The state sum invariant of 3-manifolds constructed from the \boldsymbol{E}_{6} linear skein

Kenta Okazaki

The E_{6} state sum invariant is a topological invariant of closed 3-manifolds constructed by using the $6 j$-symbols of the E_{6} subfactor. In this paper, we introduce the E_{6} linear skein as a certain vector space motivated by E_{6} subfactor planar algebra, and develop its linear skein theory by showing many relations in it. By using this linear skein, we give an elementary self-contained construction of the E_{6} state sum invariant.

57M27, 57M15; 46L37

1 Introduction

In [14], Turaev and Viro constructed a state sum invariant of 3-manifolds based on their triangulations, by using the $6 j$-symbols of representations of the quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$. Further, Ocneanu [9] (see also Evans and Kawahigashi [2] and Kodiyalam and Sunder [6]) generalized the construction to the case of other types of $6 j-$ symbols, say, the $6 j$-symbols of subfactors. In the construction, we consider colorings (called states, historically) of edges and faces of a triangulation of a 3-manifold, and associate colored tetrahedra to values of the $6 j$-symbols. A state sum invariant is defined by a sum of the product of such values of tetrahedra, where the sum runs over all admissible colorings. When the $6 j$-symbols can be obtained from representations of a quantum group, it is known (see Turaev [13]) that the state sum invariant is equal to the square of the absolute value of the Reshetikhin-Turaev invariant, and the calculation of the state sum invariant is reduced to the calculation of the Reshetikhin-Turaev invariant. However, in the case of the $6 j$-symbols of the E_{6} subfactor, such a Reshetikhin-Turaev invariant can not be defined, and it is necessary to calculate the state sum invariant directly. For some calculations of the E_{6} state sum invariant, see Suzuki and Wakui [12] and Wakui [15], where they construct the E_{6} state sum invariant directly from concrete values of the $6 j$-symbols of the E_{6} subfactor given by Izumi in [3].

We briefly recall the E_{6} subfactor; see, for example, [2] for details. A subfactor \mathcal{N} is a certain subalgebra of a certain C^{*}-algebra \mathcal{M}. A principal graph of a subfactor
is (roughly speaking) a graph whose vertices are irreducible $\mathcal{N}-\mathcal{N}$ bimodules and irreducible $\mathcal{N}-\mathcal{M}$ bimodules, and an irreducible $\mathcal{N}-\mathcal{N}$ bimodule X is connected to an irreducible $\mathcal{N}-\mathcal{M}$ bimodule Y by an edge when Y appears in the irreducible decomposition of $X \otimes_{\mathcal{N}} \mathcal{M}$. The E_{6} subfactor is the subfactor whose principal graph is of the form

where circled vertices are $\mathcal{N}-\mathcal{N}$ bimodules and the other vertices are $\mathcal{N}-\mathcal{M}$ bimodules. The $6 j$-symbols are coefficients of a transformation between bases of

$$
\begin{equation*}
\operatorname{Hom}\left(V_{l},\left(V_{i} \otimes V_{j}\right) \otimes V_{k}\right), \quad \operatorname{Hom}\left(V_{l}, V_{i} \otimes\left(V_{j} \otimes V_{k}\right)\right), \tag{1.2}
\end{equation*}
$$

though it is difficult in general to calculate their concrete values directly from the subfactor, since these bimodules are infinite-dimensional.

We briefly recall the $\mathfrak{s l}_{2}$ linear skein; see Kauffman and Lins [5] and Lickorish [7] for details. It is known that the Jones polynomial of links can be defined by using the Kauffman bracket, which is defined by a recursive relation among link diagrams. Lickorish introduced the $\mathfrak{s l}_{2}$ linear skein, which is the vector space spanned by link diagrams subject to the recursive relation of the Kauffman bracket. It is a key point that we can calculate the value of any link diagram by graphical calculation using the defining relations of the linear skein recursively. Further, he introduced the Jones-Wenzl idempotents as elements of the $\mathfrak{s l}_{2}$ linear skein (white boxes defined in (2.5)), corresponding to irreducible representations of the quantum group $U_{q}\left(\mathfrak{s l}_{2}\right)$. By using these Jones-Wenzl idempotents, he gave an elementary self-contained construction of the Reshetikhin-Turaev invariant; in fact, this construction is quite useful when calculating the Reshetikhin-Turaev invariant of concrete 3 -manifolds; see [5]. Moreover, it is known [5; 7] that we can describe the $6 j$-symbols of representations of $U_{q}\left(\mathfrak{s l}_{2}\right)$ in terms of the $\mathfrak{s l}_{2}$ linear skein, as coefficients of a transformation between the following two graphs,

which describes the transformation of (1.2) graphically.

As a graphical approach to subfactors, Jones [4] introduced planar algebras, which are a kind of algebra given graphically in the plane. As the Kuperberg program says (see Morrison, Peters and Snyder [8]), it is a problem to
(i) give a presentation by generators and relations for each planar algebra,
(ii) show basic properties of the planar algebra based on such a presentation.

For the $D_{2 n}$ planar algebra, (i) and (ii) have been done in [8]. For the E_{6} and E_{8} planar algebras, Bigelow [1] has done (i), and has partially done (ii) by using the existence of the subfactor planar algebra, though idempotents corresponding to $\mathcal{N}-\mathcal{N}$ bimodules are not given in the E_{6} planar algebra in [1].

In this paper, we introduce the E_{6} linear skein, motivated by Bigelow's generators and relations of the E_{6} planar algebra. We define the E_{6} linear skein $\mathcal{S}\left(\mathbb{R}^{2}\right)$ of \mathbb{R}^{2} to be the vector space spanned by certain 6-valent graphs (which we call planar diagrams) subject to certain relations (Definition 2.1). Our relations are a modification of Bigelow's relations; we show that they are equivalent in Section 6.1. We show that $\mathcal{S}\left(\mathbb{R}^{2}\right)$ is 1-dimensional (Proposition 2.2), which means the key point is that we can calculate the value of any planar diagram by graphical calculation using the defining relations of the linear skein recursively. That is, in order to prove Proposition 2.2, we show that
(1) any planar diagram is equal to a scalar multiple of the empty diagram in $\mathcal{S}\left(\mathbb{R}^{2}\right)$,
(2) such a scalar is uniquely determined for any planar diagram.

We give a self-contained combinatorial proof of them. To show them, it is important to give an efficient algorithm to reduce any planar diagram to the empty diagram. Such a reduction is done by decreasing the number of 6 -valent vertices of a planar diagram. To do this, we use the relation (2.4) (one of our relations), which can reduce two vertices connected by two parallel edges, while the corresponding relation (6.1) (one of Bigelow's relations) reduces two vertices connected by three parallel edges. In fact, to reduce planar diagrams, our relations are more efficient than Bigelow's relations, and this is a reason why we define the E_{6} linear skein by our relations, instead of Bigelow's relations. We show (1) by decreasing the number of vertices of any planar diagram by using (2.4). To show (2), we show that the resulting value does not depend on the choice of a process of decreasing the number of vertices; we consider all such processes and show the independence on them concretely.

Further, we introduce idempotents (gray boxes in Section 3) in our linear skein, corresponding to the irreducible $\mathcal{N}-\mathcal{N}$ bimodules V_{0}, V_{2}, V_{4} in (1.1). It is known, see [3], that the fusion rule algebra of the E_{6} subfactor is given by the product shown in the
following table, and the quantum dimensions of V_{0}, V_{2}, V_{4} are equal to $1,1+\sqrt{3}, 1$ respectively.

	V_{0}	V_{2}	V_{4}
V_{0}	V_{0}	V_{2}	V_{4}
V_{2}	V_{2}	$V_{0}+2 V_{2}+V_{4}$	V_{2}
V_{4}	V_{4}	V_{2}	V_{0}

In particular, V_{0} is the $\mathcal{N}-\mathcal{N}$ bimodule \mathcal{N}, which gives the unit of the fusion rule algebra. Corresponding to V_{0}, we define the gray box over 0 strands to be the empty diagram. Further, V_{2} is an irreducible $\mathcal{N}-\mathcal{N}$ bimodule in the irreducible decomposition of $\mathcal{M} \otimes_{\mathcal{M}} \mathcal{M}$. Corresponding to V_{2}, we define the gray box over 2 strands to be the Jones-Wenzl idempotent over 2 strands. Furthermore, V_{4} is an irreducible $\mathcal{N}-\mathcal{N}$ bimodule in the irreducible decomposition of $\mathcal{M} \otimes_{\mathcal{M}} \mathcal{M} \otimes_{\mathcal{N}} \mathcal{M} \otimes_{\mathcal{M}} \mathcal{M}$. Corresponding to V_{4}, we define the gray box over 4 strands to be a certain idempotent over 4 strands. We show that the values of the closures of these gray boxes are equal to the quantum dimensions of V_{0}, V_{2}, V_{4} (Lemma 3.2). By using these gray boxes, we introduce colored planar trivalent graphs, whose edges are colored by these gray boxes, where we define admissible trivalent vertices in (3.5) corresponding to the above mentioned fusion rule algebra. In particular, we note that we consider two kinds of trivalent vertices when the adjacent three edges are colored by $2,2,2$, since the summand V_{2} in $V_{2} \otimes V_{2}$ has multiplicity 2 . Moreover, we consider the linear skein $H\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ spanned by planar diagrams on a disk bounded by the gray boxes over i_{1} strands, i_{2} strands, \ldots, i_{n} strands, corresponding to the intertwiner space $\operatorname{Hom}\left(V_{0}, V_{i_{1}} \otimes V_{i_{2}} \otimes \cdots \otimes V_{i_{n}}\right)$. We show that a basis of this space is given by colored trivalent trees (Proposition 4.9). In particular, when $n=4$, we can describe the $6 j$-symbols in terms of colored planar trivalent graphs as coefficients of a transformation between bases of the forms in (1.3).

By using these $6 j$-symbols, we give a construction of our state sum invariant in terms of colored planar trivalent graphs (Definition 5.1). It is known as a general procedure that the topological invariance of such a state sum invariant is shown from the defining relation of the $6 j$-symbols. We review this procedure in terms of our E_{6} linear skein (the proof of Theorem 5.2). In particular, in the proof, we show a pentagon relation of the $6 j$-symbols by using a basis of $H\left(i_{1}, i_{2}, \ldots, i_{5}\right)$ given in Proposition 4.9. We show that our state sum invariant is equal to the E_{6} state sum invariant (Proposition 6.2), since our $6 j$-symbols can be transformed into the $6 j$-symbols of the E_{6} subfactor given in [3].

We comment on a topological aspect of our construction; see [5] for this aspect. A triangulation of a 3-manifold is locally described by a triangulation of a 3-ball. When a 3-ball has a triangulation, it induces a triangulation of the boundary 2 -sphere, and we
consider its dual planar trivalent graph. In this correspondence, "gluing a tetrahedron on a 3-ball" corresponds to a fusion of the dual trivalent graph, which is described by $6 j$-symbols.

A triangulation of S^{2}

The dual graph

From this viewpoint, we calculate our state sum invariant for some concrete 3-manifolds in Section 7. It is expected that, when we study topological aspects of the invariant, it is useful to construct a state sum invariant in terms of the linear skein.

The paper is organized as follows. In Section 2, we introduce the E_{6} linear skein $\mathcal{S}\left(\mathbb{R}^{2}\right)$ of \mathbb{R}^{2}, and show that $\mathcal{S}\left(\mathbb{R}^{2}\right)$ is 1-dimensional. Further, we show that $\mathcal{S}\left(\mathbb{R}^{2}\right)$ is spherical, that is, we can regard planar diagrams in \mathbb{R}^{2} as in $S^{2}=\mathbb{R}^{2} \cup\{\infty\}$. In Section 3, we introduce gray boxes and colored planar trivalent graphs. In Section 4, we introduce the space $H\left(i_{1}, i_{2}, \ldots, i_{n}\right)$, and give a basis of this space. By using this basis, we define the $6 j$-symbols. In Section 5, we construct our state sum invariant by using these $6 j$-symbols. In Section 6, we show that the defining relations of our E_{6} linear skein are equivalent to Bigelow's relations. Further, we show that our state sum invariant is equal to the E_{6} state sum invariant. In Section 7, we calculate our state sum invariant for the lens spaces $L(4,1), L(5,2)$ and $L(5,1)$ in terms of the E_{6} linear skein. In Appendix A, we present the concrete values of the weights. In Appendix B, we show that our $6 j$-symbols can be transformed into the $6 j$-symbols of the E_{6} subfactor.

Notation Throughout the paper, the scalar field for every vector space is the complex field \mathbb{C}. We will set $q=\exp (\pi \sqrt{-1} / 12),[n]=\left(q^{n}-q^{-n}\right) /\left(q-q^{-1}\right)$, and $\omega=\exp (4 \pi \sqrt{-1} / 3)$. Further, $d_{0}=1, d_{2}=[3], d_{4}=1$ (by Lemma 3.2), and we put $w=d_{0}^{2}+d_{2}^{2}+d_{4}^{2}=2+[3]^{2}=6+2 \sqrt{3}$. We note that

$$
\begin{align*}
& {[2]=\frac{\sqrt{2}+\sqrt{6}}{2}, \quad[3]=\sqrt{2}[2]=1+\sqrt{3}, \quad[4]=\sqrt{3}[2]=\frac{3 \sqrt{2}+\sqrt{6}}{2},} \tag{1.4}\\
& {[5]=[2]^{2}=2+\sqrt{3}, \quad[6]=2[2]=\sqrt{2}+\sqrt{6}, \quad[12-n]=[n] .}
\end{align*}
$$

Acknowledgements The author would like to thank Tomotada Ohtsuki for his en－ couragement and proving Lemma B．1．The author is also grateful to Stephen Bigelow， Kazuo Habiro，Masaki Izumi，Scott Morrison and Michihisa Wakui for their helpful comments．

2 The E_{6} linear skein

In this section，we introduce the E_{6} linear skein of \mathbb{R}^{2} and show that it is 1－dimensional in Section 2．1．Further，we introduce the E_{6} linear skein of a disk and show some properties in the E_{6} linear skein in Section 2．2．

2．1 The E_{6} linear skein of $\mathbb{R}^{\mathbf{2}}$

In this section，we introduce the E_{6} linear skein $\mathcal{S}\left(\mathbb{R}^{2}\right)$ of \mathbb{R}^{2} as a vector space spanned by certain planar graphs in Definition 2．1，and show that $\mathcal{S}\left(\mathbb{R}^{2}\right)$ is a 1－dimensional vector space spanned by the empty diagram in Proposition 2．2．
We define a planar diagram to be a 6 －valent graph（possibly containing closed curves） embedded in \mathbb{R}^{2} such that each vertex is depicted by a disk whose boundary has a base point，as shown in the following picture．

We regard isotopic planar diagrams as equivalent planar diagrams．A planar diagram is said to be connected if it is connected as a graph．A cap of a planar diagram is an edge bounding a region of the shape of a disk as shown in COE．A digon of a planar graph is a region of the shape of a disk bounded by two edges and two vertices as shown in 三OE $^{\circ}$ ．

Definition 2．1 We define the E_{6} linear skein of \mathbb{R}^{2} ，denoted by $\mathcal{S}\left(\mathbb{R}^{2}\right)$ ，to be the vector space spanned by planar diagrams subject to the following relations：

$$
\begin{equation*}
D \cup(\text { a closed curve })=[2] D \quad \text { for any planar diagram } D \tag{2.1}
\end{equation*}
$$

（A planar diagram containing a cap）$=0$ ，

$$
\begin{align*}
& \text { 合 } \tag{2.3}\\
& \text { 正: }=[4] \text { 品 }
\end{align*}
$$

Here, in each of (2.3) and (2.4), pictures in the formula mean planar diagrams, which are identical except for a disk, where they differ as shown in the pictures. The white boxes, called the Jones-Wenzl idempotents, are inductively defined by $\frac{d}{\square}=\mid$, and

$$
\begin{equation*}
\frac{\mid n}{\mid n}=\frac{\mid n-1}{\mid n-1}\left|-\frac{[n-1]}{[n]} \underset{n-1 \mid}{n-2 \mid}\right|_{1}^{n-1 \mid} \text { for } 2 \leq n \leq 11 \tag{2.5}
\end{equation*}
$$

where a thick strand attached with an integer n means n parallel strands.
It is known, see for example [7], that the Jones-Wenzl idempotents satisfy the following properties in the linear skein:

$$
\begin{align*}
& \underbrace{n}_{n}=\frac{1^{n}}{n}, \tag{2.6}\\
& { }_{\square}^{i-1 \|^{1} n^{n-i}}=0 \quad(i=1, \ldots, n-1) \text {, } \tag{2.7}
\end{align*}
$$

for $1 \leq n \leq 11$.
The aim of this section is to show the following proposition, which implies that $\mathcal{S}\left(\mathbb{R}^{2}\right)$ is 1 -dimensional.

