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Small Seifert fibered surgery
on hyperbolic pretzel knots

JEFFREY MEIER

We complete the classification of hyperbolic pretzel knots admitting Seifert fibered
surgeries. This is the final step in understanding all exceptional surgeries on hy-
perbolic pretzel knots. We also present results toward similar classifications for
nonpretzel Montesinos knots of length three.

57M25; 57M50

1 Introduction

The study of exceptional surgery on hyperbolic knots has been well developed over
the last quarter century. One particularly well studied problem is that of exceptional
surgery on arborescent knots, which include Montesinos knots and pretzel knots. Thanks
to the positive solution to the geometrization conjecture by Perelman [38; 39; 40],
any exceptional surgery is either reducible, toroidal, or a small Seifert fibered space.
Exceptional surgeries on hyperbolic arborescent knots of length 4 or greater have been
classified by Wu [52], as have exceptional surgeries on hyperbolic 2–bridge knots; see
Brittenham and Wu [7]. It has been shown that no hyperbolic arborescent knot admits
a reducible surgery (see Wu [48]), and toroidal surgeries on hyperbolic arborescent
knots of length three are completely classified; see Wu [51].

Therefore, it only remains to understand small Seifert fibered surgeries on Montesinos
knots of length three. Furthermore, finite surgeries on Montesinos knots only oc-
cur in two instances, along two slopes of each of the pretzel knots P .�2; 3; 7/ and
P .�2; 3; 9/; see Futer, Ishikawa, Kabaya, Mattman and Shimokawa [16] and Ichihara
and Jong [23]. Thus, one must only consider nonfinite, atoroidal Seifert fibered surgeries
on hyperbolic Montesinos knots of length three.

According to Wu [46; 45], the only hyperbolic Montesinos knots of length three that
are pretzel knots and might admit Seifert fibered surgeries have the form P .q1; q2; q3/

or P .q1; q2; q3;�1/, where .jq1j; jq2j; jq3j/D .2; jq2j; jq3j/, .3; 3; jq3j/ or .3; 4; 5/,
and in the length four case, then qi > 0 for i D 1; 2; 3. Recently, it was shown that
hyperbolic pretzel knots of the form P .p; q; q/ with p; q positive (see Ichihara and
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Jong [22]) or P .�2;p;p/ with p positive (see Ichihara, Jong and Kabaya [24]) do
not admit Seifert fibered surgeries.

Further work by Wu [46; 52; 45] tells us that if a nonpretzel Montesinos knot admits a
small Seifert fibered surgery, then it has one of the following forms: KŒ1=3;�2=3; 2=5�,
KŒ�1=2; 1=3; 2=.2aC1/� for a 2 f3; 4; 5; 6g, or KŒ�1=2; 1=.2qC1/; 2=5� for q � 1.

In this paper, we address the issue of which of the above listed Montesinos knots admit
small Seifert fibered surgeries. The main results are stated below. Keep in mind that
there is an orientation reversing homeomorphism K.˛/ D xK.�˛/, where xK is the
mirror of K . Thus, we often consider in our analysis, and present in our results, only
one representative of fK; xKg.

For the following theorem, recall that the pretzel knot P .p; q; r/ with jpj; jqj; jr j � 2

is hyperbolic unless it is either P .�2; 3; 3/ or P .�2; 3; 5/, in which case it is the torus
knot T .3; 4/ or T .3; 5/, respectively; see Oertel [37]. Below, when we consider the
knots P .�2; 2pC 1; 2qC 1/, we will assume that jpj< jqj when p and q have the
same sign and that p > 0 when their signs differ.

Theorem 1.1 The hyperbolic pretzel knot P .�2; 2pC1; 2qC1/, with the conventions
discussed above, admits a small Seifert fibered surgery if and only if p D 1, in which
case it admits precisely the following small Seifert fibered surgeries:

� P .�2; 3; 2qC 1/.4qC 6/D S2.1=2;�1=4; 2=.2q� 5//

� P .�2; 3; 2qC 1/.4qC 7/D S2.2=3;�2=5; 1=.q� 2//

Theorem 1.2 Hyperbolic pretzel knots of the form P .3; 3;m/ or P .3; 3; 2m;�1/

admit no small Seifert fibered surgeries. Pretzel knots of the form P .3;�3;m/, with
m> 1, admit small Seifert fibered surgeries precisely in the following cases:

� P .3;�3; 2/.1/D S2.1=3; 1=4;�3=5/

� P .3;�3; 3/.1/D S2.1=2;�1=5;�2=7/

� P .3;�3; 4/.1/D S2.�1=2; 1=5; 2=7/

� P .3;�3; 5/.1/D S2.2=3;�1=4;�2=5/

� P .3;�3; 6/.1/D S2.1=2;�2=3; 2=13/

Theorem 1.3 The pretzel knots P .3;˙4;˙5/ and P .3; 4; 5;�1/ admit no small
Seifert fibered surgeries.
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Theorem 1.4 Suppose that K is a nonpretzel Montesinos knot and K.˛/ is a small
Seifert fibered space. Then either K D KŒ�1=2; 2=5; 1=.2q C 1/� for some q � 5,
or K is on the following list and has the described surgeries:

� KŒ1=3;�2=3; 2=5�.�5/D S2.1=4; 2=5;�3=5/

� KŒ�1=2; 1=3; 2=7�.�1/D S2.1=3; 1=4;�4=7/

� KŒ�1=2; 1=3; 2=7�.0/D S2.1=2; 3=10;�4=5/

� KŒ�1=2; 1=3; 2=7�.1/D S2.1=2; 1=3;�16=19/

� KŒ�1=2; 1=3; 2=9�.2/D S2.1=2;�1=3;�3=20/

� KŒ�1=2; 1=3; 2=9�.3/D S2.1=2;�1=5;�3=11/

� KŒ�1=2; 1=3; 2=9�.4/D S2.�1=4; 2=3;�3=8/

� KŒ�1=2; 1=3; 2=11�.�2/D S2.�2=3; 2=5; 2=7/

� KŒ�1=2; 1=3; 2=11�.�1/D S2.�1=2;�2=7; 2=9/

� KŒ�1=2; 1=3; 2=5�.3/D S2.1=2;�1=3;�2=15/

� KŒ�1=2; 1=3; 2=5�.4/D S2.1=2;�1=6;�2=7/

� KŒ�1=2; 1=3; 2=5�.5/D S2.�1=3;�1=5; 3=5/

� KŒ�1=2; 1=5; 2=5�.7/D S2.1=2;�1=5;�2=9/

� KŒ�1=2; 1=5; 2=5�.8/D S2.�1=4; 3=4;�2=5/

� KŒ�1=2; 1=7; 2=5�.11/D S2.�1=3; 3=4;�2=7/

Each of the theorems stated above is proved below using a common procedure. First,
we exploit the symmetries of the Montesinos knots in question to describe the surgery
space as a branched double cover of a link. Next, we use rational tangle filling theory
and exceptional surgery bounds to restrict our attention to a finite list of such links,
ie, we restrict the parameters for which the Montesinos knots in question can admit
small Seifert fibered surgeries. Finally, we use knot theory invariants to show that the
branched double covers of links on this finite list cannot be Seifert fibered (excepting,
of course, the cases that are). This last step makes use of the Mathematica R package
KnotTheory [43].

It should be noted that, concurrent with the preparation of this paper, the author learned
that similar results had been obtained by Wu, though using different techniques. Wu
also restricts the families to finite families of surgery spaces, but does so by studying
exceptional surgery on tubed Montesinos knots (see [44]). He then appeals to the
computer program Snappex, to determine the hyperbolic structure of the surgeries in
question (see [47]).

Algebraic & Geometric Topology, Volume 14 (2014)



442 Jeffrey Meier

1.1 A word on nonintegral surgeries

In a survey by Wu [49], it is shown how techniques and results from Brittenham [6]
and Wu [50] can be combined with work of Delman [13] to study which length three
Montesinos knots have exteriors that admit persistent essential laminations.

Theorem 1.5 Let K be a hyperbolic Montesinos knot of length three. Then the
exterior of K admits a persistent essential lamination, and, thus, cannot admit a
nonintegral small Seifert fibered surgery, unless K D KŒx; 1=p; 1=q� (or its mirror
image), where x 2 f�1=.2n/;�1˙1=.2n/;�2C1=.2n/g, and p; q and n are positive
integers.

With this in mind, for many of the families of pretzel knots considered in this paper,
it is only necessary to consider integral surgeries. However, for some families, it is
necessary to consider nonintegral surgeries. To be specific, of all the pretzel knots
considered in this paper, only the following families could potentially admit nonintegral
small Seifert fibered surgeries:

� P .�2; 2pC 1; 2qC 1/ with 1� p < q

� P .3; 3;�2m/ with m� 2

� KŒ�1I 1=3; 1=3; 1=2m� with m� 1

� P .3;�4; 5/ or P .3; 4; 5;�1/

Thus, whenever such a family is considered, we have shown that, in fact, there are no
nonintegral small Seifert fibered surgeries. One of the biggest open problems in the
study of exceptional Dehn surgery is the following conjecture (see Gordon [19]).

Conjecture 1.6 Any Seifert fibered surgery on a hyperbolic knot is integral.

The results of this paper are the final steps of an affirmative answer to Conjecture 1.6
in the case of hyperbolic arborescent knots.

Theorem 1.7 Any Seifert fibered surgery on a hyperbolic arborescent knot is integral.

1.2 Open questions

Unfortunately, the techniques of this paper are insufficient to complete the classification
of Seifert fibered surgery on Montesinos knots. We are left with the following question,
which is the final step in a complete classification of exceptional surgery on arborescent
knots.
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Question 1.8 Do the Montesinos knots KŒ�1=2; 2=5; 1=.2qC 1/� with q � 5 admit
small Seifert fibered surgeries?1

Organization Section 2 presents general background material and outlines how knot
invariants will be used to obstruct small Seifert fibered surgeries. Sections 3, 4, 5 and 6
present, respectively, the proofs of Theorems 1.1, 1.2, 1.3 and 1.4.

Acknowledgements The author would like to thank his advisor, Cameron Gordon,
for many conversations full of insightful advice, patience, and encouragement. The
author is also grateful to Ying-Qing Wu for his friendly correspondence regarding the
nature of this problem, and to the referee for his or her careful reading of the manuscript
and helpful comments. This work was supported by NSF grant number DMS-0636643.

