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Minimal dilatations of pseudo-Anosovs generated by
the magic 3–manifold and their asymptotic behavior

EIKO KIN

SADAYOSHI KOJIMA

MITSUHIKO TAKASAWA

This paper concerns the set �M of pseudo-Anosovs which occur as monodromies
of fibrations on manifolds obtained from the magic 3–manifold N by Dehn filling
three cusps with a mild restriction. Let N.r/ be the manifold obtained from N

by Dehn filling one cusp along the slope r 2 Q . We prove that for each g (resp.
g 6� 0 .mod 6/), the minimum among dilatations of elements (resp. elements with
orientable invariant foliations) of �M defined on a closed surface ˙g of genus g

is achieved by the monodromy of some ˙g –bundle over the circle obtained from
N. 3
�2
/ or N. 1

�2
/ by Dehn filling both cusps. These minimizers are the same ones

identified by Hironaka, Aaber and Dunfield, Kin and Takasawa independently. In
the case g � 6 .mod 12/ we find a new family of pseudo-Anosovs defined on ˙g

with orientable invariant foliations obtained from N.�6/ or N.4/ by Dehn filling
both cusps. We prove that if ıCg is the minimal dilatation of pseudo-Anosovs with
orientable invariant foliations defined on ˙g , then

lim sup
g�6 .mod 12/

g!1

g log ıCg � 2 log ı.D5/� 1:0870;

where ı.Dn/ is the minimal dilatation of pseudo-Anosovs on an n–punctured disk.
We also study monodromies of fibrations on N.1/ . We prove that if ı1;n is the
minimal dilatation of pseudo-Anosovs on a genus 1 surface with n punctures, then

lim sup
n!1

n log ı1;n � 2 log ı.D4/� 1:6628:

57M27, 37E30; 37B40

1 Introduction

1.1 Minimal dilatations of pseudo-Anosovs

Let Mod.˙/ be the mapping class group of a connected oriented surface ˙ , and let
� 2Mod.˙/ be a pseudo-Anosov class. Then � 2Mod.˙/ contains as a representative
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3538 E Kin, S Kojima and M Takasawa

a pseudo-Anosov homeomorphism ˆW ˙!˙ equipped with a constant �D �.ˆ/> 1

called the dilatation of ˆ. The dilatation �.�/ of � is defined to be �.ˆ/. The
topological entropy ent.ˆ/ of ˆ is equal to log�.ˆ/, and ent.ˆ/ attains the minimal
entropy among all homeomorphisms which are isotopic to ˆ; see Fathi, Laudenbach
and Poenaru [9, Exposé 10]. We denote this characteristic number by ent.�/, and call
it the entropy of � . We call Ent.�/D j�.˙/j ent.�/ the normalized entropy of � .

If we fix ˙ ,
fent.�/ j � 2Mod.˙/ is pseudo-Anosovg

is a closed discrete subset of R; see Ivanov [16]. In particular there exists the minimum
ı.˙/ > 1 among dilatations of pseudo-Anosov elements in Mod.˙/. The explicit
values of ı.˙/ were computed in several cases where j�.˙/j is small; see Cho and
Ham [5], Ham and Song [12], Song, Ko and Los [29] and Lanneau and Thiffeault [20].
For example, if Dn is an n–punctured disk, then ı.D3/ D .3C

p
5/=2 � 2:6180,

ı.D4/�2:2966 is equal to the largest real root of t4�2t3�2tC1 and ı.D5/�1:7220

is equal to the largest real root of t5 � 2t3 � 2t2C 1. However, it is widely open to
determine ı.˙/ for most surfaces ˙ .

Let ˙g be a closed surface of genus g , and let ˙g;n be a compact surface of genus g

with n boundary components. We set ıg D ı.˙g/ and ıg;n D ı.˙g;n/. Penner
proved that log ıg � 1

g
[28]. It is an open problem to compute ıg for g > 2, but

some partial results are known. Let ıCg be the minimal dilatation of pseudo-Anosov
homeomorphisms on ˙g with orientable invariant foliations. The explicit values ıCg are
known for all 2�g� 8 except for gD 6; see Zhirov [35], Lanneau and Thiffeault [21],
Aaber and Dunfield [1], Hironaka [14] and Kin and Takasawa [19].

We are motivated by the following question, posed by McMullen, which asks about the
asymptotic behavior of the sequence fıggg�2 .

Question 1.1 (McMullen [26]) Does lim
g!1

g log ıg exist? What is its value?

It was proved by Minakawa [27] and independently by Hironaka and Kin [15] that
log ıCg �

1
g

, and by Tsai [32; 33] that log ı1;n� 1
n

. Thus we can also ask the following.

Question 1.2 Does lim
g!1

g log ıCg or lim
n!1

n log ı1;n exist? What is its value?

Penner’s lower bound on ıg;n in [28] gives a uniform lower bound log 2
12

< g log ıg �
g log ıCg and log 2

4
� n log ı1;n .

The purpose of this paper is to provide not a complete but a considerably sharp answer
to Questions 1.1 and 1.2. To explain what we prove and why we believe it is very close
to the sharp answer more precisely, we would like to give a rather long introduction.
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1.2 Thurston norm and fibered 3–manifolds

Let M be an oriented 3–manifold with boundary @M (possibly @M D∅). Thurston
discovered a pseudonorm

k � kW H2.M; @M IR/!R:

When M is a hyperbolic 3–manifold, k �k becomes a norm. Moreover when M fibers
over the circle, he described a relation between k � k and fibrations on M as we recall
below. (For more details, see Thurston [31].)

The Thurston norm k � k is defined for an integral class a 2H2.M; @M IZ/ by

kak Dmin
F
f��.F /g;

where the minimum is taken over all oriented surfaces F embedded in M , satisfying
a D ŒF �, with no components of nonnegative Euler characteristic. The surface F

which realizes this minimum is called the minimal representative of a, denoted by Fa .
The norm k � k defined on integral classes admits a unique continuous extension
k � kW H2.M; @M IR/! R which is linear on rays through the origin. The unit ball
UM D fa 2H2.M; @M IR/ j kak � 1g is a compact, convex polyhedron [31].

Suppose that M is a surface bundle over the circle and let F be its fiber. The fibration
determines a cohomology class a� 2H 1.M IZ/Š ŒM;S1�, and hence a homology
class a 2 H2.M; @M IZ/ by Poincaré duality. Thurston proved in [31] that there
exists a top-dimensional face � on @UM such that ŒF � is an integral class of int.C�/,
where C� is the cone over � with the origin and int.C�/ is its interior. Moreover he
proved that the minimal representative Fa for any integral class a in int.C�/ becomes
a fiber of the fibration associated to a. Because of this result, � is called a fibered face
of M , and an integral class a 2 int.C�/ is called a fibered class. This property shows
that if a hyperbolic 3–manifold with the second Betti number more than 1 admits a
fibration over the circle, then it admits an infinite family of fibrations over the circle.
If a 2 int.C�/ is a primitive integral class, then the associated fibration on M has a
connected fiber represented by Fa . Since M is hyperbolic, the mapping class �aD Œˆa�

of the monodromy ˆaW Fa!Fa is pseudo-Anosov due to the hyperbolization theorem
by Thurston [30]. In particular, a single fibered 3–manifold could offer infinitely many
pseudo-Anosovs defined on surfaces with variable topology.

Let us fix a fibered face � of M . The set of integral classes (hence fibered classes)
and rational classes of int.C�/ are denoted by int.C�.Z// and int.C�.Q// respec-
tively. Let a 2 int.C�.Z// be a primitive class. The dilatation �.a/ and entropy
ent.a/D log�.a/ are defined as the dilatation and entropy of the pseudo-Anosov map-
ping class �a respectively. The entropy defined on primitive fibered classes is extended
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to rational classes as follows: for a rational number r and a primitive fibered class a,
the entropy ent.ra/ is defined by 1

jr j
ent.a/. Fried proved that 1=entW int.C�.Q//!R

is concave [10], and in particular entW int.C�.Q//!R admits a unique continuous
extension

entW int.C�/!R:

Moreover, Fried proved that the restriction of ent to the open fibered face int.�/ is
proper, namely, ent.a/ goes to 1 as a goes to a point on the boundary @�. Note
that 1=entW int.C�/! R is linear along each ray through the origin and cannot be
strictly concave for this direction, but it is actually strictly concave for other directions.
This refinement of concavity was proved originally by Matsumoto [24] and later by
McMullen [26]. The strict concavity of 1=ent on int.�/ implies that ent is strictly
convex on int.�/ because ent is positive valued. Now, by the definition of ent, we see
that

EntD k � k entW int.C�/!R

becomes constant on each ray in int.C�/ through the origin. We call Ent.a/ the
normalized entropy of a 2 int.C�/. Since k � k is constant on a fibered face �,
the normalized entropy Ent is still strictly convex on int.�/. Thus because of the
properness of ent by Fried, Ent admits a minimum at a unique ray through the origin.
In other words, if we regard Ent as a function defined on int.�/, then it has a minimum
at a unique point in int.�/. We denote this minimum by min Ent.M; �/. We also
denote by min Ent.M /, the minimum of fmin Ent.M; �/ j� is a fibered face of M g.

Figure 1: (From left to right) 3 chain link C3 , .�2; 3; 8/–pretzel link, link 62
2 ,

Whitehead link

1.3 Finiteness of Farb, Leininger, Margalit and Agol

We recall a result that connects pseudo-Anosovs having small dilatations with finitely
many fibered 3–manifolds. For P > 1, consider the following set of pseudo-Anosov
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homeomorphisms on any surface as follows:

‰P Dfˆ jˆW ˙!˙ pseudo-Anosov; �.˙/< 0; Ent.ˆ/Dj�.˙/j ent.ˆ/� log Pg:

Farb, Leininger and Margalit called elements of ‰P small dilatation pseudo-Anosov
homeomorphisms. Let ˙ı�˙ be the surface obtained by removing all the singularities
of the stable foliation for ˆ, and ˆj˙ı W ˙ı!˙ı denotes the restriction of ˆ to ˙ı .
Observe that �.ˆ/D �.ˆj˙ı/. Let us put

‰ıP D fˆj˙ı jˆ 2‰P g:

Penner’s result implies that the set ‰P is infinite if P is large (P � 112 D 121 for
instance), and hence so is ‰ı

P
. However, Farb, Leininger and Margalit [8] and Agol [3]

showed that if we let T .‰ı
P
/ be the set of mapping tori of elements of ‰ı

P
, then T .‰ı

P
/

becomes a finite set. In other words, for any P > 1, there is a list of finitely many
complete, noncompact hyperbolic 3–manifolds M1;M2; : : : ;Mr fibering over the
circle with the following property: for any ˆ 2 ‰P , there exist Mi in the list and a
particular fibration on Mi such that ˆ occurs as the monodromy of the fibration on
the manifold obtained from Mi by Dehn filling along boundary slopes of the fiber in
question.

Because of this, it makes sense to say that small dilatation pseudo-Anosovs are “gener-
ated” by a finite list of fibered 3–manifolds. This in particular implies that the following
sets are finite because log ıg � 1

g
and log ı.Dn/�

1
n

by Hironaka and Kin [15]:

U D fT .ˆj˙ı/ jˆ is pseudo-Anosov on ˙ D˙g such that �.ˆ/D ıg;g � 2g;

V D fT .ˆj˙ı/ jˆ is pseudo-Anosov on ˙ DDn such that �.ˆ/D ı.Dn/; n� 3g:

A natural question arises: how large are these sets? By Aaber and Dunfield [1],
Hironaka [14], the authors [17; 18; 19] and Venzke [34], we predict that U and V are
quite small.

A result by Kin and Takasawa [18] says that the magic manifold N, which is the
exterior of the 3 chain link C3 (see Figure 1), is a member of V . More concretely,
in [18] it was shown that for each 3� n� 8 (resp. n� 9), there exists a pseudo-Anosov
homeomorphism ˆnW Dn!Dn with the smallest dilatation (resp. the smallest known
dilatation) which is generated by N . The set V might consist of a single element N

indeed. Let us turn to the set U . Potential examples of members of U are of the
form N.r/, which is the manifold obtained from the magic manifold N by Dehn
filling one cusp along the slope r 2Q[f1

0
g. It was proved in Aaber and Dunfield [1],

Hironaka [14] and the first and third authors [19] that there exists a pseudo-Anosov
homeomorphism on ˙g for g � 3 with small dilatation generated by N. 3

�2
/ or by
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N. 1
�2
/. The manifolds N. 3

�2
/ and N. 1

�2
/ are the Whitehead sister link (ie .�2; 3; 8/–

pretzel link) exterior and the 62
2

link exterior respectively (see Figure 1). What Kin
and Takasawa proved in [19, Theorem 1.5] is the following.

Theorem 1.3 Let r 2 f 3
�2
; 1
�2
; 2g. For each g � 3, there exist ˙g –bundles over the

circle obtained from N.r/ by Dehn filling both cusps along boundary slopes of fibers
of N.r/. Among them, there exist monodromies ˆg.r/W ˙g!˙g of the fibrations
such that

lim
g!1

g log�.ˆg.r//D log ı.D3/D log
�3C

p
5

2

�
:

As a corollary, we have the following estimate from above, which was proved by
Hironaka first [14]:

(1-1) lim sup
g!1

g log ıg � log
�3C

p
5

2

�
:

Theorem 1.3 is also established by Hironaka for r D 1
�2

in [14] and Aabar and Dunfield
for r D 3

�2
in [1] independently.

1.4 Thurston norm and Teichmüller polynomial of the magic manifold

In view of the results in previous two subsections, we will focus only on the magic
manifold N and present various computational results. To do this, we discuss some
detailed description of N in this subsection.

Let K˛ , Kˇ and K be the components of the 3 chain link C3 . The orientation of each
component of C3 is given in Figure 2(right). They bound the oriented disks F˛ , Fˇ
and F with 2 holes. Let us set ˛ D ŒF˛ �, ˇ D ŒFˇ �,  D ŒF � 2 H2.N; @N IZ/.
In [31], Thurston computed the unit ball UN which is the parallelepiped with ver-
tices ˙˛ , ˙ˇ , ˙ and ˙.˛ C ˇ C  /; see Figure 2 (left). The set f˛; ˇ;  g is
a basis of H2.N; @N IZ/, and the class x˛ C yˇ C z 2 H2.N; @N / is denoted
by .x;y; z/. Every top-dimensional face on @UN is a fibered face because of the
symmetries of H2.N; @N /; see Section 2.1. McMullen developed a general theory
of the Teichmüller polynomial P� for a fibered face � of fibered hyperbolic 3–
manifolds, from which one can compute the dilatation �.a/ of each a 2 int.C�/;
see [26]. Let us pick the fibered face � on @UN as in Figure 2(left) with ver-
tices .1; 0; 0/, .1; 1; 1/, .0; 1; 0/ and .0; 0;�1/. The Teichmüller polynomial P� tells
us that the dilatation �.a/D�.x;y;z/ of a primitive fibered class aD .x;y; z/2 int.C�/
is the largest real root of

(1-2) f.x;y;z/.t/D txCy�z
� tx
� ty
� tx�z

� ty�z
C 1I
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see [18, Theorem 3.1]. Thus, we have a reasonable source to compute dilatations
systematically.

ˇ axis �

 axis

˛ axis

K˛

F˛

Fˇ F

Kˇ K

.1;1;1/
.0;1;0/

.�1;0;0/

.0;0;�1/

.0;0;1/

.1;0;0/

.0;�1;0/

.�1;�1;�1/

Figure 2: (left) Thurston norm ball for N, (right) F˛ , Fˇ , F [arrows indi-
cate the normal direction of oriented surfaces]

To relate these data to ones on closed manifolds obtained from N by Dehn filling,
we prepare a few homological properties of N . Denote by T˛ the torus which is
the boundary of a regular neighborhood of K˛ . We define the tori Tˇ and T in the
same manner. For a primitive integral class a D .x;y; z/ 2 H2.N; @N /, let us set
@˛Fa D @Fa \ T˛ which consists of the parallel simple closed curves on T˛ . We
define @ˇFa and @Fa in the same manner. We see that the slope of @˛Fa (resp.
@ˇFa , @Fa ) is given by b˛.a/D

yCz
�x

(resp. bˇ.a/D
zCx
�y

, b .a/D
xCy
�z

). We call
each of b˛.a/, bˇ.a/, b .a/ the boundary slope of a.

For more detailed computation, we specify the cusp to be Dehn filled. Let N.r/ be the
manifold obtained from N by Dehn filling the cusp specified, say, by Tˇ along the
slope r 2Q. Then, there exists a natural injection �ˇW H2.N.r/; @N.r//!H2.N; @N /

whose image equals Sˇ.r/, where

Sˇ.r/D f.x;y; z/ 2H2.N; @N / j �ry D zCxgI

see Proposition 2.11. This implies that every slope r 2 Q can be realized by a
boundary slope of some a 2H2.N; @N /. It is known by Martelli and Petronio [23]
that N.r/ is hyperbolic if and only if r 2HypDQ n f�3;�2;�1; 0g. Choose such
r 2Hyp, and assume that a 2 Sˇ.r/D Im �ˇ is a fibered class in H2.N; @N /. Then,
xaD ��1

ˇ
.a/2H2.N.r/; @N.r// is also a fibered class of N.r/. This description enables

us to compute the Thurston norm of N.r/, especially the unit ball and fibered faces,
and hence to handle closed surface bundles obtained from N by Dehn filling all cusps
systematically.

What we further need for our purpose is to know a systematic method to compute
entropies of monodromies on such bundles.

Algebraic & Geometric Topology, Volume 13 (2013)
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1.5 Main results

This paper concerns the small dilatation pseudo-Anosovs generated by the magic
manifold N with a very mild restriction which we describe below. Let ˆW F ! F

be the monodromy of a fibration on N , and let � be the mapping class of ˆ. Then
the fibration extends naturally to a fibration on the closed manifold obtained from N

by Dehn filling three cusps along boundary slopes of F . Also, ˆ extends to the
monodromy ŷ W yF ! yF of the extended fibration, where the extended fiber yF is
obtained from F by filling holes. Suppose that the stable foliation F of ˆ has the
property such that each boundary component of F has no 1 prong. Then F extends
canonically to the stable foliation �F of ŷ , and y� D Œ ŷ � becomes pseudo-Anosov
(including Anosov) with the same dilatation as that of � . We consider the set M of
(pseudo-Anosov) mapping classes coming from fibrations of N with this condition,
ie, if we let F be the stable foliation associated to the fibration on N , then F has the
property such that

(1-3) any boundary component of F has no 1 prong:

We will see that this restriction is fairly mild (Lemmas 2.23 and 5.1). Let �M be
the set of extensions y� of � 2M defined on the closed surfaces. For example, the
pseudo-Anosov ˆg.r/W ˙g!˙g in Theorem 1.3 enjoys Œˆg.r/� 2 �M for large g ;
see [19, Lemma 4.8].

Let yıg be the minimum among dilatations of elements in �M\Mod.˙g/. Clearly
we have that ıg � yıg . Equality is achieved when g D 2 [14]. We prove the limit of
g log yıg exists and it equals the number which we encountered in Theorem 1.3.

Theorem 1.4 (1) We have lim
g!1

g log yıg D log
�

3C
p

5

2

�
.

(2) For large g , yıg is achieved by the monodromy of some ˙g –bundle over the
circle obtained from either N. 3

�2
/ or N. 1

�2
/ by Dehn filling both cusps.

More precisely, the following holds (see also Remark 3.18). For large g such that
g�0; 1; 5; 6; 7; 9 .mod 10/ (resp. large g such that g�3; 8 .mod 10/), yıg is achieved
by the monodromy of some ˙g –bundle over the circle obtained from N. 3

�2
/ (resp.

