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The Farrell–Jones conjecture for graph products

GIOVANNI GANDINI

HENRIK RÜPING

We show that the class of groups satisfying the K– and L–theoretic Farrell–Jones
conjecture is closed under taking graph products of groups.

18F25; 19A31, 19B28, 19G24

A group G satisfies the K–theoretic Farrell–Jones conjecture with coefficients in
additive categories if for any additive G–category A the assembly map (induced by
the projection EVCycG! pt)

asmbG;A
n W H G

n .EVCycGIKA/!H G
n .ptIKA/

is an isomorphism. There is an analogous L–theoretic version of the Farrell–Jones
conjecture where the K–theory of A is replaced by the L–theory of A with decora-
tion h�1i. We say that a group G satisfies the FJC if for any finite group F the
group G oF satisfies the K– and L–theoretic Farrell–Jones conjecture with coefficients
in any additive category. The Farrell–Jones conjecture implies many famous conjectures,
for example the Bass, the Borel, the Kaplansky and the Novikov conjectures; see Lück
and Reich [9]. The Farrell–Jones conjecture for K–theory up to dimension one implies
that the reduced projective class group zK0.RG/ vanishes whenever G is torsion-free
and R is a principal ideal domain. When R is the ring of integers the vanishing of
zK0.ZG/ implies Serre’s conjecture, which claims that every group of type FP is of

type FL.

Given a simplicial graph � and a family of groups G D fGv j v 2 V �g, the graph
product �G is the quotient of free product �v2V � Gv by the relations Œgu;gv �D 1 for
all gu 2Gu , gv 2Gv whenever fu; vg 2E� . Basic examples are given by right-angled
Artin and right-angled Coxeter groups.

Let C be the class of groups satisfying the FJC. The purpose of this note is to prove
the following closure property for the class C .

Theorem 1 The class C is closed under taking graph products.

Since right-angled Artin and right-angled Coxeter groups are CAT.0/–groups they
satisfy FJC by Bartels and Lück [2, Theorem B].
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1 Preliminaries

Let us start by recalling some recent results of Bartels, Lück and Reich [3], Bartels,
Farrell and Lück [1], Bartels and Lück [2] and Bartels, Lück, Reich and the second
author [4].

Proposition 1.1 The class of groups C has the following properties:

(1) Word-hyperbolic groups belong to C .

(2) CAT.0/–groups belong to C .

(3) Virtually polycyclic groups belong to C .

(4) The class C is closed under taking finite index overgroups.

(5) The class C is closed under taking subgroups.

(6) The class C is closed under taking directed colimits.

(7) The class C is closed under taking direct sums.

(8) Given any group homomorphism f W G ! H and assume that H 2 C and
f �1.Z/ 2 C for any torsion-free cyclic subgroup Z of H ; then, G belongs
to C .

(9) The class C is closed under taking free products.

Proof The K–theoretic version without wreath products for hyperbolic groups was
proved in [3, Main Theorem]. The L–theoretic version without wreath products for
hyperbolic groups was proved in [2, Theorem B]. This generalizes to wreath products
of hyperbolic groups with finite groups as explained in [4, Remark 6.4].

First note that a wreath product of a CAT.0/ group and a finite group also acts geo-
metrically on a CAT.0/ space. Thus it suffices to consider the setting without wreath
product which was proved in [2, Theorem B].

A wreath product of a virtually polycyclic group with a finite group is again virtually
polycyclic. In [1, Theorem 0.1] it was proved that virtually polycyclic groups satisfy
Farrell–Jones.

By [1, Remark 0.5] the Farrell–Jones conjecture with finite wreath products passes to
finite index overgroups.
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The remaining properties can be found in [1, Theorems 1.7–1.10] without wreath
products. Note that if H is a subgroup of G then H oF �G oF , and hence it satisfies
FJC.

We have for a direct system of groups .Gi/i2I and a finite group F that .colimi2I Gi/oF

is isomorphic to colimi2I .Gi oF / and hence the FJC is also compatible with colimits.

Note that the wreath product of a direct sum by a finite group F embeds in the direct
sum of wreath products of the factors by F , hence we obtain that the FJC passes to
finite direct sums. Hence by the previous point we have that C is closed under taking
arbitrary direct sums.

