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Connectivity of motivic H–spaces

UTSAV CHOUDHURY

In this note we prove that the A1–connected component sheaf aNis.�
A1

0
.X // of an

H–group X is A1–invariant.

14F42, 55P45; 18E35

1 Introduction

Let Sm =k denote the category of smooth, separated k –schemes and let PSh.Sm =k/

denote the category of presheaves of sets on Sm =k . A functor X W 4op!PSh.Sm =k/

is called a simplicial presheaf or a space. Here 4 is the category of simplices. Let
4op PSh.Sm =k/ denote the category of spaces.

4op PSh.Sm =k/ has a local model category structure with respect to the Nisnevich
topology called the injective Nisnevich model structure. A morphism f W X ! Y
is a weak equivalence if the induced morphism on the Nisnevich stalks are weak
equivalences of simplicial sets. Cofibrations are sectionwise injective morphisms and
fibrations are defined using the right lifting property (see Jardine [6], and Morel and
Voevodsky [11]). The resulting homotopy category is denoted by Hs.Sm =k/.

The Bousfield localisation of the local model structure on 4op PSh.Sm =k/ with respect
to the class of maps X �A1 ! X is called the A1–model structure (the A1–model
structure for simplicial sheaves on Sm =k described in [11] was extended to simplicial
presheaves in Jardine [7]). The resulting homotopy category is denoted by H.k/.

For any space X , define �A1

0
.X / to be the presheaf

U 2 Sm =k 7! HomH.k/.U;X /:

The presheaf �A1

0
.X / is homotopy invariant, ie, for any U 2 Sm =k the morphism

�A1

0 .X /.U /! �A1

0 .X /.A1
U /;

induced by the projection A1
U
! U , is bijective.

Let aNisW PSh.Sm =k/! ShNis.Sm =k/ denote the Nisnevich sheafification functor.
The following conjecture of Morel states that the above property remains true after
Nisnevich sheafification.
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38 Utsav Choudhury

Conjecture 1.1 For any U 2 Sm =k , the morphism

aNis.�
A1

0 .X //.U / �! aNis.�
A1

0 .X //.A1
U /;

induced by the projection A1
U
! U , is bijective.

In this paper, we prove the conjecture (Theorem 4.18) for H–loops with inverse
(Definition 4.1) and homogeneous spaces on these (see Definitions 4.5, 4.6). For a
general space, Corollary 3.2 gives a partial answer to the conjecture.

The conjecture is trivially true for A1–rigid smooth k –schemes and for A1–connected
smooth k –schemes (Asok and Morel [1, Definition 2.1.4, Definition 2.1.8, Lemma
2.1.9] and Morel and Voevodsky [11, Section 3, Example 2.4]). So for smooth proper
curves and smooth proper k –rational surfaces the conjecture is true (see Asok and
Morel [1, Section 2.3], and Morel [10, Remark 13] for more examples). By the work
of Morel [9, Theorem A.2] and Wendt [12, Section 5.2], the conjecture is true for split
linear algebraic groups.

Voevodsky proved (see Mazza, Voevodsky and Weibel [8, Theorem 22.3]) that for any
homotopy invariant presheaf with transfers S , the sheafification aNis.S/ is a homotopy
invariant sheaf with transfers. The proof is quite hard. It becomes harder if we consider
general homotopy invariant presheaves (without transfers). For any homotopy invariant
presheaf of sets S on Sm =k , one can ask to which extent the analogue of Voevodsky’s
result is true for S . Our results in this paper show that if S is a presheaf of groups, the
canonical morphism S! aNis.�

A1

0
.S// is universal among all the morphisms from S

to homotopy invariant sheaves of sets.
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2 Homotopy limits and colimits

In this section we prove some basic results on homotopy limits and colimits.

Let I be a small category. There is a functor .I=� /W I ! Cat such that for any
i 2 I , .I=� /.i/D I= i . Here Cat is the category of small categories and I= i is the
over category. There is a functor N W Cat!4op Sets, such that for any J 2 Cat, the
simplicial set N.J / is the nerve of the category J . Define N.I=� / WDN ı .I=� /.
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Connectivity of motivic H–spaces 39

A set S will be considered as a simplicial set in the obvious way: in every simplicial
degree it is given by S and faces and degeneracies are identities. These simplicial sets
are called discrete simplicial sets. We get a functor �W Sets!4op Sets. For S 2 Sets
and S 0� 24

op Sets, the set of maps Hom.S 0�; �.S// is in bijection with the set of maps
f W S 0

0
! S such that f ı d0 D f ı d1W S

0
1
! S . Also note that

�0.S
0
�/D colim.S 01

d0

d1

� S 00/:

Therefore Hom.S 0�; �.S//D Hom.�0.S
0
�/;S/ and �0 is left adjoint to �.

For any X W I!4op Sets, the canonical maps I= i!� induce a natural map limI X!

holimI X (Bousfield and Kan [2, Chapter XI 3.5]).

