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Presenting parabolic subgroups
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Consider a relatively hyperbolic group G . We prove that if G is finitely presented, so
are its parabolic subgroups. Moreover, a presentation of the parabolic subgroups can
be found algorithmically from a presentation of G , a solution of its word problem
and generating sets of the parabolic subgroups. We also give an algorithm that finds
parabolic subgroups in a given recursively enumerable class of groups.

20F67; 20F10

Consider a relatively hyperbolic group G with parabolic subgroups H1; : : : ;Hn . It
is well known that if each Hi is finitely generated (or finitely presented), then so is
G . Osin showed conversely that if G is finitely generated, then so are H1; : : : ;Hn

[9, Proposition 2.27]. Whether finite presentation of G implies finite presentation of
H1; : : : ;Hn is an important question raised by Osin in [9, Problem 5.1].

On the algorithmic side, given a finite presentation of a relatively hyperbolic group
G and a generating set of the parabolic subgroups, can one find a presentation of the
parabolic subgroups?

We give a positive answer to these two questions.

Theorem 1 Let G be a finitely presented group. Assume that G is hyperbolic relative
to H1; : : : ;Hn . Then each Hi is finitely presented.

Theorem 2 There exists an algorithm that takes as input a finite presentation of a group
G , a solution to its word problem and a collection of finite subsets S1; : : : ;Sn � G ,
and that terminates if and only if G is hyperbolic relative to hS1i; : : : ; hSni.

In this case, the algorithm outputs a linear isoperimetry constant K for the corre-
sponding relative presentation, a finite presentation for each of the parabolic subgroups
hSii, and says whether G is properly relative hyperbolic relative to hS1i; : : : ; hSni (ie
hSii  G for all i ).

In this statement, the linear isoperimetry constant K is for the relative presentation
X1 as defined in Section 1.2.

If one is not given generating sets of the parabolic subgroups, one can search for them,
and require that they lie in some recursively enumerable class of groups.
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Theorem 3 There exists an algorithm as follows. It takes as input a finite presentation
of a group G , a solution for its word problem and a recursive class of finitely presented
groups C (given by a Turing machine enumerating presentations of these groups).

It terminates if and only if G is properly hyperbolic relative to subgroups that are in the
class C .

In this case, the algorithm outputs an isoperimetry constant K , a generating set and a
finite presentation for each of the parabolic subgroups.

The Turing machine enumerating C is a machine that enumerates some finite presenta-
tions, each of which represents a group in C , and such that every group in C has at
least one presentation that is enumerated.

This paper can be seen as a continuation, extension and precision on the form and the
substance of the first author’s [3]. It is based on the analysis of some van Kampen
diagrams in different truncated relative presentations. The main tool is Proposition 2.9,
which says that if some relative presentation does not satisfy a linear isoperimetric
inequality, then this shows up on some diagram of small area and small complexity.

Section 1 recalls definitions about isometric inequalities, introduces truncated relative
presentations, and defines the complexity of a diagram. Section 2 contains the main
technical results. Section 3 is devoted to corollaries. Theorems 1, 2 and 3 follow from
Corollaries 3.3, 3.5 and 3.6.

Acknowledgement Both authors are supported by the funding of the project ANR-
11-BS01-013.

1 Context

1.1 Linear isoperimetric inequalities

A presentation is a pair .S jR/, where S is a set, and R� FS is a subset of the free
group FS . The group defined by this presentation is hS j Ri D FS=hhRii. If G is
a given group and � W S ! G is a map from a set S to G , we say that .S jR/ is a
presentation of G (with respect to the map � ) if �.S/ generates G and R normally
generates the kernel of the natural map FS !G , ie if � extends to an isomorphism
hS jRi !G . The elements of R are called defining relations, and we usually write
G D hS jRi.

Note that we use distinct notations for the group and its presentation, we will usually
denote by X D .S jR/ the presentation, and by G D hS jRi the group defined by
this presentation.
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We denote by s the inverse of the basis element s 2 FS and we view an element of FS

as a reduced word over the alphabet S [S . We say that a presentation is triangular
if every defining relation has length at most 3 (as word over S [S ). If one allows
to increase the generating set, it is not restrictive to consider triangular presentations:
from an arbitrary finite presentation, one can effectively construct a triangular one.

If a word w 2 FS represents the trivial element of G (we write w G
D 1), the area of w

for the presentation X D .S jR/, denoted by Area.w/, is the minimal number n such
that w is the product in FS of n conjugates of elements of R[R�1 .

Given a word w 2 FS such that w G
D 1, a van Kampen diagram for w over the

presentation X D .S j R/ is a simply connected planar 2–complex D such that
oriented edges are labeled by elements of S [S , such that reversing the orientation
changes the label to its inverse, such that every 2–cell has its boundary labeled by
a cyclically reduced word conjugate to an element of R[R�1 , and such that the
topological boundary @D of D is labeled by w . Sometimes, we just say cell instead of
2–cell. It is well known that Area.w/ is the minimal number of 2–cells of van Kampen
diagrams for w . See Lyndon and Schupp [8, Section 5.1] for more details.

An isoperimetric function of a presentation X D .S j R/ is a function f W N ! N
such that for all w 2 FS representing the trivial element, Area.w/ � f .length.w//.
Note that if S is infinite, there are infinitely many words of a given length, and it may
happen that no such function (with finite values) exists.