N. 1
�2
/) by Dehn filling both cusps.

We know from [19, Proposition 4.37] that for g D 8; 13, yıg cannot be achieved by the
monodromy of any ˙g –bundle over the circle obtained from either N . 3

�2
/ or N. 1

�2
/

by Dehn filling. In fact, the manifold N. 4
�3
; 25
�17

;�5/ (resp. N. 29
�27

; 5
�3
;�6/) is a

˙8 –bundle (resp. a ˙13 –bundle) over the circle, where N.r1; r2; r3/ is the closed
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manifold obtained from N by Dehn filling all cusps along the slopes r1 , r2 and r3 .
Its dilatation is smaller than that of any ˙8 –bundle (resp. ˙13 –bundle) over the circle
obtained from either N. 3

�2
/ or N. 1

�2
/ by Dehn filling. Theorem 1.4 says if g is large,

then among the elements of �M, the pseudo-Anosovs defined on ˙g with the smallest
dilatation are the same examples identified by Hironaka [14], Aabor and Dunfield [1]
and Kin and Takasawa [19].

However, we can find new examples in �M defined on ˙g with orientable invariant
foliations when g� 0 .mod 6/. Let �MC be the set of pseudo-Anosov elements of �M
with orientable invariant foliations. Let yıCg be the minimum among dilatations of
elements in �MC\Mod.˙g/. Since �MC\Mod.˙g/¤∅ for g � 2 (Lemma 3.19),
then yıCg is well-defined. Clearly ıg � ıCg � yı

C
g .

The following describes the asymptotic behavior of yıCg ’s in the case g 6� 0 .mod 6/.

Theorem 1.5 (1) We have

lim
g 6�0 .mod 6/

g!1

g log yıCg D log
�3C

p
5

2

�
:

(2) For large g such that g � 2; 4 .mod 6/ or g � 3 .mod 10/, yıCg is achieved by
the monodromy of some ˙g –bundle over the circle obtained from N. 1

�2
/ by

Dehn filling both cusps.

(3) For large g such that g� 1; 5; 7; 9 .mod 10/, yıCg is achieved by the monodromy
of some ˙g –bundle over the circle obtained from N. 3

�2
/ by Dehn filling both

cusps.

Theorem 1.5(1) leads to the following estimate, which was proved by Hironaka first [14].

lim sup
g 6�0 .mod 6/

g!1

g log ıCg � log
�3C

p
5

2

�
:

If g 6� 0 .mod 6/ is large, then elements of �MC defined on ˙g with the smallest
dilatation are the same examples discovered in Hironaka [14], Aaber and Dunfield [1]
and the first and third authors [19].

In the case g� 0 .mod 6/, there exist no examples of elements in �MC defined on ˙g

which occur as monodromies of fibrations on manifolds obtained from N. 1
�2
/ or

N. 3
�2
/ by Dehn filling both cusps; see Hironaka [14], Aaber and Dunfield [1] and the

first and third authors [19]. To the best of our knowledge, the smallest known upper
bound on ıCg for g � 0 .mod 6/ is

(1-4) ıCg � �.g;g;�1/;
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where �.g;g;�1/ is the largest root of f.g;g;�1/.t/D t2gC1�2tgC1�2tgC1 [27; 15].
By using the bound (1-4), Minakawa and independently Hironaka and Kin proved that

(1-5) g log ıCg � log.2C
p

3/� 1:3169:

Note that the set �MC could be a source to provide a sharper upper bound on ıCg than
the bound (1-4) in the case g � 0 .mod 6/. In fact, we will find elements of �MC

defined on ˙g for g� 6 .mod 12/ whose normalized entropies go to 4 log ı.D5/ as g

goes to 1; see Lemmas 3.22 and 3.23. These examples occur as monodromies of
fibrations on manifolds obtained from N.4/ or N.�6/ by Dehn filling both cusps. As
a corollary, we have the following.

Theorem 1.6 We have

lim sup
g�6 .mod 12/

g!1

g log ıCg � 2 log ı.D5/� 1:0870:

By using our examples, we give the following upper bound on ıCg for g� 6 .mod 12/

which is sharper than the previous one (1-4) (see also Table 1).

Theorem 1.7 (Upper bound on ıCg for g � 6 .mod 12/)

(1) We have ıCg � �..3g=2/C1;.3g=2/�1;.g=2// if g � 6; 30; 42; 54; 78 .mod 84/.

(2) We have ıCg � �.gC2;g�2;�.g=2// if g � 18; 66 .mod 84/.

In the case g � 0 .mod 12/, we improve the bound (1-4) for many g ; see Table 1.

Section 3.5 concerns the monodromies of fibrations on the Whitehead link exterior N.1/.
The manifold N.1/ is very special among other N.r/’s. It is the only manifold
among the N.r/’s which admits fibers with arbitrarily many boundary components
(Lemma 5.2). Moreover the invariant foliation of the monodromy of each fibration
on N.1/ has the property such that each boundary component of the fiber has a 1

prong. (Remark 3.29). We shall show in Section 3.5 that there exists the monodromy
ˆnW ˙1;n!˙1;n of a particular fibration on N.1/ whose normalized entropy tends
to 2 log ı.D4/ as n tends to 1 (Proposition 3.30 and Lemma 3.31). Thus we have
the following.

Theorem 1.8 lim sup
n!1

n log ı1;n � 2 log ı.D4/.

This implies the upper bound lim supn!1 n log ı1;n � 2 log 9 by Tsai; see [33, Sec-
tion 3.2.1 and Theorem 3.2.2].
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g upper bound on ıCg upper bound on ıCg in [27; 15]

6 �.10;8;3/ � 1:20189 �.6;6;�1/ � 1:22571

12 �.12;20;3/ � 1:10240 �.12;12;�1/ � 1:11124

18 �.20;16;�9/ � 1:06276 �.18;18;�1/ � 1:07382

24 �.32;28;3/ � 1:04757 �.24;24;�1/ � 1:05524

30 �.46;44;15/ � 1:03692 �.30;30;�1/ � 1:04413

36 �.50;52;15/ � 1:03148 �.36;36;�1/ � 1:03674

42 �.64;62;21/ � 1:02622 �.42;42;�1/ � 1:03147

48 �.66;68;19/ � 1:02367 �.48;48;�1/ � 1:02752

54 �.82;80;27/ � 1:02033 �.54;54;�1/ � 1:02446

60 �.80;76;15/ � 1:01903 �.60;60;�1/ � 1:02200

66 �.68;64;�33/ � 1:01661 �.66;66;�1/ � 1:02000

72 �.96;92;19/ � 1:01586 �.72;72;�1/ � 1:01833

78 �.118;116;39/ � 1:01403 �.78;78;�1/ � 1:01691

84 �.114;116;31/ � 1:01357 �.84;84;�1/ � 1:01570

90 �.136;134;45/ � 1:01215 �.90;90;�1/ � 1:01465

96 �.132;140;43/ � 1:01190 �.96;96;�1/ � 1:01374

102 �.104;100;�51/ � 1:01071 �.102;102;�1/ � 1:01293

108 �.146;148;39/ � 1:01057 �.108;108;�1/ � 1:01221

114 �.172;170;57/ � 1:00958 �.114;114;�1/ � 1:01156

120 �.164;172;51/ � 1:00952 �.120;120;�1/ � 1:01098

126 �.190;188;63/ � 1:00841 �.126;126;�1/ � 1:01046

132 �.174;164;31/ � 1:00869 �.132;132;�1/ � 1:00998

138 �.208;206;69/ � 1:00790 �.138;138;�1/ � 1:00955

144 �.194;196;51/ � 1:00793 �.144;144;�1/ � 1:00915

150 �.152;148;�75/ � 1:00727 �.150;150;�1/ � 1:00878

156 �.210;212;55/ � 1:00732 �.156;1566;�1/ � 1:00845

162 �.244;;242;81/ � 1:00673 �.162;162;�1/ � 1:00813

168 �.228;236;67/ � 1:00680 �.168;168;�1/ � 1:00784

174 �.262;260;87/ � 1:00626 �.174;174;�1/ � 1:00757

180 �.240;236;55/ � 1:00635 �.180;180;�1/ � 1:00732

186 �.188;184;�93/ � 1:00586 �.186;186;�1/ � 1:00708

192 �.258;260;67/ � 1:00595 �.192;192;�1/ � 1:00686

198 �.298;296;99/ � 1:00550 �.198;198;�1/ � 1:00665

204 �.276;284;79/ � 1:00560 �.204;204;�1/ � 1:00646

210 �.316;314;105/ � 1:00519 �.210;210;�1/ � 1:00627

216 �.290;292;75/ � 1:00529 �.216;216;�1/ � 1:00610

Table 1: Upper bounds on ıCg such that g � 0 .mod 6/ [the bounds on the
left if g � 6 .mod 12/ come from Theorem 1.7; if g � 0 .mod 12/ and
g > 12 , the bounds on the left are given by elements of �MC which occur
as monodromies of fibrations on manifolds obtained from N. 5

�4
/ by Dehn

filling both cusps]
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1.6 Thurston norm equivalence, entropy equivalence on manifolds N.r/

In the course of analyzing the magic manifold, we discovered many “twins” among
the N.r/’s. The particular ones are N. 3

�2
/ and N. 1

�2
/ which will be critical in the

proof of Theorem 1.4. They are different manifolds but have common properties from
entropy computational viewpoints. To formulate ideas, we say that 3–manifolds M

and M 0 are Thurston norm equivalent, denoted by

M �
T

M 0;

if there is an isomorphism f W H2.M; @M IZ/!H2.M
0; @M 0IZ/ which preserves

the Thurston norm, ie, kak D kf .a/k for any a 2 H2.M; @M IZ/. We call such f
the Thurston norm preserving isomorphism. For example

N.r/�
T

N.�2� r/

when r;�2�r 2Hyp (Proposition 2.20). We introduce two more equivalence relations,
both called the entropy equivalence, of which the precise definitions are given in
Section 2.5.1. The first one is defined on the pairs .M; �/, where M is a fibered
3–manifold and � is its fibered face. Namely, .M; �/ and .M 0; �0/ are entropy
equivalent, denoted by

.M; �/ �
ent
.M 0; �0/;

if we have that there is a Thurston norm preserving isomorphism f W H2.M; @M IZ/!
H2.M

0; @M 0IZ/ such that f maps int.C�.Z// to int.C�0.Z// preserving the entropy
function. In particular

.M; �/ �
ent
.M 0; �0/

implies that min Ent.M; �/D min Ent.M 0; �0/. The second equivalence relation is
defined on the fibered 3–manifolds. Fibered 3–manifolds M and M 0 are entropy
equivalent, denoted by

M �
ent

M 0;

if we have that there is a Thurston norm preserving isomorphism f W H2.M; @M IZ/!
H2.M

0; @M 0IZ/ such that f preserves both fibered classes and the entropy functions.
If M �

ent
M 0 , then min Ent.M /Dmin Ent.M 0/. We shall prove in Theorem 2.26 that

.N.2/;�S / �ent

�
N
� 3

�2

�
; �A

�
�
ent

�
N
� 1

�2

�
; �A

�
:
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For the definition of fibered faces �S and �A ; see Section 2.5.2. We also prove that

N.r/ �
ent

N.�2� r/

for ‘almost all’ r 2Hyp; see Theorem 2.26. This is derived from the symmetry of the
Thurston norm ball and the symmetry of the entropy function of N . In particular

N
� 3

�2

�
�
ent

N
� 1

�2

�
:

Recall that the quantity min Ent is defined to be the minimum of the normalized
entropies of the classes in

S
� int.C�/, where � is taken over all fibered faces of M .

The number log..3C
p

5/=2/ in Theorem 1.3 appears in the equalities

min Ent
�
N
� 3

�2

��
Dmin Ent

�
N
� 1

�2

��
Dmin Ent.N.2/;�S /D 2 log

�3C
p

5

2

�
:

1.7 Question by Lanneau and Thiffeault

Let k and ` be integers such that 0< `< k . We consider the following fibered classes
in int.C�/:

.2k˙ `; 2k˙ 2`; k˙ 2`/ 2 Sˇ

� 3

�2

�
;

.k; 2k˙ 2`;˙`/ 2 Sˇ

� 1

�2

�
;

.k˙ `; k� `;�k/ 2 S .2/:

By using the Teichmüller polynomial (1-2), we see that the dilatation of each fibered
class above is equal to the largest real root �.k;`/ of the following Lanneau–Thiffeault
polynomial:

f.k;`/.t/D t2k
� tkC`

� tk
� tk�`

C 1

(note that f.k;`/.t/ is a common factor of f.2k˙`;2k˙2`;k˙2`/.t/, f.k;2k˙2`;˙`/.t/

and f.k˙`;k�`;�k/.t/).

It is known that ıC
2
D �.2;1/ , ı

C

4
D �.4;1/ , ı

C

6
� �.6;1/ , ı

C

8
D �.8;1/ ; see [35; 21; 14].

Motivated by these results, Lanneau and Thiffeault asked the following.

Question 1.9 [21] For g even, is ıCg equal to �.g;1/?

We consider Question 1.9 in the set �MC . The results in this paper imply that there
exists a gap between yıCg and �.g;1/ for large g such that g � 0 .mod 6/.
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Theorem 1.10

(1) We fix any � > 0 so that 1:97475� � > 2 log.3C
p

5
2

/. For large g such that
g � 0 .mod 6/, we have yıCg > �.g;1/ and

j�.˙g/j log yıCg > 1:97475� � > 2 log
�3C

p
5

2

�
:

(2) We have yıCg D �.g;1/ for large g such that g � 2; 4 .mod 6/.

1.8 Idea of proofs and conjectures

This subsection describes the outline of the proof of Theorem 1.4. (The proof of
Theorem 1.5 is similar.) First, let us recall the approach to (1-1) by Hironaka [14],
Aaber and Dunfield [1] and Kin and Takasawa [19]. Take a particular single 2–cusped
hyperbolic fibered 3–manifold M (which is either N. 1

�2
/;N. 3

�2
/ or N.2/.) Compute

the Teichmüller polynomial P� and min Ent.M; �/ (which equals 2 log..3C
p

5/=2/

in this case) for a fibered face � of M . Then determine the topological type of each
fiber F such that ŒF � 2 int.C�/. We can find a fiber Fg of genus g for large g which
enjoys the following. The ray of ŒFg� goes to the ray whose normalized entropy Ent
achieves min Ent.M; �/ as g goes to 1. (Then Ent.ŒFg�/ goes to min Ent.M; �/

as g goes to 1.) Moreover, the number of boundary components of Fg is bounded
by some constant. Finally check that the stable foliation for the monodromy of the
fibration associated to ŒFg� satisfies that each boundary component of Fg has no 1

prong. Then we obtain the equality in Theorem 1.3 which implies (1-1).

Compared to the above approach, a difficulty for the proof of Theorem 1.4 is that
for each r 2 Hyp n f1g, the manifold N.r/ has a fiber of arbitrarily large genus.
Because of this, it is not clear which manifold N.r/ we should look in. Thus it is not
a straightforward task to identify a primitive fibered class ag 2H2.N; @N / such that
�ag
2M and yıg is achieved by y�ag

2 �M\Mod.˙g/. Also it is not obvious at all
that one of the boundary slopes of ag becomes a constant for large g . (As we will see,
one of the boundary slopes of ag must be in f�4; 3

�2
; 1
�2
; 2g for large g .) The key

observation to prove Theorem 1.4 is

Theorem 1.11 For r 2 Hyp, let � be any fibered face of N.r/ which enjoys the
following.

(�) Let a 2 Sˇ.r/ be a primitive fibered class of N such that xa 2 int.C�/. Let
ˆaW Fa ! Fa be the monodromy of the fibration associated to a. Then the
stable foliation Fa of ˆa has the property such that any boundary component of
Fa lying on Tˇ has no 1 prong.
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Then:

(1) min Ent.N.1/;�/D 2 log ı.D4/� 1:6628.

(2) If r D�4; 3
�2
; 1
�2

, or 2, then we have

min Ent.N.r/;�/D 2 log ı.D3/D 2 log
�3C

p
5

2

�
� 1:9248:

(3) If r ¤�4; 3
�2
; 1
�2
; 1, or 2, then we have min Ent.N.r/;�/ > 1:97475.

We remark here that for any r 2 Hyp, there exists � having the condition (�)
(Proposition 2.24). Thus, there are no slopes r for which we cannot apply Theorem 1.11.
Also, since the three claims in Theorem 1.11 cover all slopes r 2Hyp, the conclusions
we could draw from Theorem 1.11 are expected to be fairly sharp.

To see this, consider the set of pairs

DD f.N.r/;�/ j r 2Hyp; � is a fibered face of N.r/ with (�)g:

Theorem 1.11 shows for instance that there exist a minimum and a second minimum of

fmin Ent.N.r/;�/ j .N.r/;�/ 2Dg

and they are 2 log ı.D4/ and 2 log ı.D3/ respectively. The minimum is attained
only by N.1/ and the second minimum is attained by N.r/ for r 2 f�4; 3

�2
; 1
�2
; 2g.

Furthermore, if r 62 f�4; 3
�2
; 1
�2
; 1; 2g, then Theorem 1.11(3) says min Ent.N.r/;�/

is greater than the second minimum with a uniform gap.

The condition (�) on one boundary component, Tˇ , of N is a weaker version of the
condition (1-3) on all three boundary components. If � enjoys (�), then the dilatation
of a 2 Sˇ.r/ for N equals the dilatation of xa for N.r/. Thus one can compute the
dilatation of xa by using the Teichmüller polynomial of N . In Section 2.2, we shall see
that the entropy function for N has symmetries. This property together with the strict
concavity of 1=ent works well in the proof of Theorem 1.11.

Outline of the proof of Theorem 1.4 It is known that N.�4/'N. 3
�2
/ and N.1/ is

isomorphic to the Whitehead link exterior; see [23]. Recall that ag is a primitive fibered
class of H2.N; @N / such that �ag

2M and yıg is achieved by y�ag
2 �M\Mod.˙g/.

There exists such a fibered class ag for any g � 3. (In fact, the existence of the fiber
of the fibration of genus g for any g � 3 is guaranteed by Theorem 1.3. One sees that
the monodromy of this fibration is in the set M, by [19, Lemma 4.7].)

Since we know from the computation that N.1/ has no fiber of genus greater than 1, ag

does not have a boundary slope 1 for g� 2. On the other hand, each of three manifolds
N.�4/'N. 3

�2
/, N. 1

�2
/ and N.2/ has a fiber of genus g for large g .
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Now, if we fill two other cusps of N.r/, the normalized entropy of y�ag
decreases from

that of �ag
and we have to consider its defect. We will show that the set of normalized

entropies of monodromies of the fibrations on the closed manifolds, obtained from N

by Dehn filling all cusps along the slopes not in f�4; 3
�2
; 1
�2
; 2g, have no accumulation

values less than or equal to 2 log..3C
p

5/=2/. Thus, one sees that ag has to have a
boundary slope in f�4; 3

�2
; 1
�2
; 2g eventually. Moreover the set of normalized entropies

of the monodromies of the fibrations on the closed manifolds obtained from N by
Dehn filling all cusps along the slopes, one of which is in f�4; 3

�2
; 1
�2
; 2g, have no

accumulation values less than 2 log..3C
p

5/=2/. This together with Theorem 1.3
implies Theorem 1.4(1).

The proof of Theorem 1.4(1) together with a claim in [19] leads to Theorem 1.4(2).
For more details of the proofs, see Sections 3.2 and 3.3.

Based on the study of the magic manifold above, we propose conjectures. (The first
half of Conjecture 1.12(1),(2) is also stated in [14, Question 1.12].)

Conjecture 1.12 (1) We have limg!1 g log ıgD log.3C
p

5=2/. For large g , ıg
is achieved by the monodromy of some ˙g –bundle over the circle obtained
from either N. 3

�2
/ or N. 1

�2
/ by Dehn filling both cusps.