2 Preliminaries

2.1 Dehn surgery

Let K be a knot in S3 and let N.K/ be a regular neighborhood of K . We let
MK D S3nN.K/ be the exterior of K . The set of isotopy classes of simple closed
curves on @N.K/ D @MK is in bijection with H1.@MK /, the latter of which is
naturally generated by two elements Œ�� and Œ��, where Œ�� generates H1.MK /Š Z,
Œ�� D 0 2 H1.MK /, and � and � intersect geometrically once on @MK . Orient �
and � so that � � � D C1. The unoriented isotopy class of a simple closed curve
 � @MK is called a slope and can be thought of as an element m= l 2 Q[ f1g,
where Œ �DmŒ��C l Œ�� in H1.@MK /. The curves � and � are called the meridian
and the longitude, respectively.

Given two slopes ˛ and ˇ on T 2 , let the distance between ˛ and ˇ , �.˛; ˇ/ be their
minimal geometric intersection number. If ˛ D m= l and ˇ D m0= l 0 , then we have
�.˛; ˇ/D jml 0�m0l j.

Let V be a solid torus, and let 'W @V ! @MK be a homeomorphism which takes the
meridian of V to a slope ˛ on @MK . Then Dehn surgery on K along ˛ , or ˛ -Dehn
surgery on K , is the space K.˛/DMK ['V ; see Figure 1. For a general overview of
the theory of Dehn surgery, a subject that has been well-studied since its introduction
by Dehn in 1910 [12]; see [19].

1 Question 1.8 has recently been answered in the negative by Ichihara and Masai [25]. Their work uses
a computer algorithm to verify the hyperbolic structures of surgeries on these knots. Together, their work
and the present results complete the classification of exceptional surgeries on arborescent knots.
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Figure 1: On the right, we see the exterior, MK , of the left handed trefoil.
The surgery space K.0/ is formed by filling the boundary of MK with a
solid torus such that the meridian maps to a 0–slope (a longitude of K )
on @MK .

Dehn surgery generalizes nicely to manifolds M with a torus boundary component
T � @M, where M may not be the complement of knot in S3 . Let ˛ � T be a slope,
then ˛–Dehn filling of M on T is the space M.˛/DM [' V , where 'W @V ! T

sends the meridian of V onto ˛ . One difference in this scenario is that there may be no
canonical way to distinguish a longitude on T , however, �.˛; ˇ/ is still well-defined
for any pair of slopes, ˛ and ˇ .

2.2 Cable spaces

Let V be a solid torus, and let J be a .p; q/–curve inside V (see Figure 2). The cable
space, C.p; q/, is the space formed by removing a regular neighborhood of J. Let
T1 D @V and T0 D @N.J /. There is a properly embedded annulus, A, connecting the
two boundary components such that A\T1 is a p=q–curve (in terms of the standard
meridian and longitude on V ) and  DA\T0 is a pq=1–curve (see Figure 2). Let �
and � be some choice of meridian and longitude for T0 . Then the slope  is called
the cabling slope for C.p; q/.

Let A0 be a properly embedded annulus such that A0\T0 is two pq=1–curves, parallel
to each other and to  (see Figure 2). Now, let C.p; q/.˛/ denote ˛–Dehn filling
on T0 . Then, if ˛D  , this filling has the effect of capping off A0 to form a separating
2–sphere, S , and capping off one boundary component of A to form a disk, D , which
intersects T1 in a p=q–curve. The result is that C.p; q/. /D .S1 �D2/ # L.q;p/.
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A
A0

Figure 2: On the left, we see a .4; 5/–curve J inside a solid torus, V , and,
on the right, we see a cross section of V �N.J / , along with two interesting
annuli, A and A0 .

Let t W C.p; q/ ! C.p; q/ represent Dehn twisting along A. Then, we have that
t l.�/D�C l.pq�C�//D .lpqC1/�C l�. Since C.p; q/.�/DS1�D2, it follows
that C.p; q/.t l.�//D S1 �D2. So, slopes of the form .lpqC 1/= l all correspond to
surgery slopes on T0 that yield solid tori.

This shows that cable spaces have infinitely many fillings returning solid tori, all at
distance one from the cabling slope.

On the other hand, we have the following lemma, which follows from the Cyclic Surgery
Theorem (see Culler, Gordon, Luecke and Shalen [11]) and work of Gabai [17]; see
Kang [26] for a proof and more general discussion.

Lemma 2.1 (a) Let M 6D T 2 � I be an irreducible and @–irreducible 3–manifold
with a torus boundary component, T0 . Let T1 be an incompressible torus in M,
distinct from T0 . If ˛ and ˇ are slopes on T0 � @M with �.˛; ˇ/ � 2, such
that T1 is compressible in M.˛/ and M.ˇ/, then M is a cable space with
cabling slope  such that �.˛;  /D�.ˇ;  /D 1.

(b) Let M 6D T 2 � I be an irreducible and @–irreducible 3–manifold with a torus
boundary component, T0 . Let T1 be an incompressible torus in M, distinct
from T0 . If ˛ and ˇ are slopes on T0 � @M with �.˛; ˇ/D 1, such that T1 is
compressible in M.˛/ and M.ˇ/, then either
(i) M is a cable space with cabling slope ˛ or ˇ ,

(ii) M is the exterior of a braid in a solid torus, M.˛/ and M.ˇ/ are solid tori,
and �.�˛; �ˇ/� 4, where �˛ and �ˇ are the induced slopes of the meridian
on T0 .
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2.3 Seifert fibered spaces

A fibered solid torus is formed by gluing the ends of D2 � I together with a twist �
through .2�p/=q , where q � 1 and p and q are relatively prime. There are two types
of fibers: the central fiber, ie, the image of .0; 0/� I after gluing, and the union of the
arcs x � I; �.x/� I; : : : ; �q�1.x/� I , for x 6D .0; 0/.

A Seifert fibered space is a 3–manifold that can be decomposed as a disjoint union of
circles (called fibers), where each fiber has a regular neighborhood homeomorphic to
a fibered solid torus, ie, the fiber becomes the central fiber of the fibered solid torus.
Viewing the neighborhood this way, if qD 1, we say the fiber is ordinary. If q � 2, we
say the fiber is exceptional with multiplicity q . In the latter case, the fibers surrounding
the central fiber are called .p; q/–curves.

If M is a Seifert fibered space, there is a natural projection � W M !† that identifies
each fiber to a point. The surface † is called the base space. We can record the
exceptional fiber information in the form of cone points on †, so M is a circle bundle
over the resulting orbifold. Another way to recover M is to remove a disk neighborhood
of each cone point on † and cross the resulting surface with S1 . The result is a manifold
with torus boundary components. If we choose meridian and longitude coordinates for
each boundary component so that the projection of the meridians to the base surfaces
is one-to-one onto the boundary of the removed disks and the longitude is ?�S1 in
the circle product, then M is the result of Dehn filling on the boundary components
along the slopes p0=q , where pp0 � 1 .mod q/. If M is a Seifert fibered space with
base space † and n exceptional fibers with fibered solid torus neighborhoods consist-
ing of .pi=qi/–curves for i D 1; 2; : : : ; n, we write M D †.p0

1
=q1; : : : ;p

0
n=qn/, or

sometimes M D†.q1; : : : ; qn/. In fact, the homeomorphism type of M is determined
by † and the Seifert invariants: fp0

1
=q1; : : : ;p

0
n=qng, up to permutation, and up to

the relation fp0
1
=q1;p

0
2
=q2; : : : ;p

0
n=qng D fp

0
1
=q1 ˙ 1;p0

2
=q2 � 1; : : : ;p0n=qng. In

other words,
Pn

iD1 p0i=qi is an invariant of M. Because of this, it is often useful to
standardize the notation so that the Seifert invariants are all positive and less than one.
To do this, we subtract out the integer part of each fraction and collect them in a single
term, b . We write M D†.bIp0

1
=q1; : : : ;p

0
n=qn/, where 0< p0i < qi and b 2 Z.

A Seifert fibered space is called small if the base space is a sphere and the number of
exceptional fibers is at most three.

Next, we recall a fact about Dehn filling on Seifert fibered manifolds that will be useful
throughout this paper. Let M be a Seifert fibered manifold with a torus boundary
component T � @M. The fibering of M induces a fibering of T , and the slope,  ,
of the induced fibers on T is called the Seifert slope of T . Now, the Seifert fibering
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of M will extend to a Seifert fibering of ˛–Dehn filling on M provided that ˛ 6D  .
In fact, we have the following; see Heil [21] for a complete treatment of Dehn filling
on Seifert fibered spaces with boundary.

Lemma 2.2 If M is a Seifert fibered manifold with base surface † and n exceptional
fibers, T � @M is a torus boundary component (corresponding to a circle boundary
component C � @†), and  is the Seifert slope T , then let M.˛/ denote ˛–Dehn
filling on T , let d D�.˛;  /, and let y†D†[C D2. Then,

(a) if d � 2, M.˛/ is a Seifert fibered space with base surface y† and nC 1 excep-
tional fibers (the original exceptional fibers, plus a new one of multiplicity d),

(b) if dD1, M.˛/ is a Seifert fibered space with base surface y† and (the original) n

exceptional fibers,

(c) if d D 0, M.˛/DN #L, where N is a Seifert fibered space with base surface y†
and (the original) n exceptional fibers, and L is a Lens space.

As an example, consider D2.a; b/ with Seifert slope r=s , and let d D�.m= l; r=s/D

jms� lr j. Then (as developed in [19]),

D2.a; b/.m= l/D

8̂<̂
:

S2.a; b; d/ if d � 2;

L.m; lb2/ if d D 1;

L.a; b/ # L.b; a/ if d D 0:

2.4 Montesinos knots

A tangle is a pair .B;A/, where B Š B3 and A is a pair of properly embedded
arcs in B . A marked tangle is a tangle along with an identification of its boundary
@.B;A/ D .S;S \ A/, which is a 2–sphere with 4 distinguished points, with the
pair .S2; fNE;NW; SW; SEg/. The trivial tangle is the tangle which is homeomorphic
as a marked tangle to .D2; f2 pointsg/ � I . Let h and r be the tangle operations,
where h adds a positive horizontal half twist (right-handed), and r is reflection in the
.NW=SE/–plane.

Let Œc1; c2; : : : ; cm� be a sequence of integers, and let

p=q D
1

c1C
1

c2C
1

� � � C cm:
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Let R.1=0/ denote the trivial tangle and form the rational tangle R.p=q/ by applying
the operation .hcmr/.hcm�1r/ � � � .hc1r/ to the trivial tangle. Note that, as an unmarked
tangle, R.p=q/ is trivial, one can just untwist it. On the other hand, Conway showed [9]
that, as marked tangles, R.p=q/DR.p0=q0/ if and only if p=q D p0=q0 .