Our approach is based on the fact that a group is relatively hyperbolic if and only
if it has a presentation of a particular kind with a linear isoperimetric function [9];
see Theorem 1.2 below. Another important fact is that the failure of a specific linear
isoperimetric inequality can be observed in a set of words of controlled area (Gromov [5],
Bowditch [1] and Papasoglu [10]).

Theorem 1.1 [10] Let X D .S jR/ be an arbitrary (not necessarily finite) triangular
presentation of an arbitrary group G and let K � 1.

Assume that there is a word w 2 FS such that w G
D 1 and Area.w/ > K length.w/.

Then there exists a word w0 2 FS such that w0GD1 and such that:

� Area.w0/ 2
�

K
2
; 240K

�
� Area.w0/ > 1

2�104 length.w0/2

As in [3], we use the fact that the statement and the proof of this theorem do not use that
the presentation X is finite. Indeed, the argument considers a word of minimal area
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such that Area.w/ >K length.w/, and extracts from a minimal diagram a subdiagram
of controlled area with Area.D0/ > .1=2� 104/ length.@D0/2 . Our constant K is K2

in [10], where Papasoglu’s K is assumed to be an integer in the statement, but only
the inequality K � 1 is used in [10].

1.2 Truncated and exact relative presentations

Since finite generation of a relatively hyperbolic group implies finite generation of its
maximal parabolic subgroups [9, Proposition 2.27], we always assume that relatively
hyperbolic groups and their maximal parabolic subgroups are finitely generated.

Let us now define the multiplication table of a group H . This is the subset T .H / of
the free group FH consisting of all words on the alphabet H [H of length 1; 2 or
3 that map to the trivial element in H under the morphism 'W FH !H induced by
the identity map H !H . Note that given a 2H and its inverse a�1 2H , the basis
element a�1 of FH is distinct from the inverse a in FH of the basis element a. It is
clear that the (usually infinite) presentation .H j T .H // is a presentation of H : the
identity map H !H induces an isomorphism hH j T .H /i !H .

Let G be a finitely presented group, and H1; : : : ;Hn be finitely generated subgroups
of G . For each i , let Si be a finite symmetric generating set of Hi . Consider a finite
triangular presentation G D hS jRi, where S is a finite symmetric generating set of
G containing each Si , and R is a finite set of triangular relations over S .

We are going to introduce a family of infinite presentations X� , indexed by � 2N[1.
To make the definitions clearer, we first introduce the presentation X1 . Let zH1; : : : ; zHn

be some groups, isomorphic to Hi under an isomorphism pi W
zHi !Hi . We denote

by zSi D p�1
i .Si/ the corresponding generating set of zHi . Consider the disjoint union

yS D S t zH1 t � � � t
zHn;

and � W yS !G the map whose restriction to S is the inclusion and whose restriction
to zHi is pi . Since S � yS , each relator in R can be viewed as an element of F yS . To
identify the generating set zSi of zHi with the corresponding subset of S , we consider
for each zs 2 zSi the two-letter relator zs�1pi.zs/ 2 F yS , where the first letter zs�1 lies in
zHi and the second letter pi.zs/ lies in S (because Si � S ). We define the finite subset
R0 � F yS as the union of R with the set of all these two-letter relators. Finally, each
element of the multiplication table T . zHi/ is naturally a word of length at most 3 in
F yS . Thus, one can define the relative presentation X1 as

X1 D
�
yS
ˇ̌
R0[ T . zH1/[ � � � [ T . zHn/

�
:
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The triangular presentation X1 is a (usually infinite) presentation of G , with respect
to � .

Indeed, � extends to a morphism ' from the group G0 defined by X1 to G , and there
is a morphism  W G!G0 induced by the inclusion S � yS . Since ' ı D idG , and
since  is onto, ' and  are inverse of each other.

Theorem 1.2 [9, Theorem 1.7, Definition 2.29] G is hyperbolic relative to the
subgroups H1; : : : ;Hn if and only if the relative presentation X1 satisfies a linear
isoperimetric inequality.

The subgroups H1; : : : ;Hn of G are called the maximal parabolic subgroups. Since
there is no risk of confusion, we will simply call them parabolic subgroups.

Remark 1.3 Osin includes all words of any length in the multiplication table. One
easily checks that this does not change the result.

To introduce the truncated relative presentations X� , we fix � 2N [1. We are first
going to define some auxiliary groups zHi

� with epimorphisms pi
�
W zHi

�
!Hi . For

each subgroup Hi , consider a copy zSi
� of Si . Let R�.Si/ be the set of all words in

the alphabet zSi
�
[ zSi

� , of length � � , whose image as words on the alphabet S˙1
i

define trivial elements in Hi . Then we define zHi
�
D h zSi

�
jR�.Si/i, and denote by

pi
�
W zHi

�
!Hi the obvious epimorphism.

Note that for �DC1, pi
� is an isomorphism, and zSi

� (resp. zHi
� ) is the set that we

denoted zSi (resp. zHi ) above. For � <1, zHi
� is finitely presented.