(2) We have

lim
g 6�0 .mod 6/

g!1

g log ıCg D log
�3C

p
5

2

�
:

For large g such that g 6� 0 .mod 6/, ıCg is achieved by the monodromy of some
˙g –bundle over the circle obtained from N. 3

�2
/ or N. 1

�2
/ by Dehn filling both

cusps.

Conjecture 1.13 We have limn!1 n log ı1;n D 2 log ı.D4/. For large n, ı1;n is
achieved by the monodromy of a fibration on N.1/.

1.9 Organization of the paper

In Section 2, first we describe properties of the entropy function for N . Next we
construct the Thurston norm ball of N.r/. Finally we discuss the Thurston norm equiv-
alence and entropy equivalence on the manifolds N.r/. In Section 3 we prove main
results. In Section 4 we exhibit the computation of min Ent for some manifolds N.r/

which appeared in Gabai, Meyerhoff and Milley’s work (Theorem 4.1, Table 2). We
also exhibit the normalized entropy of the monodromy of a fibration on each 1–cusped
hyperbolic fibered 3–manifold with volume at most 2:848.
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2 Magic manifold

2.1 Fibered face

Recall that � is the fibered face of N as in Section 1.4. The open face int.�/ is
written by

(2-1) int.�/D f.x;y; z/ j xCy � z D 1; x > 0; y > 0; x > z; y > zg:

The Thurston norm of .x;y; z/ 2 int.C�/ is given by x C y � z . We recall some
formulas in Lemmas 2.1 and 2.2. Lemma 2.2 tells us the singularity data of the stable
foliation Fa for a primitive fibered class a 2 int.C�/. First of all, we explain that one
can compute the dilatation �.a/ and the singularity data of the stable foliation Fa for
any primitive fibered class a 2H2.N; @N / by using the symmetries of H2.N; @N /.

We consider a homeomorphism (in fact, a rotation map)

hW .S3; C3/! .S3; C3/

which sends K˛ , Kˇ , K to Kˇ , K , K˛ respectively; see Figure 2(right). Then h

induces the isomorphism h�W H2.N; @N / ! H2.N; @N / of order 3 which sends
˛; ˇ;  to ˇ; ; ˛ respectively.

Let us pick the two fibered faces �1 with the vertices .0; 0; 1/, .1; 1; 1/, .1; 0; 0/,
.0;�1; 0/ and �2 with the vertices .0; 1; 0/, .1; 1; 1/, .0; 0; 1/ and .�1; 0; 0/; see
Figure 2(left). We denote the opposite fibered faces of �, �1 , �2 by �0 , �0

1
, �0

2

respectively. Consider the set

Int C D
[
y�

int.Cy�/;
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where y� is taken over all fibered face of N . We define the map � W Int C ! int.C�/
as follows. For aD .x;y; z/ 2 Int C ,

�.a/D a if a 2 int.C�/;

�.a/D h�.a/D .z;x;y/ if a 2 int.C�1
/;

�.a/D .h2/�.a/D .y; z;x/ if a 2 int.C�2
/;

�.a/D �.�a/ if a 2 int.C�0/[ int.C�0
1
/[ int.C�0

2
/;

where h2 D h ıh, and .h2/�W H2.N; @N /!H2.N; @N / is the isomorphism induced
from h2 . Clearly, a 2H2.N; @N / is a fibered class if and only if �a 2H2.N; @N /

is a fibered class. In this case the inverse .ˆa/
�1 of the monodromy ˆa of the

fibration on N associated to a is isotopic to the monodromy ˆ�a of the fibration
on N associated to �a. In particular �.a/D �.�a/. Moreover the singularity datum
of Fa and F�a are the same.

Let us assume a is a primitive fibered class such that a2 int.C�1
/ (resp. a2 int.C�2

/).
Then two fibered classes a and �.a/ 2 int.C�/ have the fibres Fa and F�.a/ with the
same topology, and the monodromies ˆa and ˆ�.a/ are conjugate. This is because
the isomorphism h� (resp. .h2/� ) is coming from the homeomorphism on the pair
.S3; C3/. In particular �.a/D �.�.a//, and �.a/ is the largest real root of f.z;x;y/.t/
(resp. f.y;z;x/.t/); see (1-2). Notice that the conjugacy homeomorphism gW Fa!F�.a/
between ˆaW Fa!Fa and ˆ�.a/W F�.a/!F�.a/ permutes the boundary components
of the fiber. More precisely, g maps the boundary components of Fa which lie on
T˛ , Tˇ , T to the boundary components of F�.a/ which lie on Tˇ;T ;T˛ (resp.
T ;T˛;Tˇ ). Thus, to apply Lemma 2.2 below for such a primitive fibered class a in
int.C�1

/ (resp. int.C�2
/), first apply the lemma for �.a/ 2 int.C�/. Then translate

the claim into the one for the fibered class a by permuting the boundary components
of the fiber.

Lemma 2.1 Let aD .x;y; z/ be a primitive fibered class in H2.N; @N /. Then ].@Fa/

equals
gcd.x;yC z/C gcd.y; zCx/C gcd.z;xCy/;

where gcd.0; w/ is defined by jwj. More precisely,

].@˛Fa/D gcd.x;yC z/; ].@ˇFa/D gcd.y; zCx/; ].@Fa/D gcd.z;xCy/:

Proof The proof in the case a 2 int.C�/ can be found in [18, Lemma 3.1]. Because
of the symmetries of H2.N; @N /, the formula for primitive fibered classes over � can
be extended to any primitive fibered classes in H2.N; @N /.
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Lemma 2.2 [19, Lemma 3.1] Let aD .x;y; z/ be a primitive fibered class in int.C�/.
The stable foliation Fa of the monodromy ˆa has the property such that each compo-
nent of @˛Fa , @ˇFa and @Fa has x=gcd.x;yC z/ prongs, y=gcd.y;xC z/ prongs
and .x C y � 2z/= gcd.z;x C y/ prongs respectively. Moreover Fa does not have
singularities in the interior of Fa .

For a rational class a D .x;y; z/ 2 H2.N; @N IR/, define p˛.a/
q˛.a/

, pˇ.a/

qˇ.a/
, p .a/

q .a/
as

follows:

slope.a/D .b˛.a/; bˇ.a/; b .a//D
�p˛.a/

q˛.a/
;
pˇ.a/

qˇ.a/
;
p .a/

q .a/

�
;

where p˛.a/
q˛.a/

, pˇ.a/

qˇ.a/
, p .a/

q .a/
are irreducible forms so that p˛.a/, pˇ.a/, p .a/ 2N .

Remark 2.3 Suppose that a rational class a D .x;y; z/ is an element of int.C�/.
Then x> 0, y> 0, x> z and y> z from (2-1). Thus if z¤ 0 then b .a/2 .�1;�2/

or b .a/ 2 .0;1/. In particular p .a/C 2q .a/ > 0 and p .a/C q .a/ > 0.

2.2 Entropy function with symmetries

In this subsection we will see that the entropy function for N possesses symmetries.
Some claims given here play an important role in the proof of Theorem 1.11.

Before we state Lemma 2.4, we note that when .x;y; z/ is a primitive fibered class
in int.C�/, then .y;x; z/ is also a primitive fibered class in int.C�/. The topological
types of the fibers F.x;y;z/ and F.y;x;z/ are the same by Lemma 2.1.

Lemma 2.4 Let .x;y; z/ be a primitive fibered class in int.C�/. Then the inverse
.ˆ.x;y;z//

�1 of the monodromy ˆ.x;y;z/W F.x;y;z/! F.x;y;z/ of the fibration on N

associated to .x;y; z/ is conjugate to the monodromy ˆ.y;x;z/W F.y;x;z/!F.y;x;z/ of
the fibration on N associated to .y;x; z/ 2 int.C�/. In particular �.x;y;z/ D �.y;x;z/ .

Proof Let us denote by C�
3

the 3 chain link such that the orientation of each component
is opposite to each one for C3 . We denote the components of C�

3
by K�˛ , K�

ˇ

and K� . There exists a homeomorphism i W .S
3; C3/ ! .S3; C�

3
/ which sends

K˛ , Kˇ , K to K�
ˇ

, K�˛ , K� respectively. Then i induces the isomorphism
.i /�W H2.N; @N / ! H2.N; @N / which sends ˛ , ˇ ,  to �ˇ , �˛ , � respec-
tively. If we take aD .x;y; z/ 2 int.C�/, then .i /�.a/D .�y;�x;�z/ 2 int.C�0/.
Since .i /� is induced by the homeomorphism i , the monodromies ˆa and ˆ.i /�.a/
must be conjugate. (Hence ˆ�1

a and .ˆ.i /�.a//
�1 are conjugate.) On the other hand,

.ˆ.i /�.a//
�1 is isotopic to the monodromy ˆ�.i /�.a/ of the fibration on N associated

to �.i /�.a/D .y;x; z/ 2 int.C�/. Thus .ˆ.x;y;z//�1 and ˆ.y;x;z/ are conjugate.
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Observe that if we have .x;y; z/ 2 int.C�/, then .y� z;y;y�x/, .y� z;x� z;�z/,
.x;x� z;x�y/ 2 int.C�/. These four classes have the same Thurston norm.

Lemma 2.5 The four classes .x;y; z/, .y � z;y;y � x/, .y � z;x � z;�z/ and
.x;x� z;x�y/ of int.C�/ have the same entropy.

Proof One sees that f.y�z;y;y�x/.t/, f.y�z;x�z;�z/.t/ and f.x;x�z;x�y/.t/ are equal
to the same polynomial f.x;y;z/.t/.

Remark 2.6 If .x;y; z/ is a primitive fibered class in int.C�/, then the other three
classes in Lemma 2.5 are also primitive. Although these classes have the same Thurston
norm, the topological types of their minimal representatives may be different.

Let .x;y; z/ 2�. Since xCy� z D 1, one may represent .x;y; z/ without z . Let us
denote the class .x;y; z/ by Œx;y�. Then the open face int.�/ can be written by

int.�/D fŒx;y� j 0< x < 1; 0< y < 1gI

see Figure 3. We shall see in Remark 2.8 that this parametrization for the points of
int.�/ makes it easy to see the symmetry of the entropy function for N . We denote
by �Œx;y� the dilatation of Œx;y� 2 int.�/. By Lemma 2.5 one obtains the following.

Corollary 2.7 If .x;y; z/ 2 int.C�/, thenh x

xCy � z
;

y

xCy � z

i
;

h y � z

xCy � z
;

y

xCy � z

i
;h y � z

xCy � z
;

x� z

xCy � z

i
;

h x

xCy � z
;

x� z

xCy � z

i
;

have the same entropy (see Figure 4).

Remark 2.8 Corollary 2.7 says that any two classes of int.�/ having a line symmetry
about x D 1

2
(resp. y D 1

2
) have the same entropy. In addition by Lemma 2.4,

�.x;y;z/ D �.y;x;z/ holds for .x;y; z/ 2 int.C�/. This implies that any two classes
aD Œx;y�; za2 Œy;x�2 int.�/ with a line symmetry about yD x have the same entropy.
Putting all things together, one has another line symmetry about y D�xC 1 for the
entropy function of N . Thus 8 classes b0; zb0; : : : ; b3; zb3 2 int.�/ as in Figure 4 have
the same entropy.

By Corollary 2.7, one obtains the following.
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Œ0; 1� Œ1; 1�

Œ0; 0� Œ1; 0�

x D 1
2

y D 1
2

y
Œx;y�

x

Figure 3: Œx;y� 2 int.�/

Œ0; 1� Œ1; 1�

Œ0; 0� Œ1; 0�

b1 b0

b2 b3

Œ0; 1� Œ1; 1�

Œ0; 0� Œ1; 0�

b1

zb3
zb0

b0

b2

zb2
zb1

b3

Figure 4: We have that b0 D Œ x
xCy�z

; y
xCy�z

� , b1 D Œ y�z
xCy�z

; y
xCy�z

� ,

b2 D Œ
y�z

xCy�z
; x�z

xCy�z
� , b3 D Œ

x
xCy�z

; x�z
xCy�z

� 2 int.�/ and �bi 2 int.�/

Lemma 2.9 Fix 0< x0 < 1, 0< y0 < 1 and 0< c < 2.

(1) �Œx0;.1=2/�t � D �Œx0;.1=2/Ct � for 0� t < .1=2/, and

�Œx0;1=2� Dminf�Œx0;y� j 0< y < 1g:

(2) �Œ.1=2/�t;y0� D �Œ.1=2/Ct;y0� for 0� t < 1
2

, and

�Œ1=2;y0� Dminf�Œx;y0� j 0< x < 1g:

(3) �Œ.c=2/Ct;.c=2/�t � D �Œ.c=2/�t;.c=2/Ct � for 0� t < 1� c
2

, and

�Œc=2;c=2� Dminf�Œx;y� j Œx;y� 2 int.�/;y D�xC cg:

Proof We prove (3). The first equality follows since �Œx;y�D �Œy;x� for 0< x < 1 and
0 < y < 1. The function 1=log� restricted to the set fŒx;y� 2 int.�/ j y D �xC cg

is strictly concave. This together with the first equality implies that Œ c
2
; c

2
� reaches a

minimum.
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The proofs of (1), (2) are similar to that of (3).

By using Lemma 2.9 one sees that the center Œ1
2
; 1

2
� 2 int.�/ achieves min Ent.N; �/.

Because of the symmetries of H2.N; @N /, min Ent.N; �/Dmin Ent.N; y�/ holds for
any fibered face y�. Thus one has the following.

Proposition 2.10 min Ent.N /D Ent.Œ1
2
; 1

2
�/D 2 log.2C

p
3/� 2:6339

By Proposition 2.10, one sees: when Œx;y� 2 int.�/ such that Œx;y�¤ Œ1
2
; 1

2
�, then

log�Œx;y� > log�Œ1=2;1=2� D 2 log.2C
p

3/ > 2:633:

2.3 Thurston norm of manifolds N.r/

Let N.r/ be the manifold obtained from the magic manifold N by Dehn filling the
cusp specified by the torus Tˇ along the slope r , and D.r/ an attached solid torus
in N.r/ so that @D.r/D Tˇ . Consider the exact sequence of the homology group of
the triple .N.r/; @N.r/[D.r/; @N.r// with real coefficients:

� � � �!H2.N.r/; @N.r//
j
�!H2.N.r/; @N.r/[D.r//

@
�!H1.@N.r/[D.r/; @N.r// �! � � �

The first homomorphism j is injective since H2.@N.r/[D.r/; @N.r//D 0. Also by
excision, we have an isomorphism

eW H2.N; @N / �!H2.N.r/; @N.r/[D.r//:

Notice that the composition

@ ı eW H2.N; @N / �!H1.@N.r/[D.r/; @N.r//Š Z

can be identified with the intersection number for a cycle in H2.N; @N / with a slope r

on @D.r/D Tˇ .

On the other hand, since the composition of the boundary map with a quotient homo-
morphism

H2.N; @N /
@
�!H1.@N / �!H1.@N /=H1.T˛ [T /ŠH1.Tˇ/

sends ˛ and  to the minus meridian on Tˇ (see Figure 5) and ˇ to a longitude, the
kernel of @ ı e is identified with

Sˇ.r/D f.x;y; z/ 2H2.N; @N / j �ry D xC zg:

Thus, we have proved the following.
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Proposition 2.11 Take a slope r 2Q on a boundary torus for N , say Tˇ . Let N.r/

be the manifold obtained from N by Dehn filling the cusp specified by Tˇ along the
slope r . Then there is a natural injection

�ˇ D e�1
ı j W H2.N.r/; @N.r// �!H2.N; @N /

such that Im �ˇ D Sˇ.r/.

Figure 5: Meridians of the components of C3

For aD .x;y; z/2Sˇ.r/, we denote by xaD .x;y; z/, the element of H2.N.r/; @N.r//

such that �ˇ.xa/D a. We sometimes denote N.r/ by Nˇ.r/ when we need to specify
the cusp which is filled. By using this notation, we may write xa 2H2.Nˇ.r/; @Nˇ.r//.

Similarly, when N.r/ is the manifold obtained from N by Dehn filling the cusp
specified by T˛ or T along the slope r , one has natural injections,

�˛W H2.N.r/; @N.r// �!H2.N; @N /;

� W H2.N.r/; @N.r// �!H2.N; @N /;

such that their images are

S˛.r/D f.x;y; z/ 2H2.N; @N / j �rx D yC zg;

S .r/D f.x;y; z/ 2H2.N; @N / j �rz D xCyg:

We also denote by N˛.r/ or N .r/, the manifold N.r/ in this case.

Hereafter we denote the Thurston norm of N by k � k and its Thurston norm ball with
radius d by B.d/. (Hence UN D B.1/.) The entropy function and the normalized
entropy function of N are denoted by ent and Ent respectively as usual. We also
denote the Thurston norm of N.r/ by k � kr and the Thurston norm ball with radius d

by Br .d/. The dilatation, entropy function and the normalized entropy function
of N.r/ are denoted by �r , entr and Entr respectively.
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Let us define the set yBˇ;r .1/ to be yBˇ;r .1/ D B.1/ \ Sˇ.r/; see Figure 6. It is
parallelogram when r 2 .�2; 0/ (resp. hexagons when r 2 .�1;�2/[ .0;1/).

(0,0,-1)

(0,0,-1)

(0,0,-1) (0,0,-1)

.0;1;0/ .1;1;1/

.0;0;�1/
.1;0;0/

.�1;0;0/ .0;0;1/

.�1;�1;�1/ .0;�1;0/

.0;1;0/ .1;1;1/

.1;0;0/

.�1;0;0/ .0;0;1/

.�1;�1;�1/ .0;�1;0/

.0;1;0/ .1;1;1/

.1;0;0/

.�1;0;0/ .0;0;1/

.�1;�1;�1/ .0;�1;0/

. 1
2
;0; 1
�2
/

. 1
�2
;0; 1

2
/

(a) (b) (c) (d)

�2

�1

�

Figure 6: (Top) fibered faces � , �2 and �1 , (bottom) yBˇ;r .1/ in the case
(a) r 2 .�1;�2/ , (b) r 2 .�2;�1/ , (c) r 2 .�1; 0/ , (d) r 2 .0;1/

Now we consider the sets �\ S˛.r/, �\ Sˇ.r/ and �\ S .r/ for r 2 Hyp; see
Figure 7. Note that � \ S .r/ ¤ ∅ if and only if r 2 .�1;�2/ [ .0;1/; see
Remark 2.3.

Lemma 2.12 (1) �\S˛.r/ is a segment fŒx;y� 2� j y D .1Cr
�2
/xC 1

2
g. The set

of its endpoints equals:

(i) fŒ0; 1
2
�; Œ �1

1Cr
; 1�g when r 2 .�1;�2/.

(ii) fŒ0; 1
2
�; Œ1; r

�2
�g when r 2 .�2; 0/.

(iii) fŒ0; 1
2
�; Œ 1

1Cr
; 0�g when r 2 .0;1/.

(2) �\Sˇ.r/ is a segment fŒx;y�2� jyD . �2
1Cr

/xC 1
1Cr
g. The set of its endpoints

equals:

(i) fŒ1
2
; 0�; Œ1; �1

1Cr
�g when r 2 .�1;�2/.

(ii) fŒ1
2
; 0�; Œ r

�2
; 1�g when r 2 .�2; 0/.

(iii) fŒ1
2
; 0�; Œ0; 1

1Cr
�g when r 2 .0;1/.