A Montesinos link of length n is a link formed by connecting n rational tangles to
each other in a standard fashion. We denote such a knot by KŒp1=q1; : : : ;pn=qn� (see
Figure 3). In the special case where each pi D˙1, we have what is called a pretzel
knot. In this case, each tangle is just a strand of vertical twists, since 1=q has the
continued fraction expansion Œq�. It is easy to see that Montesinos links of length one or
two are the same. These links are called 2–bridge links, and will be denoted KŒp=q�,
where p=q is the rational number describing the tangle twists.

Figure 3: Above we have the Montesinos knot KŒ1=3; 1=4;�3=5� and the
2–bridge knot KŒ43=95� (with continued fraction Œ2; 4; 1; 3; 2�)

Montesinos links of length three are determined up to the same relations as Seifert
fibered spaces, but when n>3, the cyclic order of the strands also matters. In either case,
we can normalize the invariants and write KŒbIp1=q1; : : : ;pn=qn� where 0< pi < qi

and b 2Z. In fact, we have the following proposition, which follows from Theorem 2.5
below.

Proposition 2.3 The branched double cover of S3 along KŒp1=q1; : : : ;pn=qn� is the
Seifert fibered space S2.p1=q1; : : : ;pn=qn/.

We remark that it is often helpful to allow pi=qi to be zero, 1 or 1 for some i , in
either the notation for Montesinos links or Seifert fibered spaces. For our purposes,
this will only happen when the length n is three or less, and the result should be clear
from the context. For example, KŒ1=3;�1=2; 1=0� is the connected sum of a trefoil
knot and a Hopf link, KŒ1=3; 2=7; 0�DKŒ2=13�, and S2.2; 3; 1/ is a lens space.
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2.5 Seifert fibered surgery on knots with symmetries

In this section, we recall some known results about Seifert fibered surgery on knots
that admit a strong inversion, have period two, or both. In what follows, let K � S3 be
a knot and let 'W S3! S3 be a nontrivial orientation preserving involution such that
'.K/DK and C' D Fix.'/ 6D∅. By the positive solution to the Smith conjecture, C'
is an unknotted circle in S3 ; see Morgan and Bass [34].

Definition 2.4 If C' \K 6D ∅, then ' is called a strong inversion of K and K is
called strongly invertible. In this case, C'\KD 2 points and ' reverses the orientation
of K .

If C'\KD∅, then we say ' is a cyclic symmetry of order 2 and that K has period 2.

In this paper, we will only be interested in strong inversions and cycles of period 2. For
a more general treatment of Dehn surgery on knots with symmetries; see Motegi [36].

Figure 4: The knot P .3; 3;�6/ with its three symmetries and the resulting quotients

First, let us consider strongly invertible knots. Let K � S3 be a knot with a strong
inversion ' . Then ' restricts to an involution of the knot exterior, MK , and the
quotient of MK by the action of ' is a tangle, TK . The well-known Montesinos trick
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gives a correspondence between Dehn filling on MK and rational tangle filling on TK .
For details, see [19]. The following is originally due to Montesinos [33].

Theorem 2.5 Let T be a marked tangle. Then zT .r=s/Š CT .�r=s/ .

Let Lr=s D TK .�r=s/, so Lr=s is a knot or a two-component link in S3 with K.r=s/

as the double cover of S3 , branched along Lr=s . Suppose that K.r=s/ is a small Seifert
fibered space. Let x'W K.r=s/! K.r=s/ be the involution induced by extending '
across the filling solid torus. Then K.r=s/=x' D S3 .

If K is not a trefoil knot, then we can assume that x' is fiber-preserving [36]. Let
� W K.r=s/ ! S2 be the Seifert fibration of K.r=s/. Let Cx' D Fix.x'/. If each
component of Cx' is a fiber in K.r=s/, then K.r=s/nCx' admits a Seifert fibered
structure. Since this structure is compatible with x' , S3nLr=s admits a Seifert fibered
structure. In other words, Lr=s is a Seifert link.

Let y'W S2 ! S2 be the induced involution of the base orbifold. If one component
of Cx' is not a fiber in K.r=s/, then y' is reflection across the equatorial circle, Cy' ,
of S2 and all of the cone points lie on Cy' [36]. In this case, Lr=s D Cx'=x' is a length
three Montesinos link; see Miyazaki and Motegi [32]. So, we have the following, as
stated in [22].

Proposition 2.6 Let K be a strongly invertible hyperbolic knot, and let r=s 2 Q.
Let Lr=s be the link obtained by applying the Montesinos trick to K.r=s/. If K.r=s/

is a small Seifert fibered space with base orbifold S2, then Lr=s is either a Seifert link
or a Montesinos link.

Seifert links are well understood; see Burde and Murasugi [8] and Eisenbud and
Neumann [14]. In the present paper, we will only be concerned with Seifert knots and
Seifert links with two components, in which case we have the following.

Lemma 2.7 Let L� S3 be a Seifert link with at most two components. Then L is
equivalent to one of the following:

(a) A torus knot.

(b) A two-component torus link.

(c) A two-component link consisting of a torus knot together with a core curve of
the torus on which it lies.
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Note that, in particular, every component of a Seifert link is a torus knot or an unknot.

Now let K � S3 be a knot with a cycle symmetry ' of order 2. Suppose K.r=s/ is
a Seifert fibered space with base surface S2, and let x' be the extension of 'jMK

to K.r=s/. Then, K.r=s/ has a x'–invariant Seifert fibered structure [32]. Let
Cx' D Fix.x'/, and let Lr=s D Cx'=x' .

If r is odd, then Lr=s is a knot. If r is even, then Lr=s is a link. Let K' D K=' .
We call K' the factor knot of K (with respect to ' ), and let C' D Fix.'/. In the
case where r is odd, we can view Lr=s as the image of C'=' after r=2s surgery
on K' , so Lr=s is a knot in K'.r=2s/. If r is even, then Lr=s is the image of C'='

in K'.r=2s/ together with the core of the surgery torus, so Lr=s is a link in K'.r=2s/.

Let � W K.r=s/ ! S2 be a Seifert fibering of K.r=s/, and let y' be the induced
involution of S2, with fixed point set Cy' . In [32], it is shown that if K is not a torus
knot or a cable of a torus knot, then no component of Cx' is a fiber in K.r=s/ and Cy' is
the equatorial circle in S2. This implies that y' is reflection across the equator. Since x'
is fiber preserving, y' must pair up cone points in the northern hemisphere with cone
points in the southern hemisphere. Let k denote the number of cone points in the
northern hemisphere. For our purposes, k D 0 or k D 1. From [32], we have the
following.

Lemma 2.8 (a) If k D 0, then K'.r=2s/DK.r=s/=x' Š S3.

(b) If k D 1, then K'.r=2s/DK.r=s/=x' is a lens space.

Cy'Cy'

Figure 5: Possible configurations of cone points in the base sphere of a small
Seifert fibered space

Note that S3 and S2�S1 are not lens spaces. These facts can be helpful in obstructing
Seifert fibered surgeries, based on the knot type of K' . Throughout, U will represent
the unknot.
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Corollary 2.9 Let K � S3 be a period 2 hyperbolic knot with factor knot K' .
Suppose K.r=s/ is a small Seifert fibered space.

(a) If K' D Tp;q and r is even, then �.pq; r=2s/D 1, so jr � 2spqj D 2.

(b) If K' D Tp;q and r is odd, then �.pq; r=2s/D 1, so jr � 2spqj D 1.

(c) If K' D U and k D 0, then jr j � 2.

(d) If K' D U and k D 1, then jr j � 3.

Proof If K.r=s/ is a small Seifert fibered space, then K'.r=2s/ is a lens space
if k D 1 and is S3 if k D 0. Such surgeries on U and Tp;q are well understood
(see [19]).

2.6 Some exceptional Dehn surgery results

There are many important results in the study of exceptional Dehn surgery that give
limitations on which slopes can be exceptional for a hyperbolic knot K . Below, we
present some of the results that will be used in this paper. First, we state an important
result of Lackenby and Meyerhoff [27] that tells us that exceptional fillings are always
“close” to each other.

Theorem 2.10 Suppose M is a hyperbolic manifold with torus boundary component
T � @M and that ˛ and ˇ are exceptional filling slopes on T . Then �.˛; ˇ/� 8.

The distance bound of 8 above can be improved if one specifies the type of space for
each of M.˛/ and M.ˇ/. Let S and T represent the sets of reducible and toroidal
manifolds, respectively. Let L represent the set of lens spaces. Let �.C1;C2/ represent
the largest possible value of �.˛; ˇ/ such that there exists a hyperbolic manifold M

with M.˛/ a manifold of type C1 and M.ˇ/ a manifold of type C2 (we will always
consider manifolds with one boundary component, though the theory is more general).
The following table presents the known values of �.C1;C2/.

S T S3 L

S 1 3 ? 1

T 8 2 ?

S3 0 1

L 1

Notice that in the case of .S;S3/, this is equivalent to the cabling conjecture, and
in the case of .T;L/, the bound is known to be either 3 or 4; see Lee [28]. For a
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more thorough discussion of these bounds, the manifolds achieving them, and precise
references, see Gordon [18; 19].

Suspiciously absent from the above table are bounds on the distance between a (non-
lens space) small Seifert fibered surgery and the other types of exceptional surgeries.
These seem to be the most difficult cases to analyze, and, in particular, it is not known
whether or not the distance 8 bound of Lackenby and Meyerhoff can be improved in
most of the cases (though, see Theorems 2.11 and 2.12 below).

The following is a consequence of Boyer, Gordon and Zhang [5, Corollary 7.6, Propo-
sition 14.1 and Proposition 16.1].

Theorem 2.11 For any hyperbolic manifold M, if M.˛/DA[T 2 B is toroidal with
one of A or B non-Seifert fibered, then for any slope ˇ such that M.ˇ/ is a Seifert
fibered space, �.˛; ˇ/� 6.

Since many of the pretzel knots studied below are genus one, it will be helpful for us
to have the following result, which gives particularly strong bounds on small Seifert
fibered surgery slopes of such knots; see Boyer, Gordon and Zhang [4].

Theorem 2.12 Let K be a hyperbolic knot of genus one such that K.0/ is a non-
Seifert fibered toroidal manifold. If K.˛/ is a small Seifert fibered space for some
˛ 2Q, then �.˛; 0/� 3.