Proposition 2.2 There exists an isomorphism $\langle\cdot\rangle: \mathcal{S}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ which takes the empty diagram \varnothing to 1 .

Proof We show that $\mathcal{S}\left(\mathbb{R}^{2}\right)$ is spanned by the empty diagram \varnothing, ie, at most 1dimensional, as follows. Let D be a planar diagram. We show that D is equal to a scalar multiple of \varnothing in $\mathcal{S}\left(\mathbb{R}^{2}\right)$. By considering an innermost connected component of D, we can reduce the proof to the case where D is connected. If D has no vertices, then D is the empty diagram or a closed curve. Thus, by (2.1), D is equal to \varnothing or [2] \varnothing. If D has just one vertex, then D must have a cap, and thus $D=0$ by (2.2). Hence, we can assume that D is a connected planar diagram with at least two vertices and no caps. Then, by Lemma 2.3 below, D has a digon. By using (2.3), we move the base points of the vertices of this digon as shown in the left-hand side of (2.4). Further, by applying the left-hand side of (2.4) to this digon, D is presented by a linear sum of planar diagrams with fewer vertices. By repeating this argument, D can be presented by a scalar multiple of \varnothing in $\mathcal{S}\left(\mathbb{R}^{2}\right)$. Hence, $\mathcal{S}\left(\mathbb{R}^{2}\right)$ is spanned by the empty diagram \varnothing.

We show the proposition by improving the above argument. Let $\widetilde{\mathcal{S}}_{k}\left(\mathbb{R}^{2}\right)$ be the vector space freely spanned by planar diagrams with at most k vertices. We will inductively define the linear map $\langle\cdot\rangle_{k}: \widetilde{\mathcal{S}}_{k}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ for $k=0,1,2, \ldots$, extending $\langle\cdot\rangle_{k-1}$, satisfying that $\langle\varnothing\rangle_{k}=1$ and

$$
\begin{align*}
& \langle D \cup(\text { a closed curve })\rangle_{k}=[2]\langle D\rangle_{k} \text { for any planar diagram } D, \tag{2.9}\\
& \langle(\text { A planar diagram containing a cap })\rangle_{k}=0, \tag{2.10}
\end{align*}
$$

$$
\begin{align*}
& \left\rangle_{k}=\omega\langle \rangle_{k}\right. \text {, } \tag{2.11}\\
& \text { 人 } \tag{2.12}
\end{align*}
$$

If such linear maps exist, we obtain a nontrivial linear map $\langle\cdot\rangle: \mathcal{S}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ as the inductive limit of them, and such a linear map $\langle\cdot\rangle$ must be isomorphic, since $\mathcal{S}\left(\mathbb{R}^{2}\right)$ is at most 1 -dimensional as shown above. In the following of this proof, we define $\langle\cdot\rangle_{k}$ for $k=0,1, \ldots$ by induction on k showing (2.9)-(2.12).
When $k=0$, we define $\langle\cdot\rangle_{0}$, as follows. Let D be a planar diagram with no vertices. Then, D is a union of closed curves. We define $\langle D\rangle_{0}=[2]^{m}$, where m is the number of closed curves of D. We can verify (2.9) for $k=0$ by definition, and the conditions (2.10)-(2.12) are trivial in this case.

When $k=1$, we define $\langle\cdot\rangle_{1}$, as follows. For a planar diagram D with no vertices, we put $\langle D\rangle_{1}=\langle D\rangle_{0}$. For a planar diagram D with just one vertex, we put $\langle D\rangle_{1}=0$, noting that D must have a cap. We can verify (2.9)-(2.11) for $k=1$ by definition, and the condition (2.12) is trivial in this case.

When $k \geq 2$, assuming that there exists a linear map $\langle\cdot\rangle_{k-1}: \widetilde{\mathcal{S}}_{k-1}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ satisfying (2.9)-(2.12) for $k-1$, we define a map $\langle\cdot\rangle_{k}$, as follows. For a planar diagram D with at most $k-1$ vertices, we put $\langle D\rangle_{k}=\langle D\rangle_{k-1}$. For a planar diagram D with just k vertices, we define $\langle D\rangle_{k}$, as follows. When D is disconnected, we put $\langle D\rangle_{k}$ to be the product of $\langle\text { connected component of } D\rangle_{k}$. If D contains a cap, we put $\langle D\rangle_{k}=0$. Hence, it is sufficient to define $\langle D\rangle_{k}$ for a connected planar diagram D with no caps. By Lemma 2.3 below, such a planar diagram has a digon. By applying the left-hand side of the following formula to this digon, we define $\langle D\rangle_{k}$ by

$$
\begin{equation*}
\left\rangle_{k}=\omega^{\eta}\left([4](\underset{\sim}{\text { mim }}\rangle_{k-1}+[3][4](\mathbb{m}\rangle_{k-1}\right)\right. \text {, } \tag{2.13}
\end{equation*}
$$

where the integer η is defined by the position of the base points of the diagram in the left-hand side, as follows. We move each of the base points around the vertices clockwise until the diagram becomes and η is the number of times the base
points pass the edges. For example, if the diagram in the left-hand side is $\eta=5+2=7$. We note that the planar diagram in the left-hand side has k vertices, and the planar diagrams in the right-hand side have $k-1$ and $k-2$ vertices. We also note that the definition (2.13) is well defined independently of the π-rotation of this substitution, since the right-hand side of (2.13) is invariant under the π-rotation by the $k-1$ case of Lemma 2.5 below. Further, in order to complete the proof, we must show that $\langle D\rangle_{k}$ does not depend on the choice of a digon, and that this $\langle\cdot\rangle_{k}$ satisfies (2.9)-(2.12).

We show that $\langle D\rangle_{k}$ does not depend on the choice of a digon, as follows. For a planar diagram D with a digon R, we put D_{R} to be the linear sum of planar diagrams obtained from D by substituting

$$
\omega^{\eta}([4] \text { 锅 }-[3][4](山) \text { ill }) \text { into }
$$

of this digon. We define $J^{(4)}$ by:

Let D be a planar diagram with two digons R_{1} and R_{2}. Then, we have the following three cases of the mutual positions of R_{1} and R_{2}; see Figure 1:
(a) The vertices of R_{1} and R_{2} are distinct.
(b) R_{1} and R_{2} have one common vertex.
(c) The vertices of R_{1} and R_{2} are equal.

We assume that the base points of vertices of R_{1} and R_{2} are as shown in Figure 1, since the other cases are reduced to this case from the definition of η. It is sufficient to show that $\left\langle D_{R_{1}}\right\rangle_{k-1}=\left\langle D_{R_{2}}\right\rangle_{k-1}$ in each of cases (a)-(c).

Figure 1: Possible positions of two digons R_{1} and R_{2}
Case (a) $\left\langle D_{R_{1}}\right\rangle_{k-1}=\left\langle D_{R_{2}}\right\rangle_{k-1}$, since they are equal to $\left\langle\begin{array}{ll}\left.J^{0}\right) \\ \text { (2.12) for } k-1 \text {, completing this case. }\end{array}\right.$

Case (b) The equation $\left\langle D_{R_{1}}\right\rangle_{k-1}=\left\langle D_{R_{2}}\right\rangle_{k-1}$ is rewritten as
and we show this formula in Lemma 2.10 below, completing this case.
Case (c) When R_{1} and R_{2} have one common edge, it is enough to show that

$$
\left\langle\frac{J^{(4)}}{J J^{+}}\right\rangle_{k-1}=\langle \rangle_{k-1}
$$

and this follows from (2.8) and Lemma 2.4 below. When the edges of R_{1} and R_{2} are distinct, it is enough to show that

with $s+t$ being even, and we show this formula in Lemma 2.8 below, completing this case.

Therefore, we showed that $\langle D\rangle_{k}$ does not depend on the choice of a digon, and hence, we obtain a well-defined linear map $\langle\cdot\rangle_{k}: \widetilde{\mathcal{S}}_{k}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$.
Finally, we show that $\langle\cdot\rangle_{k}$ satisfies (2.9)-(2.12), as follows. We recall that $\langle\cdot\rangle_{k}$ is defined by
$\langle D\rangle_{k}= \begin{cases}\prod\langle\text { connected component of } D\rangle_{k} & \text { if } D \text { is disconnected, } \\ 0 & \text { if } D \text { is a connected planar diagram with a cap, } \\ \left\langle D_{R}\right\rangle_{k-1} & \text { if } D \text { is a connected planar diagram with no cap. }\end{cases}$
For any planar diagram D with k vertices, we have that

$$
\langle D \cup(\text { a closed curve })\rangle_{k}=\langle D\rangle_{k}\langle(\text { a closed curve })\rangle_{k}=[2]\langle D\rangle_{k},
$$

from the definition of $\langle\cdot\rangle_{k}$ for disconnected planar diagrams, and hence, we obtain (2.9). From the definition of $\langle\cdot\rangle_{k}$, we obtain (2.10). From the definition of $\langle\cdot\rangle_{k}$ and (2.11) for $k-1$, we obtain (2.11). The remaining case is to show (2.12). Let D be the planar diagram in the left-hand side of (2.12). It is sufficient to show (2.12) when D is connected. If D does not have a cap, (2.12) is obtained from (2.13). We assume that D has a cap. If the cap is on a vertex outside the picture of the left-hand side of (2.12), both sides of (2.12) are 0 by definition. Otherwise, the cap is on a vertex in the picture of the left-hand side of (2.12). In this case, the left-hand side of (2.12) is 0 by definition, and the right-hand side of (2.12) is also 0 by (2.7). Hence, we obtain (2.12). Therefore, we showed that $\langle\cdot\rangle_{k}$ satisfies (2.9)-(2.12), completing the proof.

In the proof of Proposition 2.2, we used Lemmas 2.3, 2.4, 2.5, 2.8 and 2.10 below. We show them in the following of this section.

Lemma 2.3 A connected planar diagram with at least two vertices and no caps has a digon.

Proof Let D be a planar diagram with no caps. In this proof, we regard D as on $\mathbb{R}^{2} \cup\{\infty\}=S^{2}$. It is sufficient to show that D has at least two digons in S^{2}.

Let v, e, and f be the numbers of vertices, edges, and faces of D respectively. Let C_{n} be the number of n-gons of D. By definition, $f=\sum_{k \geq 2} C_{k}$. Further, $6 v=2 e=\sum_{k \geq 2} k C_{k}$, since D is 6 -valent. From these equations and Euler's formula $v-e+f=2$, we obtain $6=C_{2}-\sum_{k \geq 4}(k-3) C_{k} \leq C_{2}$. Hence, D has at least two digons in S^{2}, as required.

Lemma 2.4 For an integer $k \geq 2$, let $\langle\cdot\rangle_{k}$ be a linear map $\widetilde{\mathcal{S}}_{k}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ satisfying (2.9)-(2.11). Then,

$$
\left\langle\begin{array}{l}
\mathrm{m} \\
\mathrm{~m}
\end{array}\right\rangle_{k}=\left\langle\begin{array}{l}
\mathrm{M} \\
\mathrm{~m}
\end{array}\right\rangle_{k}=\frac{1}{[4]}\left\langle{ }^{m}\right\rangle_{k} .
$$

Proof By calculating the Jones-Wenzl idempotent concretely by definition, we have that

$$
\begin{align*}
& -\frac{[2]^{2}}{[4]} \left\lvert\, \begin{array}{l}
U \\
\cap
\end{array}-\frac{1}{[4]}(U)+(\cup \cup)+\frac{[2]}{[3][4]} \frac{U}{\cap}-\frac{[2]^{2}}{[3][4]}\left(\begin{array}{l}
U \\
\cap \cap
\end{array}+\frac{U U}{\cap}\right)\right. \tag{2.16}\\
& +\frac{[2]^{3}}{[3][4]} \cap \cup .
\end{align*}
$$

By using the above formula, we have that

Hence,

$$
\begin{aligned}
& \text { (M) } \left.\rangle_{k}=-\frac{1}{[4]}\left(\omega+\omega^{-1}\right)\langle \rangle_{k}=\frac{1}{[4]}\langle \rangle_{1} \text { 门 }\right\rangle_{k},
\end{aligned}
$$

which implies the required formula of the lemma.