(3) �\S .r/ is a segment fŒx;y� 2 � j y D �xC r
1Cr
g when r 2 .�1;�2/[

.0;1/. In this case the set of its endpoints equals:

(i) fŒ �1
1Cr

; 1�; Œ1; �1
1Cr

�g when r 2 .�1;�2/.
(ii) fŒ0; r

1Cr
�; Œ r

1Cr
; 0�g when r 2 .0;1/.
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Proof We prove the claim (1). Let aD .x;y; z/2�\S˛.r/. Then kakDxCy�zD1

and �rx D y C z . Substituting z D x C y � 1 for �rx D y C z , one obtains
y D .1Cr

�2
/xC 1

2
. It is immediate to check (i), (ii), (iii).

The proofs of (2), (3) are similar to that of (1).

Œ0; 1� Œ1; 1�

Œ0; 0� Œ1; 0�

Œ0; 1
2
�

Œ0; 1� Œ1; 1�

Œ0; 0� Œ1; 0�Œ1
2
; 0�

Œ0; 1� Œ1; 1�

Œ0; 0� Œ1; 0�

(a)
(b)

(c)
(d)

(a)

(b)(c)

(d)

(a)

(d)

Figure 7: (From left to right) �\ S˛.r/ , �\ Sˇ.r/ , �\ S .r/ [(a) r 2

.�1;�2/ , (b) r 2 .�2;�1/ , (c) r 2 .�1; 0/ , (d) r 2 .0;1/]

Remark 2.13 We note that .�\S˛.r//[ .�\Sˇ.r// has a line symmetry about
y D x .

Lemma 2.14 Suppose that one of the boundary slopes of a rational class of H2.N; @N /

equals 1. Then the other two boundary slopes also equal 1.

Proof Because of the symmetries of H2.N; @N /, it suffices to suppose that the rational
class lives in int.C�/. By Lemma 2.12, �\S˛.1/D�\Sˇ.1/D�\S .1/. This
leads to the lemma.

We present a formula for the Thurston norm of N.r/ by using the Thurston norm
of N .

Lemma 2.15 Let p 2 N and q 2 Z be coprime such that p=q 2 Hyp. If
a D .x;y; z/ 2 S .

p
q
/, then the Thurston norm of xa 2 H2.N .

p
q
/; @N .

p
q
// equals

kak� j z
q
j. In particular

kxakp=q D 1�
1

pC q
if a 2�\S

�p

q

�
:
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Proof Suppose that a 2 S .
p
q
/ is an integral class. Then kxakp=q equals kak minus

the number of the boundary components of Fa which lie on T , that is

kxakp=q D kak� gcd.z;xCy/D kak�
ˇ̌̌ z
q

ˇ̌̌
:

The Thurston norm k � kp=q defined on integral classes admits a unique continuous
extension to H2.N.

p
q
/; @N.p

q
/IR/. Thus we have that the above formula holds for

any class a 2 S .
p
q
/.

Suppose that a 2 � \ S .
p
q
/. Then p C q > 0. One has �pz D q.x C y/ and

kak D xC y � z D 1. Hence �pz D q.1C z/, and one obtains z D q
�.pCq/

. Thus
kxakp=q D 1� j z

q
j D 1� 1

pCq
.

Similarly, we have the following.

Lemma 2.16 If one fills the cusp of N specified by the torus T˛ (resp. Tˇ ) along the
slope p

q
, then the Thurston norm of N˛.

p
q
/ (resp. Nˇ.

p
q
/) is given by

kxakp=q D kak�
ˇ̌̌x
q

ˇ̌̌
for aD .x;y; z/ 2 S˛

�p

q

�
;�

resp. kxakp=q D kak�
ˇ̌̌y
q

ˇ̌̌
for aD .x;y; z/ 2 Sˇ

�p

q

��
:

2.4 Thurston norm equivalence on manifolds N.r/

Let p 2 N and q 2 Z be coprime such that r D p
q
2Hyp. We shall investigate the

shape of the Thurston norm ball of N.r/DNˇ.r/.

First we take ar ; br 2 Sˇ.r/ as follows:

ar D

�pC 1

2
;�q;

p� 1

2

�
; br D

�p� 1

2
;�q;

pC 1

2

�
if p is odd;

ar D

�p

2
C 1;�q;

p

2
� 1

�
; br D

�p

2
;�q;

p

2

�
if p is even:

Lemma 2.17 The set fxar ;xbr g is a basis of H2.Nˇ.r/; @Nˇ.r/IZ/.

Proof By Proposition 2.11, Im�ˇ D Sˇ.r/. Thus it is enough to show for any integral
class a D .x;y; z/ 2 Sˇ.r/, there exist integers k0; `0 such that a D k0ar C `0br .
One has �py D q.xC z/. Since p and q are coprime, there exists an integer t such
that xC z D pt . Hence z D pt � x . Substitute xC z D pt for �py D q.xC z/,
then one obtains .x;y; z/ D .x;�qt;pt � x/. Now let us take k0 D .1�p

2
/t C x ,

`0 D .
1Cp

2
/t �x if p is odd (resp. k0 D .

�p
2
/t Cx , `0 D .1C

p
2
/t �x if p is even).

One can check that aD k0ar C `0br .
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Lemma 2.18 Let r D p
q

be as above. The Thurston norm ball of N.r/ is described
by using .xar ;xbr / coordinates as follows (see Figure 8).

(1) Suppose that r 2 .�1;�2/.

(i) If jqj.D�q/¤ 1, then Br .pC q� 1/ is a hexagon with vertices

˙

�pC 2qC 1

2
;
pC 2q� 1

�2

�
;˙
�pC 2q� 1

2
;
pC 2qC 1

�2

�
;

˙

�pC q� 1

2
;
pC q� 1

�2

�
when p is odd;

˙

�pC 2q

2
;
pC 2q� 2

�2

�
;˙
�pC 2q

2
;
pC 2qC 2

�2

�
;

˙

�pC q� 1

2
;
pC q� 1

�2

�
when p is even:

(ii) If jqj.D�q/D 1, then Br .pC q� 1/ is a rectangle with vertices

˙

�pC 2qC 1

2
;
pC 2q� 1

�2

�
;˙
�pC 2q� 1

2
;
pC 2qC 1

�2

�
when p is odd;

˙

�pC 2q

2
;
pC 2q� 2

�2

�
;˙
�pC 2q

2
;
pC 2qC 2

�2

�
when p is even:

(2) Suppose that r 2 .�2; 0/. Then Br .�q/ is a parallelogram with vertices

˙

� q

2qC 2
;

q

2qC 2

�
; ˙

� q

�2
;
q

2

�
when p is odd,

and Br .�q� 1/ is a parallelogram with vertices

˙.0; 1/; ˙
�qC 1

�2
;
qC 1

2

�
when p is even:

(3) Suppose that r 2 .0;1/.

(i) If jqj.D q/¤ 1, then Br .pC q� 1/ is a hexagon with vertices

˙

�pC 1

2
;
p� 1

�2

�
;˙
�p� 1

2
;
pC 1

�2

�
;˙
�pC q� 1

2
;
pC q� 1

�2

�
when p is odd;

˙

�p

2
;
p� 2

�2

�
;˙
�p

2
;
pC 2

�2

�
;˙
�pC q� 1

2
;
pC q� 1

�2

�
when p is even:

(ii) If jqj.D q/D 1, then Br .pC q� 1/ is a rectangle with vertices

˙

�pC 1

2
;
p� 1

�2

�
;˙
�p� 1

2
;
pC 1

�2

�
when p is odd;

˙

�p

2
;
p� 2

�2

�
;˙
�p

2
;
pC 2

�2

�
when p is even:
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Proof Let us consider the classes in yBˇ;r .1/.D B.1/\Sˇ.r//; see Figure 6. Then
kakD 1 and kxakr D 1�jy

q
j for all aD .x;y; z/2 yBˇ;r .1/. To find the Thurston norm

ball of N.r/, one needs to shear yBˇ;r .1/ by an appropriate amount depending on the
y –coordinate of a. One can see that the shearing turns the parallelogram/hexagon into
another parallelogram/hexagon unless jqj equals 1. The degeneration of the Thurston
norm ball of N.r/ occurs when jqj equals 1. In this case, the shearing makes two
sides of the hexagon line up, and the hexagon turns into a rectangle. By using this
argument, it is straightforward to verify the lemma.

Note that every top-dimensional face on the boundary of the Thurston norm ball of N.r/

is a fibered face for each r 2 Hyp. Figure 9 illustrates the Thurston norm balls of
N. 5
�2
/, N. 3

�2
/, N. 2

�3
/ and N.1/.

We now prove that there exist infinitely many Thurston norm equivalent pairs obtained
from N by Dehn filling.

Lemma 2.19 Let p 2N and q 2 Z (resp. p0 2N and q 2 Z) be coprime such that
r D p

q
; r 0 D p0

q
2Hyp\ .�2; 0/. Suppose that either both p and p0 are odd or both p

and p0 are even. Then N.r/�
T

N.r 0/.

Proof Suppose that p and p0 are odd. The numerator does not appear in the vertices
of Br .�q/; see Lemma 2.18(2). The position for the vertices of Br .�q/ is the
same as that of Br 0.�q/. Thus the natural isomorphism f W H2.N.r/; @N.r/IZ/!
H2.N.r

0/; @N.r 0/IZ/ which sends xar to xar 0 and xbr to xb0r becomes a Thurston norm
preserving isomorphism.

The proof in the case p and p0 are even is similar.

Proposition 2.20 Suppose that both r , �2� r 2Hyp. Then N.r/�
T

N.�2� r/.

Proof Let p 2N and q 2Z be coprime such that r Dp=q 2Hyp. We have shown the
claim when p=q 2 .�2;�1/; see Lemma 2.19. Now suppose that p=q 2 .�1;�2/.
Let us set an irreducible form r 0 D p0=q0 D .pC 2q/=.�q/ .p0 D pC 2q 2N/. By
Lemma 2.18(1) and (3), Br 0.p

0Cq0�1/ and Br .pCq�1/ are hexagons when jqj¤ 1

(resp. rectangle when jqj D 1). The position for the vertices of Br 0.p
0C q0 � 1/ is

the same as that of Br .pC q � 1/. The Thurston norm balls Br 0.p
0C q0 � 1/ and

Br .pC q � 1/ have the same radius, ie, p0C q0 � 1 D pC q � 1. Thus the natural
isomorphism f W H2.N.r/; @N.r/IZ/!H2.N.r

0/; @N.r 0/IZ/ which sends xar to xar 0

and xbr to xbr 0 becomes a Thurston norm preserving isomorphism.
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xbr

xar

.pC2qC1
2

; pC2q�1
�2

/

.pCq�1
2

; pCq�1
�2

/

.pC2q�1
2

; pC2qC1
�2

/

S–face

S–face

xbr

xar

.pC2q
2
; pC2q�2
�2

/

.pCq�1
2

; pCq�1
�2

/

.pC2q
2
; pC2qC2

�2
/

S–face

S–face

xbr

xar

.0; 1/
. q

2qC2
; q

2qC2
/

.1; 0/

. q
�2
; q

2
/

xbr

xar

.0; 1/

. qC1
�2
; qC1

2
/

(1–i–odd Br .pC q� 1/) (1–i–even Br .pC q� 1/)

(2–odd Br .�q/) (2–even Br .�q� 1/)

Figure 8: Thurston norm ball Br .d/ (with radius d ) of N.p
q
/; (1–i–odd)

p=q 2 .�1;�2/ , q ¤ 1 and p is odd; (1–i–even) p=q 2 .�1;�2/ , q ¤ 1

and p is even; (2–odd) p=q 2 .�2; 0/ and p is odd; (2–even) p=q 2 .�2; 0/

and p is even

2.5 Entropy equivalence on fibered 3–manifolds

2.5.1 Definition of entropy equivalence Let .M; �/ and .M 0; �0/ be pairs of 3–
manifolds M , M 0 and their fibered faces �, �0 respectively. Possibly M 'M 0 .
Then .M; �/ and .M 0; �0/ are entropy equivalent, denoted by

.M; �/ �
ent
.M 0; �0/;

if we have that there is a Thurston norm preserving isomorphism f W H2.M; @M IZ/!
H2.M

0; @M 0IZ/ satisfying the following:
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S–face

S–face
.2;�1/

.2;�3/

(a) Br .4/

.0; 1/

.1; 0/

S–face

S–face

(b) Br .2/

.1; 1/

.1;�1/

(c) Br .2/

.0; 1/

.1;�1/

(d) Br .2/

.0; 1/

.1; 0/

S–face

S–face

(e) Br .1/

Figure 9: Thurston norm ball Br .d/ (with radius d ) of N.r/ when
(a) r D�6; 4 , (b) r D 5

�2
; 1

2
, (c) r D 3

�2
; 1
�2

, (d) r D 4
�3
; 2
�3

, (e) r D 1 .

� a 2 int.C�.Z// if and only if f .a/ 2 int.C�0.Z//.

� ent.a/D ent.f .a// for any a 2 int.C�.Z//.

The second bullet implies that ent.a/D ent.f .a// for any a 2 int.C�/, since we have
that entW int.C�.Q//!R admits a unique continuous extension. Thus if

.M; �/ �
ent
.M 0; �0/;

then min Ent.M; �/Dmin Ent.M 0; �0/.

Here is an obvious example. If a face �0 of M is opposite to a fibered face �, then �0

is also a fibered face. The pairs .M; �/ and .M; �0/ are entropy equivalent, because
the isomorphism on H2.M; @M IZ/ given by a 7! �a preserves the Thurston norm
and entropy.

Fibered 3–manifolds M and M 0 are entropy equivalent, denoted by

M�
ent

M 0;
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if we have that there is a Thurston norm preserving isomorphism f W H2.M; @M IZ/!
H2.M

0; @M 0IZ/ satisfying the following:

� a 2H2.M; @M IZ/ is a fibered class if and only if f .a/ 2H2.M
0; @M 0IZ/ is

a fibered class.

� Given a fibered face � of M , we have ent.a/Dent.f .a// for any a2 int.C�.Z//.

If M �
ent

M 0 , then min Ent.M /Dmin Ent.M 0/.

2.5.2 Entropy equivalence on manifolds N.r/ In this subsection, first of all we
focus on the set Sˇ.r/ and the stable foliation Fa for a 2 Sˇ.r/. We compute the
number of prongs on each boundary component of Fa lying on Tˇ . We will see this
number depends on the slope r and the fibered face � of N.r/ with the property
xa 2 int.C�/. Then we discuss the entropy equivalence between N.r/ and N.�2� r/

when r;�2� r 2Hyp.

We begin with the definition of A–faces and S–faces. They are top-dimensional faces �
on the boundary of the Thurston norm ball of N.r/ for r D p

q
2Hyp.

� Suppose that jqj ¤ 1. Then � is called an A–face if an element of @� is equal
to ˛�  projectively. Equivalently, � is an A–face if an element of @� is equal
to xar �

xbr projectively. A face � is called an S–face if it is not an A–face.

� Suppose that jqj D 1. Then � is called an A–face if the interior of the cone
over � contains ˛�  projectively. Equivalently, � is an A–face if the interior
of the cone over � contains xar �

xbr projectively. A face � is called an S–face
if it is not an A–face.

It follows from Lemma 2.18 that every top-dimensional face for N.r/ is an A–face
if r 2 .�2; 0/. When r 2 .�1;�2/[ .0;1/ such that jqj ¤ 1 (resp. jqj D 1), the
Thurston norm ball for N.r/ is a hexagon (resp. rectangle) having two S–faces and
four A–faces (resp. having two S–faces and two A–faces); see Figures 8 and 9.

It is worthwhile to point out that the two S–faces come from the fibered face �1

and its opposite face �0
1

for N ; see Figure 6(a), (d). Let us turn to the A–faces. If
we have that jqj ¤ 1, then the Thurston norm ball of N.r/ has four A–faces, and
they come from the four fibered faces �, �2 and their opposite faces �0 , �0

2
(see

Figure 6(a)–(d)). The degeneration of A–faces occur when jqj D 1. In this case, the
Thurston norm ball of N.r/ has two A–faces. One of the A–faces comes from the pair
� and �0

2
. The other A–face comes from the pair �0 and �2 . This observation leads

to the following.
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Lemma 2.21 Let � W Int C ! int.C�/ be the map given in Section 2.1. We take a
class a 2 Sˇ.r/\ Int C .

(1) If a 2 Sˇ.r/\ .int.�/[ int.�0//, then xa 2 int.C�A
/�H2.Nˇ.r/; @Nˇ.r// for

some A–face, and �.a/ 2 int.C�/\Sˇ.r/.

(2) If a 2 Sˇ.r/\ .int.�1/[ int.�0
1
//, then xa 2 int.C�S

/ � H2.Nˇ.r/; @Nˇ.r//

for some S–face, and �.a/ 2 int.C�/\S .r/.

(3) If a 2 Sˇ.r/\ .int.�2/[ int.�0
2
//, then xa 2 int.C�A

/ � H2.Nˇ.r/; @Nˇ.r//

for some A–face, and �.a/ 2 int.C�/\S˛.r/.

Lemma 2.22 Let r 2 Hyp. Any two S–faces of N.r/ are entropy equivalent, and
any two A–faces of N.r/ are entropy equivalent.

Proof An S–face of N.r/ is opposite to the other S–face, and hence they are entropy
equivalent (see the example after the definition of entropy equivalence). Similarly, if
an A–face � is opposite side to an A–face �0 , then they are entropy equivalent. Thus
the proof in the case r 2 Z is done.

We assume that r D p
q
62 Z, ie, q ¤ 1. We need to show that an A–face � is entropy

equivalent to an A–face y� which is not the opposite face �0 . To do this, it is enough
to prove that the A–face of N.r/ coming from �, say �A;� , and the A–face of N.r/

coming from �2 , say �A;�2
are entropy equivalent. We first find the Thurston norm

preserving isomorphism

f W H2.N.r/; @N.r/IZ/!H2.N.r/; @N.r/IZ/

which sends int.C�A;�2
.Z// to int.C�A;�

.Z//. We recall the two isomorphisms

.h2/�W H2.N; @N IZ/!H2.N; @N IZ/;

.x;y; z/ 7! .y; z;x/;

�.i /�W H2.N; @N IZ/!H2.N; @N IZ/;

.x;y; z/ 7! .y;x; z/I

see the proof of Lemma 2.4. Observe that .h2/�.Sˇ.r//D S˛.r/. This shows that we
have the isomorphism

.h2/�W H2.Nˇ.r/; @Nˇ.r/IZ/!H2.N˛.r/; @N˛.r/IZ/;

.x;y; z/ 7! .y; z;x/;
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induced from .h2/� . On the other hand, we have �.i /�.S˛.r//DSˇ.r/. Thus �.i /�
induces the isomorphism

�.i /�W H2.N˛.r/; @N˛.r/IZ/!H2.Nˇ.r/; @Nˇ.r/IZ/;

.x;y; z/ 7! .y;x; z/:

Let us set f D�.i /�ı.h2/. One sees that f sends int.C�A;�2
.Z// to int.C�A;�

.Z//,
because

.h2/�.Sˇ.r/\ int.C�2
.Z///D S˛.r/\ int.C�.Z//;

�.i /�.S˛.r/\ int.C�.Z///D Sˇ.r/\ int.C�.Z//:

Then f preserves the Thurston norm, since both .h2/� and �.i /� preserve the
Thurston norm by Lemma 2.16.

We now prove that f preserves the entropies on int.C�A;�2
.Z//. Let .x;y; z/ 2

Sˇ.r/\ int.C�2
.Z//. Then .x;y; z/ and .h2/�..x;y; z//D .y; z;x/ have the same

entropy, since .h2/� is induced from the homeomorphism h2W .S3; C3/! .S3; C3/.
Next, let us take .y; z;x/ 2 S˛.r/\ int.C�.Z//. As a consequence of Lemma 2.4,
.y; z;x/ and �.i /�..y; z;x//D .z;y;x/ have the same entropy. In fact, the inverse
.ˆ.y;z;x//

�1 of the monodromy ˆ.y;z;x/ of the fibration on N˛.r/ associated to
.y; z;x/ is conjugate to the monodromy ˆ.z;y;x/ of the fibration on Nˇ.r/ associated
to .z;y;x/. Putting all things together, we see that for .x;y; z/2Sˇ.r/\int.C�2

.Z//,
the two fibered classes .x;y; z/2 int.C�A;�2

.Z// and .z;y;x/2 int.C�A;�
.Z// have

the same entropy. This completes the proof.