Lemma 2.1 Let X W I !4op Sets be a diagram of discrete simplicial sets. Then the
canonical map limI X ! holimI X is a bijection of discrete simplicial sets.

Proof By adjointness [2, Chapter XI 3.3]

Hom.4n
�N.I=� /;X /D Hom.4n; holimI X /:

The functor �0W .4
op Sets/I ! .Sets/I is left adjoint to the functor �W .Sets/I !

.4op Sets/I , where � maps a diagram of sets to the same diagram of discrete simplicial
sets. Hence Hom.4n�N.I=� /;X /DHom.�I ;X /, where �I is the diagram of sets
given by the one element set for each i 2 I . But Hom.�I ;X /D Hom.�; limI X /, by
adjointness. Therefore, we get our result.

In the language of derived functors, holimI is defined as the right derived functor of the
functor limI . Any diagram of discrete simplicial sets is already fibrant in the diagram
category (projective model structure), therefore we do not need to derive anything and
hence the map limI X ! holimI X is the identity map in this case.

Let X W I !4op Sets be a diagram such that each X.i/ is fibrant for all i 2 I . The
canonical morphism X.i/! �0.X.i// induces a morphism

holimI .X / �! holimI �0.X /:

By inverting the bijection of Lemma 2.1 and applying �0 , we get the following
morphism:

(2-1) �0.holimI .X // �! lim
I
�0.X /:
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40 Utsav Choudhury

Lemma 2.2 Suppose that I is the pullback category 1! 0 2 and let DW I !

4op Sets be a diagram
X

p
�! Y

q
 �Z

such that X;Y;Z are fibrant. Then the map (2-1) is surjective.

Proof By [2, Chapter XI 4.1.(iv), 5.6], holimI .X /ŠX 0 �Y Z , where

X �!X 0
p0

 � Y

is a factorisation of p into a trivial cofibration followed by a fibration p0 . Since
�0.X /Š �0.X

0/, it is enough to show that

�0.X
0
�Y Z/ �! �0.X

0/��0.Y / �0.Z/

is surjective. So we can assume that p is a fibration. Let s 2 �0.X /��0.Y / �0.Z/.
s can be represented (not uniquely) by .x;y; z/, where .x; z/ 2X0 �Z0 and y 2 Y1

such that d0.y/ D p.x/ and d1.y/ D q.z/. Since p is a fibration, we can lift the
path y to a path y0 2 X1 such that d0.y

0/ D x and x0 WD d1.y
0/ maps to q.z/.

holimI DŠX �Y Z . Therefore .x0; z/ 2 holimI D which maps to s . This proves the
surjectivity.

Under the condition of Lemma 2.2, the map (2-1) may not be injective. Indeed, if Y

is connected, X is the universal cover of Y and Z D �, then (2-1) is injective if and
only if Y is simply connected.

Lemma 2.3 Let B
f

g
� A be a diagram of spaces. Then:

aNis.�0.hocolim.B
f

g
� A///Š colim.aNis.�0.B//

f

g
� aNis.�0.A///:

Proof Let S 2 PSh.Sm =k/ and let �.S/ be the simplicial presheaf such that in every
simplicial degree k , �.S/k D S . The face and degeneracy morphisms are identity
morphisms. This gives a functor �W PSh.Sm =k/!4op PSh.Sm =k/, which is right
adjoint to �0 . Hence aNis.�0/ also has a right adjoint �W Sh.Sm =k/!4op Sh.Sm =k/.
This implies aNis.�0/ commutes with colimits. In our case,

hocolim.B
f

g
� A/D colim.B

f 0

g0
� A0/:

Here, we get A0 by taking the factorisation

BqB
h
�!A0

h0

�!A;

such that the composition is f q g , h is a cofibration and h0 is a trivial fibration.
Let ei W B ! B q B be the inclusion in the i th component for i D 1 or 2. Then
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f 0 WD h ı e1 and g0 WD h ı e2 . As aNis�0 commutes with colimits and aNis�0.A
0/Š

aNis�0.A/, we get our result.

If
B //

��

C

��
A // D

is a homotopy co-Cartesian square of spaces then, after applying aNis.�0/, one gets a
co-Cartesian square of sheaves. Indeed, let

B
f
�!A0

g
�!A

be a factorisation of B!A, such that f is a cofibration and g is a trivial fibration.
The homotopy colimit of the diagram A B! C is weakly equivalent to the colimit
of A0 B! C . Similarly we get our result as aNis.�0/ commutes with colimits and
aNis.�0.A//Š aNis.�0.A

0//.

3 Generalities on the Nisnevich local model structure

In this section we briefly recall the Nisnevich Brown–Gersten property and give some
consequences on the �0 functor.

