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Different moment-angle manifolds arising from two
polytopes having the same bigraded Betti numbers

SUYOUNG CHOI

Two simple polytopes of dimension 3 having identical bigraded Betti numbers but
nonisomorphic Tor–algebras are presented. These polytopes provide two homotopi-
cally different moment-angle manifolds having the same bigraded Betti numbers.
These two simple polytopes are the first examples of polytopes that are (toric) coho-
mologically rigid but not combinatorially rigid.

55N99; 05A15

1 Introduction

A convex polytope of dimension n is called simple if there are exactly n facets
(codimension one face) meeting at each vertex. Let P be an n–dimensional simple
convex polytope with m facets F1; : : : ;Fm . Consider an m–dimensional real compact
torus T m , and denote the i th coordinate subgroup of T m by Ti .

Definition 1.1 Consider the following equivalence relation on T m �P :

.t;p/� .t 0;p0/ ” p D p0; t 0t�1
2

M
Fi3p

Ti :

The quotient space
ZP D .T

m
�P /=�

is called the moment-angle manifold of P and is denoted by ZP .

Observe that ZP is indeed a manifold of dimension m C n (see Buchstaber and
Panov [2, Lemma 6.2]), and the formula s � Œt;p�D Œst;p� defines a natural T m –action
on ZP with orbit space P . The moment-angle manifold was first introduced in Davis
and Januszkiewicz [7] as a space that has the following universal property: for every
quasitoric manifold (the definition will be given below) � W M !P , there is a principal
T m�n –bundle ZP !M whose composite with � is the orbit map ZP ! P . Hence,
it is one of the key concepts in toric topology, so it is very important to study the
topology of ZP .
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A formula for the cohomology of ZP has already been established. Let k be a field,
and let AD kŒv1; : : : ; vm� be a finitely generated commutative graded algebra over k.
The Tor–algebra of P , denoted by Tor�;�

A
.k.P /;k/, is a finite-dimensional bigraded k–

algebra. (The explicit definition will be given in Section 2.) Note that the cohomology
algebra H�.ZP Ik/ of ZP inherits a canonical bigrading from the Eilenberg–Moore
spectral sequence for the fibration

ZK
//

D

��

ZK
//

��

�

��
ZK

// ET m �T m ZK
// BT m;

where ET m is a contractible space on which T m acts freely, and BT mDET m=T m .
Buchstaber and Panov [2, Theorems 7.6 and 7.7] showed that H�;�.ZP Ik/ and
Tor�;�

A
.k.P /;k/ are isomorphic as bigraded k–algebras.

In this study, it is assumed that k is the field of rational numbers Q. Let ˇ�i;2j .P /

denote the bigraded Betti numbers of the Tor–algebra of P (simply, the bigraded Betti
numbers of P ), that is,

ˇ�i;2j .P /D dimQ Tor�i;2j
A

.Q.P /;Q/:

Note the bigraded structure should have more information than the usual (mono)graded
structure. Hence, it is natural to ask how much information on the topology of ZP

the bigraded Betti numbers contain. Actually, in all known examples (before this
paper) of combinatorially different polytopes with the same bigraded Betti numbers
(such as vertex truncations of simplices), the moment-angle manifolds are also dif-
feomorphic. It should also be noted that the bigraded Betti numbers of H�;�.ZP IQ/
are not necessarily topological invariants, although the usual Betti numbers ˇp DP

pD�iC2j ˇ
�i;2j .P / are.

From this viewpoint, Panov presented the following problem at the conference on toric
topology held in Osaka in November 2011.

Problem 1.2 Let P and Q be two simple polytopes. Is it true that

ZP Š ZQ ” ˇ�i;2j .P /D ˇ�i;2j .Q/ for all i; j ?

Here Š may mean “homotopy equivalent,” “homeomorphic” or “diffeomorphic.”

In this paper, we answer the “if” part of the problem negatively for all categories: there
exist two simple polytopes (say P and Q) with the same bigraded Betti numbers,
satisfying H�.ZP IQ/ 6ŠH�.ZQIQ/ as graded rings. Such polytopes are shown in
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Figure 1 and Table 1 presents the complete list of the bigraded Betti numbers of P
and Q.