Because of the lemma above, we denote by �A D �A;r (resp. �S D �S;r ), any
A–face (resp. S–face) of N.r/. The first letter ‘A’ (resp. ‘S ’) represents ‘asymmetry’
(resp. ‘symmetry’); cf Remark 3.4.

Lemma 2.23 Let a 2 Sˇ.
p
q
/�H2.N; @N IZ/ be a primitive fibered class, and let �

be the fibered face of N.p
q
/ such that xa 2 int.C�/�H2.Nˇ.r/; @Nˇ.r//. If � is an

S–face (resp. A–face), then Fa has the property that each boundary component on Tˇ
has pC 2q prongs (resp. jqj prongs). The inequality �p=q.xa/ � �.a/ holds, and the
equality is achieved if pC 2q ¤ 1 (resp. if jqj ¤ 1).

Note that pC 2q � 1 when � is an S–face (cf Remark 2.3).

Proof Let SDSa be the suspended stable foliation constructed from Fa�I �Fa�I

by gluing Fa�f1g to Fa�f0g using ˆa . It is known that such a foliation S depends
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only on the fibered face, that is Sa is isotopic to Sa0 if a and a0 are primitive fibered
classes in the cone over the same fibered face; see McMullen [26, Corollary 3.2]. When
a 2 Sˇ.r/, the number of prongs on each boundary component of Tˇ is determined by
how S intersects with the simple closed curve representing the slope r on Tˇ . Thus
such a number depends only on the slope r and the fibered face.

Given a fibered face � of N.p
q
/, it is enough to take one primitive fibered class

a 2 Sˇ.
p
q
/ such that xa 2 int.C�/. Then one can apply Lemma 2.2 to know the desired

number of prongs on each boundary component. Let us compute the desired number
when r D p=q 2 .�2; 0/. (The rest of the cases can be proved similarly.) In this
case, every face of N.r/ is an A–face. One sees that ar 2 int.C�/ \ Sˇ.r/ and
xar 2 int.C�A

/. By Lemma 2.2, the desired number equals jqj.

The second half of the claim on the inequality between �p=q.xa/ and �.a/ is clear. The
equality holds if Fa has the property such that any boundary component on Tˇ has
no 1 prong.

Proposition 2.24 For r 2Hyp, there exists a fibered face � of N.r/ which enjoys
(�) in Theorem 1.11.

Proof We use Lemma 2.23. Let p 2 N and q 2 Z be coprime such that p
q
2Hyp.

There exists no pair .p; q/ such that jqj D 1 and pC 2q D 1.

Suppose that jqj ¤ 1 and pC 2q ¤ 1. Then each fibered face of N.r/ enjoys (�) in
Theorem 1.11. Suppose that jqj ¤ 1 and pC 2q D 1 (resp. Suppose that jqj D 1 and
pC 2q ¤ 1). Then only A–faces (resp. only S–faces) of N.r/ fulfill (�).

Lemma 2.25 For r D p
q
2 Hyp, let � be a fibered face of N.r/ enjoying (�) in

Theorem 1.11. We take a 2 Sˇ.r/\ Int C such that kak D 1.

(1) If �D�S and xa 2 int.C�S
/�H2.Nˇ.r/; @Nˇ.r//, then

Entr .xa/D
�
1�

1

pC q

�
log�.�.a//:

(2) If �D�A and xa 2 int.C�A
/�H2.Nˇ.r/; @Nˇ.r//, then

Entr .xa/D
�
1�

ˇ̌̌y
q

ˇ̌̌�
log�.�.a// when �.a/D .x;y; z/ 2 int.�/\Sˇ.r/;

Entr .xa/D
�
1�

ˇ̌̌x
q

ˇ̌̌�
log�.�.a// when �.a/D .x;y; z/ 2 int.�/\S˛.r/:
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Proof (1) We have �.a/2 int.�/\S .r/ since xa2 int.C�S
/; see Lemma 2.21. The

Thurston norms of both classes xa2H2.Nˇ.r/;@Nˇ.r// and �.a/2H2.N.r/;@N.r//

are equal, and hence kxakr D k�.a/kr D 1� 1=.pC q/ by Lemma 2.15. On the other
hand, the condition (�) in Theorem 1.11 ensures that �r .xa/ is equal to �.a/. We have
the equality �.a/ D �.�.a//, since the monodromies ˆa and ˆ�.a/ are conjugate.
Thus

Entr .xa/D kxakr log�r .xa/D
�
1�

1

pC q

�
log�.�.a//:

(2) By using Lemma 2.16, one can prove the claim similarly.

Theorem 2.26 Let p 2N and q 2 Z be coprime such that p
q
2Hyp.

(1) Suppose p
q
2 .�1;�2/ and pC2q¤ 1. Then .N.p

q
/;�S /�ent

.N.2qCp
�q

/;�S /.

(2) Suppose p
q
2 .�1;�1/ and jqj ¤ 1. Then .N.p

q
/;�A/ �ent

.N.�2q�p
q

/;�A/.

(3) Suppose p
q
2 .�1;�1/, pC 2q ¤ 1 and jqj ¤ 1. Then N.p

q
/ �

ent
N.�2q�p

q
/.

Proof For r D p
q
2Hyp\ .�1;�1/, set r 0 D�2� r . Recall that

f W H2.N.r/; @N.r/IZ/!H2.N.r
0/; @N.r 0/IZ/

is the Thurston norm preserving isomorphism as in the proof of Lemma 2.19 and
Proposition 2.20. Then f maps A–faces (resp. S–faces) of N.r/ to A–faces (resp.
S–faces) of N.r 0/.

Let b0; zb0; : : : ; b3; zb3 2 int.�/ be as in Remark 2.8.

(1) Let �S;r (resp. �S;r 0 ) be the S–face of N.r/ (resp. N.r 0/) coming from �1 of
N . Observe that

f .int.C�S;r
.Z///D int.C�S;r 0

.Z//:

It suffices to prove that for each a 2 int.�1/\Sˇ.r/, the two classes

xa 2 int.C�S;r
/�H2.Nˇ.r/; @Nˇ.r//;

f .xa/ 2 int.C�S;r 0
/�H2.Nˇ.r

0/; @Nˇ.r
0//;

have the same entropy. To do this, consider the sets int.�/\S .r/ and int.�/\S .r
0/

which are the images of int.�1/ \ Sˇ.r/ and int.�1/ \ Sˇ.r
0/ under � . If we

write b0 D �.a/ 2 int.�/ \ S .r/, then we have zb2 D �.a0/ 2 int.�/ \ S .r
0/,
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where a0 D �ˇ.f .xa// 2 int.�1/\Sˇ.r
0/ (see Figure 7(right)). As a consequence of

Corollary 2.7 and Lemma 2.23, it follows that

entr .xb0/D entr 0.
xzb2/

ie, xb0 2 H2.N .r/; @N .r// and xzb2 2 H2.N .r
0/; @N .r

0// have the same entropy.
Since we have

entr .xb0/D entr .xa/ and entr 0.
xzb2/D entr 0.f .xa//;

we conclude that entr .xa/D entr 0.f .xa//. This completes the proof.

(2) Let �A;r be the A–face of N.r/ coming from � of N , and let �A;r 0 be the
A–face of N.r/ coming from �0

2
of N . One sees that

f .int.C�A;r
.Z///D int.C�A;r 0

.Z//:

It is enough to prove that for each a 2 int.�/\Sˇ.r/, the two classes

xa 2 int.C�A;r
/�H2.Nˇ.r/; @Nˇ.r//;

f .xa/ 2 int.C�A;r 0
/�H2.Nˇ.r

0/; @Nˇ.r
0//;

have the same entropy. Now, we consider the sets int.�/\Sˇ.r/ and int.�/\S˛.r
0/

which are the images of int.�/\Sˇ.r/ and int.�0
2
/\Sˇ.r

0/ under � . If one writes
b0 D �.a/ 2 int.�/\Sˇ.r/, then one can write zb0 D �.a

0/ 2 int.�/\S˛.r
0/, where

a0D �ˇ.f .xa//2 int.�0
2
/\Sˇ.r

0/. As a consequence of Corollary 2.7 and Lemma 2.23,
it follows that

entr .xb0/D entr 0.
xzb0/;

ie, xb0 2H2.Nˇ.r/; @Nˇ.r// and xzb0 2H2.N˛.r
0/; @N˛.r

0// have the same entropy.

Since entr .xb0/ D entr .xa/ and entr 0.
xzb0/ D entr 0.f .xa//, the map f preserves the

entropy, ie, entr .xa/D entr 0.f .xa//. This completes the proof.

(3) The proof of (3) is similar to that of (1) or (2).

Let us check the entropy equivalence on some pairs which we promised to prove in
Section 1.6. Theorem 2.26 tells us that

.N.�4/;�S / �ent
.N.2/;�S /; N

� 3

�2

�
�
ent

N
� 1

�2

�
:

Since N.�4/'N. 3
�2
/, we see that

.N.2/;�S /�ent

�
N
� 3

�2

�
; �A

�
�
ent

�
N
� 1

�2

�
; �A

�
:
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3 Proofs of main results

3.1 Proof of Theorem 1.11 (Theorem 3.1)

In this subsection, we shall prove the next theorem which is equivalent to Theorem 1.11
(see Lemma 2.23 or proof of Proposition 2.24).

Theorem 3.1 Let p 2N and q 2 Z be coprime such that p
q
2Hyp.

(1) Suppose that p
q
2 .�1;�2/[ .0;1/ and pC 2q ¤ 1. Then

(i) min Ent.N.1/;�S /D 2 log ı.D4/� 1:6628,
(ii) min Ent.N.p

q
/;�S /D 2 log.3C

p
5

2
/� 1:9248 for p

q
D�4; 2,

(iii) min Ent.N.p
q
/;�S / > 1:97475 if p

q
¤�4; 1; 2.

(2) Suppose that jqj ¤ 1. Then

(i) min Ent.N.p
q
/;�A/D 2 log.3C

p
5

2
/� 1:9248 for p

q
D

3
�2
; 1
�2

,

(ii) min Ent.N.p
q
/;�A/ > 1:97475 if p

q
¤

3
�2
; 1
�2

.

We start by the computation of min Ent.N.p
q
/;�S / and min Ent.N.p

q
/;�A/.

Lemma 3.2 Let p
q
2 .�1;�2/[ .0;1/. Then

min Ent
�
N
�p

q

�
; �S

�
D

�
1�

1

pC q

�
log�Œp=.2pC2q/;p=.2pC2q/� if pC 2q ¤ 1:

Proof By Lemma 2.22, we have the equalities

min Ent
�
N
�p

q

�
; �S

�
Dmin

n
kŒx;y�kp=q log�p=q.Œx;y�/ j Œx;y� 2 int.�/\S

�p

q

�o
Dmin

n�
1�

1

pC q

�
log�p=q.Œx;y�/ j Œx;y� 2 int.�/\S

�p

q

�o
Dmin

n�
1�

1

pC q

�
log�Œx;y� j Œx;y� 2 int.�/\S

�p

q

�o
:

The first equality comes from Lemma 2.21(2). The second equality and the third one
follow from Lemma 2.15 and Lemma 2.23 respectively. Lemmas 2.9(3) and 2.12(3)
imply that the minimum is achieved by the center Œ p

2pC2q
; p

2pC2q
� 2 int.�/\S .

p
q
/.

This completes the proof.
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Lemma 3.3 Let p
q
2 .�1;1/. Then

min Ent
�
N
�p

q

�
; �A

�
Dmin

n�
1�

ˇ̌̌y
q

ˇ̌̌�
log�Œx;y� j Œx;y� 2 int.�/\Sˇ

�p

q

�o
Dmin

n�
1�

ˇ̌̌x
q

ˇ̌̌�
log�Œx;y� j Œx;y� 2 int.�/\S˛

�p

q

�o
:

Proof The claim follows from Lemmas 2.21(1), (3) and 2.22.

Remark 3.4 If an S–face enjoys (�) in Theorem 1.11, then we are able to compute
min Ent.N.r/;�S / explicitly from Lemma 3.2. This is because entW int.�/!R on
int.�/\S .

p
q
/ has a symmetry with respect to the center. There exists no symmetry of

entW int.�/!R on int.�/\Sˇ.
p
q
/ (hence on int.�/\S˛.

p
q
/) in general. Later we

shall compute min Ent.N.r/;�A/ for some manifolds having a symmetry themselves
(see Lemma 3.6 and Proposition 3.26), but these cases are rare.

We prove the following monotonicity of min Ent. � ; �A/.

Lemma 3.5 Let p;p0 2N and q 2 Z such that .p; q/ and .p0; q/ are coprime pairs.
If jqj ¤ 1 and j1C p0

q
j> j1C p

q
j, then min Ent.N .p

0

q
/;�A/>min Ent.N .p

q
/;�A/.

Proof We use Lemma 3.3. Put r 0 D p0

q
and r D p

q
. The sets � \ Sˇ.r

0/ and
�\Sˇ.r/ lie on the lines y D . �2

1Cr 0
/xC 1

1Cr 0
and y D . �2

1Cr
/xC 1

1Cr
respectively.

(These lines go through Œ1
2
; 0� 2 @�.) One has the inequality j �2

1Cr 0
j< j �2

1Cr
j between

the slopes. Thus for any a0 D Œx0;y0� 2 int.�/\Sˇ.r
0/, there exists a unique point

aD Œx;y0�2 int.�/\Sˇ.r/ with the same second coordinate y0 . Since j1
2
�xj< j1

2
�x0j,

one sees that �Œx;y0� < �Œx0;y0� (cf Lemma 2.9(2)). The condition jqj ¤ 1 says that A–
faces for both N.p0

q
/ and N.p

q
/ enjoy (�) in Theorem 1.11. Hence by Lemma 2.25(2),

Entr 0.xa0/D
�
1�

ˇ̌̌y0
q

ˇ̌̌�
�Œx0;y0� >

�
1�

ˇ̌̌y0
q

ˇ̌̌�
�Œx;y0� D Entr .xa/:

Since this holds for any a0 2 int.�/\Sˇ.r
0/, the proof is done.

Lemma 3.6 Suppose that jqj D 2. Then:

(1) min Ent.N.p
q
/;�A/D 2 log.3C

p
5

2
/ if p

q
D

3
�2
; 1
�2

.

(2) min Ent.N.p
q
/;�A/D 4 log�.4;2;1/ � 2:5318 if p

q
D

5
�2
; 1

2
.

(3) min Ent.N.p
q
/;�A/ > 4 log�.4;2;1/ otherwise.
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Proof For the proof of (1), see [19, Proposition 4.13]. In fact in this case, the center
of each A–face �A reaches min Ent.N.p

q
/;�A/.

Let us turn to the proof of (2). By Theorem 2.26, N. 5
�2
/ and N.1

2
/ are entropy

equivalent. Put r0 D 5=.�2/. We consider the A–face �A (on @Br0
.2/) whose

endpoints are .3; 2; 2/; .1; 0;�1/ 2H2.N.r0/; @N.r0//. We now prove that entr0
j�A

has a minimum at the center of �A . The ray from the origin and through .4; 2; 1/ 2
int.C�A

/ passes through the center of �A . (In other words, the ray from the origin,
through .2;�1/ in the .xar0

;xbr0
/ coordinates, passes through the center of �A ; see

Figure 9.) For k > `, let

p˙.k; `/D .4; 2; 1/k˙ .2; 2; 3/`D .4k˙ 2`; 2k˙ 2`; k˙ 3`/:

Observe that p˙.k; `/ are elements of int.C�/\ Sˇ.r0/, and p˙.k; `/ 2 int.C�A
/

have the same Thurston norm. To show that the center of �A achieves the minimum
of entr0

j�A
, it suffices to prove that pC.k; `/ and p�.k; `/ have the same entropy

for each k , ` such that k > `. To do this, we show that pC.k; `/ and p�.k; `/

have the same dilatation (since in this case, �.a/D �r0
.xa/ for a 2 Sˇ.r0/ such that

xa 2 int.C�A
/). The dilatation �.pC.k; `// (resp. �.p�.k; `//) is the largest real root

of the polynomial f.4kC2`;2kC2`;kC3`/.t/ (resp. f.4k�2`;2k�2`;k�3`/.t/), that is

� t�`.1C tkC`/.tk
C t3k

� t` � t2kC`
� t4kC`

C tkC2`
C t3kC2`/;

.resp. � t�2`.tk
C t`/.tk

C t3k
� t` � t2kC`

� t4kC`
C tkC2`

C t3kC2`//:

Since each of polynomials �t�2`.tk C t`/ and �t�`.1C tkC`/ have no real roots
greater than 1, the proof of (2) is done.

The claim (2) together with Lemma 3.5 leads to (3).

Lemma 3.7 Suppose that jqj D 3. Then min Ent.N.p
q
/;�A/ > 2:0918.

Proof By Lemma 3.5 and Theorem 2.26,

min Ent
�
N
�p

q

�
; �A

�
>min Ent

�
N
� 2

�3

�
; �A

�
Dmin Ent

�
N
� 4

�3

�
; �A

�
if jqjD3 and p

q
¤

2
�3
; 4
�3

. Thus it suffices to prove that min Ent.N. 2
�3
/;�A/>2:0918.

We consider the A–face �A (on @B2=�3.2/) for N. 2
�3
/ whose endpoints are .1; 3; 1/

and .1; 0;�1/ 2H2.N.
2
�3
/; @N. 2

�3
//. Take fibered classes

a1 D .201; 312; 7/; a2 D .201; 309; 5/; a3 D .201; 306; 3/ 2 int.C�/\Sˇ

� 2

�3

�
:
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Then xa1 , xa2 and xa3 are elements of int.C�A
/. One can check that the Thurston norms

of xa1 , xa2 and xa3 are the same. Note that �.a/D �2=.�3/.xa/ for a 2 Sˇ.
2
�3
/ such that

xa 2 int.C�A
/. One sees that:

�.201;312;7/ D 1:00542189 : : : > �.201;309;5/ D 1:00542166 : : :

< �.201;306;3/ D 1:00542185 : : :

The fibered class a1 equals .201
506
; 312

506
; 7

506
/ 2 int.�/ projectively. Thus we have

min Ent.N. 2
�3
/;�A/ is achieved by a unique point Œx;y� 2 int.�/ \ Sˇ.

2
3
/ such

that 0< y < 312=506. This together with Lemma 3.3 implies that

min Ent
�
N
� 2

�3

�
; �A

�
Dmin

��
1�

ˇ̌̌ y

�3

ˇ̌̌�
log�Œx;y�

ˇ̌̌̌
Œx;y� 2 int.�/\Sˇ

� 2

�3

�
; 0< y <

312

506

�
>
�
1�

312

3� 506

�
log�Œ1=2;1=2� >

402

506
� 2:633> 2:0918:

This completes the proof.

Lemma 3.8

(1) Let p
q
2 .�1;�2/[ .0;1/ such that pC 2q ¤ 1. Suppose that pC q � 4.

Then min Ent.N.p
q
/;�S / > 1:97475.

(2) Suppose that jqj � 4. Then min Ent.N.p
q
/;�A/ > 1:97475.