2.7 Montesinos links, torus links and invariants from knot theory

In this section we give a very brief overview of some knot and link invariants and how
they will be used to obstruct the quotient links encountered in this paper from being
Seifert links or Montesinos links. We will present a series of criteria that will applied
in each of the following sections.

A link is called k–almost alternating if it has a k–almost alternating diagram, but no
.k � 1/–almost alternating diagram, ie, if it has a diagram D such that changing k

crossings of D gives a new diagram that is alternating, but no such diagram where the
same result is achieved after k � 1 crossing changes.

Recall that the Khovanov homology, Kh.L/, is a bigraded abelian group associated
to L, and that the width of Kh.L/ is the number of diagonals that support a nontrivial
element in Kh.L/. Denote this width by jKh.L/j. Then we have the following theorem
(see, for example, Asaeda and Przytycki [2]).

Theorem 2.13 Let L be a nonsplit k–almost alternating link. Then jKh.L/j � kC 2.
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It has been shown by Abe and Kishimoto [1] that any Montesinos link is either alter-
nating or 1–almost-alternating, so we have our first obstruction criterion.

Criterion 2.14 If jKh.L/j � 4, then L is not a length-three Montesinos link.

When we encounter links L that do not satisfy this criterion, then we will use the
following program to show they are not a Montesinos link. We will generate a list of
all Montesinos links whose crossing numbers are compatible with that of L (ie, less
than the number of crossings in a diagram of L). (Note that the crossing number of a
Montesinos link is well understood; see Lickorish and Thistlethwaite [30].) We will
then check this list for elements that, if L is a knot, have the same determinant, Alexan-
der polynomial, Jones polynomial, Khovanov homology, and, if need be, Kauffman
polynomial or HOMFLYPT polynomial, and that, if L is a 2–component link, have the
same determinant, Jones polynomial, Khovanov homology, and if need be, Kauffman
polynomial or HOMFLYPT polynomial. We will refer to this method as Method 1.
This very large number of computations was performed using the KnotTheory package
for Mathematica R [43].

Examples of the Mathematica files used to implement Method 1 and to calculate knot
invariants throughout this paper are available on the author’s webpage, and further
information will be provided upon request.

Next, we observe that if K is a length three Montesinos link, then it is the union
of 2–bridge knots and unknots. If K is the union of two unknots, then it has the
form KŒp1=q1;p2=q2;p3=q3�, where each pi is even. If one component of K is the
2–bridge knot KŒp=q�, then K has the form KŒp1=q1;p2=q2;x=q� with q1 and q2

even and with x D p or xp , where p xp � 1 .mod q/. If we consider the unknot a
2–bridge knot, then we have the following criterion.

Criterion 2.15 If K is a 2–component link such that one component is not a 2–bridge
knot, then K is not a Montesinos link.

Using Method 1 and Criteria 2.14 and 2.15, any knot or link we encounter that we
claim is not a Montesinos knot or link is shown to not be a Montesinos knot or link.

Now we recall some facts about torus knots (see, for example, Cromwell [10]).
Let T .p; q/ be the (p; q/–torus link for p> q� 2, where T .p; q/ is a knot if and only
if p and q are coprime. Then, T .p; q/ is a positive link, ie, has a diagram with all pos-
itive crossings. Furthermore, in the case of a torus knot, 2g.T .p; q//D .p�1/.q�1/,
where g.K/ denotes the genus of the knot K , and det.T .p; q// D p if q is even,
and 1 if both p and q are odd, where det.L/ denotes the determinant of the link L.
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Let s.K/ denote the Rasmussen invariant of K , as defined in [41], where the following
was shown.

Proposition 2.16 If K is a positive knot, then s.K/D 2g.K/.

Recall that 2g.K/ is bounded below by the breadth of the Alexander polynomial,
which we denote br.�K .t//. This gives us the following criterion.

Criterion 2.17 If s.K/ < br.�K .t// or 2g.K/ 6D s.K/, then K is not a torus knot.

We also have, by our discussion above, the following.

Criterion 2.18 If det.K/ > s.K/C 1, then K is not a torus knot.

If we consider the unknot a torus knot, then each component of a two component
Seifert link is a torus knot, so we have the following criterion.

Criterion 2.19 If L is a two-component link such that a component is not a torus
knot, then K is not a Seifert link.

In what follows, Criteria 2.17, 2.18 and 2.19 often suffice to prove that a link is not a
Seifert link. In the few cases where they fail, further argument is given to accomplish
the feat.

3 The case of .2 ; jq2j; jq3j/

Let Kp;q be the hyperbolic pretzel knot P .�2; 2pC 1; 2qC 1/ (see Figure 6). Since
Ichihara and Jong have shown that Kp;p admits no small Seifert fibered surgery [24],
and by interchanging p and q if necessary, we may assume that jqj> jpj if p and q

have the same sign and p > 0 otherwise. Let ˛r D 4.pC qC 1/� r , for r 2Q.

Note that ˛r is chosen this way so that ˛r –surgery on Kp;q will correspond with
r –filling of Tp;q . This becomes clear if one carefully follows through the process of
obtaining Tp;q from Kp;q by applying the Montesinos trick and isotoping.

Our first result is the following.

Theorem 1.1 The hyperbolic pretzel knot P .�2; 2pC1; 2qC1/, with the conventions
discussed above, admits a small Seifert fibered surgery if and only if p D 1, in which
case it admits precisely the following small Seifert fibered surgeries:

� P .�2; 3; 2qC 1/.4qC 6/D S2.1=2;�1=4; 2=.2q� 5//

� P .�2; 3; 2qC 1/.4qC 7/D S2.2=3;�2=5; 1=.q� 2//
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qp2qC12pC1

Figure 6: The pretzel knot P .�2; 2pC 1; 2qC 1/ , the quotient tangle Tp;q

and the pretzel knot P .�2; 5;�3/ , shown as the boundary of a punctured
Klein bottle

We remark that the existence of these exceptional surgeries was previously known; see
Eudave-Muñoz [15].

The key fact in our method of analyzing these knots is that they are strongly invertible.
Let Tp;q be the tangle obtained by performing the Montesinos trick (see Figure 6).
We now have the advantage of viewing the surgery space Kp;q.˛r / as the branched
double cover of S3 along Tp;q.r/. It is easy to verify the two classes of exceptional
surgeries in Theorem 1.1 by noticing that T1;q.1/ and T1;q.2/ are the Montesinos links
KŒ2=3;�2=5; 1=.q� 2/� and KŒ1=2;�1=4; 2=.2q� 5/�, respectively; see Figure 7.

The proof that the Kp;q admits no other small Seifert fibered surgeries is accomplished
by the following two lemmas and the techniques of Section 2.7.

Lemma 3.1 If Kp;q.˛r / is a small Seifert fibered space for p 6D 1, then jpj � 8

and jqj � 8.

Lemma 3.2 If K1;q.˛r / is a small Seifert fibered space for r 62 f1; 2g, then jqj � 8.

Before we prove these lemmas, we should remark on the possible surgery slopes ˛r . We
notice that each knot Kp;q bounds a punctured Klein bottle at slope ˛0 (see Figure 6).
It follows that Kp;q.˛0/ is toroidal. By Theorem 2.10, it follows that if Kp;q.˛r / is a
small Seifert fibered space, then �.˛r ; ˛0/� 8.

In many cases, it should be possible to reduce this distance bound to 5, but this is
dependent on work in progress by Boyer, Gordon and Zhang [5]. However, using
Theorem 2.11, we can fairly easily show the following lemma.

Lemma 3.3 If Kp;q.˛r / is a small Seifert fibered space, and jpj; jqj � 4, then
�.˛r ; ˛0/� 6.
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qq

q -2q -2

q

o o

Figure 7: The tangle T1;q , along with fillings T1;q.1/ and T1;q.2/ and the
respective Montesinos links that result after isotopy: KŒ2=3;�2=5; 1=.q�2/�

and KŒ1=2;�1=4; 2=.2q� 5/�

Of course, if r is integral, this means that jr j � 6, and if we have r=s 2Q, we have
that j4.pC qC 1/s� r j � 6.

Proof of Lemma 3.3 We begin by noticing that Kp;q.˛0/ D D2.2; 2/ [T 2 Xp;q

(see Figure 8). Under the hypotheses of the lemma, we will show that Xp;q is not
a Seifert fibered space, so Theorem 2.11 gives us the desired bound. If p D 1, then
X1;q DD2.3; jq� 1j/, and Theorem 2.11 does not apply.

Consider the following fillings on Xp;q (see Figure 9):

Xp;q.0/DL.pC qC 1; 1/

Xp;q.1/DL.4pq� 2p� 2q� 3; 2pq� q� 2/

Xp;q.�1/D S2.1=3; 1=.p� 1/; q=.q� 1//

If Xp;q is a Seifert fibered space, then it has, for its base surface, either D2 or M 2 (the
Möbius band). We will make use of Lemma 2.2. If Xp;q is Seifert fibered over the disk
with more than two exceptional fibers it cannot have lens space fillings. If Xp;q has the
form of D2.a/, then it cannot have fillings with three exceptional fibers, so Xp;q.�1/

must be a lens space. This implies that p D 2 or q D 2. If Xp;q has base surface M 2,
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pp qC1q

Figure 8: The link Tp;q.0/ , whose branched double cover corresponds to
˛0 –surgery on Kp;q

p qC1 p qC1 p qC1

pCqC1

�q

q�1

p�1p�1

o o o

Figure 9: The three fillings, 0, 1 and 1, on Tp;q used to show that Xp;q is
not Seifert fibered

then it can only have lens space fillings or fillings with at least three exceptional fibers,
two of which have multiplicity two. Thus, we must have p; q D 2; 3. So, assume
Xp;q DD2.a; b/.

In this case, Xp;q has one reducible filling at slope  and the property that any lens
space filling must be at distance one from  . By considering the three fillings given
above, it follows that  D 0;1 or ˙1. If  D�1, then Xp;q.�1/ must be reducible,
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so p D 1 or q D 1, both of which are not allowed values. If  D 0 or if  D1, then
Xp;q.�1/ must be a lens space, so p D 2 or q D 2. Finally, if  D 1, then the filling
Xp;q.�1/ is at distance two from the reducible filling, so it must have an exceptional
fiber of multiplicity 2. It follows that p D 3 or q D 3.

We remark that the lemma could be strengthened to say that Xp;q is non-Seifert fibered
if and only if p 6D 1 by showing that Xp;q.1/ is neither reducible, a lens space, or a
small Seifert fibered space with finite fundamental group, as would need to be the case
given the different Seifert fibered structures Xp;q might have. However, we will not
need anything stronger than what we have proved.