Lemma 2．5 For an integer $k \geq 2$ ，let $\langle\cdot\rangle_{k}$ be a linear map $\widetilde{\mathcal{S}}_{k}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ satisfying （2．9）－（2．12）．Then，

$$
\left\langle\begin{array}{l}
\text { 品 } \\
\text { im }
\end{array}\right\rangle_{k}=\langle \rangle_{k} .
$$

Proof We put

$$
D=\begin{aligned}
& \text { 呦 } \\
& \text { im } \\
& \text { 而亚 }
\end{aligned} \text { and } D^{\prime}=
$$

$i e, D$ and D^{\prime} are planar diagrams which are identical except for a disk，where they differ as shown in these pictures．Let Γ be a planar graph obtained from D by replacing the disk with an 8 －valent vertex．If Γ has a cap on a 6 －valent vertex，then both $\langle D\rangle_{k}$ and $\left\langle D^{\prime}\right\rangle_{k}$ are equal to 0 by（2．10）．Hence，we assume that there are no caps on 6 －valent vertices of Γ ．

If Γ has at least three 6 －valent vertices，then，by Lemma 2.6 below，Γ has a digon whose vertices are 6 －valent．By applying（2．12）to this digon，we can decrease the number of vertices of D and D^{\prime} ，keeping the required formula unchanged．Hence， repeating this argument，we can reduce the proof of the lemma to the case where Γ has at most two vertices．
If Γ has no 6 －valent vertex，then both $\langle D\rangle_{k}$ and $\left\langle D^{\prime}\right\rangle_{k}$ are equal to 0 by（2．10），since any planar diagram with just one vertex must have a cap．Hence，the lemma holds in this case．
If Γ has one 6 －valent vertex，then Γ must have a cap on the 8 －valent vertex．Hence， by（2．7）and Lemma 2．4，we have that $\langle D\rangle_{k}=\left\langle D^{\prime}\right\rangle_{k}$ ．Therefore，the lemma holds in this case．
If Γ has two 6 －valent vertices，then we show the lemma，as follows．If Γ has a cap on the 8 －valent vertex，we obtain the lemma as shown above．Hence，we assume that Γ has no cap on the 8 －valent vertex．Then，Γ must be either

where we depict the 8 －valent vertex by © ．Among them，$\Gamma_{1, i}$ for $i \neq 1$ and $\Gamma_{2, i}$ for any i have a digon，and we can show the lemma as shown above in this case．The remaining case is $\Gamma_{1,1}$ ．In this case，the outer region of D and D^{\prime} is depicted by

and hence，D and D^{\prime} are isotopic．Therefore，the lemma holds in this case．

Lemma 2.6 Let Γ be a connected planar graph with no caps, whose vertices are one 8 -valent vertex and at least three 6 -valent vertices. Then, Γ has a digon whose vertices are 6-valent.

Proof In this proof, we regard Γ as lying on $\mathbb{R}^{2} \cup\{\infty\}=S^{2}$. We put v, e, f and $C_{n}(n=2,3, \ldots)$ of Γ in the same way as in the proof of Lemma 2.3. Let C_{2}^{\prime} be the number of digons of Γ whose vertices are 6 -valent, and let $C_{2}^{\prime \prime}$ be the number of digons of Γ which have the 8 -valent vertex. By definition, $C_{2}=C_{2}^{\prime}+C_{2}^{\prime \prime}$. It is sufficient to show that $C_{2}^{\prime} \geq 2$.
Let m be the number of the vertices adjacent to the 8 -valent vertex. We can verify that $m \geq 2$ and $C_{2}^{\prime \prime} \leq 8-m$. In a similar way as in the proof of Lemma 2.3, we have that $6(v-1)+8=2 e=\sum_{k \geq 2} k C_{k}$ and $f=\sum_{k \geq 2} C_{k}$. From these equations and Euler's formula $v-e+f=2$, we have that

$$
C_{2}^{\prime}-\sum_{k \geq 4}(k-3) C_{k}=7-C_{2}^{\prime \prime} \geq m-1
$$

If $m \geq 3$ or Γ has a k-gon with $k \geq 4$, we have that $C_{2}^{\prime} \geq 2$, as required. Hence, we assume that $m=2$, and that each face of Γ is a digon or a 3 -gon. Then, the neighborhood of the 8 -valent vertex must be:

Since Γ has at least three 6 -valent vertices, this contradicts to the connectivity of Γ. Hence, we obtain the lemma.

In order to show Lemmas 2.8 and 2.10, we show Lemma 2.7 below, which says that an edge can "pass-over" a vertex. It is known, see for example [7], that a tangle diagram is regarded as in the linear skein by putting

with $A=\sqrt{-1} q^{1 / 2}=\sqrt{-1} \exp (\pi \sqrt{-1} / 24)$, noting that $[2]=-A^{2}-A^{-2}$. Further, it is known, see [7], that the value of a tangle diagram in the linear skein is invariant under Reidemeister moves II and III.

Lemma 2.7 For an integer $k \geq 2$, let $\langle\cdot\rangle_{k}$ be a linear map $\widetilde{\mathcal{S}}_{k}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C}$ satisfying (2.9)-(2.12). Then,

Proof Since $\langle\cdot\rangle_{k}$ of the right-hand side of the following formula is equal to 0 by Lemma 2.5,

it is sufficient to show the above formula. In the following of this proof, we show that each side of (2.18) is equal to

$$
\sum_{j=0}^{7} \zeta^{j} D_{j}
$$

where we put $\zeta=\exp (-\pi \sqrt{-1} / 4)$ and

$$
D_{0}=\underset{\sim}{M}, \quad D_{1}=\underset{\sim}{M}, \quad D_{2}=\underset{\sim}{M}, \ldots, \quad D_{7}=\cdots .
$$

We show that the left-hand side of (2.18) is equal to $\sum_{j=0}^{7} \zeta^{j} D_{j}$, as follows. By expanding all crossings of the left-hand side of the following formula and by moving the base point, we have that

$$
\begin{aligned}
& =\sum_{j=1}^{7} \omega^{-j+1} A^{2 j-8} D_{j}=-\sum_{j=1}^{7} \zeta^{j} D_{j}=\underset{\curlywedge}{\bigvee}-\sum_{j=0}^{7} \zeta^{j} D_{j} .
\end{aligned}
$$

Hence, the left-hand side of (2.18) is equal to $\sum_{j=0}^{7} \zeta^{j} D_{j}$.
We show that the right-hand side of (2.18) is equal to $\sum_{j=0}^{7} \zeta^{j} D_{j}$, as follows. By (2.17), we have that

$$
\text { 层 }=D_{0}-\frac{[3]}{[4]}\left(\omega^{-1} D_{1}+\omega D_{7}\right)+\frac{[2]}{[4]}\left(\omega D_{2}+\omega^{-1} D_{6}\right)-\frac{1}{[4]}\left(D_{3}+D_{5}\right)
$$

By considering its mirror image, we have that

$$
\text { 央 }=D_{4}-\frac{[3]}{[4]}\left(\omega D_{3}+\omega^{-1} D_{5}\right)+\frac{[2]}{[4]}\left(\omega^{-1} D_{2}+\omega D_{6}\right)-\frac{1}{[4]}\left(D_{1}+D_{7}\right)
$$

Hence, the right-hand side of (2.18) is equal to

$$
D_{0}-D_{4}+\frac{1-[3] \omega^{-1}}{[4]}\left(D_{1}-D_{5}\right)+\frac{[2]\left(\omega-\omega^{-1}\right)}{[4]}\left(D_{2}-D_{6}\right)+\frac{[3] \omega-1}{[4]}\left(D_{3}-D_{7}\right)
$$

Further, we can verify that

$$
\frac{1-[3] \omega^{-1}}{[4]}=\zeta, \quad \frac{[2]\left(\omega-\omega^{-1}\right)}{[4]}=\zeta^{2}, \quad \frac{[3] \omega-1}{[4]}=\zeta^{3}
$$

by direct calculation. Therefore, the right-hand side of (2.18) is equal to $\sum_{j=0}^{7} \zeta^{j} D_{j}$, as required.

It is known, see for example [7], that

Lemma 2.8 The formula (2.15) holds for $s, t \in\{0,1,2\}$ with $s+t$ being even.
Proof When $s \neq t$, that is, $(s, t)=(2,0)$ or $(0,2)$, the both sides of (2.15) are equal to 0 from Lemma 2.9 below. Hence, we may assume $s=t$. By Lemma 2.7, the left-hand side of (2.15) is equal to

where the first equality is obtained by expanding the crossings, the second one is obtained by Lemma 2.4 and (2.8). In the same way, we can verify that the right-hand side of (2.15) is equal to:

Further, we have that

where the first equality is obtained by Lemma 2.7, the second one is obtained by (2.19) and by expanding the crossings. Therefore, we obtain (2.15), as required.

Lemma 2.9 For an integer $k \geq 2$, let $\langle\cdot\rangle_{k}$ be a linear map $\widetilde{\mathcal{S}}_{k}\left(\mathbb{R}^{2}\right) \longrightarrow \mathbb{C}$ satisfying (2.9)-(2.12). Then, for $m \in\{1,2,4,5\}$:

$$
\left\rangle_{k}=0\right.
$$

Proof We have that
where the second equality is obtained by Lemma 2.7 and the third one is obtained by (2.19). Since $A^{-4 m(m+1)}=\exp \left(-2 \pi \sqrt{-1} \cdot \frac{m(m+1)}{12}\right) \neq 1$, we obtain the required formula.

Lemma 2.10 The formula (2.14) holds for $s=0,1$.

Proof We first show (2.14) for $s=0$, that is:

$$
\begin{equation*}
\left\langle 4_{2}^{2} 0^{4}\right\rangle_{k-1}=\langle{ }^{4} 0^{2} \underbrace{2}\rangle_{k-1} \tag{2.20}
\end{equation*}
$$

By using (2.16), we have that:

$$
\begin{aligned}
& +\frac{[2]}{[4]}\left\langle{ }^{4} 0^{\frac{1}{2} 0^{4}}\right\rangle_{k-1}
\end{aligned}
$$

Therefore, the left-hand side of (2.20) is equal to:

By using Lemma 2.5, we can verify that the right-hand side of (2.20) is also equal to the above formula. Hence, we obtain (2.20).

We next show (2.14) for $s=1$, that is:

We have
where the first equality is obtained by Lemma 2.7 and the second one is obtained by expanding the crossings. By applying (2.20), this is equal to

Since $-A^{8}=\omega$, we obtain (2.21).

2.2 Some properties in the $\boldsymbol{E}_{\mathbf{6}}$ linear skein

In this section, we introduce the E_{6} linear skein of a disk and show some properties in the E_{6} linear skein.

For an integer $m \geq 0$, let $\left(D^{2}, 2 m\right)$ denote a disk D^{2} with fixed distinct $2 m$ points on its boundary. We define a planar diagram in $\left(D^{2}, 2 m\right)$ to be a graph (possibly containing closed curves) embedded in D^{2} whose vertices are $2 m$ univalent vertices on the fixed points of the boundary of D^{2} and 6-valent vertices, such that each 6-valent vertex is depicted by a disk whose boundary has a base point, as shown in the following picture:

We regard isotopic planar diagrams as equivalent planar diagrams. In the following of this paper, we omit to draw the disk D^{2} of a planar diagram. For an integer $m \geq 0$, we define the E_{6} linear skein of $\left(D^{2}, 2 m\right)$, denoted by $\mathcal{S}\left(D^{2}, 2 m\right)$, to be the vector space spanned by planar diagrams in $\left(D^{2}, 2 m\right)$ subject to the relations (2.1)-(2.4).

Lemma 2.11 For any planar diagram T in $\left(D^{2}, 2\right)$,

$$
\overparen{T}=\overparen{T}
$$

in $\mathcal{S}\left(\mathbb{R}^{2}\right)$.
Proof From (2.4), we have that
in $\mathcal{S}\left(D^{2}, 8\right)$. Comparing these equations, we have that
in $\mathcal{S}\left(D^{2}, 8\right)$. Hence, in the same way as in the proof of Lemma 2.7, we obtain

in $\mathcal{S}\left(D^{2}, 8\right)$. Therefore, we have that

$$
T)=\frac{\stackrel{T}{T}}{\frac{T}{0}}=(T)
$$

where the first equality is obtained by (2.22) and the second one is obtained by (2.19). Hence, we obtain the required formula.

By this lemma, we can regard planar diagrams in \mathbb{R}^{2} as in $S^{2}=\mathbb{R}^{2} \cup\{\infty\}$.

3 Colored planar trivalent graphs

In this section, we introduce gray boxes as certain idempotents in the E_{6} linear skein, and introduce colored planar trivalent graphs as planar trivalent graphs whose edges are colored by such gray boxes. Further, we calculate the values of some simple colored planar trivalent graphs.
We define gray boxes $\frac{\mathbf{T}^{n}}{n} \in \mathcal{S}\left(D^{2}, 2 n\right)$ for $n=0,2,4$ by

We note that, by definition, these gray boxes are symmetric with respect to π rotation, like the white boxes of the Jones-Wenzl idempotents. We show some basic properties of the gray boxes in the following lemma.

Lemma 3.1 (1) $\quad \frac{i l_{1}^{1} l_{2}-i}{]_{4}}=0$ for $i=0,1,2$

(4) $\frac{\frac{1}{n}}{\frac{n}{n}}=\frac{\frac{n}{n}}{\frac{n}{n}}$ for $n=0,2,4$

Proof We obtain (1) from the definition of gray boxes and (2.2) and (2.7).
We show (2) as follows. In the same way as in the proof of Lemma 2.4, we have that:

$$
\begin{align*}
& \text { M. } \tag{3.1}\\
& \frac{1 \pi}{\pi}
\end{align*}=\frac{1}{[4]} \text { 川 }
$$

Applying this formula and (2.8) to (2.4), we have that:

$$
\begin{equation*}
\prod_{m}^{\mu}=\prod_{\pi}^{\|}+[2]^{2}[3] \stackrel{\|}{\|} \tag{3.2}
\end{equation*}
$$

Hence,
where we get the second equality by (2.8) and (3.2). Since $[5]-[3]=1$, we obtain (2). We show (3) as follows. From (2.4) and the definition of the gray box, we have that:

Hence, we have that
where the first equality is obtained by (3.3), the second one is obtained by (2.16) and the third one is obtained by (2.2), (2.7), (2.16) and (3.2). Hence, we obtain the first equality of (3). We can obtain the second equality of (3) in a similar way.

We show (4) as follows. When $n=0$ or 2 , the required formula is obtained by definition. When $n=4$, we have that
where the second equality is obtained by (3) and the third one is obtained by (2.16) and (1). Hence, we obtain (4), completing the proof.

We define d_{n} for $n \in\{0,2,4\}$ by

$$
d_{n}=\left\langle\theta^{n}\right| .
$$

We recall (see, for example, [7]) that

$$
\begin{equation*}
\left\langle\mho^{n}\right\rangle=[n+1] \tag{3.4}
\end{equation*}
$$

which can be obtained by using (2.8) repeatedly.

Lemma 3.2 The values of d_{n} are given by

$$
d_{n}= \begin{cases}1 & \text { if } n=0,4, \\ {[3]=1+\sqrt{3}} & \text { if } n=2 .\end{cases}
$$

In particular, these values are positive real numbers.
Proof When $n=0$, the required formula is trivial.
When $n=2$, we obtain the formula from the definition of the gray box and (3.4).
When $n=4$, we show the formula as follows. By Lemma 3.1(2), we have that

$$
\left.d_{4}=\frac{1}{[4]}\left\langle\circlearrowleft^{3}\right\rangle-\frac{1}{[2]^{2}[4]}\langle)^{3}\right\rangle=1,
$$

where we obtain the second equality by (3.4) and (2.2). Hence, we obtain the required formula.

A planar trivalent graph is a trivalent graph embedded in \mathbb{R}^{2}. We consider two kinds of vertices; one is depicted by \bullet, and the other is depicted by a disk \odot whose boundary has a base point. A coloring of a planar trivalent graph Γ is a map from the set of edges of Γ to $\{0,2,4\}$ and a map from the set of vertices of Γ to $\{\bullet, \oslash\}$. A coloring of a planar trivalent graph Γ is said to be admissible if the neighborhood of each vertex of Γ is colored as shown in either of the following pictures:

We define a colored planar trivalent graph to be a planar trivalent graph with an admissible coloring, for example, as shown in the following picture:

We regard a colored planar trivalent graph as in the E_{6} linear skein, by substituting ${ }_{\square}^{n}{ }^{n}$ into each of the edges colored by n, and substituting the following diagrams into
vertices,

where we put

$$
a=\frac{-i+j+k}{2}, \quad b=\frac{i-j+k}{2}, \quad c=\frac{i+j-k}{2} .
$$

We remark that, abusing the notation, the symbol $\mid n$ denotes n parallel edges in a planar diagram, while it denotes an edge colored by n in a colored planar trivalent graph. Further, the symbol \odot denotes a 6 -valent vertex in a planar diagram, while it denotes a kind of a trivalent vertex in a colored planar trivalent graph.