Proof The claim (1) is immediate from

min Ent
�
N
�p

q

�
; �S

�
D

�
1�

1

pC q

�
log�Œp=.2pC2q/;p=.2pC2q/�

>
�
1�

1

4

�
� 2:633D 1:97475:

Let us turn to the claim (2). By Lemma 3.3,

min Ent
�
N
�p

q

�
; �A

�
Dmin

��
1�

ˇ̌̌y
q

ˇ̌̌�
log�Œx;y�

ˇ̌̌̌
Œx;y� 2 int.�/\Sˇ

�p

q

��
:

Since jqj � 4, one sees that for any Œx;y� 2 int.�/\Sˇ.
p
q
/,�

1�
ˇ̌̌y
q

ˇ̌̌�
log�Œx;y� >

�
1�

1

4

�
� 2:633D 1:97475:

This completes the proof.
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Proof of Theorem 3.1 We have already proved the claim (2); see Lemmas 3.6, 3.7
and 3.8(2). Let us prove the claim (1). By Lemma 3.8(1), it is enough to consider
the case p C q < 4. For p

q
2 Hyp\ .�1;�2/ such that p C 2q ¤ 1, one has by

Theorem 2.26,

min Ent
�
N
�p

q

�
; �S

�
Dmin Ent

�
N
�
�2q�p

q

�
; �S

�
:

If p
q
2Hyp\.0;1/, then pC2q � 3 (hence pC2q¤ 1). Thus it suffices to consider

the case p
q
2Hyp\ .0;1/ such that pC q < 4. The pairs .p; q/ with pC q < 4 are

given by .p; q/D .1; 1/; .2; 1/; .1; 2/. By Lemma 3.2,

min Ent
�
N
�1

1

�
; �S

�
D 2 log�.1;1;�2/ D 2 log ı.D4/� 1:6628;

min Ent
�
N
�2

1

�
; �S

�
D 2 log�.1;1;�1/ D 2 log

�3C
p

5

2

�
� 1:9248;

min Ent
�
N
�1

2

�
; �S

�
D 4 log�.1;1;�4/ � 2:9314:

This completes the proof.

3.2 Proof of Theorem 1.4(1)

The idea of the proof is as follows. We define a finite set LK �Hyp for K > 2 which
consists of irreducible rational numbers p

q
2Hyp with p 2N such that

� jqj �K if p
q
2 .�2; 0/,

� pC q �K if p
q
2 .�1;�2/[ .0;1/.

We fix K0 D 100000. First we prove that for a primitive fibered class a 2H2.N; @N /

such that �a 2M, the normalized entropy of y�a is greater than 2:5803 if all the
slopes b˛.a/, bˇ.a/, b .a/ of a enjoy b˛.a/; bˇ.a/; b .a/ 2 Hyp nLK0

. Next we
prove the following for any � > 0: for all but finitely many primitive fibered classes
a 2H2.N; @N / satisfying �a 2M, if one of the boundary slopes of a is an element
of LK0

, then the normalized entropy of y�a is greater than 2 log..3C
p

5/=2/ � � .
These together with Theorem 1.3 lead to Theorem 1.4(1).

Lemma 3.9 Let a D .x;y; z/ be a primitive fibered class of H2.N; @N / such that
�a 2M. Then ��.a/ 2M for �.a/ 2 int.C�/, and

Ent.y�a/D Ent.y��.a//D
�
1�

ˇ̌̌ x0

q˛.�.a//

ˇ̌̌
�

ˇ̌̌ y0

qˇ.�.a//

ˇ̌̌
�

ˇ̌̌ z0

q .�.a//

ˇ̌̌�
log�.a0/;

where a0 D .x0;y0; z0/ is the rational class of int.�/ that is projectively equal to �.a/.
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Proof Clearly �a 2M implies ��.a/ 2M and Ent.y�a/DEnt.y��.a//. The dilatation
�.y��.a// equals �.�.a//.D �.��.a/// since ��.a/ 2M. If we set �.a/ D .x;y; z/,
then

].@F�.a//D
ˇ̌̌ x

q˛.�.a//

ˇ̌̌
C

ˇ̌̌ y

qˇ.�.a//

ˇ̌̌
C

ˇ̌̌ z

q .�.a//

ˇ̌̌
:

By definition of the normalized entropy,

Ent.y��.a//D
�
k�.a/k�

ˇ̌̌ x

q˛.�.a//

ˇ̌̌
�

ˇ̌̌ y

qˇ.�.a//

ˇ̌̌
�

ˇ̌̌ z

q .�.a//

ˇ̌̌�
log�.�.a//:

On the other hand we have x0 D x=k�.a/k, y0 D y=k�.a/k, z0 D z=k�.a/k and
log�.a0/ D k�.a/k log�.�.a// since a0 is projectively equal to �.a/. Substituting
these equalities for .1� j x

0

q˛
.�.a//j � j y0

qˇ.�.a//
j � j

z0

q .�.a//
j/ log�.a0/, one finds it is

equal to Ent.y��.a//.

Proposition 3.10 Suppose that b˛.a/; bˇ.a/; b .a/ 2Hyp nLK0
for a rational class

aD .x;y; z/ 2 int.�/. Then�
1�

ˇ̌̌ x

q˛.a/

ˇ̌̌
�

ˇ̌̌ y

qˇ.a/

ˇ̌̌
�

ˇ̌̌ z

q .a/

ˇ̌̌�
log�.a/ > 2:5803:

We need the following lemma for the proof of Proposition 3.10.

Lemma 3.11 Let us take K >K0 > 2. Let p 2 N and q 2 Z be coprime such that
p
q
2Hyp nLK . Then the following hold.

(1) If jp
q
j �K0 , then jqj �K=.1CK0/. If jp

q
j >K0 , then 0 < y < 1=.�1CK0/

for any .x;y; z/ 2 int.�/\Sˇ.
p
q
/.

(2) jy
q
j<maxf1CK 0

K
; 1
�1CK 0

g for any .x;y; z/ 2 int.�/\Sˇ.
p
q
/.

Proof (1) If p
q
2 .�2; 0/, then jp

q
j < 2. The assumption p

q
62 LK implies that

jqj>K >K=.1CK0/.

Let us consider the case p
q
2 .�1;�2/[ .0;1/. Suppose that jp

q
j �K0 and q < 0.

Then p��K0q . One has pCq>K since p
q
62LK . Hence �q<p�K��K0q�K .

One obtains .K0� 1/q � �K . Thus jqj D �q >K=.K0� 1/ >K=.K0C 1/.

Suppose that jp
q
j �K0 and q > 0. In this case p �K0q . Since pC q >K , one has

q >K�p �K�K0q . Thus q >K=.1CK0/. The proof of the first part is done.
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The second part can be proved using Lemma 2.12(2). In fact for Œx;y�2 int.�/\Sˇ.r/

such that jr j>K0 > 2, one has 0< y < �1
1Cr

when r 2 .�1;�2/ (resp. 0< y < 1
1Cr

when r 2 .0;1/). This leads to the second part.

(2) If jp
q
j �K0 , then jy

q
j < 1
jqj
� .1CK0/=K by the first part of (1). If jp

q
j > K0 ,

then by the second part of (1), we have that jy
q
j< 1
jqj
� 1=.�1CK0/� 1=.�1CK0/.

These imply the desired inequality.

Similarly, one can prove the following.

Lemma 3.12 Let us take K >K0 > 2. Let p 2 N and q 2 Z be coprime such that
p
q
2Hyp nLK .

(1) If jp
q
j �K0 , then jqj �K=.1CK0/. If jp

q
j >K0 , then 0 < x < 1=.�1CK0/

for any .x;y; z/ 2 int.�/\S˛.
p
q
/.

(2) jx
q
j<maxf1CK 0

K
; 1
�1CK 0

g for any .x;y; z/ 2 int.�/\S˛.
p
q
/.

Proof of Proposition 3.10 Let K D K0.D 100000/ and K0 D 999. Then since
b .a/D p .a/=q .a/ 2Hyp nLK0

and b .a/ 2 .�1;�2/[ .0;1/, the inequality
p .a/C q .a/ >K0 holds. By using the same argument in the proof of Lemma 2.15,
we obtain the upper bound on jz=q .a/j,ˇ̌̌ z

q .a/

ˇ̌̌
D

ˇ̌̌ 1

p .a/C q .a/

ˇ̌̌
<

1

K0

D
1

100000
:

By Lemmas 3.11(2) and 3.12(2), we haveˇ̌̌ x

q˛.a/

ˇ̌̌
;
ˇ̌̌ y

qˇ.a/

ˇ̌̌
<max

n1CK0

K0

;
1

�1CK0

o
D

1CK0

K0

D
1

100
:

Thus we have lower bounds 1 � jx=q˛.a/j � jy=qˇ.a/j � jz=q .a/j > 1 � 1=50 �

1=100000D 0:97999 and log�.a/ � log�Œ1=2;1=2� > 2:633. These two bounds then
give us the desired inequality.

Proposition 3.13 Let p 2 N and q 2 Z be coprime such that p
q
2 Hyp n f1g. Let

� > 0 be any number.

(1) Suppose that p
q
2 .�1;�2/[ .0;1/ and pC 2q ¤ 1. Then�

1�
ˇ̌̌ x

q˛.a/

ˇ̌̌
�

ˇ̌̌ y

qˇ.a/

ˇ̌̌
�

ˇ̌̌ z
q

ˇ̌̌�
log�.a/ >min Ent

�
N
�p

q

�
; �S

�
� �

for any rational class aD .x;y; z/2 int.�/\S .
p
q
/ but finitely many exceptions.
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(2) Suppose that jqj ¤ 1. Then�
1�

ˇ̌̌ x

q˛.a/

ˇ̌̌
�

ˇ̌̌y
q

ˇ̌̌
�

ˇ̌̌ z

q .a/

ˇ̌̌�
log�.a/ >min Ent

�
N
�p

q

�
; �A

�
� �

for any rational class aD .x;y; z/2 int.�/\Sˇ.
p
q
/ but finitely many exceptions.

The following lemma is needed for the proof of Proposition 3.13.

Lemma 3.14 Let �0 > 0 be any number.

(1) Let r 2 Hyp n f1g and r 2 .�1;�2/ [ .0;1/. Then jx=q˛.a/j < �0 and
jy=qˇ.a/j< �

0 for any rational class aD .x;y; z/ 2 int.�/\S .r/ but finitely
many exceptions.

(2) Let r 2 Hyp n f1g. Then jx=q˛.a/j < �0 and jz=q .a/j < �0 for any rational
class aD .x;y; z/ 2 int.�/\Sˇ.r/ but finitely many exceptions.

Proof Take K > K0 > 2 so that maxf.1CK0/=K; 1=.�1CK0/g < �0 . (Note that
12LK .) We see r ¤ 1 implies int.�/\S .r/\S˛.r

0/ or int.�/\S .r/\Sˇ.r
0/ is

at most a single point for any r 0 . This means the set of rational classes aD .x;y; z/ 2

int.�/\ S .r/ such that b˛.a/ 2 LK or bˇ.a/ 2 LK is finite whenever r ¤ 1. If
b˛.a/2HypnLK (resp. bˇ.a/2HypnLK ), then jx=q˛.a/j<�0 (resp. jy=qˇ.a/j<�0 );
see Lemma 3.12(2) (resp. Lemma 3.11(2)). Thus the proof of (1) is done. (Note that
this is not true for r D 1, since �\S˛.1/D�\Sˇ.1/D�\S .1/.)

The proof of (2) is similar to that of (1).

Proof of Proposition 3.13 (1) By Lemma 2.15, one has�
1�

ˇ̌̌ x

q˛.a/

ˇ̌̌
�

ˇ̌̌ y

qˇ.a/

ˇ̌̌
�

ˇ̌̌ z
q

ˇ̌̌�
log�.a/D

�
1�

ˇ̌̌ x

q˛.a/

ˇ̌̌
�

ˇ̌̌ y

qˇ.a/

ˇ̌̌
�

1

pC q

�
log�.a/:

Lemma 3.14 says that for any �0 > 0, the inequality�
1�

ˇ̌̌ x

q˛.a/

ˇ̌̌
�

ˇ̌̌ y

qˇ.a/

ˇ̌̌
�

1

pC q

�
log�.a/ >

�
1�

1

pC q
� 2�0

�
log�.a/

holds for any rational class aD .x;y; z/2 int.�/\S .
p
q
/ but finitely many exceptions.

If we set a0 D Œ
p

2pC2q
; p

2pC2q
�, then by Lemma 3.2,�

1�
1

pC q

�
log�.a0/Dmin Ent

�
N
�p

q

�
; �S

�
:
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For any � > 0, choose a small number �0 > 0 so that�
1�

1

pC q
� 2�0

�
log�.a0/ >min Ent

�
N
�p

q

�
; �S

�
� �:

For any a 2 int.�/\S .
p
q
/, one has�

1�
1

pC q
� 2�0

�
log�.a/�

�
1�

1

pC q
� 2�0

�
log�.a0/

>min Ent
�
N
�p

q

�
; �S

�
� �

(see also Figure 10(left)). The proof of (1) is done.

(2) Let a0 D Œx0;y0� be the unique point of int.�/\Sˇ.
p
q
/ which enjoys

min Ent
�
N
�p

q

�
; �A

�
D

�
1�

ˇ̌̌y0

q

ˇ̌̌�
log�.a0/I

see Lemma 3.3. The function 1=log� restricted to int.�/\Sˇ.
p
q
/ is strictly concave,

and the entropy log�.a/ for a 2 int.�/ \ Sˇ.
p
q
/ goes to 1 as a goes to a point

on @� \ Sˇ.
p
q
/. This ensures the existence of ai D Œxi ;yi � 2 int.�/ \ Sˇ.

p
q
/ for

i 2 f�1; 1g satisfying the following:

� log�.a�1/D log�.a1/, and 0< y�1 < y0 < y1 < 1.

� .1� 1
jqj
/ log�.ai/ >min Ent.N.p

q
/;�A/ for i 2 f�1; 1g.

For any � > 0, one can choose a small number �0 > 0 such that for i 2 f�1; 1g,

� > 2�0 log�.ai/;�
1�

1

jqj
� 2�0

�
log�.ai/ >min Ent

�
N
�p

q

�
; �A

�
:

Then for any aD Œx;y� 2 int.�/\Sˇ.
p
q
/ but finitely many exceptions, one has the

following by a consequence of Lemma 3.14: if either y > y1 or y < y�1 , then�
1�

ˇ̌̌ x

q˛.a/

ˇ̌̌
�

ˇ̌̌y
q

ˇ̌̌
�

z

q .a/

�
log�.a/ >

�
1�

1

jqj
� 2�0

�
log�.a/

>
�
1�

1

jqj
� 2�0

�
log�.a˙1/

>min Ent
�
N
�p

q

�
; �A

�
>min Ent

�
N
�p

q

�
; �A

�
� �:
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If y�1 � y � y1 , then one has log�.ai/� log�.a/ for i 2 f�1; 1g. Thus�
1�

ˇ̌̌ x

q˛.a/

ˇ̌̌
�

ˇ̌̌y
q

ˇ̌̌
�

z

q .a/

�
log�.a/ >

�
1�

ˇ̌̌y
q

ˇ̌̌
� 2�0

�
log�.a/

>
�
1�

ˇ̌̌y
q

ˇ̌̌�
log�.a/� 2�0 log�.a˙1/

�min Ent
�
N
�p

q

�
; �A

�
� 2�0 log�.a˙1/

>min Ent
�
N
�p

q

�
; �A

�
� �:

The third inequality comes from Lemma 3.3 (see also Figure 10(right)). This completes
the proof of (2).

log�

.1� 1
pCq / log�

�

a0

log�
.1� j

y
q j/ log�

.1� 1
jqj
/ log�

�

a1 a0 a�1

min Ent.N.p
q /;�S /

min Ent.N.p
q /;�A/

aD Œx;y�

Figure 10: log� and .1� 1=.pC q// log� on int.�/\S .
p
q
/ (left); log� ,

.1� jy=qj/ log� and .1� 1=jqj/ log� on int.�/\Sˇ.
p
q
/ (right).

We are now ready to prove Theorem 1.4(1).

Proof of Theorem 1.4(1) We start by expressing Theorem 1.3 with [19, Lemma 4.8]
in the following way.

Claim 3.15 Let r 2 f�4; 3
�2
; 1
�2
; 2g. For each g � 3, there exists a primitive fibered

class hg.r/ 2H2.N; @N / with the following properties.

� One of the boundary slopes of hg.r/, say bˇ.hg.r// equals r , ie, hg.r/2Sˇ.r/.
� �hg.r/ is a mapping class on a surface of genus g such that �hg.r/ 2M for

large g , and

lim
g!1

g log�.y�hg.r//D log
�3C

p
5

2

�
:

In other words limg!1 Ent.y�hg.r//D 2 log.3C
p

5
2

/.
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Recall that ag is a primitive fibered class of H2.N; @N / such that �ag
2M and yıg

is achieved by y�ag
2 �M\Mod.˙g/. Lemma 3.9, Proposition 3.10 and Claim 3.15

tell us that for large g , one of the boundary slopes of ag is an element of the finite
set LK0

. No boundary slopes of ag equal 1 when g � 2. (We will prove Lemma 3.28
which implies this fact.) Thus for large g , one of the boundary slopes of ag is an
element of LK0

n f1g.

We prove that for large g , one of the boundary slopes of ag must be �4, 3
�2

, 1
�2

or 2. We fix � > 0 so that we have 1:97475� � > 2 log..3C
p

5/=2/. Now we set
L0

K0
DLK0

nf�4; 3
�2
; 1
�2
; 1; 2g. Let a2H2.N; @N / be a primitive fibered class such

that one of the boundary slopes of a is an element of L0
K0

and fb˛.a/; bˇ.a/; b .a/g\
f�4; 3

�2
; 1
�2
; 1; 2g D∅. Suppose that �a 2M. Then Theorem 1.11 (or Theorem 3.1)

implies that

min Ent.N.b˛.a///; min Ent.N.bˇ.a///; min Ent.N.b .a/// > 1:97475:

It follows that Ent.y�a/>1:97475�� for any such a class a but finitely many exceptions,
which is ensured by Lemma 3.9 and Proposition 3.13. Thus for large g , one of the
boundary slopes of ag must be an element of f�4; 3

�2
; 1
�2
; 2g.

Again by Proposition 3.13, the set of normalized entropies of mapping classes y�a 2
�M

such that fb˛.a/; bˇ.a/; b .a/g\ f�4; 3
�2
; 1
�2
; 2g ¤∅ have no accumulation values

less than 2 log..3C
p

5/=2/. This together with Claim 3.15 leads to the conclusion.

3.3 Proof of Theorem 1.4(2)

For r 2Hyp, let yıg.r/ be minimum among dilatations of elements y�a 2
�M\Mod.˙g/

such that a2Sˇ.r/ and �a 2M. We set yıg.r/D1 when there exist no such elements.
Clearly we have ıg � yıg � yıg.r/.

The proof of Theorem 1.4(1) implies that for large g , yıg is either yıg. 3
�2
/, yıg. 1

�2
/

or yıg.2/, because N.�4/'N. 3
�2
/. We prove the following.

Proposition 3.16 minfyıg. 3
�2
/; yıg.

1
�2
/; yıg.2/g< yıg.2/ for each g � 4.

Proof Set r D 3
�2

and r 0 D�2� r D 1
�2

. Recall that �.k;`/ is the largest real root
of the polynomial f.k;`/.t/ as in Section 1.7. Let k and ` be coprime integers such
that 0< ` < k . By the discussion in Section 1.7, we see that

�.kxar ˙ `xbr /D �.kxar 0 ˙ `xbr 0/D �.k;`/:
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The number yıg. 1
�2
/ was computed in [14, Theorem 1.4]:

yıg

� 1

�2

�
D �.gC1;3/ if g � 0; 1; 3; 4 .mod 6/; g � 3;

yıg

� 1

�2

�
D �.gC1;1/ if g � 2; 5 .mod 6/; g � 5:

The following inequalities were proved in [19, Proposition 4.26]:

yıg

� 3

�2

�
< yıg

� 1

�2

�
for g � 0; 1; 5; 6; 7; 9 .mod 10/; g � 5;

yıg

� 1

�2

�
< yıg

� 3

�2

�
for g � 3; 8 .mod 10/; g � 3:

Thus it suffices to prove that yıg.2/ > yıg. 1
�2
/ for each g � 4.