The presentation X� is analogous to X1 , using zH �
i instead of zHi . Let

yS� D S t zH
�
1
t � � � t zH �

n ;

and consider R0� � F yS�
consisting of R together with the set of two-letter words of

the form zs�1pi
�
.zs/, where s 2 zSi

�. Then, we define the truncated relative presentation
X� as

(1) X� D
�
yS�
ˇ̌
R0� [ T . zH �

1
/[ � � � [ T . zH �

n /
�
:

As above, this triangular presentation is still a presentation of G , with respect to the map
��W yS�!G that is the identity on S and restricts to pi

� on zHi
�. Indeed �� extends

to a morphism ' from the group G0 defined by X� to G and there is a morphism
 W G!G0 induced by the inclusion S � yS . Since ' ı D idG , and since  is onto,
' and  are inverse to each other.
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We say that the truncated presentation X� is exact if for all i , pi
�
W zHi

�
!Hi is an

isomorphism. By definition, X1 is always exact. If X� is exact for some � <1, then
all Hi are finitely presented. Conversely, if all Hi are finitely presented, then X� is
exact for � large enough (and X� is exactly the same presentation as X1 ).

In Section 3, we are going to prove that if X1 satisfies a linear isoperimetric inequality,
so does X� for � large enough. This will easily imply that parabolic subgroups are
finitely presented.

1.3 Complexities

Since X� is an infinite presentation, it is convenient to have a measure of complexity
for letters and words on yS . Recall that yS� D S t zH1

�
t � � � t zH

�
n . For a 2 zHi

�, we
denote by jzaj zSi

� the word length of a relative to the generating set zSi
�. We define the

complexity kak of a 2 yS� by kak D 1 if a 2 S , and by kak D jaj zSi
� if a 2 zHi

�.

Given a word w D a1 � � � an over yS� , we define:

� length.w/D n

� kwk1 D
nP

iD1

kaik

� kwk1 D max
iD1;:::;n

kaik

Note that if w is a one-letter word, then kwk1 D kwk1 D kwk.

Similarly, if D is a diagram (or a path) whose edges are labeled by elements of yS� ,
we define kDk1 and kDk1 as the sum and the maximum of the complexities of the
labels of its edges. For a labeled path p , length.p/ denotes its number of edges, and
Area.D/ denotes the number of 2–cells of a diagram D .

2 Diagrams

The goal of this section is to prove that if X� does not satisfy a linear isoperimetric in-
equality, this shows up on diagrams of small area and small complexity (Proposition 2.9).

2.1 Vocabulary

Thickness Let D be a van Kampen diagram over the presentation X� (� being fixed
in N [ f1g). We denote by Dthick �D the union of all 2–cells, and of all vertices
and edges that are contained in the boundary of a 2–cell. We say that D is thick if
D DDthick ie if every edge lies in the boundary of a 2–cell.
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Clusters We define cells of type R0 (resp. of type zHi
� ) as those labeled by a word

of R0 (resp. by a word in T . zHi
�
/). Any cell having an edge labeled by an element

of zHi
� is either a cell of type zHi

�, in which case its other edges are also labeled by
elements of zHi

�, or is labeled by a two-letter word in R0 nR, and its unique other
edge is labeled by an element of S . Note in particular that two cells of type zHi

� and
zHj
� cannot share an edge if i ¤ j .

Two cells of the same type zHi
� and sharing an edge are said to be cluster-adjacent. A

cluster is an equivalence class for the transitive closure of this relation. All 2–cells
of a cluster have the same type zHi

�, which we define as the type of the cluster. We
identify a cluster with the closure C of the 2–cells it is made of. Note that clusters are
contained in Dthick .

If C is a cluster, we denote by @C its topological boundary, ie the union of closed
edges of C that are in only one 2–cell of C .

Remark 2.1 Note that for any cluster C , any edge e in @C n @D has complexity
kek1 D kek1 � 1. Indeed, the 2–cell of D nC containing this edge is labeled by a
relator zs�1pi

�
.zs/ for some zs 2 zSi

�.

2.2 Simply connected clusters, standard filling

a1

a2

a3

a4

a5

a6
a1

a2a 1
a 2

a 3

a
1
a

2
a

3
a

4

Figure 1: Standard filling

Note that a cluster C (as a subset of the plane) is simply connected if and only if C is
a disk and @C is an embedded circle in the plane. We will mostly deal with diagrams
whose clusters are simply connected.

Consider a simply connected cluster C , with @C labeled by the cyclic word a1; : : : ; an

(where each aj 2
zHi
�
[ zHi

�). If n � 3, a standard filling of @C is a diagram with
boundary @C , all whose vertices are in @C , and with n� 2 triangles as in Figure 1.
More precisely, if v1; : : : ; vn are the vertices of @C , and its edges are e1; : : : ; en

with ej joining vj to vjC1 (modulo n) and labeled aj 2
zHi
�
[ zHi

�, then for all
j D 1; : : : ; n� 2, there is a triangle joining v1; vjC1; vjC2 , where the edge joining v1
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to vj is labeled by the image of the product a1 � � � aj in zHi
�. If n � 2, the standard

filling of @C is the diagram with boundary @C , and no other edge or vertex (it is a
single cell that is a bigon or a monogon).