Recall [11, Definition 3.1.3] that a Cartesian square in Sm =k ,

W //

��

V

p

��
U

i // X;

is called an elementary distinguished square (in the Nisnevich topology), if p is an
étale morphism and i is an open embedding such that p�1.X �U /! .X �U / is an
isomorphism (endowing these closed subsets with the reduced subscheme structure).
Moreover, if p is an open embedding then the above Cartesian square is an elementary
distinguished square in the Zariski topology. An elementary distinguished square in
the Zariski topology is an elementary distinguished square in the Nisnevich topology.

A space X is said to satisfy the Nisnevich (resp. Zariski) Brown–Gersten property
if for any elementary distinguished square in the Nisnevich topology (resp. Zariski
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42 Utsav Choudhury

topology) as above, the induced square of simplicial sets

X .X / //

��

X .V /

��
X .U / // X .W /

is homotopy Cartesian (see [11, Definition 3.1.13]).

Any fibrant space for the Nisnevich local model structure satisfies the Nisnevich (and
therefore Zariski) Brown–Gersten property [11, Remark 3.1.15].

A space is A1–fibrant if and only if it is fibrant in the local model structure and A1–local
[11, Proposition 2.3.19].

There exist endofunctors Ex (resp. ExA1 ) of 4op PSh.Sm =k/ such that for any space
X , the object Ex.X / is fibrant (resp. ExA1 X is A1–fibrant). Moreover, there exists
a natural morphism X ! Ex.X / (resp. X ! ExA1.X /), which is a local weak
equivalence (resp. A1–weak equivalence) [11, Remark 3.2.5, Lemma 3.2.6, Theorem
2.1.66].

For the injective local model structure all spaces are cofibrant. Hence for any space X
and for any U 2 Sm =k ,

(3-1) HomHs.Sm =k/.U;X /D �0.Ex.X /.U //:

Since ExA1.X / is A1–local,

HomH.k/.U;X /D HomHs.Sm =k/.U;ExA1.X //:

Moreover ExA1.X / is fibrant. Hence,

(3-2) HomH.k/.U;X /D �0.ExA1.X /.U //:

For any space X , let �0.X / be the presheaf defined by

U 2 Sm =k 7! HomHs.Sm =k/.U;X /:

Theorem 3.1 Let X be a space. For any X 2 Sm =k , such that dim.X / � 1, the
canonical morphism

�0.X /.X / �! aNis.�0.X //.X /

is surjective.

Before giving the proof we note the following consequence.
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Corollary 3.2 For any space X , the canonical morphism

�A1

0 .X /.A1
F / �! aNis.�

A1

0 .X //.A1
F /

is bijective for all finitely generated separable field extensions F=k .

Proof For any X 2 Sm =k ,

�A1

0 .X /.X /D �0.ExA1X /.X /:

The canonical morphism

�A1

0 .X /.A1
F / �! aNis.�

A1

0 .X //.A1
F /

is surjective (applying Theorem 3.1 for the space ExA1.X /). On the other hand,
consider the following commutative diagram

�A1

0
.X /.A1

F
/ //

��

�A1

0
.X /.F /

o

��

aNis.�
A1

0
.X //.A1

F
/ // aNis.�

A1

0
.X //.F /;

where the horizontal morphisms are induced by the zero section s0W F !A1
F

. The top
horizontal morphism is bijective by construction of �A1

0
and the right vertical morphism

is bijective because finitely generated separable field extensions of k are stalks in the
Nisnevich topology. Hence the left vertical surjective morphism is injective.

The proof of Theorem 3.1 depends on the relation between homotopy pullback of
spaces and pullback of the presheaves of connected components of those spaces.

A Noetherian k –scheme X , which is the inverse limit of a left filtering system .X˛/˛
with each transition morphism Xˇ ! X˛ being an étale affine morphism between
smooth k –schemes, is called an essentially smooth k –scheme. For any X 2 Sm =k

and any x 2X , the local schemes Spec.OX ;x/ and Spec.Oh
X ;x

/ are essentially smooth
k –schemes.

Lemma 3.3 Let X be a space. For any essentially smooth discrete valuation ring R,
the canonical morphism

�0.X /.R/ �! aNis.�0.X //.R/

is surjective.
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Proof By Equation (3-1) we can assume that X is fibrant.

Let F D Frac.R/ and let Rh be the Henselisation of R at its maximal ideal. Suppose
s 2 aNis.�0.X //.R/. Then for the image of s in aNis.�0.X //.Rh/, there exists a
Nisnevich neighbourhood of the closed point pW W ! Spec.R/ and s0 2 �0.X /.W /,
such that s0 gets mapped to sjW 2aNis.�0.X //.W /. Let LDFrac.W /. For any finitely
generated separable field extension F 0=k , the map �0.X /.F 0/! aNis.�0.X //.F 0/
is bijective. Hence, s0jL is same as sjL . We get two sections s0 2 �0.X /.W / and
sjF 2 �0.X /.F /, such that s0jL D sjL . By Lemma 2.2 and the fact that X satisfies
the Nisnevich Brown–Gersten property, we find an element sv 2 �0.X /.R/ that gets
mapped to s . Therefore, �0.X /.R/! aNis.�0.X //.R/ is surjective.