Set $\theta(i, j, k, \bullet)=\left\langle\left(i_{j} k\right\rangle\right.$ and $\left.\theta(2,2,2, \bullet)=\langle 2)^{2}\right\rangle$ for a triple $i, j, k \in\{0,2,4\}$ such that ${ }_{j} \lambda_{k}^{i}$ is one of the pictures in (3.5) up to rotation.

Lemma 3.3 The values of $\theta(\cdot)$ are given by

$$
\begin{aligned}
& \theta(i, j, k, \bullet)=\theta(j, k, i, \bullet), \\
& \theta(0, n, n, \bullet)=d_{n}, \\
& \theta(2,2,2, \bullet)=[3][4] /[2]^{2}=\sqrt{6}, \\
& \theta(2,2,2, \bullet)=[2]^{2}[3][4]=12 \sqrt{2}+7 \sqrt{6}, \\
& \theta(2,2,4, \bullet)=1
\end{aligned}
$$

In particular, these values are positive real numbers.

Proof We obtain the first formula of the lemma by Lemma 2.11.
We obtain the second formula of the lemma from the definition of $\theta(i, j, k)$ and Lemma 3.1(4).

We obtain the third formula of the lemma, since

$$
\begin{aligned}
\theta(2,2,2, \bullet) & =\mid \text { صि }|=| \text { 何 }\left|-\frac{1}{[2]}\right| \\
& =\left(\frac{[3]}{[2]}\right)^{2} \cdot[2]-\frac{1}{[2]} \cdot[3]=\frac{([3]-1)[3]}{[2]}=\frac{[3][4]}{[2]^{2}} .
\end{aligned}
$$

We obtain the fourth formula of the lemma, since

$$
\begin{aligned}
& =[3][4][5]=[2]^{2}[3][4] \text {, }
\end{aligned}
$$

where the third equality is obtained by (3.1) and (3.4).
We obtain the last formula of the lemma, since

$$
\theta(2,2,4, \bullet)=\left\langle\frac{2 \sqrt[2]{2}-\frac{2}{2}}{}\right\rangle=\left\langle{ }_{4} \bigcirc\right\rangle=d_{4}=1
$$

where the second equality is obtained by Lemma 3.1(1).

4 6j-symbols in the E_{6} linear skein

In this section, we consider the vector space $H\left(i_{1}, \ldots, i_{n}\right)$ spanned by planar diagrams whose ends are gray boxes colored by i_{1}, \ldots, i_{n}, and give a basis of this vector space in Proposition 4.2 and Proposition 4.9. Further, we introduce $6 j$-symbols of the E_{6} linear skein as coefficients of a transformation between certain bases of $H(i, j, k, l)$ as we show in Proposition 4.10.

For $i_{1}, \ldots, i_{n} \in\{0,2,4\}(n \geq 2)$, we define the vector space $H\left(i_{1}, \ldots, i_{n}\right)$ to be the subspace of $\mathcal{S}\left(D^{2}, i_{1}+\cdots+i_{n}\right)$ spanned by planar diagrams of the form

with T being a planar diagram in $\left(D^{2}, i_{1}+\cdots+i_{n}\right)$.
In order to prove Proposition 4.2, we show the following lemma.
Lemma 4.1 For an integer $m \leq 4$, let T be a planar diagram in $\left(D^{2}, 2 m\right)$. Then, T can be presented by a linear sum of planar diagrams in $\left(D^{2}, 2 m\right)$ with at most one vertex.

Proof By (2.1), we may assume that T has no closed curves. If T has at most one vertex, the assertion of the lemma is trivial. If T has at least two vertices, we show the lemma, as follows.
Let Γ be a planar graph on S^{2} obtained from T by regarding the outer region of the unit disk of T as a $2 m$-valent vertex. We call this $2 m$-valent vertex ∞. Similarly as
the proof of Lemma 2.5, it is enough to show that Γ has a digon whose vertices does not contain ∞. If Γ is disconnected, then, by considering an innermost connected component which does not contain ∞, we see that T has a digon from Lemma 2.3. Hence, we may assume that Γ is connected.

When $m=4$, we obtain the lemma in a similar way as the proof of Lemma 2.6.
When $m \leq 3$, we show the lemma, as follows. In a similar way as the proof of Lemma 2.3 , we can verify that there exists at least $m+3$ digons. The number of digons which contain ∞ is at most $2 m-1$, because ∞ is $2 m$-valent. Thus, Γ has at least $m+3-(2 m-1)=4-m$ digons whose vertices does not contain ∞. Since $4-m \geq 1$, we obtain the assertion of the lemma.

In the following proposition, we give a basis of $H(i, j)$.
Proposition 4.2 For any $i, j \in\{0,2,4\}$ and $T \in \mathcal{S}\left(D^{2}, i+j\right)$,

$$
\stackrel{i}{i} \frac{1_{T}^{j}}{\overbrace{}^{j}}=\delta_{i j} \cdot \frac{1}{d_{i}}\langle\underbrace{i}_{T} \overbrace{i}^{i}\rangle \stackrel{i}{\underbrace{i}}
$$

where $\delta_{i j}=1$ if $i=j$, and 0 otherwise. As a consequence, we have that

$$
H(i, j)=\{\operatorname{spn}_{\mathbb{C}}\{\underset{0}{\stackrel{i \downarrow}{ } \underbrace{i}}\} \quad \begin{array}{l}
i=j, \\
i \neq j
\end{array}
$$

Proof By Lemma 4.1, we may assume that T has at most one vertex.
If T has just one vertex, then we can verify that there exists a cap, or parallel three edges connecting the vertex and $\frac{\sqrt{4}}{\frac{4}{4}}$. Hence, by (2.2) and Lemma 3.1(3), we can reduce the proof of the proposition to the case where T has no vertices.
If T has no vertices, we show the proposition, as follows. When $i \neq j$, the left-hand side of the first formula of the proposition is equal to 0 , by Lemma 3.1(1). When $i=j$, the left-hand side is equal to a scalar multiple of the identity diagram by (2.1) and Lemma 3.1(1). Hence, we can put

for some $\alpha \in \mathbb{C}$. By closing the diagrams of both sides, using Lemma 3.1(4) and taking the bracket, we obtain

$$
\alpha=\langle\overbrace{T}^{i})^{i}) / d_{i}
$$

noting that $d_{i} \neq 0$ by Lemma 3.2. Therefore, we obtain the first formula of the Proposition.

The second formula of the proposition is obtained from the first formula, noting that

is nonzero in $\mathcal{S}\left(D^{2}, 2 i\right)$, since the value d_{i} of its closure is nonzero by Lemma 3.2.
In order to prove Proposition 4.9, we need Lemmas 4.7 and 4.8 below. In order to show Lemma 4.7, we show the following four lemmas.

Lemma 4.3 For $n \in\{1,2,4,5\}$ and $T \in \mathcal{S}\left(D^{2}, 2 n\right)$, we suppose that ${ }_{i}^{T}{ }_{i} \mid{ }_{2 n-2}=0$
for any $i=0,1, \ldots, 2 n-2$. Then, $T=0$ in $\mathcal{S}\left(D^{2}, 2 n\right)$. Proof In the same way as the proof of Lemma 2.9 using (2.22), we obtain that

$$
\overbrace{\frac{1}{1}}^{T}=0
$$

in $\mathcal{S}\left(D^{2}, 2 n\right)$. Further, we have that

$$
\frac{{ }_{\mathrm{m}}^{\mathrm{m}}}{\mathrm{I}_{\mathrm{m}}}=\left.\right|^{\mathrm{m}}+(\text { a linear sum of planar diagrams of the form }
$$

in the linear skein, which can be shown by induction on m from the definition of the Jones-Wenzl idempotents. Hence, by the assumption of the lemma putting $m=2 n$, we obtain that $T=0$.

Lemma 4.4 In $\mathcal{S}\left(D^{2}, 10\right)$:

$$
\left.\frac{4}{4}\right|_{1}=[2] \frac{4 \mathbf{L}^{1}}{\left.\frac{1}{3} \right\rvert\,} \frac{1}{4!}
$$

Proof By Lemma 4.3, it is sufficient to show that

$$
\underbrace{\text { LHS }\left.\neg^{1}\right|^{3-i}}_{1_{5}}=\underbrace{\text { RHS }\left.\Omega^{1}\right|^{3-i}}_{\left.\right|_{5} ^{-i}}
$$

for any $i=0,1, \ldots, 3$.
We show (4.1), as follows. Equation (4.1) is rewritten as

$$
\frac{4}{4}(1)=[2] \underset{4}{4}
$$

and this is shown by Lemma 3.1(4).
We show (4.2), as follows. When $i=0,1,2$, this is shown by Lemma 3.1(1). When $i=3$, (4.2) is rewritten as

By Lemma 3.1(2), we have that
where the second equality is obtained by Lemma 3.1(1) and (3). Therefore, we obtain (4.2).

We can verify (4.3) in a similar way as above.

Lemma 4.5 In $\mathcal{S}\left(D^{2}, 12\right)$:

Proof We have that
where the second equality is obtained by Lemma 3.1(4), and the last one is obtained by Lemma 4.4. Hence:

From (2.16), Lemma 3.1(1) and (3), this is equal to:

$$
\underbrace{4}_{4}
$$

Since $\frac{[3]}{[4]}+\frac{[3]^{2}}{[2]^{2}[4]}=\frac{[3]}{[2]} \cdot \frac{[2]^{2}+[3]}{[2]^{2}[4]}=\frac{[3]}{[2]}$, we obtain that:

Further, the right-hand side is calculated as
where we obtain the first equality by Lemma 4.4. Therefore, we obtain the required formula of the lemma.

Lemma 4.6 In $\mathcal{S}\left(D^{2}, 16\right)$:

$$
\frac{4}{4} \|_{4}^{4}=4_{4}^{4}
$$

Proof We have that
where the first equality is obtained by Lemma 3.1(1) and (4), and the second one is obtained by Lemma 4.5 . As the $\pi / 2$ rotation of this formula, we have that:

From the above two formulas, we obtain the required formula.
For $A \in\{\bullet, \oslash\}$, we denote

Lemma 4.7 For any $i, j \in\{0,2,4\}$,
in $\mathcal{S}\left(D^{2}, 2(i+j)\right)$, where $k \in\{0,2,4\}$ and $A \in\{\bullet, ๑\}$ of the sum run over all admissible colorings of the colored planar trivalent graph in the summand.

Proof Since the gray boxes are symmetric with respect to π rotation, we may assume that $i \geq j$ without loss of generality.

When $j=0$, the required formula is rewritten as
and this is obtained by Lemma 3.1(4).
When $(i, j)=(2,2)$, the required formula is rewritten as:

From the definition of the gray box, this is rewritten as:

We can verify the above formula by direct calculation, using (2.16).
When $(i, j)=(4,2)$, the required formula is rewritten as

$$
\frac{1}{4}_{4}^{4} \frac{L_{2}^{2}}{T_{2}}=\frac{d_{2}}{\theta(4,2,2, \bullet)}{ }_{4}^{4} \cdot 0_{2}^{2}=[3]_{2}^{2} \int_{4}^{\frac{1}{2}}
$$

and this is obtained by Lemma 4.5.
When $(i, j)=(4,4)$, the required formula is rewritten as
and this is obtained by Lemma 4.6.
Therefore, the proof of the lemma is completed.

Lemma 4.8 For $A, A^{\prime} \in\{\bullet, \oslash\}$

$$
\left.\left\langle\left(2, \frac{A}{2}\right)_{(A)}\right) 2\right\rangle=\delta_{A A^{\prime}} \theta(2,2,2, A) .
$$

Proof When $A=A^{\prime}$, we obtain the lemma from the definition of $\theta(\cdot)$.
When $A \neq A^{\prime},(2, A) 2$ is presented by a linear sum of planar diagrams with just one vertex. Since any planar diagram with just one vertex has a cap, the left-hand side of the lemma is equal to 0 . Hence, we obtain the required formula.

In the following proposition, we give a basis of $H\left(i_{1}, \ldots, i_{n}\right)$ for $n \geq 3$.

Proposition 4.9 For $i_{1}, \ldots, i_{n} \in\{0,2,4\}(n \geq 3)$, the vector space $H\left(i_{1}, \ldots, i_{n}\right)$ has a basis
where $j_{1}, \ldots, j_{n-3} \in\{0,2,4\}$ and $A_{1}, \ldots, A_{n-2} \in\{\bullet, \oslash\}$ run over all admissible colorings.

Proof We first show that $H\left(i_{1}, \ldots, i_{n}\right)$ is spanned by the planar diagrams in (4.5) by induction on n, as follows.

When $n=3$, we have that
for any $T \in \mathcal{S}\left(D^{2}, i_{1}+i_{2}+i_{3}\right)$, where the first equality is obtained by Lemma 4.7, and the second one is obtained by Proposition 4.2. Hence, $H\left(i_{1}, i_{2}, i_{3}\right)$ is spanned by the planar diagrams in (4.5).

When $n \geq 4$, we show that $H\left(i_{1}, \ldots, i_{n}\right)$ is spanned by the planar diagrams in (4.5), assuming the case of $n-1$, as follows. In a similar way as above, we have that

for any $T \in \mathcal{S}\left(D^{2}, i_{1}+\cdots+i_{n}\right)$. By the assumption of the induction, this can be presented by a linear sum of planar diagrams in (4.5). Therefore, $H\left(i_{1}, \ldots, i_{n}\right)$ is spanned by the planar diagrams in (4.5).

We next show that the planar diagrams in (4.5) are linearly independent, as follows. We denote the index set of (4.5) by J. We assume that
for some scalars

$$
\alpha_{j_{1}^{\prime}, \ldots, j_{n-3}^{\prime}}^{A_{1}^{\prime}, \ldots, A_{n-2}^{\prime}} \in \mathbb{C}
$$

For any $\left(j_{1}, \ldots, j_{n-3}, A_{1}, \ldots, A_{n-2}\right) \in J$, by gluing the planar diagram

to the above formula and taking the bracket, we have that

By Proposition 4.2, we have that

where we obtain the second equality by Lemma 4.8, and obtain the last line by repeating this procedure. Hence, from (4.6), we obtain that

$$
\alpha_{j_{1}, \ldots, j_{n-3}}^{A_{1}, \ldots, A_{n-2}} \cdot \frac{\theta\left(i_{1}, i_{2}, j_{1}, A_{1}\right) \theta\left(j_{1}, i_{3}, j_{2}, A_{2}\right) \cdots \theta\left(j_{n-1}, i_{n-1}, i_{n}, A_{n-2}\right)}{d_{j_{1}} d_{j_{2}} \cdots d_{j_{n-1}}}=0
$$

Since all of $\theta(\cdot)$ in the above formula are nonzero by Lemma 3.3, we obtain that $\alpha_{j_{1}, \ldots, j_{n-3}}^{A_{1}, \ldots, A_{n-2}}=0$ for any $\left(j_{1}, \ldots, j_{n-3}, A_{1}, \ldots, A_{n-2}\right) \in J$. Hence, the planar diagrams in (4.5) are linearly independent, as required.