Lemma 2.2 If C is an arbitrary simply connected cluster, then

k@Ck1 � 3 Area.D/Ck@Dk1:

If C is standardly filled, then

Area.C /Dmaxf1; length.@C /� 2g and kCk1 � k@Ck1:

Proof Each edge of @C n @D has complexity at most 1 by Remark 2.1, and there are
at most length.@C / � 3 Area.D/ such edges. The sum of complexities of the edges
in @D is bounded by k@Dk1 . This proves the first assertion. The second assertion is
clear from the definition of a standard filling.

Remark 2.3 If C is any cluster, then Area.C /� length.@C /� 2. Indeed, denote by
F the number of 2–cells of C , and by Eext , Eint , the number of edges in @C and in
C n @C respectively. Then, by connectedness of the dual graph, F � 1�Eint . Since
cells of C have at most 3 sides, 2EintCEext � 3F . It follows that Eext � F C 2 as
required.

The following lemma shows that in many situations, clusters are simply connected.

Lemma 2.4 Let w be a word over yS� defining the trivial element in G . Let D

be a minimal van Kampen diagram for w over the presentation X� . Assume that
� � 3 Area.D/.

If D is chosen among diagrams for w over X� to minimize successively the area, and
the number of 2–cells of type R0 , then every cluster of D is simply connected.

Assume either that D is as above and that all its clusters are standardly filled, or that D

minimizes successively the area, the number of 2–cells of type R0 and kDk1 . Then

kDk1 � 3 Area.D/Ckwk1:

Proof Assume for contradiction that there exists a cluster C of type zHi
� that is not

simply connected. Then there is a simply connected subdiagram D0�D such that edges
of @D0 are all in @C n@D . Since edges of @D0 lie in a 2–cell, length.@D0/�3 Area.D/.
Moreover k@D0k1 D 1, since by Remark 2.1, every edge in @C n @D has complexity
1. Thus, k@D0k1 � 3 Area.D/. Since � � 3 Area.D/, the definition of X� says that
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the word labeled by @D0 is trivial in zHi . One can then replace the subdiagram bounded
by @D0 by a standardly filled diagram (with cells of type zHi

� ), that has smaller or
equal area. This contradicts the minimality of D for the number of 2–cells of type R0 .
It follows that all clusters of D are simply connected.

Assume now that all clusters are standardly filled. By Lemma 2.2, for each cluster
C , kCk1 � k@Ck1 � 3 Area.D/Ckwk1 . Since each edge of Dthick of complexity
at least 2 is contained in a cluster, this implies that kDthickk1 � 3 Area.D/Ckwk1 .

Finally, assume that D minimizes successively the area, the number of 2–cells of
type R0 and kDk1 . Since clusters of D are simply connected, we can modify D

to a diagram D0 whose clusters are standardly filled, and having the same area and
the same number 2–cells of type R0 as D . In particular, kDk1 � kD0k1 . By the
argument above, kD0k1 � 3 Area.D/Ckwk1 which concludes the proof.

2.3 Complicated clusters

A cluster C is said to be complicated if @C \ @D contains at least two edges.

Lemma 2.5 Assume that D is a van Kampen diagram, and C � D is a simply
connected cluster.

If C is not complicated, then k@Ck1 � length.@C /, k@Ck1 � 2 length.@C /.

Proof Denote by zHi
� the type of the cluster C , so that edges of C are labeled by

elements of zHi
�. If C is not complicated, all edges of @C but one have complexity

1. The cluster being simply connected, the label of the remaining edge has the same
image in zHi

� as a product of length.@C /� 1 elements of . zSi
�
/˙1 . Therefore, this

edge has complexity at most length.@C /� 1. It follows that k@Ck1 � length.@C /,
and k@Ck1 � .length.@C /� 1/C

P
e2@C 1. This proves the lemma.

Lemma 2.6 (See also [9, Lemma 2.27]) Let D be a van Kampen diagram whose
clusters are simply connected, noncomplicated and standardly filled.

Then kDthickk1 � 6 Area.D/.

Proof Any edge of Dthick is either contained in a cell of type R0 (it has complexity
1) or in a cluster C . Since the number of edges of D that lie in the boundary of a
2–cell is bounded by 3�Area.D/, we have length.@C /� 3�Area.D/. Since C is
not complicated, kCk1 � 6�Area.D/ by Lemma 2.5. The lemma follows.
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P1 C3

P3

P2 P4

C1 C2

P1
C3

P3

P2

P4

C1 C2

Figure 2: 3 complicated clusters, 4 regular pieces and 6 cluster arcs

2.4 Cluster arcs and pieces

In this section, we explain how to cut D along the boundary components of the
complicated clusters (we do not touch the noncomplicated clusters).

Consider a diagram D whose clusters are simply connected. A cluster arc is a maximal
subpath c � @C for some complicated cluster C that does not contain any edge of @D
(see Figure 2). Since @C is an embedded circle, each cluster arc c is an embedded
arc with endpoints in @D , and c \ @D contains no edge, but it may contain vertices
distinct from its endpoints.

We define regular pieces of D as the connected components of Dn C̊ , where C̊ denotes
the interior in D of the union of all complicated clusters in D (edges in @D \ @C
for some complicated cluster are in C̊ ); see Figure 2. Regular pieces and complicated
clusters are called pieces.

Here is an alternative description. For each complicated cluster C , consider properly
embedded arcs with endpoints in @D , that are very close and parallel to each cluster arc,
obtained by pushing inside C the cluster arcs. Let A be the union of such embedded
arcs when C ranges over all complicated clusters. Then connected components of
D nA are in one-to-one correspondence with pieces. On Figure 2, A is represented by
dotted lines.