Proof of Theorem 3.1 Let X 2 Sm =k and dim.X / D 1. Let ˛ be an element of
aNis.�0.X //.X /. This ˛ gives p̨ 2 aNis.�0.X //.OX ;p/ for every codimension-1
point p 2 X , such that p̨jK.X / D ˛qjK.X / , for all p; q 2 X .1/ . By Lemma 3.3 the
map

�0.X /.OX ;p/ �! aNis.�0.X //.OX ;p/

is surjective. Also, the map

�0.X /.K.X // �! aNis.�0.X //.K.X //

is bijective, because finitely generated separable field extensions are stalks in the
Nisnevich topology. Therefore, we get elements ˛0p 2 �0.X /.OX ;p/ mapping to p̨ ,
such that ˛0pjK.X / D ˛

0
qjK.X / for p; q 2X .1/ .

Fix a p 2 X .1/ . There exists an open set W containing p and ˇ 2 �0.X /.W /,
such that ˇjOX;p

D ˛0p . Let ˇ0 2 aNis.�0.X /.W // be the image of ˇ . Suppose that
ˇ0 ¤ ˛jW , but ˇ0jOX;p

D p̨ . Hence there exists U �W , such that ˇ0jU D ˛jU .

So we can assume that there exists an open set U � X and ˛0 2 �0.X /.U /, such
that ˛0 gets mapped to ˛jU . If U ¤ X , then there exists a codimension one point
q 2X nU . We can get an open neighborhood Uq and an element ˛00 2 �0.X /.Uq/,
such that ˛00 gets mapped to ˛jUq

. But by construction of these ˛00; ˛0 we know
that ˛00jK.X / D ˛0jK.X / . Hence there exists an open set U 0 � Uq \ U , such that
˛00jU 0 D ˛

0jU 0 . Let ZDUq\U nU 0 . Since dim.X /D 1, the set Z is finite collection
of closed points. Therefore, Z is closed in U . Let U 00 D U nZ be the open subset of
U . Note that U 00\Uq D U 0 . Denote U 00[Uq D U [Uq by V .

Let ˛0jU 00 2 �0.X /.U 00/ be the restriction of ˛0 to U 00 . Hence, ˛0jU 00 gets mapped to
˛jU 00 and ˛0jU 00 restricted to U 0 is same as ˛00 restricted to U 0 . As X is Nisnevich
fibrant, it satisfies the Zariski Brown–Gersten property. By Lemma 2.2, we get a
section sV 2 �0.X /.V / that gets mapped to ˛jV . If V D X , then we are done.
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Otherwise, we use the same procedure and the fact that X is Noetherian to get an
element sX 2 �0.X /.X / that maps to ˛ . This finishes the proof of the theorem.

4 H–groups and homogeneous spaces

In this section we prove A1–invariance of aNis.�
A1

0
/ for H–groups and homogeneous

spaces for H–groups.

Definition 4.1 Let X be a pointed space, ie, X is a space endowed with a morphism
xW Spec.k/ ! X . It is called an H–space if there exists a base point preserving
morphism �W .X �X /! X , such that � ı .x � idX / and � ı .idX �x/ are equal to
idX in H.k/. Here X �X is pointed by .x;x/.

It is called an H–loop with inverse if:

(1) (inverse) There exists a morphism . : /�W X ! X , such that � ı .idX ; . : /�/
and �ı .. : /�; idX / are equal to the constant map cW X !X in H.k/. Here the
image of the constant map c is x .

(2) (weak associative) The composition � ı .id��/ ı .... : /� � id/ ı d/� id/ is
equal to pr2 and � ı .�� id/ ı .id�..id�. : /�/ ı d/// is equal to pr1 in H.k/.
Here d W X ! X �X is the diagonal map.

An H–space is called an H–group if:

(1) (inverse) It satisfies the inverse property of H–loop with inverse.

(2) (associative) � ı .� � idX / is equal to � ı .idX ��/ in H.k/ modulo the
canonical isomorphism ˛W X � .X �X /! .X �X /�X .

Remark 4.2 An H–group is an H–loop with inverse. There are H–loops with inverse
that are not H–groups. For example, let O be a split octonion algebra over k . The
affine quadric defined by the norm 1 elements of O is a smooth affine quadric that is
an H–loop with inverse. However, it is not an H–group as the complex realisation
[11, section 3.3.2] of this space is S7 with the Cayley multiplication. But the Cayley
multiplication on S7 is not homotopy associative by James [5, Theorem 1.4].

Recall from [11, Section 3.2.1] that

ExA1 D ExG ı.ExG ıSingA1

� /
N
ıExG :

The functors ExG and SingA1

� commute with finite limits by [11, Section 2.3.2, Theorem
2.1.66]. Also filtered colimit commutes with finite products in the category of spaces.
Therefore, ExA1 commutes with finite products.

