and J denote dim�. Thus c�;� is the number of multi-indices ˛
which are permutations of .1; : : : ; 1; a1; : : : ; aJ / (I 1s) for integers a1; : : : ; aJ � 2

that satisfy I C a1C � � � C aJ D s . After making the substitution bi D ai � 2, this
condition is equivalent to b1C � � �C bJ D s� I � 2J where each bi is a nonnegative
integer. There are

�
.s�I�2J /C.J�1/

J�1

�
D
�
s�I�J�1

J�1

�
nonnegative integer solutions

.b1; : : : ; bJ / to this equation. Thus we have c�;� D
�
ICJ

J

��
s�I�J�1

J�1

�
.

Since q D j�j D j�jC j�j and dim � D dim�C dim�, so the condition q� dim˛ D

t � sC 1 in (5-3) is equivalent to j�j C j�j D t � sC dim�C dim�C 1. Similarly,
since dim˛D dim � , the condition dim˛� s�1 in (5-3) is equivalent to s � dim�C

dim�C 1. Thus we obtain

(5-4) zbt .z�sIF2/Š
X

j�jCj�jDt�sCdim�Cdim�C1
2�dim�Cdim�C1�s

c�;�zb�.X=GIF2/zb�.AIF2/

as required.
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Note that (5-4) is in fact a finite sum, since the condition dim�Cdim�C1� s implies
that j�jC j�j D t � sC .dim�Cdim�C1/� t � sC s D t . As the length is bounded
above, there can only be finitely many � and � that satisfy dim�C dim�C 1� s .

6 Proof of Proposition 1.3

We illustrate the efficacy of the homology decompositions in Theorem 1.1 and
Theorem 1.2 by computing all the mod 2 Betti numbers of �.X ÌG E1

1G/ for an
example where X D S2[S1 S2 . The discrete group G DC2 acts on the 2–sphere S2

antipodally with the equatorial circle S1 as the fixed set. The G –space X is formed
by taking two 2–spheres S2 with the antipodal action and identifying their equatorial
circles.

This pointed G –space is equivariantly homotopy equivalent to the following. Take two
pairs of discs (that is, four discs in total), and identify all the boundary circles. Let G

act on this union D2[D2[D2[D2 by switching the discs in each pair.

Proof of Proposition 1.3 Put a simplicial G–structure on the G–space. Write the
simplicial G–set as X D S2

1
[S1 S2

2
. The subscripts serve to distinguish each of

the two S2 s. For i D 1; 2, let DCi denote the upper hemisphere of S2
i and D�i the

lower hemisphere. The antipodal G –action sends each upper hemisphere to the lower
hemisphere, so D�i DDCi t . Then

X D .DC
1
[DC

2
/[S1 .D�1 [D�2 /

D .DC
1
[DC

2
/[S1 .DC1 t [DC

2
t/

D .DC
1
[DC

2
/[S1 .DC1 [DC

2
/t:

By Proposition 4.1, the orbit projection of X has a section. Thus Theorem 1.1 applies
(here and below we suppress the coefficient F2 in the notation):

(6-1) zHn.�.X ÌG W 1
1G//D

1M
sD1

zHn

�
.S2/^s=z�s

�
;

Since S1! S1 ^S1 Š S2 is mod 2 homologous to zero, Theorem 1.2 also applies:

zbn.z�s/D
X
J�1

X
IDn�sC1

�
ICJ

J

��
t�2I�J

J�1

�
zb2.S

2/ � � � zb2.S
2/„ ƒ‚ …

I

˝ zb1.S
1/ � � � zb1.S

1/„ ƒ‚ …
J

:
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Since zb2.S
2/D zb1.S

1/D 1, the Betti number is

(6-2) zbn.z�s/D
X
J�1

X
IDn�sC1

�
I CJ

J

��
n� 2I �J

J � 1

�

D

X
J�1

�
n� sC 1CJ

J

��
n� 2.n� sC 1/CJ

J � 1

�

D

X
J�1

�
n� sC 1CJ

J

��
2s� n�J � 2

J � 1

�

D

2s�3X
JD1

�
n� sC 1CJ

J

��
2s� n�J � 2

J � 1

�
:

Note that if the binomial coefficient
�
2s�n�J�2

J�1

�
is nonzero, then 2s�n�J�2�J�1.