Figure 1: P and Q

j n i 0 1 2 3 4 5 6 7 8
0 1
1
2 28
3 0 105
4 4 166
5 39 123
6 123 39
7 166 4
8 105 0
9 28
10
11 1

Table 1: Bigraded Betti numbers of P and Q

Theorem 1.3 The Tor–algebras of P and Q are not isomorphic as bigraded alge-
bras while their bigraded Betti numbers are the same. Furthermore, H�.ZP IQ/ and
H�.ZQIQ/ are not isomorphic as graded rings.

As an immediate corollary, it follows that the bigraded Betti numbers of the simple
polytopes do not determine the homotopy type of the corresponding moment-angle
manifold.

As by-products, the polytopes P and Q are important examples in the toric rigidity
problem for simple polytopes as follows. A quasitoric manifold is a closed, smooth
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manifold of dimension 2n that admits a locally standard half-dimensional torus ac-
tion T n whose orbit space is a simple polytope (see [2] and [7]). A typical example
of a quasitoric manifold is a complex projective space CPn of complex dimension n

with the standard T n –action, whose orbit space is the n–simplex �n . Although the
topology of a quasitoric manifold does not generally determine the combinatorial type
of its orbit space, it sometimes does; for instance, only the n–simplex can be the orbit
space of a locally standard T n –action defined on CPn . Furthermore, since the integral
cohomology ring H�.M IZ/ of a quasitoric manifold M can be obtained from the
face ring of its orbit polytope P , the relationship between the combinatorial type of P

and H�.M IZ/ is well established (see the author, Panov and Suh [5] and [7]).

A simple polytope is said to be cohomologically rigid if its combinatorial structure
is determined by the cohomology ring of a supporting quasitoric manifold. A simple
polytope is said to be combinatorially rigid if its combinatorial structure is determined
by the bigraded Betti numbers. By [5, Proposition 3.8], the bigraded Betti numbers of
a simple polytope are determined by the cohomology ring of a supporting quasitoric
manifold. Hence, any combinatorially rigid polytope (that supports a quasitoric mani-
fold) is cohomologically rigid. However, the question of whether the converse holds
has been open (see the author, Masuda and Suh [4, Section 6] for details).

Problem 1.4 [4, Problem 6.6] Find a polytope which is rigid cohomologically but
not combinatorially in the set of simple polytopes.

Here, we provide an answer to this problem.

Theorem 1.5 The polytopes P and Q are cohomologically rigid, but not combinato-
rially rigid.

2 Tor–algebra of a simple polytope

We briefly review the definitions here, following [2], where the reader may find addi-
tional details of the Tor–algebra of a simple polytope, and we present the properties of
the multiplicative structure of the Tor–algebra, which are relevant to Section 3.

Let k be a field, and let ˝ denote ˝k . Let AD kŒv1; : : : ; vm� be a finitely generated
commutative graded algebra over k. The field k itself is an A–module via the
map A! k that sends each vi to 0. Let ƒŒu1; : : : ;um� denote an exterior algebra
on m generators. There is have a differential bigraded algebra RDƒŒu1; : : : ;um�˝A

with differential d W R!R given by

bideg ui D .�1; 2/; bideg vi D .0; 2/; dui D vi ; dvi D 0:
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Note that R is a free A–module. Let R�iDƒi Œu1; : : : ;um�˝A, where ƒi Œu1; : : : ;um�

is the submodule of ƒŒu1; : : : ;um� spanned by monomials of length i . Then, we have
the following free resolution of k, which is known as the Koszul resolution:

ŒR�W 0 �!R�m d
�! � � �

d
�!R�1 d

�!A
d
�! k �! 0:

Let P be an n–dimensional simple polytope with m facets. The face ring (or the
Stanley–Reisner ring) of P is the quotient ring

k.P /D kŒv1; : : : ; vm�=IP ;

where IP is the homogeneous ideal generated by all squarefree monomials vi1
vi2
� � � vis

such that Fi1
\ � � � \Fis

D∅. The ideal IP is called the Stanley–Reisner ideal of P .
By identifying the polynomial ring kŒv1; : : : ; vm� in the definition of k.P / with A

above, k.P / can be regarded as an A–module. By applying the functor ˝Ak.P / to
the Koszul resolution, we obtain the cochain complex of graded modules

ŒR˝A k.P /�W 0 �!R�m
˝A k.P / �! � � � �!R�1

˝A k.P / �! k.P /;

where the differential map is d˝A1. The .�i/th cohomology module of the above
cochain complex is denoted by Tor�i