Algebraic & Geometric Topology, Volume 14 (2014)



46 Utsav Choudhury

Definition 4.3 A set S with a composition law � and an unit idS 2 S is a loop with
right and left inverse property if for every element s 2 S , there exists a s�1 2 S such
that for all s0 2 S , �.�.s0; s/; s�1/D �.s�1; �.s; s0//D s0 .

For a loop S with left and right inverse property and for any element s 2S , the element
s�1 is the unique left and right inverse of s .

Lemma 4.4 If X is an H–group as described in Definition 4.1, then �0.ExA1.X // is
a presheaf of groups. If X is an H–loop with inverse then �0.ExA1.X // is a presheaf
of loops with right and left inverse property.

Proof Suppose X is an H–group. The morphisms ExA1.x/, ExA1.�/ and
ExA1.. : /�/ satisfy the conditions of the Definition 4.1. Hence, ExA1.X / is also
an H–group. For an H–group X , suppose that a; b; c 2 �0.ExA1.X //.U / for some
U 2 Sm =k . Let f;gW Y! Z be morphisms between A1–fibrant spaces such that f
is equal to g in H.k/. Then f and g are simplicially homotopic. Using this, we get
�.a;x/D aD �.x; a/, �.a; a�/D �.a�; a/D x and �.a; �.b; c//D �.�.a; b/; c/.
Hence, �0.ExA1.X // is a presheaf of groups. Now, suppose X is an H–loop with
inverse. For every U 2 Sm =k , we have �.a�; �.a; b//D b and �.�.a; b/; b�/D a,
for all a; b 2 �0.ExA1.X //.U /. Therefore, �0.ExA1.X // is a presheaf of loops with
right and left inverse property.

Let S and S 0 be loops with right and left inverse property, and let 1S (resp. 1S 0 ) be
the unit of S (resp. S 0 ). Let f W S ! S 0 be a map of pointed sets (S and S 0 are
pointed by 1S and 1S 0 respectively), such that f preserves the composition laws. If
f is injective as a map of pointed sets then f is injective as a map of sets. Indeed, if
f .s1/D f .s2/, then f .s1:s

�1
2
/D 1S 0 . This implies s1:s

�1
2
D 1S . Therefore, s1D s2 .

Definition 4.5 Let X be an H–loop with inverse. Let Y be a space. The space Y is
called an X –space if there exists a morphism aW X �Y! Y , such that the diagram

X � .X �Y/ idX �a//

aX�idY
��

X �Y

a

��
X �Y a // Y

commutes in H.k/ and the canonical map a ı .x � idY/ is equal to idY in H.k/.

Definition 4.6 Let X be an H–loop with inverse and let Y be an X –space. Y is
called a homogeneous X –space if for any essentially smooth Henselian R, the loop
with right and left inverse property �A1

0
.X /.R/ acts transitively on �A1

0
.Y/.R/.
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We give the following easy characterisations of pointed homogeneous X –spaces.

Lemma 4.7 Y is a pointed homogeneous X –space if and only if the Nisnevich sheaf
associated to the colimit of the diagram

�A1

0 .X /��A1

0 .Y/
a

pr
� �A1

0 .Y/

is the trivial sheaf.

Proof Let S be the Nisnevich sheaf associated to

colim.�A1

0 .X /��A1

0 .Y/
a

pr
� �A1

0 .Y//:

Then for any essentially smooth Henselian R, the set S.R/ is the orbit space of the
action of �A1

0
.X /.R/ on �A1

0
.Y/.R/. The orbit space is trivial if and only if the action

is transitive.

Corollary 4.8 Let Y be a pointed X –space. Y is a homogeneous X –space if and
only if the homotopy colimit of

ExA1.X /�ExA1.Y/
a

pr
� ExA1.Y/

is simplicially connected (ie, aNis.�0/ of the homotopy colimit is trivial).

Proof The proof follows from Lemma 2.3 and Lemma 4.7.

Lemma 4.9 Let Y be a pointed X –space. Y is a homogeneous X –space if the
homotopy colimit of

X �Y
a

pr
� Y

is simplicially connected.

Proof By [11, Corollary 2.3.22], the canonical morphism

aNis.�0.X // �! aNis.�
A1

0 .X // .resp. aNis.�0.Y// �! aNis.�
A1

0 .Y//

is surjective as a morphism of Nisnevich sheaves. Using Lemma 2.3 and the previous
fact we deduce that there is a surjective map from the connected component sheaf

S WD aNis.�0.hocolim.X �Y
a

pr
� Y///

to the connected component sheaf

S 0 WD aNis.�0.hocolim.ExA1.X /�ExA1.Y/
a

pr
� ExA1.Y////:

By assumption S is trivial. Thus, S 0 is also trivial. By Corollary 4.8, Y is a homoge-
neous X –space.
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Remark 4.10 Note that the definition of homogeneous spaces does not include quo-
tients of algebraic groups, for instance, if G is an algebraic group and � a finite
subgroup scheme of G . Then the algebraic quotient G=� is not a G–homogeneous
space for us, but the Nisnevich quotient G=Nis� is a G –homogeneous space.