We consider the values

for $j_{1}, j_{2}, \ldots, j_{6} \in\{0,2,4\}$ and $A_{1}, A_{2}, A_{3}, A_{4} \in\{\bullet, \oslash\}$ with the colored planar trivalent graph in the above formula being admissible. These values satisfy the formula of the following proposition, which is the defining relation of the $6 j$-symbols. In this sense, the above values give the $6 j$-symbols of the E_{6} linear skein.

Proposition 4.10 (Defining relation of the $6 j$-symbols) For $i, j, k, l, m \in\{0,2,4\}$ and $A, B \in\{\bullet, \triangleright\}$ with

being admissible,

where $n \in\{0,2,4\}$ and $C, D \in\{\bullet, \oslash\}$ of the sum run over all admissible colorings of the colored planar trivalent graph in $\langle\cdot\rangle$.

Proof In the proof, indices of a sum run over all admissible colorings of the colored planar trivalent graphs in the summand.

By using Lemma 4.7 twice, the left-hand side of the required formula is equal to:

$$
\sum_{n, n^{\prime}, C, D} \frac{d_{n} d_{n^{\prime}}}{\theta(k, l, n, C) \theta\left(i, j, n^{\prime}, D\right)}
$$

By Proposition 4.2, this is equal to:

From Lemma 2.11, this is equal to the right-hand side of the required formula.

5 A state sum invariant of 3-manifolds

It is known, see [2;6], that a state sum invariant of 3 -manifolds can be constructed from a set of $6 j$-symbols, and the topological invariance of the invariant is shown by using the orthogonal relation and the pentagon relation of the $6 j$-symbols, which are naturally obtained from the defining relation of the $6 j$-symbols. See also [13;14] for similar procedures of such constructions, and see [15] for a construction of the E_{6} state sum invariant. In this section, along such a general procedure, we construct a state sum invariant of 3-manifolds based on our E_{6} linear skein in Definition 5.1, and show its topological invariance in Theorem 5.2. The outline of the proof of the topological invariance is the known procedure, and we check it concretely based on our E_{6} linear skein in this section.

We relate an oriented tetrahedron to a planar trivalent graph, as follows, where, in the left picture below, we regard gray characters as on faces of the hidden side.

For a given tetrahedron (the left picture), we consider the triangulation of the boundary of the tetrahedron, and consider its dual decomposition on S^{2} (the middle picture). Further, by isotopy on S^{2}, we obtain a planar trivalent graph (the right picture). Here, we fix an orientation of the plane of the trivalent graph, and we make the above correspondence in such a way that the induced orientation of the boundary of the tetrahedron coincides with the orientation of the plane under this correspondence.

We consider colorings of a tetrahedron corresponding to colorings of a planar trivalent graph, as follows. A coloring of a tetrahedron T is a map from the set of faces of T to $\{\bullet, \oslash\}$ and a map from the set of edges of T to $\{0,2,4\}$. A coloring of a tetrahedron T is said to be admissible if each face of T is colored as shown in either of the following pictures, noting that these are dual to the pictures of (3.5).

Here, when a face is colored by \odot, we consider a marking such as \qquad a triangle of the face corresponding to the base point of \bullet. For $A \in\{\bullet, \odot\}$, we denote

$$
2 \sqrt{2} \frac{\mathrm{~A} / 2}{\nabla}=\left\{\begin{array}{l}
2 \sqrt[2]{2} \text { if } A=\bullet \\
2 \sqrt{2} / 2 \text { if } A=0
\end{array}\right.
$$

Let M be a closed oriented 3-manifold, and let \mathcal{T} be a triangulation of M. A coloring of \mathcal{T} is a map from the set of faces of \mathcal{T} to $\{\bullet, \oslash\}$ and a map from the set of edges of \mathcal{T} to $\{0,2,4\}$. A coloring of \mathcal{T} is said to be admissible if the coloring of each tetrahedron of \mathcal{T} is admissible. When a face is colored by \odot, we consider a marking such as at a vertex of a triangle of the face. We define a weight $|\cdot|$ of a colored oriented tetrahedron by

where the colored planar trivalent graph in the right-hand side is obtained from the tetrahedron as mentioned above. The position of the base points of the colored planar trivalent graph in the right-hand side is defined by the markings of the tetrahedron in the left-hand side. When the markings of the tetrahedron is given in other ways, the
position of the base points change. For example,

We note that the values of $\theta(\cdot)$ are positive real numbers by Lemma 3.3. We also note that, by Lemma 2.11, the colored planar trivalent graph in the right-hand side can be regarded as in S^{2}, which guarantees that its value is well determined from a colored oriented tetrahedron. We denote by v the number of vertices of \mathcal{T}. We put $w=d_{0}^{2}+d_{2}^{2}+d_{4}^{2}=2+[3]^{2}$.

Definition 5.1 We define the E_{6} state sum of a closed oriented 3-manifold M with a triangulation \mathcal{T} by

$$
Z^{E_{6}}(M, \mathcal{T})=w^{-v} \sum_{\lambda} \prod_{E} d_{\lambda(E)} \prod_{T}|(T, \lambda)|
$$

where the sum of λ runs over all admissible colorings of \mathcal{T}, the product of E runs over all edges of \mathcal{T}, and the product of T runs all tetrahedra of \mathcal{T}.

We note that $Z^{E_{6}}(M, \mathcal{T})$ does not depend on a choice of markings of faces, because, when we change a marking of a face, the changes of the weights of the adjacent tetrahedra cancel together. Further, we show that $Z^{E_{6}}(M, \mathcal{T})$ does not depend on a choice of a triangulation \mathcal{T} in the following theorem.

Theorem 5.2 The E_{6} state sum $Z^{E_{6}}(M, \mathcal{T})$ is a topological invariant of a closed oriented 3-manifold M, independently of a choice of a triangulation \mathcal{T}.

We will show a proof of the theorem later in this section. In order to show the theorem, we recall the Pachner moves. Let M and M^{\prime} be closed 3-manifolds with triangulations \mathcal{T} and \mathcal{T}^{\prime} respectively. It is known (see Pachner [10]) that M and M^{\prime} are homeomorphic if and only if \mathcal{T} and \mathcal{T}^{\prime} are related by a finite sequence of simplicial isomorphisms and the Pachner moves $P_{1,4}$ and $P_{2,3}$ shown below,

where the pictures consist of one tetrahedron, four tetrahedra, two tetrahedra and three tetrahedra, respectively. Hence, in order to show Theorem 5.2, it is sufficient to show that $Z^{E_{6}}(M, \mathcal{T})$ is invariant under the Pachner moves $P_{1,4}$ and $P_{2,3}$.

Further, it is known [14] that the $P_{1,4}$ move can be simplified by using the $P_{2,3}$ move, as follows. We consider singular triangulations, extending the usual triangulations. By applying the $P_{2,3}$ move to the upper three tetrahedra of the right-hand side of the $P_{1,4}$ move, the right-hand side of the $P_{1,4}$ move is rewritten as
the union obtained by gluing

along P, Q, R.

Hence, by using the $P_{2,3}$ move, the $P_{1,4}$ move can be replaced with the following move.
 $\operatorname{along} P, Q, R) \longleftrightarrow \square$

Further, we will show later in the proof of Theorem 5.2 that invariance under this move can be reduced to invariance under the following move [14],

where the left-hand side consists of two (singular) tetrahedra, and the right-hand side consists of two triangles (with no tetrahedra). Hence, in order to show Theorem 5.2, it is sufficient to show that $Z^{E_{6}}(M, \mathcal{T})$ is invariant under the move (5.2) and the $P_{2,3}$ move.

Furthermore, it is known as general procedures (see [2;6;13;14]) that invariance under the move (5.2) and the $P_{2,3}$ move are obtained from the orthogonal relation and the pentagon relation of the $6 j$-symbols, which are naturally obtained from the
defining relation of the $6 j$-symbols (Proposition 4.10). We show them in the following two lemmas.

Lemma 5.3 (The orthogonal relation)

Proof In the proof, indices of a sum run over all admissible colorings of the colored trivalent graph in the summand, and we denote $\theta(i, j, k, A)=\theta_{i j k}^{A}$.
From the definition of the weights, the required formula is rewritten as

In the above formula, $\sqrt{ }$ is equal to $\theta_{i l m}^{A} \theta_{k j m}^{B}$ when $m=m^{\prime}, A=A^{\prime}$ and $B=B^{\prime}$. Thus, it is sufficient to show that

By using Proposition 4.10 twice, we have that:

Hence, by Proposition 4.9 for $n=4$, we obtain (5.3), as required.

Lemma 5.4 (The pentagon relation)

Proof In the proof, indices of a sum run over all admissible colorings of the colored planar trivalent graphs in the summand, and we denote $\theta_{i j k}^{A}=\theta(i, j, k, A)$. From the definition of the weights, the required formula is rewritten as:

We show the above formula by calculating a certain colored planar trivalent graph in two ways, as follows. By using Proposition 4.10 twice, we have that:

On the other hand, by using Proposition 4.10 three times, we have that:

$$
=\sum_{\substack{l^{\prime}, j_{1}^{\prime}, B_{2}^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}}} \frac{d_{j_{1}^{\prime}} d_{l^{\prime}}}{\theta_{i_{2} j_{1}^{\prime} j_{3}}^{B_{2}^{\prime}} \theta_{j_{1}^{\prime} k_{1} l^{\prime}}^{C_{1}^{\prime}} \theta_{j_{2} k_{2} l^{\prime}}^{C_{2}^{\prime}} \theta_{j_{3} k_{3} l^{\prime}}^{C_{3}^{\prime}}}
$$

From these formulae and Proposition 4.9 for $n=5$, we obtain (5.4), as required.

We now show a proof of Theorem 5.2.

Proof of Theorem 5.2 As mentioned before, it is sufficient to show that $Z^{E_{6}}(M, \mathcal{T})$ is invariant under the $P_{2,3}$ move and the move (5.1).

We obtain the invariance under the $P_{2,3}$ move by Lemma 5.4.
We show the invariance under the move (5.1), as follows. In the following of this proof, indices of a sum run over all admissible colorings of tetrahedra in the summand. By Lemma 5.3, we have that

for any $i_{1}, i_{2}, j_{1}, j_{2} \in\{0,2,4\}$ and $A_{0}, A_{0}^{\prime}, B_{3}, B_{3}^{\prime} \in\{\bullet, \oslash\}$ such that the colored triangles
are admissible. By putting $i_{3}=i_{3}^{\prime}, B_{3}=B_{3}^{\prime}$, by multiplying $d_{i_{3}}^{-1} d_{j_{1}} d_{j_{2}}$ by both sides and by summing over j_{1}, j_{2}, B_{3}, we have that

where the last equality is obtained by Lemma 5.5 below. This means the invariance under the move (5.1), as required.

In the proof of Theorem 5.2, we used the following lemma.
Lemma 5.5 For any $k \in\{0,2,4\}$,

$$
d_{k}^{-1} \sum_{i, j, A} d_{i} d_{j}=w
$$

where $i, j \in\{0,2,4\}$ and $A \in\{\bullet, \oslash\}$ in the sum run over all admissible colorings of a triangle $i_{k}^{i}{ }_{k}^{j}$.

Proof When $k=0$, we obtain the required formula from the definition of admissible colorings and the definition of w.
When $k=2, \frac{i / A}{\lambda_{2}}{ }^{j}$ is admissible for $(i, j, A)=(0,2, \bullet),(2,0, \bullet),(2,2, \bullet),(2,2, \bullet)$, $(2,4, \bullet),(4,2, \bullet)$. Hence, the left-hand side of the lemma is equal to

$$
d_{2}^{-1} \cdot 2\left(d_{0} d_{2}+d_{2}^{2}+d_{2} d_{4}\right)=4+2[3]=6+2 \sqrt{3}=w
$$

as required.
 the left-hand side of the lemma is equal to

$$
d_{4}^{-1}\left(2 d_{0} d_{4}+d_{2}^{2}\right)=2+[3]^{2}=w
$$

as required.

6 Equality to the E_{6} state sum invariant

In this section, we show our defining relations of the E_{6} linear skein are equivalent to Bigelow's relations of the E_{6} subfactor planar algebra in Section 6.1. Further, we show our state sum invariant is equal to the E_{6} state sum invariant in Section 6.2.

6.1 Equivalence to Bigelow's relations of the E_{6} subfactor planar algebra

Bigelow [1] defined a planar algebra $\left\{\mathcal{S}^{\prime}\left(D^{2}, 2 n\right)\right\}_{n=0,1, \ldots}$ (in his paper this is denoted by \mathcal{P}) by giving generators and relations, and proved that its principal graph is the E_{6} Dynkin diagram. However, his proof relies on the existence of the E_{6} subfactor planar algebra and some of its known properties. In this section, we show that $\mathcal{S}\left(D^{2}, 2 n\right)$ is isomorphic to $\mathcal{S}^{\prime}\left(D^{2}, 2 n\right)$ for any $n \geq 0$. We note that an S-labeled disc of [1] corresponds to a vertex \odot of this paper. As a consequence of this section, $\left\{\mathcal{S}\left(D^{2}, 2 n\right)\right\}_{n=0,1, \ldots .}$ forms a subfactor planar algebra.

As in [1], for an integer $n \geq 0$, we define $\mathcal{S}^{\prime}\left(D^{2}, 2 n\right)$ to be the vector space spanned by planar diagrams in $\left(D^{2}, 2 n\right)$ subject to the relations (2.1)-(2.3) and (6.1), (6.2) below,

We recall that $\mathcal{S}\left(D^{2}, 2 n\right)$ is the vector space spanned by planar diagrams in $\left(D^{2}, 2 n\right)$ subject to the relations (2.1)-(2.4).

Proposition 6.1 For any $n \geq 0, \mathcal{S}\left(D^{2}, 2 n\right)$ is isomorphic to $\mathcal{S}^{\prime}\left(D^{2}, 2 n\right)$.

Proof We assume (2.1)-(2.3) in this proof. It is enough to show that (2.4) is equivalent to (6.1) and (6.2).

Assuming (2.4), we show (6.1) and (6.2), as follows. We obtain (6.1) from (3.2). Further, we obtain (6.2) in the similar way as the proof of Lemma 2.9 in the case $m=4$, using (2.22).

Assuming (6.1) and (6.2), we show (2.4), as follows. From the E_{6} version of the proof of [1, Lemma 3.1], an edge can pass-over a vertex. Hence, the formula of Lemma 4.3 holds in $\mathcal{S}^{\prime}\left(D^{2}, 2 m\right)$ in the similar way as the proof of Lemma 2.9. Hence, it is sufficient to show that

for any $i=0,1,2$. We obtain (6.3) by (2.8), (3.1) and (6.1), and we obtain (6.4) and (6.5) by (2.2) and (2.7), noting that the relations (2.1)-(2.3) implies (2.7), (2.8) and (3.1). Therefore, we obtain (2.4), as required.