A .k.P /;k/, and we have the graded A–module

TorA.k.P /;k/D
M

i

Tor�i
A .k.P /;k/:

Note that there is a canonical multiplicative structure on

TorA.k.P /;k/DH ŒR˝A k.P /�DH ŒƒŒu1; : : : ;um�˝k.P /�;

and hence, TorA.k.P /;k/ is canonically a bigraded k–algebra. The bigraded algebra
Tor�;�

A
.k.P /;k/ is called the Tor–algebra of a simple polytope P , and the bigraded

Betti numbers of P are defined by

ˇ�i;2j .P Ik/D dimk Tor�i;2j
A

.k.P /;k/ for 0� i; j �m.

Hereafter, only kDQ is considered. For simplicity, we set ˇ�i;2j .P /Dˇ�i;2j .P IQ/.

The following theorem of Hochster [9] gives a nice combinatorial interpretation of
bigraded Betti numbers.

Theorem 2.1 Let P be a simple convex polytope with facets F1; : : : ;Fm . For a
subset � � f1; : : : ;mg, let P� D

S
i2� Fi � P . Then

ˇ�i;2j .P /D
X
j� jDj

dim zH j�i�1.P� IQ/:

Here, dim zH�1.∅/D 1 by convention.
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Example 2.2 Let P be a 3–dimensional simple polytope with m facets F1; : : : ;Fm .

(1) ˇ�1;4.P /D
P

1�i<j�m dim zH 0.Fi [Fj IQ/ is the number of pairs of facets
that do not intersect.

(2) ˇ�1;6.P / D
P

1�i<j<k�m dim zH 1.Fi [Fj [Fk IQ/ is the number of triple
of facets whose union is homotopy equivalent to S1 . Such a triple of facets is
called a 3–belt.

(3) A 3–dimensional simple polytope P whose ˇ�1;6.P / is 0 is said to be irre-
ducible because it cannot be expressed as a connected sum of a finite number of
simple polytopes (see the author and Kim [3]). Assume that P is irreducible.
Since there is no 3–belt, ˇ�2;8.P / is equal to the number of quadruples of
facets whose union is homotopy equivalent to S1 . Such a quadruple of facets is
called a 4–belt.

Let P be a 3–dimensional simple polytope with m facets F1; : : : ;Fm . Now, we con-
sider ƒŒu1; : : : ;um�˝k.P /. Let d be a differential operator on ƒŒu1; : : : ;um�˝Q.P /
induced from d ˝A 1 on ŒR˝A Q.P /�. As mentioned before, Tor�;�

A
.Q.P /;Q/ D

H ŒƒŒu1; : : : ;um�˝k.P /�.

Assume that Fi and Fj do not intersect. Then, uivj is an element of bidegree .�1; 4/

in ƒŒu1; : : : ;um�˝Q.P /. Since d.uivj / D vivj D 0 2 Q.P /, it is a cycle. Fur-
thermore, uivj and viuj are homologous because d.uiuj /D viuj �uivj , and ui vj
and ui0vj 0 are linearly independent in the cohomology group for fi; j g ¤ fi 0; j 0g.
Therefore, the set of equivalence classes X�1;4 WD fŒuivj � j Fi \Fj D∅g becomes a
subset of generators of H�1;4ŒƒŒu1; : : : ;um�˝Q.P /�. Since jX�1;4j D ˇ�1;4.P /,
the set X�1;4 itself is the set of generators.

Assume that ˇ�1;6.P /D 0 and fFi ;Fj ;Fk ;F`g is a 4–belt of P . Then, uiujvkv`
is an element of bidegree .�2; 8/ in ƒŒu1; : : : ;um�˝Q.P /. It may be assumed that
Fi \Fk D ∅ and Fj \F` D ∅. Therefore, d.uiujvkv`/ D 0. One can easily see
that uiujvkv` is homologous to ui0uj 0vk0v`0 if and only if the 4–tuple .i; j ; k; `/
is obtained from .i 0; j 0; k 0; `0/ by a cyclical shift and, perhaps, a reflection. Let
X�2;8 WD fŒuiujvkv`� j fFi ;Fj ;Fk ;F`g is a 4–beltg, which is a subset of generators
of H�2;8ŒƒŒu1; : : : ;um�˝Q.P /�. Since jX�2;8j D ˇ�2;8.P /, the set X�1;4 itself
is the set of generators. Hence, we have the following proposition.