Although we won’t need it, we note that this also makes sense if D is not thick: edges
of D nDthick are contained in regular pieces.

Clearly, the set of pieces induces a partition of the set of 2–cells of D . There is a
natural incidence graph G for this partition, whose vertices are the pieces, whose edges
are the cluster arcs, the two endpoints of an edge being the cluster and the regular piece
on both sides of the corresponding cluster arc.

Lemma 2.7 Let D be a van Kampen diagram and assume that any cluster of D is
simply connected. The incidence graph G is a bipartite tree and the degree of a vertex
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v associated to a complicated cluster C is at most the number of edges in @D \ @C ,
with strict inequality when v is a leaf of the tree G .

Proof The graph is bipartite by definition. It is connected because D is connected.
Since every cluster arc separates D , every edge of the incidence graph disconnects it.
This proves that G is a tree.

Consider a vertex v associated to a complicated cluster C . The degree of v is, by
definition, the number of cluster arcs on @C . Since C is simply connected, @C is
an embedded circle, and since C is complicated, @C contains an edge of @D . By
maximality in the definition of cluster arcs, each such arc is followed in @C (with a
chosen fixed orientation) by an edge of @C \ @D . This association, which is clearly
one-to-one, ensures the bound on the degree.

Finally, if v is a leaf of G , its degree is 1 and @D \ @C contains at least 2 edges
because C is complicated.

The following result of [3] was, to some extent, left to the reader. We include a proof.

Lemma 2.8 Let D be a van Kampen diagram. If every cluster is simply connected,
then the number of pieces, and the number of cluster arcs, are both bounded by
length.@D/.

Proof The number N of pieces is the number of vertices of the incidence graph G .
Since G is a tree, N DEC 1, where E is the number of edges of G , ie the number
of cluster arcs. Denote by vC the vertex corresponding to a cluster C , by d.vC / its
degree, and by Vcl the set of all vertices of G corresponding to clusters. Since G is
bipartite, ED

P
vC2Vcl

d.vC /. By Lemma 2.7, d.vC / is bounded by the number e.C /

of edges of @C \ @D . Therefore E �
P
vC2Vcl

e.C /� length.@D/.

Finally, if some vC is a leaf of G , this last inequality is a strict inequality, which yields
N DEC 1� length.@D/. There remains the case where some leaf of G is a regular
piece B . This means that @B D ˛ [ ˇ , where ˛ is a cluster arc, and ˇ is a path in
@D . Since clusters are simply connected, the endpoints of ˛ are distinct, so ˇ contains
at least an edge. This implies that

P
vC2Vcl

e.C / < length.@D/, and concludes the
proof.

2.5 Reduction to diagrams of small complexity

We are now ready to state and prove the main statement of this section. It claims that
if X� does not satisfy a linear isoperimetric inequality, this shows up on diagrams of
small area (this is Papasoglu’s Theorem) and small complexity.
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Proposition 2.9 [3, Proposition 1.5] Let K � 106 and � 2N[f1g , �� 3�240K .

Assume that X� fails to satisfy a linear isoperimetric inequality of constant K (that is,
there exists a word w over the alphabet yS� such that Area.w/ >K length.w/).

Then, there exists a word w00 over the alphabet yS� , and a minimal van Kampen diagram
D00 (over X� ) for w00, such that:

(1) Area.D00/� 240K

(2) kD00k1 � 2:106K2

(3) Area.D00/ >
p

K
600

length.@D00/

Proof The first step is to apply Papasoglu’s Theorem 1.1 to the presentation X� to
obtain a word w0 over yS� for which

K=2� Area.w0/� 240K and Area.w0/ >
1

2� 104
length.w0/2:

Using
p

Area.w0/ > length.w0/=
p

2� 104 and Area.w0/�K=2, we get

Area.w0/ >

r
Area.w0/
2� 104

� length.w0/�

p
K

200
� length.w0/:

Choose a diagram D0 among minimal area diagrams over X� for w0 so that the number
of 2–cells of type R0 is minimal. We claim that up to changing w0 , we can assume
that D0 is thick, ie all edges lie in the boundary of a 2–cell. Indeed, if all connected
components A0

1
; : : : ;A0

l
of D0thick satisfy Area.A0i/� .

p
K=200/� length.@A0i/, then

Area.D0/D
X

i

Area.A0i/�

p
K

200

X
i

length.@A0i/�

p
K

200
� length.w0/;

which is a contradiction. It follows that some component A0i satisfies Area.A0i/ >
.
p

K=200/ � length.@A0i/. Obviously, Area.A0i/ � Area.D0/ � 240K , and A0i is a
diagram for @A0i that minimizes the area and the number of cells of type R0 (if not,
substituting a diagram of smaller area for @A0i in D0 contradicts minimality of D0 ).
This proves that we can assume that D0 is thick.