6.2 Equality of our state sum invariant to the E_{6} state sum invariant

The E_{6} state sum invariant of 3-manifolds is the state sum invariant defined from the $6 j$-symbols of the E_{6} subfactor. The E_{6} state sum invariant is concretely formulated and calculated in $[12 ; 15]$. In this section, we show that our state sum invariant defined in Section 5 is equal to the E_{6} state sum invariant in Proposition 6.2.

We briefly review the formulation of the E_{6} state sum invariant; for further details, see $[12 ; 15]$. Similarly as our formulation, edges are colored by $0,2,4$ (they are denoted by "id", " ρ ", " α " in [12; 15]). Admissible colorings are defined similarly as our formulation. A face whose edges are colored by i, j, k is colored by \bullet unless $i=j=k=2$, and is colored by S_{3} and S_{4} if $i=j=k=2$, while a face whose edges are colored by $2,2,2$ is colored by \bullet and \odot in our formulation. (To be precise, their faces are colored by $S_{1}, S_{2}, S_{3}, S_{4}$, though the color is uniquely determined
unless $i=j=k=2$, and we denote it by \bullet here.) Unlike our formulation, a total order of the vertices is given, and edges are oriented by using this order. The weight of a tetrahedron

is given by the $6 j$-symbols of the E_{6} subfactor; we review their concrete values in Appendix B.

Proposition 6.2 Our state sum invariant of a closed oriented 3-manifold M defined in Section 5 is equal to the E_{6} state sum invariant of M.

Proof We note that basic parts of their formulation are similar to our formulation. The differences are that their edges are oriented, and that a face whose edges are colored by $2,2,2$ is colored by S_{3} and S_{4}, while such a face is colored by \bullet and \odot in our formulation.

We transfer the colors of faces by putting

with some unitary matrix $\left(\begin{array}{ll}u_{3} & v_{3} \\ u_{4} & v_{4}\end{array}\right)$. By the unitarity of this matrix, we have that

which justifies that the substitution of S_{3}, S_{4} can be transformed into the substitution of \bullet, \bigcirc in the definition of the state sum invariant.

It is shown, see Lemma B. 1 (due to T Ohtsuki), that our $6 j$-symbols can be transformed into the $6 j$-symbols of the E_{6} subfactor by such a transformation as above. Hence, our state sum invariant is equal to the E_{6} state sum invariant.

7 Properties and examples of our state sum invariant

The values of the E_{6} state-sum invariant have been calculated for the lens space $L(p, q)$ for $q=1,2,3$ in [12], and for some other 3-manifolds in Sato and Wakui [11]. In this section, we calculate the values of the E_{6} state-sum invariant for the lens spaces $L(4,1), L(5,2)$ and $L(5,1)$ in terms of our E_{6} linear skein in Examples 7.5, 7.6 and 7.7. Further, we review some property of the E_{6} state sum invariant in Proposition 7.1. The following proposition is a well-known basic property of the E_{6} state sum invariant.

Proposition 7.1 For any closed oriented 3-manifold M,

$$
Z^{E_{6}}(\bar{M})=\overline{Z^{E_{6}}(M)}
$$

where \bar{M} denotes M with the opposite orientation.
Proof We review the proof based on our construction of the state sum invariant. When we change the orientation of M, the colored planar trivalent graph corresponding to a tetrahedron becomes its mirror image. Hence, the value of $Z^{E_{6}}(M)$ becomes its complex conjugate.

In order to calculate our state sum invariant later, we show some properties of colored planar trivalent graphs in the following three lemmas.

Lemma 7.2 (1)

(2)

Proof We obtain (1), since:

We obtain (2), since:

We show (3), as follows. By Proposition 4.9, $H(2,2,2)$ is spanned by:

Further, since the left-hand side of the required formula is symmetric with respect to $\frac{2}{3} \pi$ rotation, we can put

with some scalar c. By closing one strand at the bottom, we have that:

By expanding white boxes, we calculate the diagram of the right-hand side as:

$$
\stackrel{2}{2}=\frac{[3]-1}{[2]} \stackrel{21}{\sim}=\frac{[4]}{[2]^{2}} \stackrel{2 \downarrow}{\pi}
$$

Further, by (3.2), the left-hand side of (7.2) is calculated as:

We can verify that the second summand of the right-hand side is equal to 0 by expanding the white box. Hence, by using (3.2) again, we can show that:

Therefore, from (7.2), $c=[2]^{4}$. Hence, from (7.1), we obtain (3) of the lemma.
We obtain (4), since:

(2) $\left\langle 2_{2}^{2} 2_{2}^{2} 2^{2}\right\rangle=\frac{2}{[2][3]} \theta(2,2,2, \bullet)=\frac{2[4]}{[2]^{3}}$
(3) $\left\langle 2_{2}^{2} 2_{2}^{2} 2^{2}\right\rangle=0$
(4) $\left\langle 2_{2}^{2} 22_{2}^{2} 2^{2}\right\rangle=-\frac{1}{[2]} \theta(2,2,2, \bigcirc)=-[2][3][4]$
(5) $\left\langle\begin{array}{l}2 \sim 2 \\ 22_{2}^{2} \\ 2 \\ 2\end{array} 0_{0}^{2}\right]^{2}=[2]^{2}[3][4]$
(6) $\left\langle\begin{array}{lll}2 & 2 \\ 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2\end{array} ._{0}^{2}=0\right.$
(7) $\left.\left\langle 2_{2}^{2} 2_{2}^{4}\right)^{2}\right\rangle=-\frac{1}{[2]}$
(8) $\left.\left\langle\begin{array}{ll}2 & 2_{2}^{4} \\ 2_{2} & 2\end{array}\right]^{2}\right\rangle=-[3]$
(9) $\left.\left\langle\begin{array}{l}2 / 4 a^{4} 2_{2}^{2} \\ 2\end{array}\right]^{2}\right\rangle=[2]^{3}$
(10) $\left.\left\langle 22_{4}^{2} 4_{4}^{4}\right]^{2}\right\rangle=-\frac{1}{[3]}$

Proof We obtain (1) by Lemma 3.1(4) and Lemma 3.3.
We obtain (2) by applying Lemma 7.2 (1) to a triangle of a diagram of the required formula and by using Lemma 3.3.

We obtain (3), since any planar diagram with just one vertex must have a cap and such a diagram is equal to 0 in the linear skein.

We obtain (4) by applying Lemma 7.2(2) to a triangle of a diagram of the required formula and by using Lemma 3.3.

We obtain (5) and (6) by applying Lemma 7.2(3) to a triangle of a diagram of the required formulas and by using Lemmas 3.3 and 4.8 .

We obtain (7) by applying Lemma 7.2(4) to a triangle of a diagram of the required formula and by using Lemma 3.3.

We obtain (8), since

$$
\left.\left\langle 2^{2} 2^{4} 2^{2} 2^{2}\right\rangle^{2}\right\rangle=\langle\text { 合分 }\rangle=-[3] d_{4}=-[3],
$$

where the third equality is obtained by Lemma 3.1(3).
We obtain (9), since

$$
\begin{aligned}
\left\langle 2^{2} 2^{4} 2^{2}\right\rangle & \left.=\langle \rangle-\frac{1}{[2]^{2}[4]}\left(\begin{array}{cc}
2 \\
2 & 2 \\
2 & 2
\end{array}\right]^{2}\right\rangle \\
& =\frac{[2]}{[3][4]}\langle \rangle=\frac{[2]}{[3][4]} \theta(2,2,2, \odot)=[2]^{3},
\end{aligned}
$$

where the third equality is obtained by (2.16) and (6) of the lemma.

We obtain (10), since
where the fourth equality is obtained by (9) of the lemma.

Lemma 7.4

(2)

Proof We show (1), as follows. Since the space $H(2,2,2)$ is spanned by

by Proposition 4.9, we can put

with some scalars c_{1} and c_{2}. By closing the diagrams of (7.3) with

we have that

$$
\left\langle\left(\begin{array}{l}
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right)^{2}\right\rangle=c_{1} \cdot \theta(2,2,2, \bullet)
$$

by Lemma 4.8. Further, by Lemmas 3.3 and 7.3,

$$
-[2][3][4]=c_{1} \cdot \frac{[3][4]}{[2]^{2}}
$$

Hence, $c_{1}=-[2]^{3}$. By closing the diagrams of (7.3) with

we have that

$$
\left\langle\begin{array}{ll}
2 & 2 \\
2 & 2 \\
2 & 2 \\
2 & 2
\end{array}\right\rangle=c_{2} \cdot \theta(2,2,2, \bigcirc)
$$

by Lemma 4.8. Further, by Lemmas 3.3 and 7.3,

$$
[2]^{2}[3][4]=c_{2} \cdot[2]^{2}[3][4]
$$

Hence, $c_{2}=1$. Therefore, from (7.3), we obtain (1) of the lemma.

We show (2), as follows. Since the space $H(4,2,2)$ is spanned by Proposition 4.9, we can put

with some scalars c. By closing the diagrams of (7.4) with 4

$$
\langle\underbrace{2}_{2} 2_{2}^{4} 2_{0}^{2}\rangle=c \cdot \theta(2,2,4, \bullet)
$$

Further, by Lemmas 3.3 and 7.3,

$$
[2]^{3}=c .
$$

Hence, from (7.4), we obtain (2) of the lemma.

We briefly review the construction of the state sum invariant based on spines of 3manifolds; see $[13 ; 14]$ for details. A spine of a closed oriented 3 -manifold is a 2-polyhedron obtained from $M-$ (3-balls) by collapsing all 3 -cells in such a way that each point of the resulting 2 -polyhedron has a neighborhood of either of the
following forms.

Thus, we have that a spine consists of vertices (the right picture), edges (the middle picture) and faces (the left picture). A typical spine of a 3 -manifold M is the $2-$ skeleton of the dual decomposition of a triangulation of M. A coloring of a spine X is a map from the set of edges of X to $\{\bullet, จ\}$ and a map from the set of faces of X to $\{0,2,4\}$. We can define an admissible coloring of a spine in an appropriate way, corresponding to an admissible coloring of a triangulation. We can define a weight of a colored vertex of a spine corresponding to the weight of a colored tetrahedron, by using a colored planar trivalent graph obtained as the intersection of the spine and the boundary of a neighborhood of the vertex. It is known, see [13;14], that the state sum invariant of a 3 -manifold M with a spine X is presented by

$$
Z^{E_{6}}(M)=w^{-v} \sum_{\lambda} \prod_{F} d_{\lambda(F)} \prod_{V}(\text { the weight of } V \text { colored by } \lambda)
$$

where the sum of λ runs over all admissible colorings of X, the product of F runs over all faces of X, the product of V runs all vertices of X, and v denotes the number of 3-balls when we make X from M.

Example 7.5 [12] The value of the E_{6} state sum invariant of the lens space $L(4,1)$ is given by

$$
Z^{E_{6}}(L(4,1))=\frac{3+\sqrt{-3}}{6}
$$

Proof In this proof, we calculate the required value based on our construction of the state sum invariant.
A spine of $L(4,1)$ is given by
(7.5) $\left(\begin{array}{l}\text { 2-polyhedron } \\ \text { obtained by gluing }\end{array}\right.$
 along $\left.x_{1}, \ldots, x_{4}, y\right) \underset{\substack{\text { dashed } \\ \text { line }}}{\cup}$

where the resulting $2-$ polyhedron obtained from the left picture by gluing the edges labeled by x_{1}, \ldots, x_{4}, y has a boundary of a dashed line, and we consider the union of this resulting 2 -polyhedron and a disk along this dashed line. This spine has one vertex. This vertex corresponds to the fusion of the left picture below.

The fusion of the left picture corresponds to the tetrahedron of the middle picture; the upper graph of the fusion is dual to the faces of the front side of the tetrahedron, and the lower graph is dual to the faces of the hidden side of the tetrahedron. The tetrahedron of the middle picture corresponds to the planar graph of the right picture; we note that this planar graph is the union of the upper graph of the fusion and the mirror image of the lower graph of the fusion, which is equal to the boundary of the left picture of (7.5).

Hence, we calculate the value of $Z^{E_{6}}(L(4,1))$, as follows:

$$
\begin{align*}
& Z^{E_{6}}(L(4,1))=w^{-1} \sum_{\substack{i, j \in\{0,2,4\} \\
A, B \in\{\bullet, Q\}}} d_{i} d_{j} \tag{7.6}\\
& =w^{-1} \sum_{\substack{i, j \in\{0,2,4\} \\
A, B \in\{\bullet, Q\}}} \frac{d_{i} d_{j}}{\theta(i, i, j, A) \theta(i, i, j, B)}(\underbrace{i}_{\substack{i \\
i}} \underbrace{i}_{i})_{i}^{i})
\end{align*}
$$

When $j=0$, the sum of (7.6) is equal to

$$
\sum_{i \in\{0,2,4\}} \frac{d_{i} d_{0}}{\theta(i, i, 0, \bullet)^{2}}\left\langle\begin{array}{c}
i \\
i \\
i
\end{array}\right)=\sum_{i \in\{0,2,4\}} \frac{d_{i}^{2}}{d_{i}^{2}}=3,
$$

by Lemmas 3.3 and 7.3. When $j=4$, the sum of (7.6) is equal to

$$
\frac{d_{2} d_{4}}{\theta(2,2,4, \bullet)^{2}}\left(\binom{2_{2}^{4} 4_{2}^{4}}{2}\right\rangle=\frac{[3]}{1^{2}} \cdot\left(-\frac{1}{[3]}\right)=-1
$$

by Lemmas 3.3 and 7.3. When $j=2$, the sum of (7.6) is equal to

$$
\begin{aligned}
& =\frac{[3]^{2}}{\left([3][4] /[2]^{2}\right)^{2}} \cdot \frac{2[4]}{[2]^{3}}+2 \cdot \frac{[3]^{2}}{\left([3][4] /[2]^{2}\right)\left([2]^{2}[3][4]\right)}\left(-[2][3][4] \omega^{-2}\right) \\
& =\frac{2[2]}{[4]}-\frac{2[2][3] \omega^{-2}}{[4]},
\end{aligned}
$$

by Lemmas 3.3 and 7.3. Hence,

$$
Z^{E_{6}}(L(4,1))=w^{-1}\left(3-1+\frac{2[2]}{[4]}-\frac{2\left[2[3] \omega^{-2}\right.}{[4]}\right)=\frac{3+\sqrt{-3}}{6},
$$

by (1.4), as required.
Example 7.6 [12] The value of the E_{6} state sum invariant of the lens space $L(5,2)$ is given by

$$
Z^{E_{6}}(L(5,2))=\frac{3+\sqrt{3}}{12}
$$

Proof In this proof, we calculate the required value based on our construction of the state sum invariant.

A spine of $L(5,2)$ is given as follows.

This spine has one vertex. This vertex corresponds to the fusion of the first picture below.

The second picture shows a part of the first picture, removing the identical part. The fusion of the second picture corresponds to the third and fourth pictures, similarly as in the case of $L(4,1)$.