Proposition 2.3 If P is a 3–dimensional simple polytope with m facets F1; : : : ;Fm ,
with ˇ�1;6.P / D 0, then each generator of Tor�1;4

A
.Q.P /;Q/ can be indexed by

a pair of facets that do not intersect, and each generator of Tor�2;8
A

.Q.P /;Q/ can
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be indexed by 4–belts. Let � and � be generators in Tor�1;4
A

.Q.P /;Q/ indexed by
fF1;F3g and fF2;F4g, respectively. Then,

� � � D

�
�¤ 0 if fF1;F2;F3;F4g is a 4–belt in P ,
0 otherwise,

where � is a generator in Tor�2;8
A

.Q.P /;Q/ indexed by fF1;F2;F3;F4g.

3 Proof of Theorem 1.3

Note that Tor�;�
A
.Q.P/;Q/ and Tor�;�

A
.Q.Q/;Q/ are isomorphic as groups. Hence,

their multiplicative structures should be compared. We index each facet of P and Q
as shown in Figure 2.

a

b
c

d

e

f

g h

i

j
k

a

b

c

d

e

f

g

h i

jk

Figure 2: Indices of facets of P and Q

Let ADQŒa; b; : : : ; k�, where the letters are degree 2 indeterminates corresponding
to the facets of P . The bigraded Betti numbers of P and Q can be computed by the
algebra program Macaulay2 [8] as in Figure 3. Then, one can see that they have the
same bigraded Betti numbers.

Now, consider the subspace

VP WD fx 2 Tor�1;4
A

.Q.P /;Q/ j xr D 0 for all r 2 Tor�1;4
A

.Q.P /;Q/g

as a vector space over Q. It is obvious that the dimension of VP is a ring invariant of
TorA.Q.P /;Q/.

Note that ˇ�2;8.P/D ˇ�2;8.Q/D 4. In other words, there are four 4–belts in both P
and Q. In P , all 4–belts are indexed by fb; c; d; eg, fg; f; j ; hg, fa; c; i; eg and

Algebraic & Geometric Topology, Volume 13 (2013)
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Macaulay2, version 1.4
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : R = QQ[a..k,Degrees=>{2,2,2,2,2,2,2,2,2,2,2}]
o1 = R
o1 : PolynomialRing
i2 : I = ideal(a*f, a*g, a*h, a*i, a*j, a*k, b*d, b*h, b*i, b*j, b*k, c*e, c*f,

c*j, c*k, d* f, d*g, d*h, d*j, d*k, e*g, e*h, e*k, f*h, f*i, g* i, g*j, i*k)
o2 = ideal (a*f, a*g, a*h, a*i, a*j, a*k, b*d, b*h, b*i, b*j, b*k, c*e, c*f,

---------------------------------------------------------------------------
c*j, c*k, d*f, d*g, d*h, d*j, d*k, e*g, e*h, e*k, f*h, f*i, g*i, g*j, i*k)

o2 : Ideal of R
i3 : M = R^1/I
o3 = cokernel | af ag ah ai aj ak bd bh bi bj bk ce cf cj ck df dg dh dj dk eg eh

ek fh fi gi gj ik |
1

o3 : R-module, quotient of R
i4 : C = res M

1 28 109 205 246 205 109 28 1
o4 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R <-- R <-- 0

0 1 2 3 4 5 6 7 8 9

o4 : ChainComplex
i5 : betti C

0 1 2 3 4 5 6 7 8
o5 = total: 1 28 109 205 246 205 109 28 1

0: 1 . . . . . . . .
1: . . . . . . . . .
2: . . . . . . . . .
3: . 28 . . . . . . .
4: . . 105 . . . . . .
5: . . . 166 . . . . .
6: . . 4 . 123 . . . .
7: . . . 39 . 39 . . .
8: . . . . 123 . 4 . .
9: . . . . . 166 . . .