We do not have any control on the complexity of a diagram filling w0 yet. Since
� � 3� 240K , Lemma 2.4 shows that the clusters of D0 are simply connected. We
can modify D0 and assume that all clusters are standardly filled. By Remark 2.3, D0

still minimizes area and the number of cells of type R0 . By Lemma 2.8, the number
of pieces in the decomposition into complicated clusters and regular pieces is at most
length.@D0/.
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C 0
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C 0
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zD001
zC 001

zD002
zC 002

zD004

zD003

Figure 3: Adding chords to the pieces of D0, and regluing them together

Let C 01; : : : ;C
0
s be the complicated clusters of D0 , and D01; : : : ;D

0
r , be the regular

pieces. We construct new diagrams C 00i , D00j , and zC 00i , zD00j from C 0i , D0j by first adding
chords, then by changing the triangulation as follows (see Figure 3).

Fix a complicated cluster C 0k of D0 , and denote by zHi
� its type. Its boundary @C 0k

is a union of pairwise disjoint cluster arcs, together with arcs in @D0 . Consider a
cluster arc c � @C 0k whose edges are labeled by elements a1; : : : ; an of zHi

�, and let
ac D a1 � � � an 2

zHi
� be their product. We glue along c a standardly filled disk with

boundary labeled by a1; : : : ; an; a
�1
c . We name the new edge labeled by a�1

c a chord.
Performing this operation for each cluster arc, we get a disk C 00k made of cells of type
zHi
�. Finally, we change the triangulation of this disk to a standard filling, and we call
zC 00k the obtained diagram. Note that Area. zC 00k /� length.@ zC 00k /� 2.

Now, we perform a similar operation for each regular piece D0j . For each cluster arc
c� @D0j labeled by a1; : : : ; an 2

zHi
� (now, the type zHi

� may depend on c ), we define
ac D a1 : : : an 2

zHi
�, and glue to C 0k along c a new cluster of type zHi

�, standardly
filled, whose boundary is labeled by a1; : : : ; an; a

�1
c . Since the filling is standard, the

area of the added cluster is .nC 1/� 2D length.c/� 1. Performing this operation for
each cluster arc, we get the new diagram D00j . Finally, we take for zD00j a diagram with
boundary @D00j , and minimizing successively the area and the number of 2–cells of
type R0 .

We are going to bound k zD00jk1 by first bounding kD00j k1 . Since all complicated
clusters of D0 are C 01; : : : ;C

0
s , D00j has no complicated cluster coming from D0 . The
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newly created clusters in D00j have just one edge in @D00j , so are not complicated.
Therefore, clusters of D00j are not complicated, simply connected and standardly filled.
Since D0 is thick, so is D00j . Applying Lemma 2.6 to D00j , we get

kD00jk1 � 6�Area.D00j /� 6� 240K:

In particular, k@ zD00jk1 D k@D
00
jk1 � 6� 240K , and since D00j is thick, k@D00jk1 �

3 Area.D00j /k@D
00
jk1 � 18� .240K/2 . Applying Lemma 2.4 to zD00j , we get

k zD00jk1 � 3 Area.D00j /Ck@D
00
jk1 � 3� 240KC 18� .240K/2 � 2:106K2:

This proves that for all j 2 f1; : : : ; rg, zD00j satisfies assertions (1) and (2) of the
proposition.

We now prove that one of the diagrams zD00j , j D 1; : : : ; r must satisfy (3). Assume by
contradiction that for all j 2 f1; : : : ; rg, Area. zD00j /� .

p
K=600/ length.@ zD00j /. Note

that zC 00k satisfies this inequality as well. Indeed, Area. zC 00k / � length.@ zC 00k /, and by
assumption, K � 106 so .

p
K=600/� 1.

Gluing together the diagrams zD001 ; : : : ; zD
00
r and zC 001 ; : : : ; zC

00
s pairwise along the two

chords corresponding to a given cluster arc as shown on Figure 3, we get another (not
necessarily minimal) van Kampen diagram zD0 for w0 .

We have

Area.D0/� Area. zD0/D
X

j

Area. zD00j /C
X

k

Area. zC 00k /

�

p
K

600

�X
j

length.@ zD00j /C
X

k

length.@ zC 00k /
�

�

p
K

600

�
length.@D0/C 2na

�
;

where na is the number of cluster arcs in D0 . By Lemma 2.8, na � length.@D0/, so
Area.D0/� .

p
K=200/�length.@D0/, thus contradicting the property of D0 established

at the beginning of the proof.

3 Consequences

Corollary 3.1 Assume that X1 satisfies a linear isoperimetric inequality of factor
K � 106 . Let K0 D .600K/2 and �0.K/ D 1026K5 Then for all � � �0.K/, X�
satisfies a linear isoperimetric inequality of factor K0 .

Algebraic & Geometric Topology, Volume 13 (2013)



Presenting parabolic subgroups 3217

Before proving the corollary, we need to relate more explicitly the presentations X�

and X1 . Recall that yS� D S t zH1
�
t � � � t zH

�
n and yS1 D S t zH1 t � � � t

zHn the
corresponding generating sets, and that we have morphisms pi

�
W zHi

�
! Hi and

isomorphisms pi W
zHi!Hi . The morphisms

qi D p�1
i ıpi

�
W zHi

�
! zHi

induce an obvious map pW yS� ! yS1 that is the identity on S and maps zHi
� to

zHi through p�1
i ıpi

� . If w D a1 � � � an is a word over yS� , we denote by p.w/ D

p.a1/ � � �p.an/ the corresponding word over yS1 . Clearly, if w is any relator of the
presentation X� , then p.w/ is a relator of X1 . It follows that given any diagram D

over X� for a word w , one gets a new diagram p�.D/ for p.w/ over X1 by applying
the map p to all the labels of all edges of D .