Let f W G!H be a group homomorphism such that H and f �1.Z/ satisfy the FJC
for any torsion-free cyclic subgroup Z of H . Let V be a virtually cyclic subgroup
of H . Then it has a finite index torsion-free subgroup Z . Thus f �1.Z/ has finite
index in f �1.V /. So f �1.V / also satisfies FJC by (4).

The same argument given by Kühl in [8, Lemma 3.16] for the fibered version of the
Farrell–Jones conjecture applies to the FJC.

Consider the surjection � W G1 �G2!G1 �G2 and a torsion-free cyclic subgroup C

of G1�G2 . Note that by (7) G1�G2 satisfies FJC and the subgroup ��1.C / acts on
the Bass–Serre tree of G1 �G2 with trivial edge stabilizers. Since for all g 2G1 �G2 ,
G

g
i \�

�1.C / is either trivial or infinite cyclic, we have that ��1.C / is a free group
and hence it satisfy FJC by (1).

In order to prove Theorem 1 we need to show that the fundamental groups of certain
graphs of groups satisfy FJC.

2 Some special graphs of groups

Basic facts about groups acting on trees and graphs of groups can be found in Serre [10].
Let us briefly recall how it is possible to recover a presentation for the fundamental
group of a graph of groups GD .X;G?; i�W G� ,!Gt.�//. Pick a maximal tree T �X

and pick an orientation of each edge that is not in T . Let L denote the set of those edges.
Let F.L/ be the free group generated by L and let te be the generator corresponding
to an edge e 2 L. Then �1.G/ is defined to be �x2V .X / Gx � F.L/ modulo the
relations

ie.g/D ixe.g/ for e 2 T; g 2Ge; teie.g/t
�1
e D ixe.g/ for e 62 T; g 2Ge:
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We have a canonical map Gv!�1.G/ for each vertex v . These turn out to be injective.
Furthermore we can also get canonical maps Ge ,! �1.G/. We view Ge as a subgroup
of Gt.e/ � �1.G/ if either e 2 T or e 62 T and e has the chosen orientation.

Graphs of groups arise as quotients of groups acting on trees. The edge and vertex
groups are given by the stabilizers. Every graph of groups arises uniquely in this
way [10, Section I.5.3]. The acting group is isomorphic to the fundamental group of
the induced graph of groups. This is the statement of the fundamental theorem for
groups acting on trees [10, Theorem 13, Section I.5.4]. Thus any subgroup of �1.G/
inherits a decomposition as a fundamental group of a graph of groups.

Definition 2.1 Let G be a countable graph of groups where every vertex group is
either trivial or infinite cyclic. Since the edge groups inject into the vertex groups they
are also either trivial or infinite cyclic. For every infinite stabilizer Gx of a vertex x

pick a generator zx . Similarly, for every edge e with non trivial stabilizer Ge let ze

be the generator of Ge . For such an edge e let ne 2 Z be defined by ie.ze/D z
ne

t.e/
.

A closed edge loop e1; : : : ; em where each edge group is infinite cyclic is said to be
balanced if

mY
iD1

nei
D

mY
iD1

nxei
:

Note that picking different generators does not change balancedness since every minus
sign appears twice. The graph of groups is said to be balanced if every closed edge
loop with infinite cyclic edge stabilizers is balanced.

Example 2.2 The Baumslag–Solitar group BS.m; n/D ha; b j b�1amb D ani is the
fundamental group of a balanced graph of groups if and only if mD n.

Lemma 2.3 Let G be a finite balanced graph of groups with infinite cyclic vertex and
edge groups. Then there is a central infinite cyclic subgroup N � �1.G/ such that
�1.G/=N is isomorphic to the fundamental group of a finite graph of finite groups.

Proof For a vertex v pick a generator zv of Gv � �1.G/ and let n WD
Q

e2E.G/ ne .
Let N WD hzn

v i � �1.G/ for some vertex v . Let us first show that zn
v is contained in

every vertex group. Let v0 be any vertex and let e1; : : : ; em be a path in T from v

to v0 . Now let us use the relations corresponding to those edges. Note that from [10] we
have zn

v D zn=nxe1e1
D z.n�ne1

/=nxe1
t.e1/

. Now let xni WD .n �ne1
�ne2
� � � nei

/=.nxe1
�nxe2
� � � nxei

/,
by the definition of n we have that xni is a nonzero integer and

zn
v D z

xn1

t.e1/
D z
xn2

t.e2/
D � � � D z

xnm

v0 :