10: . . . . . . 105 . .
11: . . . . . . . 28 .
12: . . . . . . . . .
13: . . . . . . . . .
14: . . . . . . . . 1

o5 : BettiTally

Figure 3: Program code for computing ˇ�;�.P/

fc; i; e; bg. Hence, only some of the products between two pairs among fb; dg, fc; eg,
fg; j g, ff; hg, fa; ig and fb; ig (6 generators) can be nonzero. This implies that
dimQ VP D 28� 6D 22.
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In Q, all 4–belts are indexed by fa; c;g; f g, fa; d; j ; f g, fc; h; j ; dg and ff;g; h; j g.
Hence, only some of the products between two pairs among fa;gg, fc; f g, fa; j g,
fd; f g, fc; j g, fh; dg, ff; hg and fg; j g (8 generators) can be nonzero. This implies
that dimQ VQ D 28� 8 D 20. Therefore, TorA.Q.P/;Q/ and TorA.Q.Q/;Q/ are
not isomorphic as bigraded algebras, which proves the first part of the theorem.

Furthermore, since H 3.ZP IQ/ D Tor�1;4
A

.Q.P /;Q/ one can show H�.ZP IQ/ 6Š
H�.ZQIQ/ as graded rings by using the above argument, which proves the second
part of the theorem.

4 Proof of Theorem 1.5

First, it is obvious that P and Q are not combinatorially rigid, since they have the
same bigraded Betti numbers but are not combinatorially equivalent.

In the remaining part of this section, we prove that P and Q are cohomologically rigid.

Suppose that there exists a polytope P 0 and quasitoric manifolds M and N over P
and P 0 , respectively, such that H�.M IZ/ and H�.N IZ/ are isomorphic as graded
rings. Then, by [5, Lemma 3.7], it follows that P 0 has 11 facets, and

Tor�;�
A
.Q.P/;Q/D Tor�;�

A
.Q.P 0/;Q/:

In particular, ˇ�;�.P/D ˇ�;�.P 0/.

Now, let us investigate all other polytopes with 11 facets. A graph G is said to be
P3–realizable if there is a 3–dimensional polytope whose corresponding 1–complex
is isomorphic to G . Let P .G/ denote such a polytope. A graph G is said to be k –
(vertex-)connected if there is no set of k � 1 vertices that, when removed, disconnects
the graph. It is known that a graph G is planar and 3–connected if and only if G is
P3–realizable (Steinitz [10]). A P3–realizable graph is called a triangulation if all
the faces of the graph are triangles when the graph is embedded into a 2–dimensional
sphere S2 . Hence if G is a 3–connected triangulation, then P .G/ is a simplicial
polytope that is dual to a simple polytope.

Note that both P and Q are 3–dimensional simple polytopes having 11 facets. Using
the graph-generating program plantri [1], developed by Brinkmann and McKay, we
can list all 3–connected triangulations with a certain number of vertices. Such a list
gives us all 3–dimensional simple polytopes with a certain number of facets. Using the
program Macaulay2 again, we can list all 3–dimensional simple polytopes P with 11