Proof of Lemma 3.1 Suppose that p 6D 1 and remove a ball around the q–twists
of Tp;q.r/ to form the tangle Sp;r (see Figure 10). Let Np;r denote the branched
double cover of Sp;r . First, we will show that Np;r is hyperbolic.

We begin by showing some interesting fillings of Np;r (see Figure 10):

Np;r .�1=q/DKp;q.˛r /

Np;r .0/DD2.1=2;�1=2/[T 2 D2.�1=2;p=.2p� 1//

Np;r .1/D T .2; 2pC 3/.˛r /D S2.�1=2;�1=.r C 2/;�2=.2pC 3//

Np;r .�1/DKŒ�2p=.6pC 1/�.˛r /

We remark Np;r .1/ and Np;r .�1/ correspond to (˛r )-surgery on Kp;0 and Kp;�1 ,
respectively. The latter is a 2–bridge knot with no exceptional fillings (if p 6D 1), ac-
cording to the classification by Brittenham and Wu ([7]). Thus, Np;r .�1/ is hyperbolic
if p 6D 1.

Now, suppose that Np;r is not hyperbolic, so it must be reducible, @–reducible, Seifert
fibered, or toroidal by geometrization. However, Np;r cannot be reducible, since it has
two distinct irreducible fillings at slopes 0 and �1 (this follows from the solution to
the knot complement problem by Gordon and Luecke [20]). Similarly, it cannot be
Seifert fibered, since it has a hyperbolic filling at slope �1. It follows that Np;r cannot
be @–reducible, since the only irreducible, @–reducible manifold with torus boundary
is Seifert fibered, namely, the solid torus.

Finally, suppose that Np;r is toroidal. If any essential torus were nonseparating, then
all fillings of Np;r would contain an essential nonseparating torus, which is false here.
Suppose any essential torus is separating, and decompose Np;r along an outermost
such torus, F , so that Np;r DA[F B with A atoroidal and @Np;r �B . If we assume,
for a contradiction, that Np;r .�1=q/ is small Seifert fibered for some q with jqj> 8,
then we have that F compresses in B.�1/, B.1/, and B.�1=q/. It follows, from
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Figure 10: The tangle Sp;r , along with two fillings, Sp;r .0/ and Sp;r .1/ ,
and their equivalents after isotopy

Lemma 2.1 that B is a cable space with cabling slope  D 0. But Np;r .0/ is neither
reducible nor a lens space, so we reach a contradiction. It follows that Np;r is not
toroidal, and must be hyperbolic.

Since Np;r is hyperbolic, and Np;r .1/ is exceptional, it follows that for any excep-
tional filling Np;r .�1=q/, �.1;�1=q/� 8, by Theorem 2.10. It follows that jqj � 8,
as desired. A similar argument shows that jpj � 8, as well.

Proof of Lemma 3.2 We will proceed as in the lemma above by analyzing the tangle
Sr D S1;r formed by removing a ball containing the q–twist region of knot T1;q.r/.
We will show that the branched double cover Nr of Sr is hyperbolic.

Consider the following fillings on Nr (see Figure 11). Assume for a contradiction that
jqj � 9 and Kp;q.˛r /DNr .�1=q/ is a small Seifert fibered space. Then

Nr .�1=q/DKp;q.˛r /;

Nr .0/D S2.1=2;�1=2; 1=.2� r//;

Nr .1/D S2.1=2;�2=5;�1=.r C 2//;
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Nr .�1/D S2.1=3;�1=4;�1=r/;

Nr .�1=2/D S2.�1=3; 2=5;�1=.r � 1//;

Nr .1/DKŒ�2=7�.˛r /:

It is clear from this that Nr is irreducible (again, by [20]), since it has distinct irreducible

r r rr

�1
r�2

�1
rC2

�1
r

�1
r�1

o o o o

Figure 11: Four fillings, 0, 1 , 1 and 1/2, of the tangle Sr that help to prove
that Nr is hyperbolic if r 6D 0; 1; 2

fillings, for any value of r . Suppose that Nr is Seifert fibered. Since, for all values
of r , Nr has fillings that are Seifert fibered with base surface S2, but do not contain
a pair of exceptional fibers of multiplicity 2, the base surface of Nr is orientable,
ie, D2. A Seifert fibered space with connected boundary with a small Seifert fibered
filling must have 2 or 3 exceptional fibers. Furthermore, since no slope is distance one
from 0, 1, and �1, Nr has 2 exceptional fibers, ie, Nr DD2.a; b/.

By the classification of exceptional surgeries on 2–bridge knots [7], Nr .1/ is excep-
tional if and only if ˛r 2 f0; 1; 2; 3; 4g. In this case, pD 1 and qD�1, so ˛r D 4� r

and this is the equivalent to r 2 f4; 3; 2; 1; 0g. However, we already know that if
r D 0; 1; 2, then Nr .�1=q/ is exceptional, so we only need to consider r D 3; 4.

If r D 3, then, by considering N3.1/, we see that aD 5, and by considering N3.�1/,
we see that a cannot be 5. If r D 4, then by considering N4.�1=2/, we see that aD 3,
and by considering N4.1/, we see this is impossible. It follows that Nr cannot be
Seifert fibered if r 62 f0; 1; 2g.

It follows that Nr is non-Seifert fibered and, thereby, @–irreducible. If Nr were
toroidal, since it has atoroidal fillings at distance two, it must be a cable space, by
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Lemma 2.1. However, the only cabling slope  that satisfies �.;�1=2/ D 1 and
�.;1/D 1 is  D 0, in which case we must have Nr .0/ be reducible or a lens space.
So, we must have r D 3 and N3.0/ is a lens space. Suppose N3 DA[T 2 B with A

atoroidal and @N3 � B .

Then, because B.˛/DS1�D2 for ˛ 2 f�1=q;1;�1;�1=2; 1g each of these fillings
induces a filling �˛ on A. Since B.0/D .S1 �D2/ # L for some lens space L, and
since N3.0/ is a lens space, it follows that A.�0/D S3 , so A is a knot complement.
By construction, A is atoroidal. If A were Seifert fibered, then, by considering
A.�1/DN3.1/ and A.��1/DN3.�1/ just as before, we reach a contradiction.

It follows that Nr must be hyperbolic (for r 62 f0; 1; 2g). An application of Theorem 2.10
gives us that �.�1=q;1/ � 8 if Nr .�1=q/ is a small Seifert fibered space, which
proves the lemma.

3.1 Completing the proof of Theorem 1.1

The work above leaves us with a finite list of knots and links Lp;q;r D Tp;q.r/ whose
branched double covers might be Seifert fibered. We must consider nonintegral r if
and only if p and q are both positive. In the event of a nonintegral slope r=s , we may
assume jsj�8 by Theorem 2.10, since 1=0 is an exceptional filling. By Proposition 2.6,
we must show that each of these links is not a Montesinos link or a Seifert link.

Method 1 (see Section 2.7) can be used to show that none of the Lp;q;r are Montesinos
knots or links, though it should be noted that the Kauffman polynomial must be em-
ployed in a handful of cases, including distinguishing L1;4;�1 from KŒ1=3; 2=5;�2=5�

and some nonintegral cases, and that the HOMFLYPT polynomial must be employed
to distinguish L1;6;�2 from KŒ�1=4; 1=6; 2=7�. In other words, these pairs are not
distinguished by their Alexander polynomial and Khovanov homology alone.

Now, consider when Lp;q;r is a link. Then it is the union of the unknot and the
2–bridge knot KŒn=m�, where nD 2pq�p�2 and mD 4pq�2p�2q�3. KŒn=m�

is a torus knot only if p D 1 and q D 3 or 4. In the latter case, L1;4;r is the
union of a trefoil and an unknot. If this link is to be a Seifert link, the unknotted
component must lie as the core of the torus upon which the trefoil sits. However, the
link just described can be distinguished from L1;4;r for all values of r using the Jones
polynomial. Concerning L1;3;r , exceptional surgeries on the knot P .�2; 3; 7/ are
previously well-understood [15].

It only remains to show that Lp;q;r is never a torus knot. If p 6D 1, this is accomplished
by applying Criterion 2.17. For p D 1, Criterion 2.18 suffices.
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4 The case of .3; 3; jq3j/

We now turn our attention to pretzel knots P .q1; q2; q3/ such that jq1j D jq2j D 3.
The case of P .3; 3; q3/, where q3 > 0 was handled by Ichihara and Jong in [22]. We
break up the remaining cases as follows:

(1) P .3;˙3;�2m/ with m� 1

(2) P .3; 3; 2mC 1/ with m� �2

(3) P .3;�3; 2mC 1/ with m� �3 or 2�m

(4) P .3; 3; 2m;�1/ with 2�m

In Cases (2) and (3), it is only necessary to consider integral surgery slopes by
Theorem 1.5. Our main result is the following.

Theorem 1.2 Hyperbolic pretzel knots of the form P .3; 3;m/ or P .3; 3; 2m;�1/

admit no small Seifert fibered surgeries. Pretzel knots of the form P .3;�3;m/, with
m> 1, admit small Seifert fibered surgeries precisely in the following cases:

� P .3;�3; 2/.1/D S2.1=3; 1=4;�3=5/

� P .3;�3; 3/.1/D S2.1=2;�1=5;�2=7/

� P .3;�3; 4/.1/D S2.�1=2; 1=5; 2=7/

� P .3;�3; 5/.1/D S2.2=3;�1=4;�2=5/

� P .3;�3; 6/.1/D S2.1=2;�2=3; 2=13/

4.1 Case (1)

Let K˙m D P .3;˙3;�2m/. To avoid the redundancy of mirrors, we can restrict to
m> 0. Recall that these knots can only admit nonintegral small Seifert fibered surgeries
in the case of KCm . Our first result is half of Theorem 1.2 (up to mirroring).