On the other hand, qi induces a bijection between the balls of radius �=2 of zHi
� and

zHi , whose inverse we denote by q�1
i . Similarly, we denote by p�1 the inverse of the

restriction of pW yS�! yS1 to the set of elements of complexity at most �=2. Now,
if a; b; c 2 Hi are in the ball of radius �=3 of Hi and satisfy abc D 1 in zHi , then
q�1

i .a/q�1
i .b/q�1

i .c/D 1 in zHi
�. This means that if some diagram D over X1 for

w satisfies kDk1 � �=3, then the diagram p�1
� .D/ (with obvious notations) is a

diagram over X� for p�1.w/.

Proof of Corollary 3.1 Assume that X� fails to satisfy the predicted isoperimetric
inequality (of factor K0 ), and argue towards a contradiction. By Proposition 2.9, there
is a word w00 representing the trivial element, with a diagram D00 , minimal over the
presentation X� , of area at most 240K0 , and complexity kD00k1 � 2:106K02 and
such that Area.D00/ > .

p
K0=600/� length.w00/DK � length.w00/.

Consider the map pW yS� ! yS1 described above. Choose D000 among diagrams for
p.w00/ in the presentation X1 , in order to minimize successively the area, the number
of 2–cells of type R0 , and the complexity kD000k1 . Since X1 satisfies a linear
isoperimetric inequality of factor K , Area.D000/ � K � length.w00/. It follows from
the estimate of the previous paragraph, that Area.D000/ < Area.D00/ which is itself
� 240K0 .

By Lemma 2.4, kD00
0
k1 � 720K0Ckp.w00/k1 . Let us estimate the terms:

kp.w00/k1 � kw
00
k1 � length.w00/kD00k1 � length.w00/� 2:106K02

�
1

K
Area.D00/� 2:106K02

�
1

K
� 240K0 � 2:106K02 � 3:1025K5:
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Also, since K � 106 , one has 720K0 � 109K2 �K5 . By hypothesis on � , we see that
kD000k1 � �=3. It follows that p�1

� .D000/ is a diagram over X� for w00 . We already
noticed that it has area < Area.D00/, a contradiction to the minimality of D00 over the
presentation X� .

Lemma 3.2 Assume that X� satisfies a linear isoperimetric inequality of factor K0

with � �max.3K0; 2/.

Then pi
�
W zHi

�
!Hi is an isomorphism. In particular, Hi is finitely presented, with a

presentation whose defining relations are of length � � .

Proof Assume for contradiction that pi W
zHi
�
! Hi is not injective, and consider

a 2 ker pi nf1g. Then a is a generator of the presentation X� that represents the trivial
element of G . Note that since � > 1, a 62 zSi

�. Therefore, there exists a van Kampen
diagram D over X� whose boundary consists of a single edge e labeled a, and
whose area is at most K0 . We choose a diagram for a over X� in order to minimize
successively the area, the number of 2–cells of type R0 and kDk1 . Since � � 3K0 ,
Lemma 2.4 implies that clusters of D are simply connected. Since a 62 zSi

�, e lies in a
cluster C of type zHi

�. But since C is simply connected, and since a cluster of type
zH
�
i involves only relations of zHi

�, we get that a is trivial in zHi
�, a contradiction.

Corollary 3.3 Assume that X1 satisfies a linear isoperimetric inequality of factor K .
Let �0 be the function defined in Corollary 3.1.

Then the subgroups Hi are finitely presented, with a presentation whose defining
relations are of length � �0.max.K; 106//.

Proof Without loss of generality, we can assume K � 106 . By Corollary 3.1, X�0.K /

satisfies a linear isoperimetric inequality of factor K0 D .600K/2 . Lemma 3.2 con-
cludes.

Lemma 3.4 (See also [9, Lemma 5.4]) Assume that X1 satisfies a linear isoperi-
metric inequality of factor K .

If s 2 S represents an element a of zHi , then kak � 12K .

Proof The word w D s�1a is a word of length 2 over X1 . If it represents the trivial
element in G , then there is a van Kampen diagram D over X1 whose boundary is a
path of length 2 labeled s�1a, and whose area is at most 2K . We choose D among
minimal area diagrams over X1 for w so that the number of 2–cells of type R0 is
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minimal. Lemma 2.4 (applied with � D 1) implies that clusters of D are simply
connected, and we can assume that they are standardly filled.

Note that there is no complicated cluster as only the edge labeled a of @D can be in a
cluster. By Lemma 2.6, this implies that kDthickk1 � 12K , so kak � 12K .

We obtain the following improvement of [3]:

Corollary 3.5 There exists an algorithm that takes as input a finite presentation of a
group G , a solution of its word problem and a collection of finite subsets S1; : : : ;Sn �

G , and that terminates if and only if G is hyperbolic relative to hS1i; : : : ; hSni.

In this case, produces an isoperimetry constant K for the presentation X1 , a finite
presentation for each of the parabolic subgroups, and says whether G is parabolic (ie
G D hSii for some i ).