Lemma 4.11 Let G;G0 be loops with right and left inverse property acting on pointed
sets S;S 0 by action maps a; a0 respectively. Suppose that f W G ! G0 is a loop
homomorphism (ie, f preserves the composition laws and f .1G/ D 1G0 ) and let
sW S!S 0 be a morphism of pointed sets with trivial kernel such that sıaDa0ı.f �s/.
If G acts transitively on S , then s is injective.

Proof Let bS (resp. bS 0 ) be the base point of S (resp. S 0 ) and let a; b 2 S . Since G

acts transitively on S , there exist g;g0 2G such that a.g; bS /D a and a.g0; bS /D b .
If s.a/D s.b/, then a0.f .g/; bS 0/D a0.f .g0/; bS 0/. Hence a0.f .g�1:g0/; bS 0/D bS 0 .
So s.a.g�1:g0; bS //D bS 0 . But s is a morphism of pointed sets with trivial kernel,
therefore a.g�1:g0; bS /D bS . Since G is a loop with right and left inverse property,
we have aD a.g; bS /D a.g0; bS /D b .

Let ASm =k be the category whose objects are same as objects of Sm =k , but the
morphisms are smooth morphisms. The following argument is taken from [10, Corol-
lary 5.9]:

Lemma 4.12 Let S be a Nisnevich sheaf on Sm =k . Suppose that for all essentially
smooth Henselian X , the map S.X /!S.K.X // is injective. Then S.Y /!S.K.Y //

is injective, for all connected Y 2 Sm =k .

Proof Let S 0 be the presheaf on ASm =k , given by

X 2 ASm =k 7!
Y

i

S.K.Xi//;

where the Xi are the connected components of X . Then S 0 is a Nisnevich sheaf on
ASm =k (as every Nisnevich covering of some X 2 ASm =k splits over some open dense

U � X ). The canonical morphism S ! S 0 is injective on Nisnevich stalks. Hence
S ! S 0 is sectionwise injective.

Corollary 4.13 Let S be a Nisnevich sheaf on Sm =k . Suppose that for all essentially
smooth Henselian X , the map S.X /! S.K.X // is injective. Then S.Y /! S.U / is
injective for any Y 2 Sm =k and any open dense U � Y .
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Proof We can assume that Y is connected. By Lemma 4.12, the morphism S.Y /!

S.K.Y // is injective and S.U /! S.K.Y // is injective, hence S.Y /! S.U / is
injective.

Lemma 4.14 Let S be a Zariski sheaf on Sm =k , such that S.X /!S.U / is injective
for any X 2 Sm =k and for any open dense U � X . Then S is A1–invariant if
and only if S.F /! S.A1

F
/ is bijective for every finitely generated separable field

extension F=k .

Proof The only if part is clear. We need to show that for any connected X 2Sm =k , the
morphism S.A1

X
/!S.X / (induced by the zero section), is bijective. Let F WDK.X /.

In the commutative diagram

S.A1
X
/ //

��

S.X /

��
S.A1

F
/ // S.F /

the left vertical, the right vertical and the bottom horizontal morphisms are injective,
thus the top horizontal surjective morphism is injective.

We recall the following from Colliot-Thélène, Hoobler and Kahn [3] and Morel [10,
Corollary 5.7]:

Theorem 4.15 Let X be a smooth (or essentially smooth) k –scheme, s 2 X be a
point and Z �X be a closed subscheme of codimension d > 0. Then there exists an
open subscheme ��X containing s and a closed subscheme Z0��, of codimension
d � 1, containing Z� WDZ \� and such that for any n 2N and for any A1–fibrant
space X , the map

�n.X .�=.��Z�/// �! �n.X .�=.��Z0///

is the trivial map. In particular, if Z has codimension 1 and X is irreducible, Z0 must
be �. Thus for any n 2N the map

�n.X .�=.��Z�/// �! �n.X .�//

is the trivial map.

Remark 4.16 The proof of the previous theorem relies on a version of Gabber pre-
sentation lemma that is stated in [10, Lemma 15] without proof. The form available in
the literature assumes the base field k to be an infinite field.
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Corollary 4.17 [10] Let X be an essentially smooth local scheme and let X be a
A1–fibrant space with a base point x . Then �0.X /.X / and �0.X /.K.X // are pointed
and the restriction �0.X /.X /! �0.X /.K.X // is a morphism of pointed sets with
trivial kernel. In particular if X is Henselian, then the morphism of pointed sets

aNis.�0.X //.X / �! aNis.�0.X //.K.X //

has trivial kernel.

Proof Let z be the closed point. Let U � X be an open set. Adding disjoint base
points to U and X and making X=U pointed by the image of U , we get a cofiber
sequence UC!XC!X=U !

P1
s UC! � � � .