Thus zn
v is a power of zv0 and so both elements commute.
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Next we have to show that zn
v commutes with all elements of the form te for some

e 2 L. Let e1; : : : ; em be a path in T from v to t.e/ and let e0
1
; : : : ; e0m0 be a path

in T from v to t.xe/. Let us abbreviate

xni WD
n � ne1

ne2
� � � nei

nxe1
nxe2
� � � nxei

; xn0i WD
n � ne0

1
ne0

2
� � � ne0

i

nxe0
1
nxe0

2
� � � nxe0

i

;

as before. The path e0
1
; : : : ; e0m0 ; e; xem; : : : ; xe1 is closed and the balancedness condition

gives � m0Y
iD1

ne0
i

�
� ne �

� mY
iD1

nxei

�
D

� m0Y
iD1

nxe0
i

�
� nxe �

� mY
iD1

nei

�
:

With the abbreviations from above this gives

(2-1) nexn
0
m0 D nxexnm:

Analogously to the previous case we get

(2-2) z
xnm

t.e/
D zn

v D z
xn0

m0

t.xe/
:

Let us conjugate the first part by te and use the relation

(2-3) te.z
ne

t.e/
/t�1

e D z
nxe

t.xe/
;

which corresponds to e to get

tezn
v t�1

e D tez
xnm

t.e/
t�1
e D .tez

ne

t.e/
t�1
e /

xnm
ne D .z

nxe

t.xe/
/

xnm
ne D z

xn0

m0

t.xe/
D zn

v :

In the first equality we used the left hand side of (2-2), in the third equality (2-3), the
fourth equality uses (2-1) and the last equality uses the right-hand side of (2-2).

Thus zn
v commutes also with all generators of the form te and hence N is a central

subgroup of �1.G/. Furthermore the argument from above showed that N is contained
in any edge group.

Now let us pass to the actions on trees. Let T 0 be the universal cover of G . Let us
show that N acts trivially. Let e 2 T 0 be some edge. Its stabilizer is some conjugate
of some edge group Ge � �1.G/, say gGeg�1 for some g 2 �1.G/. Since N is a
central subgroup of �1.G/ that is contained in each edge group Ge � �1.G/ we have
N D gNg�1 � gGeg�1 . So the action factorizes as �1.G/! �1.G/=N ! Aut.T 0/.
Especially note that the underlying graphs of �1.G/nT 0 and .�1.G/=N /nT 0 are the
same. Thus �1.G/=N can also be expressed as a fundamental group of a finite graph
of groups. The vertex and edge groups are Gx=N . These are quotients of infinite
cyclic groups by a nontrivial subgroup. Thus they are finite.
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Lemma 2.4 Let G be a balanced graph of groups. Then �1.G/ satisfies the FJC.

Proof For the sake of simplicity we would like to define the fundamental group
of a disconnected graph of groups as an assignment that assigns to any connected
component the fundamental group of its graph of groups. First note that we can exhaust
any graph by its finite subgraphs. Then its fundamental group will be the colimit of
the fundamental group of the finite subgraphs of groups. So by Proposition 1.1(6) it
suffices to consider a finite graph of groups with these properties.

� �

�

�

�

�

�

�

�

�

Figure 1: The dotted lines correspond to edges with trivial stabilizers and the
lines correspond to edges with infinite cyclic stabilizers.

Next consider the subgraph consisting of all edges with nontrivial stabilizers and all
vertices as illustrated in Figure 1. A connected component of a graph is a maximal,
connected subgraph. Let us show that the fundamental group of each of its connected
components satisfies the FJC. Note that an edge with nontrivial stabilizer can only
connect vertices with nontrivial stabilizer. So the connected component of vertices with
trivial stabilizers consists only of points and hence their fundamental group is trivial.

Let us now consider a connected component C of a vertex v with nontrivial stabilizer.
By Lemma 2.3 we find an infinite cyclic subgroup N � �1.C/ such that �1.C/=N
is fundamental group of a finite graph of finite groups and hence virtually-free. So
�1.C/=N satisfies FJC by Proposition 1.1(1). Let us apply Proposition 1.1(8) to the
map f W �1.C/! �1.C/=N . Since the kernel of f is infinite cyclic any preimage
f �1.Z/ of an infinite cyclic subgroup Z of �1.C/=N will satisfy the FJC by being
virtually abelian.