Let a be a fibered class of Sˇ.2/ such that �a 2M and y�a 2
�M\Mod.˙g/ for g� 3.

Then �.a/D�.g;`/ for some 1�`<g ; see [19, Lemma 4.1]. There exists such a class a

whose dilatation �.a/ equals �.g;1/ . This is proved by [19, Remark 4.18] together with
the monodromy ˆgrC1s (in the notation of [19]). The inequality �.k;`/ < �.k;`C1/ for
1< `C 1< k (see [19, Lemma 4.15]) gives the equality yıg.2/D �.g;1/ for g � 3.

It holds that �.g;1/ > �.gC1;1/ for g � 2; see [14, Proposition 4.3]. Hence we
have yıg.2/ > yıg. 1

�2
/ for g � 2; 5 .mod 6/. We use the following claim to prove

yıg.2/ > yıg.
1
�2
/ for other cases.

Claim 3.17 [19, Proposition 4.17] If �.kC1;`/ < �.k;1/ for some k � `� 2, then

�.kC2;`/ < �.kC1;1/:

One can check that �.4;1/� 1:2806> �.5;3/� 1:2612. Thus �.g;1/ > �.gC1;3/ for all
g � 4. This implies that yıg.2/ > yıg. 1

�2
/ for g � 0; 1; 3; 4 .mod 6/.

Remark 3.18 From the proof of Proposition 3.16, we see the following: for large g

such that g � 0; 1; 5; 6; 7; 9 .mod 10/ (resp. such that g � 3; 8 .mod 10/), yıg is
achieved by the monodromy of some ˙g –bundle over the circle obtained from N . 3

�2
/

(resp. N. 1
�2
/) by Dehn filling both cusps. For many g such that g�2; 4 .mod 10/, we

have yıg. 3
�2
/ < yıg.

1
�2
/; see [19, Proposition 4.28]. It might be true yıg. 3

�2
/ < yıg.

1
�2
/

holds for all g � 2; 4 .mod 10/; see [19, Question 4.32].
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3.4 Proofs of Theorems 1.5, 1.6, 1.7 and 1.10

First, we prove that there exists an element of �MC defined on ˙g .

Lemma 3.19 For g � 2, �MC\Mod.˙g/¤∅.

We recall the following.

Lemma 3.20 [19, Proposition 3.5] The mapping class �.x;y;z/ associated to a primi-
tive fibered class .x;y; z/ 2 int.C�/ has orientable invariant foliations if and only if x

and y are even and z is odd.

Proof of Lemma 3.19 For g� 2 even, let ugD .g;g;�1/2 int.C�/. For g� 3 odd,
let ug D .gC 1;gC 1; 1/ 2 int.C�/. The minimal representative Fug

is a genus g

surface with 3 boundary components. By Lemma 3.20, we see that �ug
2M, since �ug

has orientable invariant foliations. In particular y�ug
2 �MC\Mod.˙g/.

From the proof of Lemma 3.19, we have that ıCg � �.g;g;�1/ for g even, and �.g;g;�1/

is the largest real root of f.g;g;�1/.t/ D t2gC1 � 2tgC1 � 2tg C 1. Thus we have
y�ug
2 �MC \ Mod.˙g/ have the same dilatation as examples by Minakawa and

Hironaka and Kin; see [27; 15].

Next, we recall upper bounds on ıCg when g 6� 0 .mod 6/ by Hironaka, Aaber and
Dunfield, and Kin and Takasawa which are sharper than the bound ıCg � �.g;g;�1/ .
To do this, let us define yıCg .r/ for r 2 Hyp. Let yıCg .r/ be the minimum among
dilatations of elements y�a 2

�MC\Mod.˙g/ such that a 2 Sˇ.r/ and �a 2M. We
set yıCg .r/D1 when there exist no such elements. Clearly ıCg � yı

C
g �
yıCg .r/.

Lemma 3.21 (1) yıCg .
3
�2
/D yıCg .

1
�2
/D yıCg .2/D1 if g � 0 .mod 6/.

(2) yıCg .
1
�2
/D �.g;1/ , yıCg .

3
�2
/D yıCg .2/D1 if g � 2; 4 .mod 6/.

(3) minfyıCg .
3
�2
/; yıCg .

1
�2
/; yıCg .2/g D

yıCg .
3
�2
/D �.gC2;4/ if g � 1; 5 .mod 10/.

(4) minfyıCg .
3
�2
/; yıCg .

1
�2
/; yıCg .2/g D

yıCg .
1
�2
/ D �.gC1;3/ if g � 3 .mod 10/ and

g � 1; 3 .mod 6/.

(5) minfyıCg .
3
�2
/; yıCg .

1
�2
/; yıCg .2/g D

yıCg .
1
�2
/ D �.gC1;1/ if g � 3 .mod 10/ and

g � 5 .mod 6/.

(6) minfyıCg .
3
�2
/; yıCg .

1
�2
/; yıCg .2/g D

yıCg .
3
�2
/D �.gC2;2/ if g � 7; 9 .mod 10/.
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Proof We have yıCg .
3
�2
/D yıCg .2/D1 if g is even [19, Corollary 4.5, Lemma 4.11].

As a consequence of [14], yıCg .1=.�2//D1 if g� 0 .mod 6/. By [14, Theorem 1.5],
yıCg .1=.�2//D �.g;1/ if g � 2; 4 .mod 6/. This completes the proofs of (1) and (2).

By using the same argument as in Proposition 3.16, one can prove that

min
n
yıCg

� 3

�2

�
; yıCg

� 1

�2

�
; yıCg .2/

o
< yıCg .2/ if g is odd:

This together with [19, Propositions 4.23, 4.34] implies the claims (3)–(6).

If we fix ` > 0, then k log�.k;`/ and k log�.k;k;�1/ go to log..3C
p

5/=2/ and
log.2C

p
3/ respectively if k goes to 1. Thus the upper bound on ıCg in Lemma 3.21

when g 6� 0 .mod 6/ is sharper than the bound ıCg � �.g;g;�1/ for large g .

Putting all things together, we have the upper bound on ıCg due to [14; 1; 19; 27; 15]:

� ıCg � �.g;g;�1/ when g � 0 .mod 6/,

� ıCg � �.g;1/ when g � 2; 4 .mod 6/,

and for g odd,

� ıCg � �.gC2;4/ when g � 1; 5 .mod 10/,

� ıCg � �.gC1;3/ when g � 3 .mod 10/ and g � 1; 3 .mod 6/,

� ıCg � �.gC1;1/ when g � 3 .mod 10/ and g � 5 .mod 6/,

� ıCg � �.gC2;2/ when g � 7; 9 .mod 10/.

Proof of Theorem 1.5 The proof of the claim (1) is similar to that of Theorem 1.4(1).
The claims (2), (3) hold by Lemma 3.21(2)–(6) and by the same argument as in the
proof of Theorem 1.4(2).

We are ready to prove Theorem 1.10.

Proof of Theorem 1.10 Let aCg be a primitive fibered class of H2.N; @N / such that
�a
C
g
2M and yıCg is achieved by y�a

C
g
2 �MC \Mod.˙g/. We prove the claim (2)

first.

(2) Suppose that g � 2; 4 .mod 6/. By Lemma 3.21(2), we have yıCg .
1
�2
/D �.g;1/ .

By Theorem 1.5(2), the fibered class aCg must have a boundary slope 1
�2

for large g .
Thus yıCg D yı

C
g .

1
�2
/D �.g;1/ .
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(1) Suppose that g � 0 .mod 6/. By Lemma 3.21(1), no boundary slope of aCg
is an element of f�4; 3

�2
; 1
�2
; 2g. From the proof of Theorem 1.4(1), we know that

Ent.y�a
C
g
/ > 1:97475� � for any g � 0 .mod 6/ but finitely many exceptions. Thus

Ent
�
y�

a
C
g

�
D j�.˙g/j log yıCg > 1:97475� � > 2 log

�3C
p

5

2

�
for large g such that g � 0 .mod 6/. Since we have limg!1 j�.˙g/j log�.g;1/ D
2 log..3C

p
5/=2/, the inequality yıCg > �.g;1/ holds for such a large g .

We now prove Theorem 1.6 which improves the upper bound (1-5) in Section 1.5. To
do this, it suffices to prove the following two lemmas.

Lemma 3.22 min Ent.N.�6/;�S /Dmin Ent.N.4/;�S /D 4 log ı.D5/.

Proof We have that both minimal dilatations ı2 and ı.D5/ are the largest real roots
of t5� 2t3� 2t2C 1; see [5; 12]. By Lemma 3.2,

min Ent.N.4/;�S /D
4
5

log�Œ2=5;2=5� D 4 log�.2;2;�1/:

Since f.2;2;�1/.t/D t5�2t3�2t2C1, we have the identities �.2;2;�1/D ı2D ı.D5/.
By Theorem 2.26(1), it follows that .N.4/;�S / �ent

.N.�6/;�S /. Hence

min Ent.N.4/;�S /Dmin Ent.N.�6/;�S /:

This completes the proof.

Lemma 3.23 For each i � 0, there exists a †6C12i –bundle over the circle which
satisfies the following. It is obtained from N.4/ by Dehn filling both cusps along
boundary slopes of a fiber of N.4/, and the monodromy ˆi W †6C12i!†6C12i of the
fibration has orientable invariant foliations. Moreover

min Ent.N.4/;�S /D lim
i!1

Ent.ˆi/:

Proof Consider a primitive fibered class

aq D .4qC 8; 4qC 4;�2q� 3/ 2 int.C�/\S .4/ for q � 0:

Lemma 3.20 tells us that the monodromy of the fibration on N associated to aq has
orientable invariant foliations. In particular, �aq

2M and y�aq
2 �MC . Now let qD 3i

for i � 0. Then the numbers of the boundary components of Faq
lying on T˛ , Tˇ

and T are given by 1, 1, 2qC3 respectively (see Lemma 2.1), and the genus of Faq

is equal to 6C 12i .
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The ray of xaq 2H2.N.4/; @N..4/// goes to the ray of .2; 2;�1/2H2.N.4/; @N..4///

as q goes to 1. Hence

Ent4..2; 2;�1//D lim
q!1

Ent4.xaq/:

On the other hand by Lemma 3.22, we have

min Ent.N.4/;�S /D 4 log�.2;2;�1/ D Ent4..2; 2;�1//:

Since the number of the boundary components of Fxaq
is bounded (in fact, it is exactly 2),

it follows that

Ent4..2; 2;�1//D lim
q!1

Ent4.xaq/D lim
q!1

Ent.y�aq
/:

This completes the proof.

Proof of Theorem 1.7 In the proof of Lemma 3.23, we proved that for g�6 .mod 12/

(if and only if g � 6; 18; 30; 42; 54; 66; 78 .mod 84/),

ıCg � �
�
gC 2;g� 2;�

g

2

�
:

Let us prove that monodromies of the fibrations on N.�6/ give sharper upper bounds
on ıCg for some g . Let

a0q D .6qC 4; 6qC 2; 2qC 1/ 2 int.C�/\S .�6/ for q � 1:

The monodromy of the fibration on N associated to a0q has orientable invariant
foliations by Lemma 3.20. Hence we have that �a0q 2 M and y�a0q 2

�MC . For
g� 6; 30; 42; 54; 78 .mod 84/ and g> 0, we set qD .g�2/=4. Then the numbers of
the boundary components of Fa0q lying on T˛ , Tˇ and T are given by 1, 1, 2qC 1

respectively. The genus of Fa0q is equal to g . Thus we have

ıCg � �
�3g

2
C 1;

3g

2
� 1;

g

2

�
:

To check that this bound is sharper than the one above, we now prove the inequality

�
�3g

2
C 1;

3g

2
� 1;

g

2

�
< �

�
gC 2;g� 2;�

g

2

�
:

Recall that .N.4/;�S / and .N.�6/;�S / are entropy equivalent, and min Ent is
attained by .2; 2;�1/ for N.4/ (resp. .3; 3; 1/ for N.�6/). We note that the ray of
aq0 2H2.N.�6/; @N..�6/// goes to the ray of .3; 3; 1/2H2.N.�6/; @N..�6/// as q

goes to 1. We have the identity on the Thurston norm,�3g

2
C 1;

3g

2
� 1;

g

2

�
�6
D

�gC 2;g� 2;�
g

2

�
4
:
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One can check that the ray of .3g
2
C 1; 3g

2
� 1; g

2
/ is closer to the minimal ray than

the ray of .gC 2;g� 2;�g
2
/. Because of the strict concavity of 1=ent, we have the

desired inequality.

Let us turn to the case g � 0 .mod 12/. We have not obtained an explicit upper
bound on g log ıCg or ıCg as in Theorem 1.6 or 1.7 in this case. However for many
such g , we improve the previous bound ıCg � �.g;g;�1/ ; see Table 1. We note that
our bound ıC

12
� �.12;20;3/ in Table 1 is given by the example which occurs as the

monodromy of the fibration on a manifold obtained from N. 3
�4
/ by Dehn filling both

cusps. In the left column of Table 1, other upper bounds on ıCg when g � 0 .mod 12/

are given by examples which occur as the monodromies of fibrations on manifolds
obtained from N. 5

�4
/. By our computer experiments, it seems that yıCg is realized by

the example obtained from N. 5
�4
/ by Dehn filling both cusps for any g� 0 .mod 12/

and g > 12. We ask the following.

Question 3.24 Does there exist a primitive fibered class bi 2 int.C�/\Sˇ.
5
�4
/ for

large i which enjoys the following?

� The minimal representative Fbi
has genus 12i , and �bi

has orientable invariant
foliations.

� min Ent.N. 5
�4
//D lim

i!1
Ent5=.�4/.xbi/.

Proposition 3.25 If Question 3.24 is true, then

lim sup
g�0 .mod 12/

g!1

g log ıCg �
1

2
min Ent

�
N
� 5

�4

��
< 1:1466:

Proof The existence of primitive integral classes bi implies the left inequality. To see
the right inequality, we take a D .292; 300; 83/ 2 int.C�/\Sˇ.

5
�4
/. The Thurston

norm of xa equals kak� gcd.300; 375/D 434. Thus

min Ent
�
N
� 5

�4

��
� Ent5=.�4/.xa/D 434 log�.a/� 2:2930:

3.5 Proof of Theorem 1.8

This subsection concerns the monodromies of fibrations on the Whitehead link exte-
rior N.1/.

Proposition 3.26 We have that an S–face of N.1/ and an A–face of N.1/ are entropy
equivalent.
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Proof For each k; ` 2 N , the class kxa1 C `xb1 (resp. kxa1 � `xb1 ) is an element of
int.C�S

/ (resp. int.C�A
/) (see Figure 9). Further kxa1˙ `xb1 have the same Thurston

norm. Thus it suffices to show that kxa1 ˙ `xb1 have the same entropy. Figure 11
illustrates the projections of the Whitehead link. The minimal representatives of xa1

and xb1 are depicted as in Figure 11(a). One can check that all three oriented links in
this figure are isotopic in S3 to each other. In particular the two oriented links (b) and
(c) are isotopic fixing the trivial component. This implies that there exists an involution
f W N.1/!N.1/. This involution induces an isomorphism f�W H2.N.1/; @N.1//!

H2.N.1/; @N.1// which sends xa1 to itself and xb1 to �xb1 . Because f� is induced by
the involution on the manifold N.1/, the entropy of kxa1C `xb1 must be equal to that
of kxa1� `xb1 .

By Lemma 3.2, one sees that min Ent.N.1/;�S /D 2 log ı.D4/. This together with
Proposition 3.26 leads to min Ent.N.1/;�A/D 2 log ı.D4/. Thus we obtain:

Corollary 3.27 min Ent.N.1//D 2 log ı.D4/� 1:6628

(a) (b) (c)

Figure 11: Projections of the Whitehead link [the minimal representatives of
xa1 and xb1 are illustrated in (a)]

The following lemma is easy to verify by using Lemma 2.1.

Lemma 3.28 The genus of each fiber of N.1/ equals 1. More precisely, for coprime
integers k; ` 2N , the minimal representative of kxa1C `xb1 is a .kC `/–holed torus.

Remark 3.29 For k and ` as in Lemma 3.28, the stable foliation of the monodromy
ˆka1C`b1

of the fibration on N associated to ka1C `b1 has the following property.
Each boundary component of the fiber Fka1C`b1

lying on the torus specified by ˛ , ˇ
and  has a 1 prong, 3 prongs and a 1 prong respectively. Hence �ka1C`b1

62M.

For n� 2, let Wn �H2.N.1/; @N.1/IZ/ be the set of primitive fibered classes whose
minimal representatives are n–holed tori.
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Proposition 3.30 The following class achieves the minimal dilatation among elements
of Wn .

(1) xa1C
xb1 when nD 2. Its dilatation equals the largest real root of

f.1;1;�2/.t/D t4
� 2t3

� 2t C 1:

(2) kxa1C .k � 1/xb1 when nD 2k � 1 for k � 2. Its dilatation equals the largest
real root of

f.k;k�1;�2kC1/.t/D t4k�2
� t3k�1

� t3k�2
� tk
� tk�1

C 1:

(3) .2kC1/xa1C.2k�1/xb1 when nD 4k for k � 1. Its dilatation equals the largest
real root of

f.2kC1;2k�1;�4k/.t/D t8k
� t6kC1

� t6k�1
� t2kC1

� t2k�1
C 1:

(4) .2kC 3/xa1C .2k � 1/xb1 when nD 4kC 2 for k � 1. Its dilatation equals the
largest real root of

f.2kC3;2k�1;�4k�2/.t/D t8kC4
� t6kC5

� t6kC1
� t2kC3

� t2k�1
C 1:

Proof Proposition 3.26 says that for the study of monodromies of fibrations on N.1/,
it is enough to deal with fibers whose homology classes are in the cone over an S–face.
From the proof of Lemma 3.2, the center of �S achieves min Ent.N.1/;�S /. Then the
proposition holds from the strict concavity of the function 1

ent1
D

1
log�1
W int.C�S

/!R
together with Lemma 3.28.

Lemma 3.31 Suppose `
k

goes to 1 as k and ` go to 1. Then Ent1.kxa1 C `xb1//

goes to min Ent.N.1//D 2 log ı.D4/ as both k and ` go to 1.

Proof We have that min Ent.N.1/;�S / is achieved by the center of �S . This leads
to the lemma.

Proof of Theorem 1.8 See Proposition 3.30 and Lemma 3.31.

4 1–cusped manifolds with small volume

The magic manifold plays a central role not only for the minimizing problem on
dilatations but also for the minimizing problem on volumes of hyperbolic 3–manifolds.
It was proved by Agol that the smallest volume among orientable 2–cusped hyperbolic
3–manifold is achieved by either the Whitehead link exterior N.1/ or the Whitehead
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sister link exterior N. 3
�2
/; see Agol [2]. Gabai, Meyerhoff and Milley proved that

1–cusped orientable hyperbolic 3–manifolds with volume at most 2:848 are obtained
from N by Dehn filling two cusps, and they identified these 1–cusped manifolds,
which we recall in Theorem 4.3. In the end of this section, we compute the normalized
entropy of the monodromy of the fibration on each of them.

First we recall the following.