Proposition 4.1 Let K˙m D P .3;˙3;�2m/ with m > 0 be hyperbolic. Then, K˙m
admits no small Seifert fibered surgeries, except in the following three instances:

� P .3;�3;�2/.�1/D S2.2=3;�1=4;�2=5/

� P .3;�3;�4/.�1/D S2.1=2;�1=5;�2=7/

� P .3;�3;�6/.�1/D S2.1=2;�1=3;�2=13/
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(a) (b)

Figure 12: (a) The knot K�m D P .3;�3;�2m/ (shown here with m D 3)
bound punctured Klein bottles; (b) The tangle T C

3

As in Section 3, we will proceed in this case by first limiting the possible surgery
slopes, then limiting the size of m, then using techniques from Section 2.7 to check
that small values of m and slopes satisfying the relevant bound do not produce small
Seifert fibered spaces (except for the three noted cases). Let K˙m D P .3;˙3;�2m/

with m > 0. We begin by observing that K˙m bounds a punctured Klein bottle. Let
˛Cr D 12� r and ˛�r D�r (again, these are chosen so that K˙m.˛r / corresponds to
r –filling on the corresponding tangle). Then this Klein bottle has boundary slope ˛˙

0

(see Figure 12(a)). Since surgery along this slope produces a toroidal manifold (as in
the previous section), any exceptional surgery slope for K˙m must be close to ˛˙

0
. In

particular, �.˛˙r ; ˛
˙
0
/� 8.

Next, we remark that K˙m is strongly invertible. Let T ˙m be the resulting quotient
tangle, and let L˙m;r D T ˙m .r/.

Lemma 4.2 Suppose K˙m.˛r / is a small Seifert fibered space. Then, m� 8.

Proof Let L˙m;rDT ˙m .r/ and form the tangle S˙r by removing a 3–ball containing the
m–twist box of L˙m;r (see Figure 13). Let M˙

r D
zS˙r . Of course, S˙r .�1=m/DL˙m;r ,

and K˙m.˛r /DM˙
r .1=m/. Assume, for a contradiction, that M˙

r .1=m/ is a small
Seifert fibered space for some m� 9.

Consider the following fillings of M˙
r , which we can easily visualize and verify by

looking at the corresponding rational tangle fillings of S˙r (see Figure 14):

M˙
r .1=m/D small Seifert fibered space (by assumption)

M�
r .0/D .S

1
�S2/ # L.r; 1/

M˙
r .1/DD2.2; 3/[T 2 D2.2; 3/
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�m

r r

Figure 13: The tangle S�r and the link L�m;r

As was argued in Section 3, M˙
r is irreducible (it has distinct irreducible fillings),

non-Seifert fibered (it has a non-Seifert fibered, nonreducible filling), and @–irreducible
(it is irreducible and not S1 �D2 ). Assume that M�

r is toroidal, so M�
r DA[F B

with A atoroidal and @M�
r � B .

Suppose that F compresses in M�
r .1/. Then, since �.1=m;1/D jmj � 2, B is a

cable space with cabling slope  satisfying �.;1/D�.; 1=m/D 1. It follows that
 D a2Z, and jma�1j D 1. Since jmj � 9, a must be zero, so  D 0. It follows that
B.0/D .S1 �D2/ # L, where L is a lens space, and B.1/D B.1=m/D S1 �D2.
Let �0; �1 and �1=m , be the slopes of the induced slopes of the meridian of B

after the above fillings are performed, so M�
r .˛/ D A.�˛/ for ˛ D 1 or 1=m,

and M�
r .0/ D A.�0/ # L. Since L has finite fundamental group, L D L.r; 1/ and

A.�0/D S1 �S2.

Now, since we have �.�1; �0/� 4 (by Lemma 2.1), A cannot be hyperbolic, because
�.S2;T 2/ D 3. Since A was assumed to be atoroidal, it follows that A must be
Seifert fibered. But A.�1/ is irreducible and not Seifert fibered, so this cannot be.
This contradiction means that F cannot compress in M�

r .1/.

So, assume F remains incompressible in M�
r .1/. If jr j D 1, then M�

1
.0/DS1�S2.

But since F is the unique incompressible torus in a non-Seifert fibered graph manifold,
ADD2.2; 3/. In particular, M�

1
.0/DA.�0/D S1 �S2 is not a possible filling of a

trefoil complement.

If jr j > 1, then since F compresses in fillings at slopes 1=m and 0, which are at
distance one, by Lemma 2.1, B is either a cable space or the exterior of a braid in a
solid torus. Since M�

r .0/ D .S
1 �S2/ # L.r; 1/, either B.0/ or A.�0/ is S1 �S2.

However, this is not possible for such spaces B , nor is it possible for ADD2.2; 3/.

Thus, M�
r is not toroidal, and so it must be hyperbolic. So, by Theorem 2.11,

�.1=m;1/D jmj � 8, a contradiction that yields the desired result. The reasoning
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is very similar to show that MC
r must be hyperbolic as well, noting that MC

r .0/D

D2.2; 2/[T 2 D2.2; r/ is toroidal for all r , and MC
r .1/D S2.1=3;�1=4;�1=r/.

o o

r

r

r r

Figure 14: Two interesting fillings of S�r

4.2 Completing the proof of Proposition 4.1

By our work above, we can conclude that if P .3;˙3;�2m/.˛˙r / with m> 0 admits a
small Seifert fibered surgery, then jr j; jmj � 8. Let L˙m;r D T ˙m .r/. We assume that r

is integral for L�m;r .

First, consider the links L˙m;r , which are the union of an unknotted component with
a component J˙m DKŒ2=3;˙2=3;�1=2m� (to see this, consider L˙

m;0
, or compare

with Figure 26). Because J˙m is not a torus knot or a 2–bridge knot for any m, by
Criteria 2.15 and 2.19, we can conclude that L˙m;r is never a 2–component Seifert link
or Montesinos link.

When L˙m;r is a knot, we see that 2g.L˙m;r / 6D s.L˙m;r /, so, by Criterion 2.17, L˙m;r
is never a torus knot. To see that L˙m;r is never a Montesinos knot, we implement
Method 1 (see Section 2.7), accounting for r nonintegral when necessary.

4.3 Case (2)

Next, we will consider hyperbolic pretzel knots of the form Km D P .3; 3; 2mC 1/.
Here, Km is hyperbolic if m 6D �1 or 0, and if m is positive, then Ichihara and Jong

Algebraic & Geometric Topology, Volume 14 (2014)



Small Seifert fibered surgery on hyperbolic pretzel knots 467

have shown that Km admits no Seifert fibered surgeries [22]. The case when mD�2

will be covered in Section 4.5, so assume m � �3. In this section, we prove the
following.

Proposition 4.3 A pretzel knot of the form P .3; 3; 2mC 1/ with m� �3 admits no
small Seifert fibered surgeries.

As before, we will first restrict the possible values of m for which Km might admit a
Seifert fibered surgery, then rule the remaining cases out by computer. First we note
that Km has genus one, so by Theorem 2.12, jr j � 3 (see Figure 15). Since the three
pretzel parameters are all odd, Km cannot admit nonintegral Seifert fibered surgeries
by Theorem 1.5. Let ˛r D�r , so that Km.˛r /DKm.�r/ will correspond with Tm.r/

(the rationally filled quotient tangle), as before.

Figure 15: The left figure above shows the pretzel knot P .3; 3; 2mC 1/ as
the boundary of a punctured torus, while the right one exhibits the strong
inversion of P .3; 3; 2mC 1/ given by rotation. Here, mD�3 .

Lemma 4.4 If m� �10, then Km.r/ is not a small Seifert fibered space.

Proof In a slight variation of the preceding cases, these knots possess a strong inversion
that is a half rotation of the plane. Let Tm.r/ be the resulting quotient link, as before
(see Figure 16). Again, we form the tangle Sr by removing a ball containing the
.mC 1/–twist region (see Figure 17). If we denote by Nr the branched double cover
of S3 along Sr , and assume for a contradiction that Km.r/ is a small Seifert fibered
space for some m� �10 and some r , then we have the following fillings of Nr (see
Figure 17). Note that Nr .1/D P .3; 3;�1/.r/, so it is simply r –surgery on the left
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handed trefoil:

Nr .�1=.mC 1//D small Seifert fibered space (by assumption)

Nr .0/D non-Seifert fibered toroidal space

Nr .1/D S2.�1=2; 1=3;�1=.r C 6//

rC6

Figure 16: The figures above illustrate how to obtain the quotient tangle Tm

by applying the Montesinos trick to the strong inversion of P .3; 3; 2mC 1/

given by rotating the knot � radians through its center. Here, mD�3 .

Since Nr has distinct irreducible fillings and a non-Seifert fibered irreducible filling, Nr

is irreducible, non-Seifert fibered, and @–irreducible. If Nr is toroidal, then since it has
atoroidal fillings at distance �.�1=.mC 1/;1/D jmC 1j> 2, it has as a subspace
a cable space with cabling slope  D 0. This means that Nr .0/ is either reducible
or a lens space, which is a contradiction. It follows that Nr is hyperbolic and that
�.�1=.mC 1/;1/D jmC 1j � 8, a contradiction that completes the proof.

4.4 Completing the proof of Proposition 4.3

Let Lm;r D Tm.r/ denote the quotient link described above, and note that it is only
necessary to consider r 2 Z here. If Lm;r is a link, then we see that it is the union
of a trefoil with the knot Jm D KŒ1=2; 1=3; .m� 1/=.2m� 3/�. Since m � �3, by
assumption, Jm is never a torus knot or a 2–bridge knot. It follows that Lm;r is never
a Seifert link or a Montesinos link, by Criteria 2.19 and 2.15, respectively.

When Lm;r is a knot, we see that jKh.Lm;r /j D 6 and s.Lm;r / < br.�Km;r
.t//,

so Lm;r cannot be a Montesinos knot or a torus knot by Criteria 2.14 and 2.17,
respectively.

4.5 Case (3)

We now consider hyperbolic pretzel knots Km D P .3;�3; 2mC 1/. We will allow m

to be positive or negative, which will allow us to restrict our analysis to positive surgery
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mC1

�6�r

rC6rC6rC6rC6

(d)

(c)

(b)(a) o

Figure 17: The first figures above, from left to right, are: (a) the link
Tm.�˛r / , (b) the tangle Sr , (c) the filling Sr .1/ , which is isotopic to
KŒ�1=2; 1=3;�1=.6Cr/� , and (d) the fillings Sr .0/ , whose link complement
contains an essential torus.

slopes (which must be integral if they are to be exceptional by Theorem 1.5). These
are genus one knots, so Km.r/ can only be exceptional if jr j � 3 by Theorem 2.12.
Thus, we assume r D 1; 2 or 3.

Figure 18: (a) The knot P .3;�3; 2mC 1/ (here, m D �3), shown as the
boundary of a punctured torus, (b) along with the axis of the cycle f of
period 2 of the knot and (c) the quotient knot Kf (here, the unknot), along
with the image of Fix(f ) in the quotient.