Proof For a fixed K� 106 , we consider all diagrams D over X1 such that kDk1�
BD 2:106K2 and Area.D/� 240K . There are only finitely many. The word problem
in G allows to list all relators of hSii of length at most 3B , to compute the ball of
radius 3B in the Cayley graph of Hi with respect to the generating set Si and hence
to list all these diagrams. Out of this list, we make the list W.K/ of words labeling
the boundaries of these diagrams.

We claim that given w 2 W.K/, we can compute Area.w/. Indeed, let D0 be a
diagram for w chosen to minimize area, the number of cells of type R0 , and kD0k1 .
By Lemma 2.4, kD0k1 � 3 Area.D0/Ckwk1 � 720KCkwk1 . We can compute the
upper bound M D 720KCkwk1 for kD0k1 , and we can list all diagrams D0 with
Area.D0/ � 240K and kD0k1 �M whose boundary is w . We can then compute
Area.w/ as the minimal area of these diagrams.

Now we can check whether Area.w/ � .
p

K=600/ length.w/ for all w 2W.K/. If
this is not the case, the algorithm increments K and starts over.

If this is the case, then by Proposition 2.9, X1 satisfies isoperimetric inequality of
factor K , and the algorithm stops. It outputs K , and gives as set of relators for hSii,
the set of all words of length � �0.K/ that are trivial in G ; this can be done using
the word problem in G , and this is indeed a presentation of hSii by Corollary 3.3. To
check whether GDhSii, one needs to check whether each s 2S represents an element
a 2 hSii. Lemma 3.4 bounds the complexity of a, and we can try all possibilities for
a using the word problem.

If X1 does satisfy a linear isoperimetric inequality of factor K0 , then the process will
obviously stop when K will reach a value greater than .600K0/

2 .
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Corollary 3.6 There exists an algorithm as follows. It takes as input a finite presen-
tation of a group G , a solution for its word problem and a recursive class of finitely
presented groups C (given by a Turing machine enumerating them). It terminates if and
only if G is properly hyperbolic relative to subgroups that are in the class C .

In this case, the algorithm produces an isoperimetry constant K , a generating set and a
finite presentation for each of the parabolic subgroups.

Proof First, enumerate all possible presentations of groups in C using the Turing
machine given as input, and Tietze transformations. Denote by L the set of currently
proposed presentations. In a second parallel process, list all possible families of finite
subsets S D .S1; : : : ;Sn/ of G . For each of them, run in parallel the algorithm of
Corollary 3.5 that stops if G is hyperbolic relative to hS1i; : : : ; hSni and outputs a
presentation of hSii in this case, and says whether G is parabolic. For each S such
that G is hyperbolic relative to hS1i; : : : ; hSni and is not parabolic, record the obtained
tuple of presentations PS D .P1; : : : ;Pn/.

We thus have two enumerations: one of the presentations of the groups in C (the list
L), and one of the proper relatively hyperbolic structures of G , with presentations of
the parabolic subgroups. At each step compare the set of recorded tuples PS with the
presentations in the list L. If for some S all the presentations of the tuple PS are
listed in L, then stop.

4 A geometric proof of the finite presentation

After listening to a talk by V Gerasimov, we realized that Theorem 1 about the finite
presentation of parabolic subgroups can be proved using the following geometric
argument which is developed further in Gerasimov and Potyagailo’s [4].

We recall a construction of a proper hyperbolic space X for G (see Bowditch [2], Groves
and Manning [6]; see also Hruska [7, Theorem 4.4]). Let G be relatively hyperbolic
relative to finitely generated subgroups H1; : : : ;Hn . We take a finite generating set
Si for each Hi and we take Y a Cayley 2–complex of G for a generating set S

containing each Si . We denote by Ci the Cayley graph of Hi with respect to Si ,
which we view as a subgraph of Y . For each i , consider a combinatorial horoball
based on Ci : this is a graph with vertices V .Ci/�N , where there is an edge between
.x; i/ and .x; i C 1/, and an edge between .x; i/ and .y; i/ if dCi

.x;y/ � 2i . We
view Ci as the subset Ci � f0g of Bi . Then we define X by gluing on Y a copy of
Bi on each gCi for each g 2G=Hi . If G is hyperbolic relative to H1; : : : ;Hn , then
X is a Gromov-hyperbolic space [6].
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Let pW X!Bi be the closest point projection for the metric in X . Clearly, p.Y /�Ci .
Quasiconvexity of Bi shows that p is coarsely Lipshitz. The projection of each 2–cell
of Y is a uniformly bounded subset of Ci (for the metric on X , hence for its intrinsic
metric). Let K be a bound on the diameter in Ci of the projection of a 2–cell of Y ,
and let C 0i be the corresponding Rips complex of Ci , where one adds a simplex on a
set of vertices S � Ci whenever diam.S/�K .

Let c be any cycle in Ci . Thus c can be viewed as a path in Y . Since G is finitely
presented, c bounds a disk D in Y . Then the projection of each 2–cell of Y can
be filled by a 2–cell in C 0i , so c is nullhomotopic in C 0i . Since this argument is
independent of the choice of the path c , this proves that C 0i is simply connected. Since
C 0i =Hi is compact, it follows that Hi is finitely presented.

This argument can be refined to show that if G has a finite classifying space (resp. is
of type FPn ), then so are its parabolic subgroups.
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