Theorem 4.1 (Gabai, Meyerhoff and Milley [11, Theorem 1.1]) Let M be a 1–
cusped orientable hyperbolic 3–manifold whose volume is at most 2:848. Then M

can be obtained from M 0 by Dehn filling all but one of the cusps, where M 0 is one of
the 21 manifolds in the SnapPea census: m125, m129, m202, m203, m292, m295,
m328, m329, m359, m366, m367, m391, m412, s596, s647, s774, s776, s780,
s785, s898, s959.

We have that s776 is homeomorphic to the magic manifold N . All manifolds listed
above other than s776 have exactly 2 cusps. The 12 manifolds m125, m129; : : : ;m391

are obtained from s776 by Dehn filling a cusp. We compute the quantities min Ent etc.
for these manifolds by using results in this paper; see Table 2. (One can check that the
first column in Table 2 by using SnapPy [6].)

manifold M min Ent.M; �S / min Ent.M; �A/ min Ent.M /

m125'N
�

3
�2

�
none 2 log

�
3C
p

5
2

�
2 log

�
3C
p

5
2

�
m129'N.1/ 2 log�.1;1;�2/� 1:6628 2 log�.1;1;�2/ 2 log�.1;1;�2/

m202'N
�

5
�2

�
? 4 log�.4;2;1/� 2:5318

m203'N
�

1
�2

�
none 2 log

�
3C
p

5
2

�
2 log

�
3C
p

5
2

�
m292'N.�5/ 6 log�.5;5;2/� 2:0761 ?

m295'N.2/ 2 log
�

3C
p

5
2

�
?

m328'N
�

4
�3

�
none | |

m329'N
�

5
�3

�
none � �

m359'N
�

2
�3

�
none | |

m366'N
�

7
�2

�
8 log�.7;7;4/� 2:4181 } 8 log�.7;7;4/

m367'N
�

1
2

�
4 log�.1;1;�4/� 2:9314 4 log�.4;2;1/� 2:5318 4 log�.4;2;1/

m391'N
�

1
�3

�
none � �

Table 2: min Ent for some fibered 3–manifolds in Theorem 4.1
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Remark 4.2 We make comments on Table 2.

(1) The filling slopes p
q

of N.p
q
/ marked “?” do not enjoy the assumption of

Theorem 3.1.

(2) By Theorem 2.26,

N
� 5

�3

�
�
ent

N
� 1

�3

�
; N

� 4

�3

�
�
ent

N
� 2

�3

�
:

This together with Lemma 3.5 implies that

�Dmin Ent
�
N
� 5

�3

��
Dmin Ent

�
N
� 1

�3

��
>min Ent

�
N
� 2

�3

��
Dmin Ent

�
N
� 4

�3

��
D|:

(3) We know min Ent.N. 7
�2
/;�S /D 8 log�.7;7;4/ � 2:4181 by Lemma 3.2, and

}Dmin Ent
�
N
� 7

�2

�
; �A

�
>min Ent

�
N
� 5

�2

�
; �A

�
� 2:5318

by Lemmas 3.5 and 3.6(2). Thus, min Ent.N. 7
�2
//D 8 log�.7;7;4/ .

m125'N. 3
�2
/' S3 n br.T 0

6;2
/ m129'N.1/

m202'N. 5
�2
/' S3 n br.T 0

8;3/ m203'N. 1
�2
/' S3 n br.T 0

4;1/

m292'N.�5/' S3 n br.T 0
7;5
/ m295'N.2/

m328'N. 4
�3
/' S3 n br.T 0

8;2
/ m329'N. 5

�3
/' S3 n br.T 0

9;5
/

m359'N. 2
�3
/' S3 n br.T 0

6;3
/ m366'N. 7

�2
/' S3 n br.T 0

10;4
/

m367'N.1
2
/ m391'N. 1

�3
/' S3 n br.T 0

5;1
/

s776'N ' S3 n br.T6;3/

Table 3: s776'N and manifolds obtained from N by Dehn filling in Theorem 4.1

Now we would like to point out that many manifolds in Table 2 are braided link exteriors.
To do this, we first recall the definition of the braided link. Let Bn be the n–braid
group, and let �1 , �2; : : : ; �n�1 2 Bn be the Artin generators of Bn ; see Figure 12.
The braided link br.b/ of a braid b is the union of the closed braid of b and its axis;
see Figure 13. For example, the link 62

2
is the braided link br.��1

1
�2/; see Figure 1.

Let Tm;p be the following m–braid for m� 3 and p � 1:

Tm;p D
�
�2

1�2�3 � � � �m�1

�p
��2

m�1:
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For example T6;2D .�
2
1
�2�3�4�5/

2��2
5
D �2

1
�2�3�4�5�

2
1
�2�3�4�

�1
5

; see Figure 14.
Forgetting the first strand of Tm;p , one obtains the .m� 1/–braid, call it T 0m;p . It was
shown in [18, Corollary 3.2] that if m�1 and p are coprime, then N 'S3nbr.Tm;p/.
By [18, Theorem 3.4], one sees that if x;y 2N are coprime such that y=.�x/ 2Hyp,
then there exists p.x;y/2N such that N.y=.�x//'S3nbr.T 0xCyC1;p.x;y//. Some
manifolds in Table 2 can be described as the exterior of the braided link of the form
S3 n br.T 0m;p/; see Table 3. It is intriguing that some braids appearing in this table
reach the minimal dilatations. Table 4 shows the minimal dilatation ı.Dn/ and an
n–braid (equivalently an element of Mod.Dn/) realizing ı.Dn/. Here b � b0 means
that b is conjugate to b0 .

1 i iC1 n

Figure 12: Braid �i 2 Bn

b b
axis

Figure 13: Braid b ! braided link br.b/

n ı.Dn/ n–braid realizing ı.Dn/ reference

3 3C
p

5
2
� 2:6180 T 0

4;1
D �1�

�1
2

[25; 13]

4 �.3;1;0/ � 2:2966 T 05;1 D �1�2�
�1
3 [29; 12]

5 �.2;3;0/ � 1:7220 T 0
6;2
� �1�2�3�4�1�2 [12]

6 �.3;2;0/ � 1:7220 T6;3 � .�2�1�2�1.�1�2�3�4�5/
2/�1 [20]

7 �.3;4;0/ � 1:4655 T 08;2 � �
�2
4 .�1�2�3�4�5�6/

2 [20]

8 �.3;5;0/ � 1:4134 T 0
9;5
� ��1

2
��1

1
.�1�2�3�4�5�6�7/

5 [20]

Table 4: Minimal dilatations of braids

By using Theorem 4.1, Gabai, Meyerhoff and Milley proved the following.
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Figure 14: Braid T6;2

Theorem 4.3 [11, Corollary 1.2] Let M be a 1–cusped orientable hyperbolic 3–
manifold whose volume is at most 2:848. Then M is one of m003, m004, m006,
m007, m009, m010, m011, m015, m016 and m017. In particular, every 1–cusped
orientable hyperbolic 3–manifold whose volume is at most 2:848 can be obtained from
the magic manifold by Dehn filling two cusps.

Among the 10 manifolds in Theorem 4.3, m006, m007, m015, m017 are nonfibered
and the others are fibered; see Button [4] and Dunfield [7]. Each of the fibered manifolds
in Theorem 4.3 has the second Betti number 1, and hence it admits a unique fibration.
The entropies and normalized entropies of their fibrations are given in Table 5. Here
are comments on the table.

(1) The first column “manifold” can be checked by using SnapPy [6].

(2) m003 and m004 are the figure 8 sister manifold and the figure 8 knot exterior
respectively ([23, Table A.2] or [6]). It is well-known that each of m003 and
m004 has the fiber ˙1;1 and the monodromy of its fibration achieves the minimal
dilatation ı1;1 D .3C

p
5/=2.

(3) SnapPy tells us that the once punctured torus bundles whose monodromies are
given by 2� 2 matrices�

3 2

1 1

�
;

�
�3 �2

1 1

�
are homeomorphic to m009 and m010 respectively. Hence their dilatations
equal 2C

p
3 which is the largest eigenvalue of:�

j˙ 3j j˙ 2j

1 1

�
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(4) The fibered class aD .13; 12; 5/ 2 int.C�/ has boundary slopes b˛.a/D
17
�13

,
bˇ.a/D

3
�2

, b .a/D
5
�1

, and the genus of Fa is 5. As a consequence of this
paper, we have that N. 3

�2
;�5/.' m011/ has a fiber ˙5;1 and the dilatation

of the monodromy of its fibration equals �.a/ which is the largest real root
�.13;12;5/ � 1:1487 of f.13;12;5/.t/.

(5) The manifold N. 3
�2
; 8
�3
/.'m016/ is homeomorphic to the .�2; 3; 7/–pretzel

knot exterior; see [23, Table A.4]. Because aD .18; 22; 15/ 2 int.C�/ has the
boundary slopes b˛.a/D

37
�18

, bˇ.a/D
3
�2

, b .a/D
8
�3

and the genus of Fa

equals 5, the fiber of the fibration on m016 is ˙5;1 . We see that the dilatation
of the monodromy of its fibration equals �.a/ which is the largest real root
�.18;22;15/ � 1:1762 of

f.18;22;15/.t/

D .t11
C 1/.t4

� t3
C t2
� t C 1/.t10

C t9
� t7
� t6
� t5
� t4
� t3
C t C 1/:

Namely it is the largest real root of the last factor. Thus the dilatation equals
the so called Lehmer’s number. The monodromy of the fibration is described in
Leininger [22].

(6) The monodromy of the fibration on m016'N . 3
�2
; 8
�3
/ (resp. m011'N . 3

�2
;�5/)

can be extended to the pseudo-Anosov homeomorphism on the closed surface
of genus 5 with dilatation �.18;22;15/ (resp. �.13;12;5/ ). This pseudo-Anosov
is a representative of y�.18;22;5/2

�M (resp. y�.13;12;5/ 2
�M). On the other hand,

Lanneau and Thiffeault proved that ıC
5

equals the Lehmer’s number [21]. The
pseudo-Anosov representative of y�.18;22;5/ has orientable stable foliation (see
Lemma 3.20) and it achieves ıC

5
. The mapping class y�.13;12;5/ was the example

in [1; 19] used to prove ı5 < ıC5 .

manifold fiber ˙ entropy log�.�Œ˙�/ j�.˙/j log�.�Œ˙�/

m003'N.1;�4/ ˙1;1 log
�

3C
p

5
2

�
log

�
3C
p

5
2

�
� 0:9624

m004'N.1; 2/ ˙1;1 log
�

3C
p

5
2

�
log.3C

p
5

2
/� 0:9624

m009'N.1; 3/ ˙1;1 log.2C
p

3/ log.2C
p

3/� 1:3169

m010'N.1;�5/ ˙1;1 log.2C
p

3/ log.2C
p

3/� 1:3169

m011'N. 3
�2
;�5/ ˙5;1 log�.13;12;5/ � log.1:1487/ 9 log�.13;12;5/ � 1:2484

m016'N
�

3
�2
; 8
�3

�
˙5;1 log�.18;22;15/ � log.1:1762/ 9 log�.18;22;15/ � 1:4612

Table 5: Normalized entropies j�.˙/j log�.�Œ˙�/ of 1–cusped hyperbolic
fibered 3–manifolds with volume � 2:848
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The number log.3 C
p

5=2/ is the minimal normalized entropy among 1–cusped
hyperbolic fibered 3–manifolds with volume less than or equal to 2:848; see Table 5. In
practice, pseudo-Anosov homeomorphisms with small dilatation occur as monodromies
of fibrations on fibered 3–manifolds with small volume; see [17]. Thus it is natural to
ask the following.

Question 4.4 Let M be a 1–cusped hyperbolic fibered 3–manifold with the second
Betti number 1. Is it true that the normalized entropy of the monodromy of the fibration
on M is greater than or equal to log..3C

p
5/=2/? Is it true that the equality is

achieved only by either m003 or m004?

5 Remarks

We find from the next lemma that the set M is very large.

Lemma 5.1 Let p 2N and q 2 Z be coprime such that p
q
2Hyp.

(1) Suppose p=q 2 .�1;�2/ such that pC 2q ¤ 1 (resp. suppose p
q
2 .�1;�2/

such that jqj ¤ 1). Let a 2 Sˇ.
p
q
/ be a primitive fibered class of N such that

xa 2 int.C�/, where � is an S–face (resp. A–face) of N.p
q
/. Then �a 2M for

any such a 2 Sˇ.
p
q
/ but finitely many exceptions.

(2) Suppose that p=q 2 .�2; 0/. Let a 2 Sˇ.
p
q
/ be a primitive fibered class of N .

Then �a 2M for any such a 2 Sˇ.
p
q
/ but finitely many exceptions.

(3) Suppose that p=q 2 .0;1/ such that p=q ¤ 1. Let � be an S–face of N.p
q
/

if jqj D 1 and let � be any face of N.p
q
/ if jqj ¤ 1. Let an 2 Sˇ.

p
q
/ be a

primitive fibered class of N such that xan 2 int.C�/ for each n. If xai ¤ xaj for
i ¤ j and xan converges projectively to a point of int.�/ as n goes to 1, then
�an
2M for large n.

Proof (2) If p
q
2 .�2; 0/, a primitive fibered class ya2Sˇ.

p
q
/ is in int.Cy�/, where y�

is a fibered face N which is either �, �0 , �2 or �0
2

. We note �.int.Cy�/\Sˇ.
p
q
//D

int.C�/ \ S˛.
p
q
/ or int.C�/ \ Sˇ.

p
q
/. By Lemma 2.4 and Remark 2.13, we may

assume that �.int.Cy�/\ Sˇ.
p
q
// D int.C�/\ Sˇ.

p
q
/, and it is enough to consider

primitive fibered classes a 2 int.C�/\Sˇ.
p
q
/.

If �a 62M, then one of the following two cases occur:

� a 2 S˛.
t
u
/\Sˇ.

p
q
/ for some t

u
such that juj D 1.

� a 2 Sˇ.
p
q
/\S .

v
w
/ for some v

w
such that vC 2w D 1.
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It suffices to show that the following two sets are finite: fixing p
q

,n
Œx;y� 2 int.�/\S˛

� t

u

�
\Sˇ

�p

q

� ˇ̌̌
juj D 1

o
;n

Œx;y� 2 int.�/\Sˇ

�p

q

�
\S

� v
w

� ˇ̌̌
vC 2w D 1

o
:

One can prove the first set is finite as follows. Recall from Lemma 2.12 that

�\S˛.r/D
n
Œx;y� 2�

ˇ̌̌
y D

�1C r

�2

�
xC

1

2

o
;

�\Sˇ.r/D
n
Œx;y� 2�

ˇ̌̌
y D

�
�2

1C r

�
xC

1

1C r

o
:

Suppose that juj D 1. Then�
�\S˛

� t

u

��
\

�
�\Sˇ

�p

q

��
D∅ for large

ˇ̌̌ t

u

ˇ̌̌
:

The finiteness of the second set can be proved similarly.

The proof of (1) is similar to that of (2).

(3) Let us consider the case that � is an S–face. The primitive fibered classes an

enjoying the assumption of the claim must be in the interior of the cone over the fibered
face �1 or �0

1
. The images of int.C�1

/\Sˇ.
p
q
/ and int.C�0

1
/\Sˇ.

p
q
/ under � are

the same, and it is the set int.C�/\S .
p
q
/. Hence it is enough to consider the primitive

fibered classes an 2 int.C�/\S .
p
q
/ which enjoy the assumption of the claim (3).

We consider the following two infinite sets: fixing p
q

,n
Œx;y� 2 int.�/\S˛

� t

u

�
\S

�p

q

� ˇ̌̌
juj D 1

o
;n

Œx;y� 2 int.�/\Sˇ

� t

u

�
\S

�p

q

� ˇ̌̌
juj D 1

o
:

Consider the case p
q
2 .0; 1/. If t

u
2 .�1;�1�, then

int.�/\S˛.
t
u
/\S .

p
q
/D∅ and int.�/\Sˇ.

t
u
/\S .

p
q
/D∅

(see Figure 15(left)). Suppose t
u
2 .�1;1/ such that juj D 1. (Then t

u
D

t
1
2 Œ0;1/.)

Fixing t0 > 0, then we have that the sets˚
int.�/\S˛.

t
1
/\S .

p
q
/ j t 2N; t < t0

	
;

˚
int.�/\Sˇ.

t
1
/\S .

p
q
/ j t 2N; t < t0

	
are finite clearly. Observe that for large t 2N , then we have

int.�/\S˛.
t
1
/\S .

p
q
/¤∅ and int.�/\Sˇ.

t
1
/\S .

p
q
/¤∅;
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but each point of these nonempty sets goes to a point of @�\Sˇ.
p
q
/ as t goes to 1

(see Figure 15(right)). This leads to the claim (3).

The proof in the case p
q
2 .1;1/ is similar.

By a similar argument, one can prove the claim (3) when � is an A–face.

Œ0; 1� Œ1; 1�

Œ0; 0� Œ1; 0�

.˛/

. /
.ˇ/

Œ0; 1� Œ1; 1�

Œ0; 0� Œ1; 0�

.˛/

. /

.ˇ/

Figure 15: (Left) t=u 2 .�1;�1/ , (right) t=u 2 .�1;1/

[.˛/ WD int.�/\S˛.
t
u
/ , .ˇ/ WD int.�/\Sˇ.

t
u
/ , . / WD int.�/\S .

p
q
/]

In contrast with Lemma 3.28, we have the following.

Lemma 5.2 Suppose that p=q ¤ 1. For a primitive fibered class a 2 S˛.
p
q
/, the

number of the boundary components of Fxa for xa 2H2.N˛.
p
q
/; @N˛.

p
q
// is bounded

by 2jpjC 2jqj.

Proof Suppose that aD .x;y; z/ 2 S˛.
p
q
/ is a primitive fibered class. The number

of the boundary components of Fxa equals gcd.y; zCx/C gcd.z;xCy/.

We shall prove that gcd.y; zCx/� jpjCjqj. The inequality gcd.z;xCy/� jpjCjqj

can be proved by the same argument. Since �pxD q.yC z/, there exists an integer k

such that x D�qk and yC z D pk . Hence z D pk �y .

Claim 5.3 gcd.y; k/D gcd.z; k/D 1

Proof of Claim 5.3 Suppose that gcd.y; k/D ` > 1. Then y D y0` and k D k 0` for
some integers y0 and k 0 . One sees that

gcd.z; k/D gcd.pk �y; k/D gcd.pk 0`�y0`; k 0`/� `:

Thus ` is a factor of y; z and k . Recall x D�qk . This implies ` is also a factor of x .
Thus gcd.x;y; z/� `. Since .x;y; z/ is a primitive class, this is a contradiction.
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One has gcd.y; zCx/Dgcd.y; .p�q/k�y/Dgcd.y; .p�q/k/. Since gcd.y; k/D1,
one obtains gcd.y; .p�q/k/D gcd.y;p�q/� p�q � jpjC jqj. This completes the
proof Lemma 5.2.

The following is an application of Lemmas 5.1 and 5.2.

Proposition 5.4 For each r 2Hypnf1g, let � be a fibered face of N.r/ which enjoys
(�) in Theorem 1.11. Let an 2Sˇ.r/ be a primitive fibered class such that xan 2 int.C�/
for each n 2 N . Suppose that xan converges projectively to a unique point of int.�/
which achieves min Ent.N.r/;�/. Then �an

2M for large n. Moreover

min Ent.N.r/;�/D lim
n!1

Ent.y�an
/:

Proof The first assertion is immediate from Lemma 5.1. By the assumption of xan ,

min Ent.N.r/;�/D lim
n!1

Entr .xan/.D lim
n!1

Ent.�xan
//:

Since �an
2M for large n, �r .xan/.D �.�xan

//D �.y�an
/ for large n. By Lemma 5.2,

the number of the boundary components of the minimal representative of xan is bounded.
Thus the normalized entropy Ent.y�an

/ of y�an
tends to min Ent.N.r/;�/ as n tends

to 1.
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