Next we have to add edges to get the full graph. If we add an edge we either merge two
connected components or add an edge to a single connect component. In the first case
the fundamental group of the new component is the free product of the fundamental
groups of the previous components. In the second case the new fundamental group is
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a free product of Z with the old fundamental group. In both cases the fundamental
group of the new component satisfies the FJC by Proposition 1.1(9). This completes
the proof.

The following criterion implies balancedness.

Lemma 2.5 Let G be a graph of groups where every vertex group is either trivial or
infinite cyclic. Assume that for each edge e with infinite cyclic stabilizer there exists a
homomorphism feW �1.G/! Z such that fejGe

is nontrivial. Then G is balanced.

Proof Let us again use the notation of Definition 2.1. Recall that an edge e0 gives a
relation in the fundamental group. If the edge is contained in the chosen maximal tree,
the relation will be z

nxe0

t.xe0/
D ze0 D z

ne0

t.e0/
. Otherwise it will be t�1

e0 z
nxe0

t.xe0/
te0 D ze0 D z

ne0

t.e0/
.

Since the target of fe is abelian we get in both cases fe.zt.xe0//
nxe0 D fe.zt.e0//

ne0 .

Let e1; : : : ; em be a loop of edges with infinite stabilizers, and let

n WD

mY
iD1

nei
; xn WD

mY
iD1

nxei
:

So we get

fem
.zt.em//

xn
D fem

.zt.xe1//
xn
D fem

.zt.e1//
xnne1

=xne1 D fem
.zt.xe2//

xnne1
=xne1

D fem
.zt.e2//

.xnne1
ne2

/=.xne1
xne2

/
D � � � D fem

.zt.em//
n:

Since 0 ¤ fem
.zem

/ D fem
.zt.em//

nem , then n D xn. So the circle e1; : : : ; em is
balanced and since the circle was chosen arbitrarily, the graph of groups is balanced.

Lemma 2.6 Given two groups G1;G2 with corresponding automorphisms '1; '2 .
Suppose that the FJC holds for G1 Ì'1

Z and for G2 Ì'2
Z. Then it also holds for

.G1 �G2/Ì'1�'2
Z.

Proof Projection to the first factor induces a homomorphism

f W .G1 �G2/Ì'1�'2
Z �!G1 Ì'1

Z :

We want to use Proposition 1.1(8), the target satisfies the Farrell–Jones conjecture
with wreath products by assumption. The kernel is isomorphic to G2 and hence it
also satisfies the FJC by Proposition 1.1(5). Let C be an infinite cyclic subgroup of
G1 Ì'1

Z and let .g;m/ be a generator. Then f �1.C / is isomorphic to G2Ì'm
2

Z.
For m D 0 the preimage f �1.C / is just a direct product of two groups satisfying
FJC. Otherwise f �1.C / is isomorphic to the subgroup G2 Ì'2

m Z and again by
Proposition 1.1(5) it also satisfies the FJC.
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Lemma 2.7 Given two groups G1;G2 with automorphisms '1; '2 . Suppose that the
FJC holds for G1Ì'1

Z and for G2Ì'2
Z. Then it also holds for .G1 �G2/Ì'1�'2

Z.

Proof We want to apply Proposition 1.1(8) to the canonical homomorphism

f W .G1 �G2/Ì'1�'2
Z �! .G1 �G2/Ì'1�'2

Z :

The target satisfies the FJC by Lemma 2.6. The group G1 �G2 acts on a tree T

with trivial edge stabilizers and vertex stabilizers conjugate to G1 or G2 . We can
identify the set of edges equivariantly with G1 �G2 where the action is given by left
multiplication. The set of vertices can be identified with G1 �G2=G1qG1 �G2=G2

and the two endpoints of an edge are its cosets. We can extend the action to the
group .G1 �G2/ Ì'1�'2

Z on the tree T if we let the generator t of Z act in the
following way:

t �g WD '1 �'2.g/ for an edge g;

t �gGi WD '1 �'2.gGi/D '1 �'2.g/Gi for a vertex gGi :

The quotient of the tree T by the group .G1�G2/Ì'1�'2
Z will be a segment since the

quotient of T by G1 �G2 is a segment and t does not swap the vertices. It is easy to
see that this gives the following graph of groups decomposition for .G1�G2/Ì'1�'2

Z:

�
Z

�

G1 ÌZ G2 ÌZ

Now let C be an infinite cyclic subgroup of .G1 �G2/Ì'1�'2
Z. The kernel of f

acts freely on T . So no nontrivial element from the kernel can stabilize some edge
or some vertex. Restrict the group action to f �1.C /, then f maps injectively every
stabilizer into C . So the group f �1.C / can be written as the fundamental group of a
graph of groups G where every vertex group and every edge group is either infinite
cyclic or trivial.