For the A1–fibrant space X with a base point x , we have the following exact sequence
of pointed sets and groups:

� � � �! �1.X ;x/.X / �! �1.X ;x/.U /
�! �0.X /.X=U / �! ŒXC;X �H�;s.Sm =k/ �! ŒUC;X �H�;s.Sm =k/:

The last two terms are pointed by the map that sends everything to the base point of X .
Forgetting the base point, ŒXC;X � (resp. ŒUC;X �) is �0.X /.X / (resp. �0.X /.U /).

Applying Theorem 4.15 to X and its closed point z , we see that � D X and the
morphisms

�n.X /.X=U / �! �n.X /.X /

are trivial. Hence the morphism of pointed sets

�0.X /.X / �! �0.X /.U /

has trivial kernel. Taking colimit over open sets, this gives the morphism of pointed sets

�0.X /.X / �! �0.X /.K.X //

which has trivial kernel. In particular if X is Henselian, then the morphism of
pointed sets

aNis.�0.X //.X / �! aNis.�0.X //.K.X //

has trivial kernel.

Theorem 4.18 Let X be an H–loop with inverse. Then aNis.�
A1

0
.X // is A1–invariant.

If Y is a pointed homogeneous X –space, then aNis.�
A1

0
.Y// is A1–invariant.
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Proof For any connected X 2 Sm =k and any x 2X , the morphisms of pointed sets

aNis.�
A1

0 .X //.Oh
X ;x/ �! aNis.�

A1

0 .X //.K.Oh
X ;x//;

aNis.�
A1

0 .Y//.Oh
X ;x/ �! aNis.�

A1

0 .Y//.K.Oh
X ;x//

have trivial kernel by Corollary 4.17. By Lemma 4.11 and that aNis.�
A1

0
.X //.Oh

X ;x
/ is

a loop with right and left inverse property, the morphisms mentioned above are injective
morphisms of sets. By Lemma 4.12, for every X 2 Sm =k , the morphisms

aNis.�
A1

0 .X //.X / �! aNis.�
A1

0 .X //.K.X //;

aNis.�
A1

0 .Y//.X / �! aNis.�
A1

0 .Y//.K.X //

are injective. Hence for any X 2 Sm =k and any open dense subscheme U �X , the
morphisms

aNis.�
A1

0 .X //.X / �! aNis.�
A1

0 .X //.U /;

aNis.�
A1

0 .Y//.X / �! aNis.�
A1

0 .Y//.U /

are injective by Corollary 4.13. Now applying Corollary 3.2 and Lemma 4.14, we get
our result.

If X is an H–loop with inverse, then

�A1

0 .X /.R/ �! aNis.�
A1

0 .X //.R/

is bijective for any essentially smooth discrete valuation ring R. Indeed, using
Corollary 4.17 one can easily show that for any essentially smooth discrete valuation
ring R, the loop homomorphism

�A1

0 .X /.R/ �! �A1

0 .X //.K.R//

is injective. On the other hand, consider the following commutative diagram:

�A1

0
.X /.R/ //

��

�A1

0
.X //.K.R//

o

��

aNis.�
A1

0
.X //.R/ // aNis.�

A1

0
.X //.K.R//;

where the bottom horizontal morphism is injective by Theorem 4.18. The left vertical
injective morphism is surjective by Lemma 3.3. Hence it is bijective.
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5 Application and comments

We recall from [10, Definition 7] the following definition.

Definition 5.1 A sheaf of groups G on Sm =k is called strongly A1–invariant if for
any X 2 Sm =k , the map

H i
Nis.X;G/ �!H i

Nis.A
1
X ;G/

induced by the projection A1
X
!X is bijective for i 2 f0; 1g.

By gathering known facts from Wendt [12], Morel [9, Theorem A.2], and Gille [4,
Corollary 5.10], one can show that for any connected linear algebraic group G , such
that the almost simple factors of the universal covering (in algebraic group theory sense)
of the semisimple part of G is isotropic and retract k –rational [4, Definition 2.2], the
sheaf aNis.�

A1

0
.G// is A1–invariant (in fact strongly A1–invariant). By Theorem 4.18,

we have the following generalisation.

Corollary 5.2 Let G be any sheaf of groups on Sm =k and B be any subsheaf of
groups. Then aNis.�

A1

0
.G// is A1–invariant and aNis.�

A1

0
.G=B// is A1–invariant.

Here G=B is the quotient sheaf in Nisnevich topology.

Let X be a pointed space. By [10, Theorem 9], for any pointed simplicial presheaf
X , the sheaf of groups aNis.�0.�.ExA1.X ////D �A1

1
.X ;x/ is strongly A1–invariant.

Here x is the base point of X and �.ExA1.X // is the simplicial loop space of ExA1.X /.
So for any space X that is the loop space of some A1–local space Y , [10, Theorem 9]
gives the A1–invariance property for aNis.�

A1

0
.X //. We end this section by showing

that there exists an A1–local H–group that is not a loop space of some A1–local space.
This will imply that the statement of the Theorem 4.18 for H–groups is not a direct
consequence of [10, Theorem 9]. It is enough to show that there exists sheaf of groups
G that is A1–invariant, but not strongly A1–invariant.