Hence, we calculate the value of $Z^{E_{6}}(L(5,2))$, as follows:

$$
\begin{align*}
Z^{E_{6}}(L(5,2)) & =w^{-1} \sum_{\substack{i, j \in\{0,2,4\} \\
A, B \in\{\bullet, Q\}}} d_{i} d_{j} \tag{7.7}\\
& =w^{-1} \sum_{\substack{i, j \in\{0,2,4\} \\
A, B \in\{\bullet, Q\}}} \frac{d_{i} d_{j}}{\theta(i, i, j, A) \theta(i, j, j, B)} \text { C, }
\end{align*}
$$

This colored planar trivalent graph has admissible colorings only if $(i, j)=(0,0),(2,2)$. When $(i, j)=(0,0)$, the sum of (7.7) is equal to

$$
\left.\frac{d_{0}^{2}}{\theta(0,0,0, \bullet)^{2}}\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0
\end{array}\right)\right\rangle=1
$$

When $(i, j)=(2,2)$, the sum of (7.7) is equal to
$\frac{d_{2}^{2}}{\theta(2,2,2, \bullet)^{2}}\left\langle\left(\begin{array}{c}2 \\ 2 \\ 2\end{array} 2_{2}^{2} 2^{2}\right)+\frac{d_{2}^{2}}{\theta(2,2,2, \bullet) \theta(2,2,2, \bullet)}\left(\begin{array}{ll}2 & 2 \\ 2 \\ 2 & 2 \\ 2\end{array}\right)\right\rangle$

$$
\begin{aligned}
& =\frac{[3]^{2}}{\left([3][4] /[2]^{2}\right)^{2}} \cdot \frac{2[4]}{[2]^{3}}+\frac{[3]^{2}}{\left([3][4] /[2]^{2}\right)\left([2]^{2}[3][4]\right)}(-[2][3][4])\left(\omega^{2}+\omega^{-2}\right) \\
& =\frac{2[2]}{[4]}-\frac{[2][3]\left(\omega^{2}+\omega^{-2}\right)}{[4]},
\end{aligned}
$$

by Lemmas 3.3 and 7.3. Hence,

$$
Z^{E_{6}}(L(5,2))=w^{-1}\left(1+\frac{2[2]}{[4]}-\frac{[2][3]\left(\omega^{2}+\omega^{-2}\right)}{[4]}\right)=\frac{3+\sqrt{3}}{12}
$$

by (1.4), as required.

Example 7.7 [12] The value of the E_{6} state sum invariant of the lens space $L(5,1)$ is given by

$$
Z^{E_{6}}(L(5,1))=\frac{3+\sqrt{3}}{12}
$$

Proof In this proof, we calculate the required value based on our construction of the state sum invariant.

A spine of $L(5,1)$ is given as follows:

This spine has two vertices. These vertices correspond to the fusions of the first picture below.

The second column shows parts of the fusions, removing the identical parts. The fusions of the second column correspond to the pictures of the third and fourth columns, similarly as in the cases of $L(4,1)$ and $L(5,2)$.

Hence, we calculate the value of $Z^{E_{6}}(L(5,1))$, as follows:

$$
\begin{equation*}
Z^{E_{6}}(L(5,1)) \tag{7.10}
\end{equation*}
$$

$$
\begin{aligned}
& =w^{-1} \sum_{\substack{i, j, k \in\{0,2,4\} \\
A, B, C, D \in\{\bullet, Q\}}} d_{i} d_{j} d_{k} \\
& =w^{-1} \sum_{\substack{i, j, k \in\{0,2,4\} \\
A, B, C, D \in\{\bullet, Q\}}} \frac{d_{i} d_{j} d_{k}}{\theta(i, i, j, A) \theta(i, j, k, B) \theta(i, i, k, C) \theta(i, j, k, D)}
\end{aligned}
$$

In order to calculate this sum, we consider a relation between the upper left graph and the lower left graph of (7.9). Since the space $H(i, i, i, i, i)$ has a basis given in Proposition 4.9, we can put

with some scalars $\Phi_{A^{\prime} B^{\prime} C^{\prime}}^{j^{\prime} k^{\prime}}$. Further, by Proposition 4.10, we have that

Hence, by comparing the above two formulas to (7.11), we have that:

$$
\Phi_{A^{\prime} B^{\prime} C^{\prime}}^{j^{\prime} k^{\prime}}=\sum_{D \in\{\bullet, Q\}} \frac{d_{j^{\prime}} d_{k^{\prime}}}{\theta\left(i, i, j^{\prime}, A^{\prime}\right) \theta\left(i, j^{\prime}, k^{\prime}, B^{\prime}\right) \theta\left(i, i, k^{\prime}, C^{\prime}\right) \theta\left(i, j, k^{\prime}, D\right)}
$$

Further, by closing the diagrams of (7.11) with a certain diagram, we have that

where we obtain the second equality in a similar way as in the proof of Proposition 4.9. Therefore, by presenting $\Phi_{A B C}^{j k}$ from the above two formulas in two ways, we have that:

By substituting this formula to (7.10), we have that:

$$
\begin{equation*}
Z^{E_{6}}(L(5,1))=w^{-1} \sum_{\substack{i, j, k \in\{0,2,4\} \\ A, B, C \in\{\bullet, Q\}}} \frac{d_{i} d_{j} d_{k}}{\theta(i, i, j, A) \theta(i, j, k, B) \theta(i, i, k, C)} \tag{7.12}
\end{equation*}
$$

We note that the diagram of this formula is the union of the upper left graph of (7.9) and the mirror image of the lower left graph of (7.9), which is equal to the boundary of the left picture of (7.8).

The coloring of the colored planar trivalent graph in (7.12) is admissible only if $(i, j, k)=(0,0,0),(2,0,2),(2,2,0),(2,2,2),(2,2,4),(2,4,2)$. We note that this graph is symmetric with respect to π rotation of:

Hence, it is sufficient to calculate the cases where $(i, j, k)=(0,0,0),(2,0,2)$, $(2,2,2),(2,2,4)$.

When $(i, j, k)=(0,0,0)$, the sum of (7.12) is equal to

When $(i, j, k)=(2,0,2)$, by using Lemma 3.3, the sum of (7.12) is equal to the sum of the following two formulas,

$$
\begin{aligned}
& =\frac{d_{0} d_{2}^{2}}{\theta(0,2,2, \bullet)^{2} \theta(2,2,2, \bullet)} \cdot \theta(2,2,2, \bullet)=\frac{d_{2}^{2}}{\theta(0,2,2, \bullet)^{2}}=1 \text {, }
\end{aligned}
$$

$$
=\frac{d_{0} d_{2}^{2}}{\theta(0,2,2, \bullet)^{2} \theta(2,2,2, \oslash)} \cdot \omega^{-2} \theta(2,2,2, \oslash)=\frac{d_{2}^{2}}{\theta(0,2,2, \bullet)^{2}} \cdot \omega^{-2}=\omega
$$

When $(i, j, k)=(2,2,2)$, by the above mentioned symmetry, it is sufficient to calculate the cases where $(A, B, C)=(\bullet, \bullet, \bullet),(\bullet, \bullet, ๑),(\bullet, ๑, \bullet),(\bullet, ๑, ๑),(๑, \bullet, ๑),(๑, ๑, ๑)$. When $(A, B, C)=(\bullet, \bullet \bullet)$, the sum of (7.12) is equal to

$$
\begin{aligned}
\frac{d_{2}^{3}}{\theta(2,2,2, \bullet)^{3}}\left\langle\frac{22_{2}^{2}{ }_{2}^{2} 2^{2} 2}{\left.\left.22_{2}\right]_{2}\right]^{2}}\right\rangle & \left.=\left(\frac{[3]}{[3][4] /[2]^{2}}\right)^{3} \cdot \frac{2}{[2][3]}\left\langle 4_{2}^{2} 2_{2}^{2}\right)^{2}\right) \\
& =\left(\frac{[2]^{2}}{[4]}\right)^{3} \cdot \frac{2}{[2][3]} \cdot \frac{2[4]}{[2]^{3}}=\frac{4[2]^{2}}{[3][4]^{2}}
\end{aligned}
$$

by Lemmas 7.2, 3.3 and 7.3. When $(A, B, C)=(\bullet, \bullet, ๑)$, we have that the sum of (7.12) is equal to

$$
\begin{aligned}
& =\frac{[2]^{2}}{[4]^{3}} \cdot \frac{2 \omega^{4}}{[2][3]}(-[2][3][4])=-\frac{2 \omega[2]^{2}}{[4]^{2}}
\end{aligned}
$$

by Lemmas 7.2, 3.3 and 7.3. When $(A, B, C)=(\bullet, ๑, \bullet)$, we have that the sum of (7.12) is equal to

$$
\begin{aligned}
\left.\frac{d_{2}^{3}}{\theta(2,2,2, \bullet)^{2} \theta(2,2,2, \ominus)}\left(\frac{2^{2} \theta^{2} 2^{2} 2^{2}}{2\left[_{2}^{2} 2^{2}\right)^{2}}\right)\right\rangle & \left.=\frac{[3]^{3}}{\left([3][4] /[2]^{2}\right)^{2} \cdot[2]^{2}[3][4]}\left(\frac{-\omega^{-2}}{[2]}\right)\left\langle 2_{2}^{2} 2_{2}^{2} 2^{2}\right)^{2}\right\rangle \\
& =\frac{[2]^{2}}{[4]^{3}} \cdot\left(\frac{-\omega^{-2}}{[2]}\right)(-[2][3][4])=\frac{\omega[2]^{2}[3]}{[4]^{2}}
\end{aligned}
$$

by Lemmas 7.2, 3.3 and 7.3. When $(A, B, C)=(\bullet, ๑, ๑)$, we have that the sum of (7.12) is equal to

by Lemmas 7.2, 3.3 and 7.3. When $(A, B, C)=(\oslash, \bullet, ๑)$, the sum of (7.12) is equal to

$$
\begin{aligned}
& =\frac{[3]^{3}}{\left([3][4] /[2]^{2}\right) \cdot\left([2]^{2}[3][4]\right)^{2}} \cdot\left(-[2]^{3} \omega^{-4}\left(2_{2}^{2} 2_{2}^{2}\right)+\omega^{-2}\left(2_{2}^{2} 2_{2}^{2}\right)^{2}\right) \\
& =\frac{1}{[2]^{2}[4]^{3}} \cdot\left(-[2]^{3} \omega^{-4}(-[2][3][4])+\omega^{-2} \cdot[2]^{2}[3][4]\right) \\
& =\frac{\omega^{-1}[2]^{2}[3]}{[4]^{2}}+\frac{\omega[3]}{[4]^{2}}
\end{aligned}
$$

by Lemmas 7.4, 3.3 and 7.3. When $(A, B, C)=(\oslash, \oslash, \oslash)$, the sum of (7.12) is equal to

$$
\begin{aligned}
\left.\frac{d_{2}^{3}}{\theta(2,2,2, \oslash)^{3}}\left(0^{2} \sqrt{2}^{2} 2^{2} 2^{2}\right)^{2}\right) & \left.\left.=\left(\frac{[3]}{[2]^{2}[3][4]}\right)^{3} \cdot \omega^{-2}[2]^{4}\left(2_{2}^{2} 2_{2}^{2}\right)^{2}\right)^{2}\right)^{2} \\
& =\frac{1}{[2]^{6}[4]^{3}} \cdot \omega^{-2}[2]^{4} \cdot[2]^{2}[3][4]=\frac{\omega[3]}{[4]^{2}}
\end{aligned}
$$

by Lemmas 7.4, 3.3 and 7.3. Hence, the sum of (7.12) for $(i, j, k)=(2,2,2)$ is equal to

$$
\begin{aligned}
\frac{4[2]^{2}}{[3][4]^{2}}-2 \cdot \frac{2 \omega[2]^{2}}{[4]^{2}}+\frac{\omega[2]^{2}[3]}{[4]^{2}}+\left(\frac{\omega^{-1}[2]^{2}[3]}{[4]^{2}}\right. & \left.+\frac{\omega[3]}{[4]^{2}}\right)+\frac{\omega[3]}{[4]^{2}} \\
& =\frac{4[2]^{2}}{[3][4]^{2}}-\frac{4 \omega[2]^{2}}{[4]^{2}}-\frac{[2]^{2}[3]}{[4]^{2}}+\frac{2 \omega[3]}{[4]^{2}}
\end{aligned}
$$

When $(i, j, k)=(2,2,4)$, the sum of (7.12) is equal to the sum of the following two formulas,
$\frac{d_{2}^{2} d_{4}}{\theta(2,2,2, \bullet) \theta(2,2,4, \bullet)^{4}}\langle\frac{\overbrace{2,4}^{2}\left[\begin{array}{l}4 \\ 2\end{array}\right]_{2}^{2}]_{4}^{2}]^{2}}{})\rangle$

$$
=\frac{[3]^{2}}{\left([3][4] /[2]^{2}\right) \cdot 1^{2}}\left(-\frac{1}{[2]}\right)\left\langle 2_{4}^{2} 2_{4}^{2}{ }^{2}\right\rangle=\frac{[2]^{2}[3]}{[4]}\left(-\frac{1}{[2]}\right)\left(-\frac{1}{[3]}\right)=\frac{[2]}{[4]}
$$

$$
\frac{d_{2}^{2} d_{4}}{\theta(2,2,2, \odot) \theta(2,2,4, \bullet)^{2}}(\cdot \overbrace{2,4}^{\left.\left.2, \int^{2}, 2\right]^{2} 4\right]^{2}} 2)
$$

$$
\left.=\frac{[3]^{2}}{[2]^{2}[3][4] \cdot 1^{2}} \cdot \omega^{-2}[2]^{3}\left(2_{4}^{2} 2\right]^{2}\right\rangle=\frac{[3]}{[2]^{2}[4]} \cdot \omega^{-2}[2]^{3}\left(-\frac{1}{[3]}\right)=-\frac{\omega[2]}{[4]},
$$

by Lemmas 7.2, 7.4, 3.3 and 7.3.
Therefore, from (7.12), we obtain that

$$
\begin{aligned}
& Z^{E_{6}}(L(5,1)) \\
& \quad=w^{-1}\left(1+2(1+\omega)+\left(\frac{4[2]^{2}}{[3][4]^{2}}-\frac{4 \omega[2]^{2}}{[4]^{2}}-\frac{[2]^{2}[3]}{[4]^{2}}+\frac{2 \omega[3]}{[4]^{2}}\right)+2\left(\frac{[2]}{[4]}-\frac{\omega[2]}{[4]}\right)\right) \\
& \quad=w^{-1}\left(3+\frac{4[2]^{2}}{[3][4]^{2}}-\frac{[2]^{2}[3]}{[4]^{2}}+\frac{2[2]}{[4]}+\frac{2 \omega}{[4]^{2}}\left([4]^{2}-2[2]^{2}+[3]-[2][4]\right)\right) \\
& \quad=w^{-1}\left(3+\frac{4[2]^{2}}{[3][4]^{2}}-\frac{[2]^{2}[3]}{[4]^{2}}+\frac{2[2]}{[4]}+\frac{2 \omega}{[4]^{2}} \cdot 0\right)=\frac{3+\sqrt{3}}{12},
\end{aligned}
$$

by (1.4), as required.
We note that the graph in (7.12) is dual to the following (singular) triangulation of the 2-sphere,

and we obtain $L(5,1)$ from a 3-ball by gluing faces of this triangulation to each other. Further, like (7.12), the value of our state sum invariant for any lens space can be presented by using such a graph.