Any infinite edge group is subconjugate to .1;Z/ � .G1 �G2/ Ì'1�'2
Z. So if we

restrict the projection � W Z � .G1 �G2/Ì'1�'2
Z! Z to this edge group we get a

nontrivial homomorphism. So G is balanced by Lemma 2.5. Hence f �1.Z/D �1.G/
satisfies the Farrell–Jones conjecture by Lemma 2.4. This completes the proof.

Let S be a Z–set and let G be a group. We define GS WD .�s2S G/ÌZ where Z
acts on �s2S G by m �gs WD gms . Here gs denotes the group element g lying in the
sth copy of G .

Lemma 2.8 For any Z–set S the group GS satisfies the FJC whenever G does.
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Proof Any Z–set is the disjoint union of its orbits. Furthermore, let xS D fS 0 � S j

S 0 is a finite union of orbitsg. Then we have

GS D

�
�

s2S

G

�
ÌZD colimS 02xS

�
�

s2S 0

G

�
ÌZ :

So by Proposition 1.1(6) it suffices to consider the case where S has only finitely many
orbits. By Lemma 2.7 it suffices to consider the case of a single orbit only.

If S is of the form Z =m then the finite index subgroup .�s2Z =m G/ Ì m Z is
isomorphic to a direct product .�s2Z =m G/�Z and so it satisfies the Farrell–Jones
conjecture by Proposition 1.1(7) and Proposition 1.1(4). If S is of the form Z we get
.�s2Z G/ÌZŠG �Z and it also satisfies the FJC by Proposition 1.1(7).

Lemma 2.9 Let �G be a graph product and v 2 V � . Consider the graph � 0 obtained
by removing v from � and let � W �G! � 0G be the canonical surjection. Then, for
every cyclic subgroup C its preimage ��1.C / is isomorphic to .�� 0G= � 00G Gv/ÌC

where � 00 denotes the full subgraph of � 0 consisting of all neighbors of v 2 � . The
group C acts on �� 0G= � 00G Gv by permuting the free factors.

Proof By the argument given by Holt and Rees in the proof of [7, Theorem 4.1]
the kernel of � is isomorphic to �� 0G= � 00G Gv , where the isomorphism is given by
gh� 00G 7! gh . The preimage ��1.C / is isomorphic to .�� 0G= � 00G Gv/ÌC , where
C acts by conjugation on �� 0G= � 00G Gv . Moreover, using the explicit isomorphism
from above we get that C permutes the free factors.

Proof of Theorem 1 Let v 2 V � and let � 0 and � 00 be defined as above. We apply
Proposition 1.1(8) to the canonical surjection � W �G ! � 0G. The result follows
immediately from an application of Lemmas 2.9 and 2.8.

Remark Answering a long-standing open question ,Bestvina and Brady showed the
existence of nonfinitely presented groups of type FP [5]. Given a nontrivial right-angled
Artin group G associated to a flag complex L there is a canonical surjection �W G�Z
given by sending each generator to 1. Bestvina and Brady proved that the finiteness
properties of the kernel of � are dictated by the connectivity property of L and that
the kernel of � is of type FP if and only if is of type FL. Now consider a graph
product �G such that every vertex group Gv surjects onto Z. These maps induce a
surjection �V W �G�Z and it would be interesting to study the finiteness property of
the kernel of �V . Note that whenever the copies of Gv satisfy the FJC it follows from
Theorem 1 and Proposition 1.1(5) that so does ker�V . Hence ker�V cannot solve in
negative Serre’s conjecture. However, there are many indicable groups for which the
FJC is unknown, some examples are given by nonsolvable Baumslag–Solitar groups
(see Farrell and Wu [6] for the solvable ones).
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