Let ZŒGm� be the free presheaf of Abelian groups generated by Gm .

Lemma 5.3 For any X 2 Sm =k and a dominant morphism U ! X , the canonical
morphism ZŒGm�.X /! ZŒGm�.U / is injective.

Proof Any nonzero a 2 ZŒGm�.X / can be written as aD
Pn

iD1 ai :gi , where gi 2

Gm.X / and ai 2 Z n f0g such that gi ¤ gi0 for i ¤ i 0 . Suppose ajU D 0, ie,Pn
iD1 ai :gi jU D 0. Since Gm.X /! Gm.U / is injective, gi jU ¤ gi0 jU for i ¤ i 0 .

This implies ai D 0 for all i . Hence aD 0.
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The presheaf ZŒGm� is not a Nisnevich sheaf. But it is not far from being a Nisnevich
sheaf.

Lemma 5.4 The Nisnevich sheafification aNis.ZŒGm�/ is the presheaf that associates,
to every smooth k –scheme X D

`
i Xi , the Abelian group

Q
i ZŒGm�.Xi/, where the

Xi are the connected components of X .

Proof Let F be the presheaf that associates, to every smooth k –scheme X D
`

i Xi ,
the Abelian group

Q
i ZŒGm�.Xi/, where the Xi are the connected components of

X . It is enough to prove that F is a Nisnevich sheaf. We need to show that for any
elementary distinguished square in Sm =k ,

W //

��

V

p

��
U

i // X;

the induced commutative square

F.X / //

��

F.V /

��
F.U / // F.W /

is Cartesian. By the construction of F we can assume that X;W;V;U are connected.
So, it is enough to prove that

ZŒGm�.X / //

��

ZŒGm�.V /

��
ZŒGm�.U / // ZŒGm�.W /

is Cartesian. Let a 2ZŒGm�.U / and let b 2ZŒGm�.V / such that ajW D bjW . We can
write a D

Pn
iD1 ai :fi and b D

Pm
jD1 bj :gj , where ai ; bj 2 Z n f0g and .fi ;gj / 2

Gm.U /�Gm.V / such that fi ¤ fi0 and gj ¤ gj 0 for all i ¤ i 0 and j ¤ j 0 . Since
all the morphisms are dominant, gj jW ¤ gj 0 jW and fi jW ¤ fi0 jW for all i ¤ i 0 and
j ¤ j 0 . Hence, for every i there exists at most one j such that fi jW Dgj jW . Suppose
for some fi0 , fi0 jW ¤ gj jW for all j . Then we can write� nX

iD1

ai :fi jW

�
�

� mX
jD1

bj :gj jW

�
D ai0fi0 C

lX
kD1

ck :hk D 0;
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where hk¤hk0 for all k¤k 0 and fi0¤hk for all k . This implies ai0D 0, which gives
a contradiction. Hence, for every i there exists exactly one j such that fi jW D gj jW .
Therefore, m D n. Also we can write a D

Pn
iD1 a0i :f

0
i , such that a0i D bi and

f 0i jW D gi jW . Since Gm is a Nisnevich sheaf, we get g0i 2Gm.X /, which restricts
to f 0i and gi . This gives a section c D

Pn
iD1 bi :g

0
i 2 ZŒGm�.X /, which restricts to a

and b . The uniqueness of c follows from the Lemma 5.3.

As Gm is pointed by 1, aNis.ZŒGm�/Š Z˚Z.Gm/. Here Z is the sheaf generated
by the point 1. Let A be a sheaf of Abelian groups on Sm =k . To give a morphism
Gm ! A, such that 1 gets mapped to 0 2 A, is equivalent to give a morphism
Z.Gm/ ! A of Abelian sheaves. Since Gm is A1–invariant, aNis.ZŒGm�/ is A1–
invariant. This implies Z.Gm/ is A1–invariant.

Let �1W Gm!KMW
1

be the canonical pointed morphism (see [10, page 86]). For any
finitely generated separable field extension F=k , the morphism maps u 2 F� to the
corresponding symbol Œu� 2KMW

1
.F /.

Lemma 5.5 The induced morphism Z.Gm/!KMW
1

is not injective.

Proof We can choose u 2 F� n 1 such that u.u� 1/ is not 1. The element

Œu.u� 1/�� Œu�� Œu� 1�

is zero in KMW
1

.F /, but it is nonzero in Z.Gm/.F /.

Lemma 5.6 The A1–invariant sheaf of Abelian groups Z.Gm/ is not strongly A1–
invariant.

Proof Suppose Z.Gm/ is strongly A1–invariant. Then by [10, Theorem 2.37], the
morphism idW Z.Gm/! Z.Gm/ can be written as � ı �1 for some unique � . This
implies �1 is injective, which contradicts Lemma 5.5.
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