That is, n � 2s � 2J � 1 � 2s � 3 since J � 1. Thus zHn.z�s/ D 0 if n > 2s � 3.
Combining this observation with the fact that the only nontrivial homology group of
..S2[S1S2t/=G/^sD .S2/^sDS2s is in the 2sth dimension, the short exact sequence
z�s! S2s! S2s=z�s induces the following long exact sequence in homology:

� � � // 0 // zH2sC2

�
S2s=z�s

�
// 0 // 0 // zH2sC1

�
S2s=z�s

�
// 0 // zH2s.S

2s/D F2
// zH2s

�
S2s=z�s

�
// 0 // 0 // zH2s�1

�
S2s=z�s

�
// 0 // 0 // zH2s�2

�
S2s=z�s

�
// zH2s�3.z�s/

// 0 // zH2s�3

�
S2s=z�s

�
:::

// zH1.z�s/
// 0 // zH1

�
S2s=z�s

�
// 0

Thus

zHn

�
S2s=z�s

�
D

8̂̂̂̂
<̂
ˆ̂̂:

0 n� 2sC 1;

F2 nD 2s;

0 nD 2s� 1;

zHn�1.z�s/ n� 2s� 2:
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For k � 1, applying this result to (6-1) gives

zH2k.�.X ÌG W 1
1G//Š zH2k

�
S2k=z�k

�
˚

1M
rDkC1

zH2k

�
S2r=z�r

�
Š F2˚

1M
rDkC1

zH2k�1.z�r /:

By (6-2), the even Betti numbers are:

zb2k.�.X ÌG W 1
1G//D 1C

1X
rDkC1

2r�3X
JD1

�
2k � r CJ

J

��
2r � 2k �J � 1

J � 1

�

D 1C

2kX
rDkC1

2r�3X
JD1

�
2k � r CJ

J

��
2r � 2k �J � 1

J � 1

�
:

Here the upper bound r � 2k is obtained by observing that
�
2k�rCJ

J

�
is nonzero only

if 2k � r CJ � J or r � 2k . Similarly we can compute the odd Betti numbers:

zb2kC1.�.X ÌG W 1
1G//D

2kC1X
rDkC2

r�k�1X
JD1

�
2k � r CJ C 1

J

��
2r � 2k �J � 2

J � 1

�
for k � 0.

Take geometric realization to obtain the required result.

Using these formulas, we compute by hand the Betti numbers in the dimension 1 to 12
to be

fzbn.�.X ÌG E1
1G/IF2/gnD1;:::;12 D f0; 2; 1; 5; 5; 14; 19; 42; 66; 131; 221; 417g:

A search with the Online encyclopedia of integer sequences [15] gives the sequence
A052547. For n� 0, set an to be the coefficient of xn in the power series expansion
of .1�x/=.x3� 2x2�xC 1/. The encyclopedia informs us that, for 1� n� 12:

an D
zbn.�.X ÌG E1

1G/IF2/:

Note that for n D 0, the initial term a0 D 1 of sequence A052547 differs from
zb0.�.X ÌG E1

1G/IF2/D 0; this is because we are using the reduced homology. This
leads us to conjecture the following.
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Conjecture 6.1 The reduced mod 2 Poincaré series of �.X ÌG E1
1G/ is

1X
nD0

zbn.�.X ÌG E1
1G/IF2/xn

D
1�x

x3� 2x2�xC 1
� 1:

The sequence an has a geometric interpretation in terms of diagonals lengths in the
regular heptagon with unit side length (see Steinbach [16] and Lang [11]). These
diagonal lengths are related to the Chebyshev polynomials, which are important in
approximation theory.
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