In general, any closed oriented $3-$ manifold M can be obtained from a triangulated 3 -ball by gluing faces of the boundary 2 -sphere to each other. The value of our state sum invariant of M can be presented by using the dual graph of such a triangulation of the 2 -sphere; see [5] for a similar statement for the Turaev-Viro invariant.

Appendix A: The values of the weights

From Lemmas 3.3 and 7.3, we obtain the following table of the weights.
Proposition A. 1 The weights of colored tetrahedra are given as follows, where we omit to draw the face color \bullet :

$$
\begin{aligned}
& |\frac{i / \sum_{j}^{i}}{\overbrace{0} A_{j}}|=\delta_{A B} \cdot \frac{1}{\sqrt{d_{i} d_{j}}} \quad(i, j, k \in\{0,2,4\}, A, B \in\{\bullet, \bigcirc\}),
\end{aligned}
$$

Appendix B: Equivalence to the $\boldsymbol{E}_{\mathbf{6}}^{\mathbf{6} \boldsymbol{j}} \mathbf{- s y m b o l s}$

In this section, we review the values of the $6 j$-symbols of the E_{6} subfactor given in [12; 15]. Further, we review that our $6 j$-symbols can be transformed into the $6 j$-symbols of the E_{6} subfactor in Lemma B. 1 (due to T Ohtsuki).

Similarly as in Section 5, we relate an oriented tetrahedron with oriented edges to a planar trivalent graph, as follows:

We review the values of the $6 j$-symbols of the E_{6} subfactor given in [12; 15], as the weight of the tetrahedron, in terms of the above planar graph. When none of i, j, k, l, m, n is equal to 2 ,

When one or two of i, j, k, l, m, n are equal to 2 , there are no admissible colorings of the tetrahedron. When three of i, j, k, l, m, n are equal to 2 ,

When four of i, j, k, l, m, n are equal to 2 ,

When five of i, j, k, l, m, n are equal to 2 ,

(B.3)

in | $\frac{q^{7}}{\sqrt{2}[3]}$ | if $(b, c)=(3,3),(4,3)$, |
| :--- | :--- |
| $\frac{q}{\sqrt{2}[3]}$ | if $(b, c)=(4,4)$, |
| $-\frac{q}{\sqrt{2}[3]}$ | if $(b, c)=(3,4)$, |

(B.5)
if

$\frac{1}{[3]}$	if $(b, d)=(3,3),(4,4)$,
0	if $(b, d)=(3,4),(4,3)$,

$-\frac{q^{2}}{\sqrt{2}[3]}$	if $(c, d)=(3,3),(3,4),(4,3)$,
$\frac{q^{2}}{\sqrt{2}[3]}$	if $(c, d)=(4,4)$,

$$
\begin{cases}\frac{1}{[3]} & \text { if }(a, c)=(3,3) \tag{B.8}\\ \frac{1}{[3]} & \text { if }(a, c)=(4,4) \\ 0 & \text { if }(a, c)=(3,4),(4,3)\end{cases}
$$

(
(B.10)

(B.12)

$$
\begin{cases}-\frac{q^{2}}{\sqrt{2}[3]} & \text { if }(c, d)=(3,3),(4,3),(4,4), \\ \frac{q^{2}}{\sqrt{2}[3]} & \text { if }(c, d)=(3,4),\end{cases}
$$

When all of i, j, k, l, m, n are equal to 2 ,

$-\frac{1}{[3]^{2}}$	if $(a, b, c, d)=(3,3,3,3),(3,4,3,4)$,
$\frac{q^{3}}{\sqrt{2}[3]}$	if $(a, b, c, d)=(3,3,4,3)$,
$-\frac{q^{3}}{\sqrt{2}[3]}$	if $(a, b, c, d)=(3,4,4,4)$,
$\frac{q^{-3}}{\sqrt{2}[3]}$	if $(a, b, c, d)=(4,3,3,4),(4,4,3,3)$,
$\frac{q^{-6}}{[3]^{2}}$	if $(a, b, c, d)=(4,3,4,4)$,
$\frac{q^{6}}{[3]^{2}}$	if $(a, b, c, d)=(4,4,4,3)$,
0	otherwise.

We rewrite the list of Proposition A.1, in terms of the dual planar graph, as follows:

(B.14)

We review a proof of the following lemma, which was shown by T Ohtsuki.

Lemma B. 1 (T Ohtsuki) The $6 j$-symbols given in Section 5 can be transformed into the $6 j$-symbols of the E_{6} subfactor.

Proof We put

$$
\begin{array}{ll}
u_{3}=\exp \left(\frac{\pi \sqrt{-1}}{8}\right) \cdot \sqrt{\frac{3-\sqrt{3}}{6}}, & u_{4}=-\exp \left(-\frac{\pi \sqrt{-1}}{8}\right) \cdot \sqrt{\frac{3+\sqrt{3}}{6}}, \\
v_{3}=\exp \left(-\frac{5 \pi \sqrt{-1}}{24}\right) \cdot \sqrt{\frac{3+\sqrt{3}}{6}}, & v_{4}=\exp \left(-\frac{11 \pi \sqrt{-1}}{24}\right) \cdot \sqrt{\frac{3-\sqrt{3}}{6}} .
\end{array}
$$

Then,

$$
\begin{array}{cc}
u_{3} \bar{u}_{3}=\frac{3-\sqrt{3}}{6}, & u_{4} \bar{u}_{4}=\frac{3+\sqrt{3}}{6},
\end{array} u_{3} \bar{v}_{3}=\frac{q^{4}}{\sqrt{6}}, \quad, \quad v_{3} \bar{v}_{3}=\frac{3+\sqrt{3}}{6}, \quad v_{4} \bar{v}_{4}=\frac{3-\sqrt{3}}{6}, \quad u_{4} \bar{v}_{4}=-\frac{q^{4}}{\sqrt{6}}, ~ 子 \quad v_{3} \bar{v}_{3}+v_{4} \bar{v}_{4}=1, \quad u_{3} \bar{v}_{3}+u_{4} \bar{v}_{4}=0 .
$$

Hence, $\left(\begin{array}{ll}u_{3} & v_{3} \\ u_{4} & v_{4}\end{array}\right)$ is a unitary matrix.
By putting
 unless $i=j=k=2$,

we calculate

by using (B.14), and verify that it is equal to the above mentioned value. When all vertices are colored by \bullet, it is easy to check the proof. Hence, we consider the case where there are vertices colored by S_{3}, S_{4}, ie, we verify the values of (B.1)-(B.13) in the following of this proof.

As for (B.1),

Hence, we can verify (B.1) by concrete calculation for each (a, b).
As for (B.2),

Hence, we can verify (B.2) for each (a, c), since

$$
u_{3} \bar{u}_{3}+v_{3} \bar{v}_{3}=1, \quad u_{4} \bar{u}_{4}+v_{4} \bar{v}_{4}=1, \quad u_{3} \bar{u}_{4}+v_{3} \bar{v}_{4}=0
$$

which can be checked concretely.
As for (B.3),
and we can verify (B.3) in the same way as the case of (B.2).
As for (B.4),

Hence, we can verify (B.4) by concrete calculation for each (b, c).
As for (B.5),

and we can verify (B.5) in the same way as the case of (B.2).

As for (B.6),

Hence, we can verify (B.6) by concrete calculation for each (c, d).
As for (B.7),

$$
+v_{a} v_{b} \omega^{2}\left|\begin{array}{lll}
2 & 2 & 4 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right|
$$

$$
=-\frac{[2]}{[3][4]} u_{a} u_{b}-\frac{1}{[4]}\left(v_{a} u_{b} \omega^{2}+u_{a} v_{b}\right)+\frac{[2]}{[3][4]} v_{a} v_{b} \omega^{2} .
$$

Hence, we can verify (B.7) by concrete calculation for each (a, b).
As for (B.8),

Hence, we can verify (B.8) by concrete calculation for each (a, c).
As for (B.9),

$$
\begin{aligned}
& =-\frac{[2]}{[3][4]} u_{a} \bar{u}_{d}-\frac{1}{[4]}\left(v_{a} \bar{u}_{d}+u_{a} \bar{v}_{d}\right)+\frac{[2]}{[3][4]} v_{a} \bar{v}_{d} .
\end{aligned}
$$

Hence, we can verify (B.9) by concrete calculation for each (a, d).
As for (B.10),

$$
\begin{aligned}
& +v_{b} \bar{v}_{c} \omega^{2}\left|\begin{array}{lll}
2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 2 \\
2 & 2
\end{array}\right| \\
& =-\frac{[2]}{[3][4]} u_{b} \bar{u}_{c}-\frac{1}{[4]}\left(v_{b} \bar{u}_{c} \omega^{-2}+u_{b} \bar{v}_{c} \omega^{-2}\right)+\frac{[2]}{[3][4]} v_{b} \bar{v}_{c} \omega^{2} .
\end{aligned}
$$

Hence, we can verify (B.10) by concrete calculation for each (b, c).
As for (B.11),

$$
\begin{aligned}
& +v_{b} \bar{v}_{d}\left|{ }_{2}^{2} 2_{2}^{4} a_{2}^{2} 2^{2}\right| \\
& =-\frac{[2]}{[3][4]} u_{b} \bar{u}_{d}-\frac{1}{[4]}\left(v_{b} \bar{u}_{d} \omega^{2}+u_{b} \bar{v}_{d} \omega^{-2}\right)+\frac{[2]}{[3][4]} v_{b} \bar{v}_{d} .
\end{aligned}
$$

Hence, we can verify (B.11) by concrete calculation for each (b, d).
As for (B.12),

$$
\begin{aligned}
& =-\frac{[2]}{[3][4]} \bar{u}_{c} \bar{u}_{d}-\frac{1}{[4]}\left(\bar{v}_{c} \bar{u}_{d}+\bar{u}_{c} \bar{v}_{d} \omega^{2}\right)+\frac{[2]}{[3][4]} \bar{v}_{c} \bar{v}_{d} \omega^{2} .
\end{aligned}
$$

Hence, we can verify (B.12) by concrete calculation for each (c, d).

As for (B.13),

$$
\begin{aligned}
& \left.+u_{a} v_{b} \bar{v}_{c} \bar{u}_{d} \omega^{2}+u_{a} v_{b} \bar{u}_{c} \bar{v}_{d}+u_{a} u_{b} \bar{v}_{c} \bar{v}_{d} \omega^{2}\right)\left|2_{2}^{2} 2_{2}^{2}\right| \\
& +\left(v_{a} v_{b} \bar{v}_{c} \bar{u}_{d} \omega^{2}+v_{a} v_{b} \bar{u}_{c} \bar{v}_{d} \omega^{-2}+v_{a} u_{b} \bar{v}_{c} \bar{v}_{d} \omega^{-2}\right. \\
& +u_{a} v_{b} \bar{v}_{c} \bar{v}_{d} \omega^{2}| |_{2}^{2} 2_{2}^{2} 2_{2}^{2} \cdot{ }^{2} \mid \\
& =\frac{1}{[2][4]} u_{a} u_{b} \bar{u}_{c} \bar{u}_{d}-\frac{[2]}{[3][4]}\left(v_{a} v_{b} \bar{u}_{c} \bar{u}_{d} \omega^{2}+v_{a} u_{b} \bar{v}_{c} \bar{u}_{d}+v_{a} u_{b} \bar{u}_{c} \bar{v}_{d}\right. \\
& \left.+u_{a} v_{b} \bar{v}_{c} \bar{u}_{d} \omega^{2}+u_{a} v_{b} \bar{u}_{c} \bar{v}_{d}+u_{a} u_{b} \bar{v}_{c} \bar{v}_{d} \omega^{2}\right)+\frac{1}{[3][4]}\left(v_{a} v_{b} \bar{v}_{c} \bar{u}_{d} \omega^{2}\right. \\
& \left.+v_{a} v_{b} \bar{u}_{c} \bar{v}_{d} \omega^{-2}+v_{a} u_{b} \bar{v}_{c} \bar{v}_{d} \omega^{-2}+u_{a} v_{b} \bar{v}_{c} \bar{v}_{d} \omega^{2}\right) .
\end{aligned}
$$

Hence, we can verify (B.13) by concrete calculation for each (a, b, c, d), completing the proof.

References

[1] S Bigelow, Skein theory for the ADE planar algebras, J. Pure Appl. Algebra 214 (2010) 658-666 MR2577673
[2] D E Evans, Y Kawahigashi, Quantum symmetries on operator algebras, Oxford University Press (1998) MR1642584
[3] M Izumi, Subalgebras of infinite C^{*}-algebras with finite Watatani indices, I: Cuntz algebras, Comm. Math. Phys. 155 (1993) 157-182 MR1228532
[4] V Jones, Planar algebras, I arXiv:math/9909027
[5] L H Kauffman, S L Lins, Temperley-Lieb recoupling theory and invariants of 3manifolds, Annals Math. Studies 134, Princeton Univ. Press (1994) MR1280463
[6] V Kodiyalam, V S Sunder, Topological quantum field theories from subfactors, Research Notes in Mathematics 423, Chapman \& Hall/CRC, Boca Raton, FL (2001) MR1870810
[7] W B R Lickorish, An introduction to knot theory, Graduate Texts in Mathematics 175, Springer, New York (1997) MR1472978
[8] S Morrison, E Peters, N Snyder, Skein theory for the $D_{2 n}$ planar algebras, J. Pure Appl. Algebra 214 (2010) 117-139 MR2559686
[9] A Ocneanu, Chirality for operator algebras, from: "Subfactors", (H Araki, Y Kawahigashi, H Kosaki, editors), World Sci. Publ. (1994) 39-63 MR1317353
[10] U Pachner, PL homeomorphic manifolds are equivalent by elementary shellings, European J. Combin. 12 (1991) 129-145 MR1095161
[11] N Sato, M Wakui, Computations of Turaev-Viro-Ocneanu invariants of 3-manifolds from subfactors, J. Knot Theory Ramifications 12 (2003) 543-574 MR1985909
[12] K Suzuki, M Wakui, On the Turaev-Viro-Ocneanu invariant of 3-manifolds derived from the E_{6}-subfactor, Kyushu J. Math. 56 (2002) 59-81 MR1898345
[13] V G Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics 18, de Gruyter, Berlin (1994) MR1292673
[14] V G Turaev, O Y Viro, State sum invariants of 3-manifolds and quantum $6 j$-symbols, Topology 31 (1992) 865-902 MR1191386
[15] M Wakui, Turaev-Viro-Ocneanu invariants of 3-manifolds constructed from quantum 6j-symbols of the Coxeter graph E_{6}, Sūrikaisekikenkyūsho Kōkyūroku (1998) 6-29 MR1679913

Research Institute for Mathematical Sciences, Kyoto University
Kyoto-shi 606-8502, Japan
junes@kurims.kyoto-u.ac.jp
http://www.kurims.kyoto-u.ac.jp/~junes/
Received: 8 March 2013 Revised: 4 June 2013