These knots are the first that we have encountered with no strong inversion (excepting
P .3; 3;�3//, so we cannot make use of the Montesinos trick. However, Km does have
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cyclic period 2, so we will study the space Km.r/ by studying the link .Lm/f , which
is the image of Fix.f /=hf i in .Km/f .r=2/ (recall this setup from Section 2.5); see
Figure 18.

Proposition 4.5 A hyperbolic pretzel knot of the form P .3;�3; 2mC 1/ admits a
small Seifert fibered surgery precisely in the following instances:

� P .3;�3; 3/.1/D S2.1=2;�1=5;�2=7/

� P .3;�3; 5/.1/D S2.�1=3;�1=4; 3=5/

Note that the first exceptional surgery was discovered by Song, and the second by
Mattman, Miyazaki and Motegi; see [31]. Again, our first task is to restrict the possible
values of m for which Km might admit a Seifert fibered surgery, then rule out the
remaining cases using knot invariants. We will handle the three cases r D 1; 2 and 3

separately below.

Lemma 4.6 The space P .3;�3; 2mC 1/.1/ is not a small Seifert fibered space for
jmj � 9.

Proof Assume that P .3;�3; 2mC1/.1/ is a small Seifert fibered space with jmj � 9.
As we have seen Km.1/ is the branched double cover of S3 along the knot .Lm/f .
We form the tangle S by removing the m–twist box of .Lm/f (see Figure 19). Let
Z D zS . Then, we have the following fillings:

Z.�1=m/D small Seifert fibered (by assumption)

Z.0/D S2
�S1

Z.�1=3/DD2.2; 3/[T 2 D2.2; 3/

Z.�1=2/D S2.3; 5; 7/

Z.�1/D S2.2; 5; 7/

Z.1/D S2.2; 3; 11/

It is worth noting that the last four fillings on the list correspond to exceptional fillings
of hyperbolic pretzel knots. P .3;�3; 7/.1/DZ.�1=3/, P .3;�3; 5/.1/DZ.�1=2/,
P .3;�3; 3/.1/D Z.�1/ and P .3;�3; 1/.1/D Z.1/. The lattermost is surgery on
the rational knot KŒ�2=9�; see Figure 20.

Because Z has distinct irreducible fillings as well as an irreducible non-Seifert fibered
filling (Z.�1=3/ is a non-Seifert fibered graph manifold), it is impossible for Z to be
Seifert fibered, reducible, or @–reducible. Assume that Z is toroidal, so Z DA[F B
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(c)(b)(a)

Figure 19: (a) The link .Km/f [Fix.f ) in the quotient, (b) the knot .Lm/f
resulting from .1=2/–surgery on the unknotted component and (c) the tangle
S formed by removing the m–twist area of the knot. Here, mD�3 .

oooo o

Figure 20: Above, we see five interesting fillings of S : S.1/ , S.1=2/ ,
S.1=3/ , S.0/ and S.1/ .

with A atoroidal and @Z � B . Then, since F compresses in Z.�1=2/, Z.�1/,
and Z.1/, and �.1=2;1/ � 2, B must be a cable space. The cabling slope  is
restricted to be distance one from 1 and �1=2, so  D 0 or �1. Since Z.�1/ is
neither a lens space nor reducible, we cannot have  D�1. If  D 0, then we have
B.0/D .S1�D2/#.S1�S2/, which is not a possible result of filling on a cable space.

It follows that Z is hyperbolic, so �.�1=m/;1/ � 8, so jmj � 8, which gives the
desired contradiction.

Proposition 4.7 P .3;�3; 2m C 1/.2/ is never a small Seifert fibered space for
m 6D 0;�1.
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Proof We can precede as above, by analyzing the result of 1–surgery on the quotient
knot .Km/f . This gives a two-component link in S3 , .Lm/f , such that the double
cover of S3 branched along .Lm/f is the surgery space P .3;�3; 2mC 1/.2/. Thus,
to show this surgery space is not a small Seifert fibered space, it suffices to show that
.Lm/f is neither a Montesinos link of length three with two components nor a Seifert
link with two components.

e
m�1

m

(c)(b)(a)

Figure 21: (a) The link .Km/f [Fix.f ) in the quotient, (b) the link .Lm/f
resulting from 1–surgery on the unknotted component (note that the core
of the surgery torus is a component of the resulting link) and (c) the tangle
formed by removing the m–twist area of the knotted component Jm of the
resulting link. Here, mD�3 .

First, we note .Lm/f is the union of the unknot with Jm DKŒ1=3;�1=3; 1=.m� 1/�

(see the right half of Figure 21). Since Jm is never torus knot, by Criterion 2.19, .Lm/f
is never a Seifert link. If m D 0 or m D 2, then J0 D KŒ�2=9� and J2 D KŒ2=9�,
respectively; otherwise, Jm is not a 2–bridge knot, so .Lm/f is not a Montesinos link,
by Criterion 2.19.

If mD 0, then we are considering 2–surgery on P .3;�3; 1/, which is KŒ2=9�.2/. By
the classification of Brittenham and Wu [7], this space is Seifert fibered. If mD 2, then
we are considering the space P .3;�3; 5/.2/, and if .Lm/f is a Montesinos link, then
it has the form KŒx;y; z�, where zD 2=9 or 4=9 and x and y have even denominator.

Now, since .L2/f has a diagram with 12 crossings, and since the z–tangle would
contribute 6 crossings, if .L2/f were to be a two component length three Montesinos
link, then the x– and y –tangles must contribute at most 6 crossings. Without loss of
generality, we can assume x D˙1=2 and y D˙1=2 or ˙1=3 or ˙3=4. However, an
easy check shows that the determinant of such Montesinos links cannot be 2.

Finally, we consider the case of 3–surgery on hyperbolic pretzel knots Km of the
type P .3;�3; 2mC 1/. These knots have period 2, so we can analyze the surgery
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space Km.3/ as the double branched cover of .Km/f .3=2/, where .Km/f is the factor
knot Km=f for the self diffeomorphism f W S3! S3 of order two that preserves Km .
In this case, .Km/f is the unknot, so .Km/f D�L.3; 2/. Let Lm denote the image
of Fix.f /=f in the surgery space .Km/f .3=2/, ie, Lm is the branching set for the
double covering. (Note that in our convention p–surgery on the unknot is the lens
space �L.p; 1/.)

Proposition 4.8 P .3;�3; 2m C 1/.3/ is never a small Seifert fibered space for
m 6D 0;�1.

Proof By the analysis of [32], the link Lm is actually a 2–bridge link, contained in
the solid torus that, together with the surgery solid torus, comprises half of the genus-1
Heegaard splitting of the lens space �L.3; 2/ (see Figure 22). Thus, if we pass to a
3–fold cover, the lift, zLm , of Lm will be a length three Montesinos link, contained in
one half of the standard genus one Heegaard splitting of S3 . We now describe how to
see this.

m

�m

Figure 22: Above, on the left we have the link .Km/f [ Fix.f /=f in the
quotient, and, on the right, we have the result of .3=2/–surgery on the un-
knotted component: the link Lm contained in a solid torus (simply view the
knot as lying in the solid torus that comprises the exterior of unknot).

The two solid tori that comprise the splitting of �L.3; 2/ are attached via a map which
sends the meridian of one to a (�3=2/–curve on the boundary of the other. Passing to the
3–fold cover changes the image of the attaching map to a .�1=2/–curve, which gives
S3. This lift simply triplicates the knotted part of Lm . However, if we want to think
about this lift as a knot in the standard 3–sphere, we must apply a self-diffeomorphism
of S3 to get the standard Heegaard splitting of S3 (ie, where the meridian of one torus
is glued along a .1=0/–curve). This final step introduces two full negative twists of the
strands of Lm . The result is a link zLm in S3 ; see Figure 23.
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�m�m �m

Figure 23: The link zLm in S3, which is the triple cover of Lm in �L.3; 2/

Since P .3;�3; 2mC 1/.3/ has quotient �L.3; 2/, it has the form S2.3; 3; c/, where
the exceptional fiber of multiplicity c corresponds to the branching locus, .Lm/f . It
follows that the lift zLm should be a Montesinos link of type KŒc; c; c�. From this, it
follows that c2 divides the determinant of zLm . We can calculate the determinant of this
lift to be 49, independent of m, so it follows that c D 7. Thus, P .3;�3; 2mC 1/.3/

is S2.3; 3; 7/, and zLm DKŒa=7; b=7; b=7�.

By considering the determinant (of the corresponding Montesinos knot), we see
that P .3;�3; 2mC 1/.3/ must have the form S2.�1=3;�1=3; 5=7/ and we see that
zLm DKŒ�2I 5=7; 5=7; 5=7� (being the triple cover of the two bridge knot KŒ5=7� in
S1 �D2 ; see [32]). Let V .q/ be the Jones polynomial of KŒ�2I 5=7; 5=7; 5=7�. A
straightforward calculation gives an expression for the Jones polynomial of zLm :

V zLm
.q/D

(
q�3m�3.V .q/� 1/C 1 if m is odd;

q�3m.21�V .q�1//C 1 if m is even:

It follows that zLm is not KŒ�2I 5=7; 5=7; 5=7� unless mD�1. In this case the knots
are the same, which reflects the fact that P .3;�3;�1/.3/ D S2.3; 3; 7/; however,
this case is not of interest to us. For any other value of m, we have shown that
P .3;�3; 2mC 1/.3/ cannot be a small Seifert fibered space.

4.6 Completing the proof of Proposition 4.5

It remains to show that the knots LmD Tm.1/ are neither Montesinos knots, nor Seifert
knots, for m 2 Œ�8; 8�nf�1; 0; 1; 2g (notice, when m D 1; 2 we do get small Seifert
fibered surgeries, and when mD�1; 0, we have P .3;�3;˙1/, which are 2–bridge
knots).

In fact, for these knots we have that s.Lm/ 6D 2g.Lm/, so they cannot be torus knots
by Criterion 2.17. Furthermore, we can apply Method 1 to show that Lm is never a
Montesinos knot.
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4.7 Case (4)

Finally, we consider the case when Km is a hyperbolic pretzel knot of the form
P .3; 3; 2m;�1/ with m > 1. We note that such knots are often considered to be
nonpretzel Montesinos knots. If mD 1, then K1 D P .�2; 3; 3/, and is not hyperbolic.
We see that Km has a cyclic of period 2 (see Figure 24) with factor knot Kf D T2;3 as
well as a strong inversion. Since Kf .r=2/ must be a lens space surgery on the trefoil,
it follows that �.r=2; 6/D 1. In this case we consider the possibility of nonintegral
exceptional surgeries. We note that the link Lm;r D Tm.�r/ has 4mC 10� r half
twists; see Figure 26. This can be seen by carefully keeping track of the framing curve
throughout the Montesinos trick.