facets satisfying ˇ�1;6.P / D 0 and compute their bigraded Betti numbers (see the
author [6]). See Table 2; each polytope has 11 facets a; b; : : : ; k . Each polytope is
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Polytope Betti number
1 bcdef,afghc,abhid,acijke,adkf,aekgb,bfkjh,bgjic,chjd,dihgk,djgfe (28, 105, 164, 112, 28, 2, 0)
2 bcdef,afghijc,abjd,acjke,adkgf,aegb,bfekh,bgki,bhkj,bikdc,djihge (28, 105, 167, 131, 47, 5, 0)
3 bcde,aefghic,abid,acijke,adkfb,bekjg,bfjh,bgji,bhjdc,dihgfk,djfe (28, 105, 169, 138, 54, 7, 0)
4 bcde,aefghijc,abjd,acjke,adkfb,bekg,bfkh,bgki,bhkj,bikdc,djihgfe (28, 105, 175, 159, 75, 13, 0)
5 bcdef,afghijc,abjd,acje,adjkf,aekgb,bfkh,bgki,bhkj,bikedc,ejihgf (28, 105, 172, 144, 60, 10, 0)
6 bcde,aefc,abfgd,acghe,adhijfb,bejgc,cfjkhd,dgkie,ehkj,eikgf,gjih (28, 105, 171, 141, 57, 9, 0)
7 bcde,aefgc,abghijkd,acke,adkjfb,bejihg,bfhc,cgfi,chfj,cifek,cjed (28, 105, 174, 156, 72, 12, 0)
8 bcde,aefghc,abhijd,acje,adjfb,bejkg,bfkh,bgkic,chkj,cikfed,fjihg (28, 105, 168, 129, 45, 6, 0)
9 bcde,aefghc,abhijd,acje,adjfb,bejikg,bfkh,bgkic,chkfj,cifed,fihg (28, 105, 170, 136, 52, 8, 0)
10 bcdef,afghic,abid,acijke,adkf,aekgb,bfkjh,bgji,bhjdc,dihgk,djgfe (28, 105, 165, 119, 35, 3, 0)
11 bcde,aefghic,abid,acije,adjkfb,bekg,bfkh,bgkji,bhjdc,dihke,ejhgf (28, 105, 170, 136, 52, 8, 0)
12 bcde,aefgc,abghid,acie,adijfb,bejkg,bfkhc,cgkji,chjed,eihkf,fjhg (28, 105, 166, 123, 39, 4, 0)
13 bcde,aefgc,abghid,acie,adijfb,bejkg,bfkhc,cgki,chkjed,eikf,fjihg (28, 105, 167, 125, 41, 5, 0)
14 bcde,aefghc,abhd,achije,adjfb,bejikg,bfkh,bgkidc,dhkfj,dife,fihg (28, 105, 169, 134, 50, 7, 0)
15 bcde,aefghc,abhijd,acjgfe,adfb,bedg,bfdjkh,bgkic,chkj,cikgd,gjih (28, 105, 173, 145, 61, 11, 0)
16 bcde,aefc,abfghid,acie,adijkfb,bekgc,cfkjh,cgji,chjed,eihgk,ejgf (28, 105, 170, 143, 59, 8, 0)
17 bcde,aefc,abfghid,acie,adihjfb,bejkgc,cfkh,cgkjei,ched,ehkf,fjhg (28, 105, 177, 159, 75, 15, 0)
18 bcde,aefghic,abid,acijgke,adkfb,bekg,bfkdjh,bgji,bhjdc,dihg,dgfe (28, 105, 173, 149, 65, 11, 0)
19 bcde,aefghijc,abjd,acjkhgfe,adfb,bedg,bfdh,bgdki,bhkj,bikdc,djih (28, 105, 179, 169, 85, 17, 0)
20 bcde,aefghijkc,abkd,ackjihgfe,adfb,bedg,bfdh,bgdi,bhdj,bidk,bjdc (28, 105, 189, 189, 105, 27, 0)
21 bcde,aefgc,abghd,ache,adhijfb,bejg,bfjkhc,cgkied,ehkj,eikgf,gjih (28, 105, 171, 141, 57, 9, 0)
22 bcde,aefc,abfghd,ache,adhijfb,bejkgc,cfkh,cgkied,ehkj,eikf,fjihg (28, 105, 173, 145, 61, 11, 0)
23 bcdefg,aghc,abhijd,acje,adjf,aejkhg,afhb,bgfkic,chkj,cikfed,fjih (28, 105, 171, 137, 53, 9, 0)
24 bcdef,afgc,abghid,acije,adjf,aejkgb,bfkhc,cgkji,chjd,dihkfe,fjhg (28, 105, 166, 123, 39, 4, 0)
25 bcdef,afgc,abghijd,acje,adjkhgf,aegb,bfehc,cgeki,chkj,ciked,ejih (28, 105, 173, 149, 65, 11, 0)

Table 2: Irreducible polytopes with 11 facets

indexed by adjacency of the facets. The nth component is the list of facets that intersect
the (alphabetical) nth facet. The Betti numbers are listed in the form�

ˇ�1;4.P /; : : : ; ˇ�.j�1/;2j .P /; : : : ; ˇ�7;16.P /
�
:

Note that the integer tuple of the form above completely determines all the bigraded
Betti numbers of a 3–dimensional polytope (see [5, Section 7] for details).

In Table 2, the 12th polytope is P , and the 24th polytope is Q. One can easily check that
there is no other polytope whose bigraded Betti numbers are equal to those of P and Q.
Thus, P 0 cannot be combinatorially equivalent to any polytope with 11 facets other
than P and Q. Moreover, by Theorem 1.3, P 0 cannot be combinatorially equivalent
to Q. Therefore, P 0 is P , which proves that P is cohomologically rigid.

Similar arguments can be presented for Q to prove its cohomological rigidity.
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