(a) (b) (c)

Figure 24: The Montesinos knot P .3; 3; 2m;�1/ in (a) standard form, (b) pil-
lowcase form and (c) the factor knot resulting from rotation about the axis
perpendicular to the page.

Figure 25: The Montesinos knot P .3; 3; 2m;�1/ , shown with the axis of its
strong inversion, and the resulting tangle Tm . Here mD 3 .

Proposition 4.9 The Montesinos knots P .3; 3; 2m;�1/ with m> 1 admit no small
Seifert fibered surgeries.

Proof We begin by noting that we can show that m� 8 just as we did when dealing
with KCm , earlier in this section (recall, Figure 14), so we will omit the details. Consider
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the quotient links Lm;r obtained via the Montesinos trick. When Lm;r is a link, it
consists of an unknotted component, together with a component Jm , which is the knot
KŒ�1=3;�1=3; 1=m� (see Figure 26).

Figure 26: The link Lm;r and the component Jm . Here mD 3 and r D 12

(hence, 4mC 10� r D 10 twists).

Since Jm is never a torus knot or a 2–bridge knot (for m> 1), Lm;r is never a Seifert
link or a Montesinos link, by Criteria 2.19 and 2.15, respectively.

When Lm;r is a knot, we see that jKh.Lm;r /j � 4 and s.Lm;r / < br.�Lm;r
.t//, so,

by Criteria 2.14 and 2.17, Lm;r is never a Montesinos knot or a torus knot.

5 The case of .3; 4; 5/

We next turn our attention to the pretzel knots P .3;˙4;˙5/ and P .3; 4; 5;�1/. We
will follow the same program in which we make use of the strong inversion and
analyze the quotient link along with its double branched cover. Because these are
not infinite families of knots, we do not need to argue to restrict any parameters as
we have above. In the case of the length three pretzel knots, since these knots bound
punctured Klein bottles at slope ˛0 , we only need to consider fillings ˛r D ˛0 � r

at distance at most 8 from ˛0 and from 1=0. Our only task here is to show that the
quotient links are not Seifert links nor Montesinos links. In the case of P .3;�4; 5/, we
must consider nonintegral surgeries. The length four pretzel knot P .3; 4; 5;�1/ may
also admit nonintegral exceptional surgeries, and, in this case, there is no exceptional
surgery by which we can bound the possible surgery slopes. On the other hand, if
P .3; 4; 5;�1/.r=s/ is exceptional, then jsj � 4, since it is known that this pretzel
knot is not tunnel number one (see Morimoto, Sakuma and Yokota [35]), and Baker,
Gordon and Luecke have recently shown that knots of tunnel number greater than one
cannot have nonintegral small Seifert fibered surgery slopes whose denominator is 5 or
larger [3]. The pictures corresponding to the analysis of P .3; 4; 5;�1/.r=s/ are nearly
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identical to the diagrams in Figures 25 and 26 (which corresponded to the analysis for
P .3; 3; 2m;�1/ in the previous section; just let mD 2, and change a 1/3 tangle to a
1/5 tangle) and the reader is encouraged to keep these in mind throughout this section.

Theorem 1.3 The pretzel knots P .3;˙4;˙5/ and P .3; 4; 5;�1/ admit no small
Seifert fibered surgeries.

Proof It is shown below, in Lemma 5.2, that the quotient links Lr=s corresponding to
the surgery spaces P .3; 4; 5;�1/.r=s/ have Khovanov homology of width at least 4 for
jsj � 4 when Lr=s is a knot. Thus, Criterion 2.14 suffices to prove that the knots Lr=s

are not Montesinos knots. Lemma 5.1 shows that Lr=s is never a torus knot. If Lr=s is
a link, then it is the union of the unknot with the Montesinos knot KŒ�2I 1=2; 2=3; 2=5�,
which is never a 2–bridge knot or a torus knot, so Lr=s is never a Montesinos link or
a Seifert link, by Criteria 2.15 and 2.19.

Now, we consider the length three pretzel knots. Let L˙;˙;r be the quotient link
resulting from the Montesinos trick, applied to P .3;˙4;˙5/. When L˙;˙;r is a
link, L˙;˙;r DU [J, where J DKŒ2=3;˙1=2;˙2=5�, which is never the unknot, a
two-bridge knot, or a torus knot. Thus, by Criteria 2.15 and 2.19, L˙;˙;r is never a
Montesinos link with two components or a Seifert link with two components.

When L˙;˙;r is a knot, 2g.L˙;˙;r / 6D s.L˙;˙;r /, so L˙;˙;r is not a torus knot, by
Criterion 2.17, and we can use Method 1 to show that L˙;˙;r is never a Montesinos
knot.

Lemma 5.1 Lr=s is never a torus knot.

Proof Recall that jsj � 4, and write r=s D a=bCn. A general reference for the facts
in this proof is Lickorish [29]. If jbj D 2 or jbj D 4, then Lr=s has unknotting number
one or two. Since the unknotting number of a .p; q/–torus knot is .p� 1/.q� 1/=2,
we could only have the trefoil or T .5; 2/. However, both of these knots are alternating,
so they cannot have wide Khovanov homology, as Lr=s will be shown to have below.

If a=b D 0 or b D 3, we can apply the oriented Skein relation to the n–twist region of
La=bCn to calculate a recursive formula for the Alexander polynomials �Lr=s

.t/. In
general, we write

�K .t/D a0C

mX
iD1

ai.t
�i
C t i/;

and, applying the Skein relation to these knots, we calculate that

�La=bCn
.t/D k1.�t�1=2/nC k2.t

1=2/n;
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where k1 and k2 are fixed polynomials of small degree, depending on a=b and the
sign of n. In any event, we see that am�1 for La=bCn will be constant as jnj increases
for a fixed a=b . In fact, we can calculate that jam�1j takes values 3; 2; 5; 5; 7 and 4,
respectively, for the following cases: a=bD0 and n<0, a=bD0 and n>0, a=bD1=3

and n < 0, a=b D 1=3 and n > 0, a=b D �1=3 and n < 0, and a=b D �1=3 and
n> 0.

If K is a torus knot, then jai j � 1 for all i . Thus, Lr=s is never a torus knot.

5.1 A Khovanov homology diversion

In order to prove that no surgery on KDP .3; 4; 5;�1/ is a small Seifert fibered space,
we will argue that the quotient link, Lr=s corresponding to K.r=s/ has Khovanov
cohomology that is too wide when Lr=s is a knot and jsj � 4, ie, jKh.Lr=s/j � 4.

We will need one important fact about Khovanov cohomology (see, for example,
Turner [42], for an overview). Let D be a diagram for a knot, and let D0 and D1 be
the diagrams identical to D , except that a single crossing has been resolved as pictured
below:

D D0 D1

Define the value c to be

c D (number of negative crossings in D0 )� (number of negative crossings in D ):

Then there is a long exact sequence relating the Khovanov cohomology groups:

�! Khi
jC1.D1/ �! Khi

j .D/ �! Khi�c
j�3c�1.D0/ �! KhiC1

jC1
.D1/ �!

In our examples, one of D0 or D1 will represent a simple knot type (unknot, Hopf
link, trefoil or (2,4)–torus link), and so the corresponding Kh will have a small range
of support. Outside of this range, there will be isomorphisms between the graded
components of Kh.D/ and those of Kh.D1/ or Kh.D0/. We will make use of these
isomorphisms below.

Lemma 5.2 Let r=s 2Q with r=s D a=bC t for a=b 2 f0; 1=2;˙1=3;˙1=4g and
t 2 Z. Then jKh.Lr=s/j � 4.
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Proof This proof will be split into cases based on the value of a=b . Values of t will
be chosen so that La=bCt is a knot, since the case of a link has already been covered
above. Throughout, keep in mind that the diagram D of Lr=s is a slight variation on
the left side of Figure 26, as mentioned before.

First, assume that a=b D 0. If t > 0, then choose one of the negative crossings in the
t –twist area of a diagram D for Lt . If t < 0, form D by creating a pair of opposite
crossings next to the t –twist area, so that it contains a negative crossing and t C 1

positive crossings. In either case, the 0–resolution of the negative crossing, D0 , is
the unknot and the 1–resolution, D1 , is Lt�1 . In either case, c D �t � 2. Repeat
the process once again, using D1 as D0 . Once again, D0

0
is the unknot, but now

D0
1
DLt�2 and c0 D�t � 1. Combining all of this, we have

Khi
j .Lt /Š Khi

j�2.LtC2/ if i 6D �t � 3;�t � 2;�t � 1:

Now, if we refer to Table 1, the second column provides examples of graded components
of Kh.L11/ and Kh.L�9/ that demonstrate that these knots have wide Khovanov co-
homology. But as jt j increases, these graded components are preserved isomorphically
(with a grading shift) in Kh.Lt /. It follows that for large values of jt j, Kh.Lt / is
also wide. For small values of jt j (say, jt j � 11), it is easily verified by computer that
Kh.Lt / is wide.

When a=b D 1=2, an identical argument (producing c–values of 1 and �3) gives us
that

Khi
j .L1=2CtC2/Š Khi�2

j�4.L1=2Ct / if i 62 Œ�3; 3�:

One difference here is that D1 and D0
1

are the Hopf link, instead of the unknot, so Kh
vanishes outside i 2 Œ�2; 2�. With this in mind, the values in Table 1 give the desired
width estimates.

Surgery type Kh for fixed r=s General Kh Diagonals (j � 2i ) Width

Integral Kh0
1
.L�9/ŠQ Kh0

�t�8
.Lt /ŠQ f�8� t;�2� tg 4

(t < 0) Kh7
21
.L�9/ŠQ Kh7

�tC12
.Lt /ŠQ

Integral Kh0
�19

.L11/ŠQ Kh0
�t�8

.Lt /ŠQ f�8� t;�tg 5
(t > 0) Kh�10

�31
.L11/ŠQ Kh�10

�t�20
.Lt /ŠQ

Half integral Kh�4
�13

.L1=2�5/ŠQ KhtC1
2t�3

.L1=2Ct /ŠQ f�5; 1g 4
(t odd, t < 0) Kh�11

�21
.L1=2�5/ŠQ Kht�6

2t�11
.L1=2Ct /ŠQ
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Half integral Kh�7
�21

.L1=2�6/ŠQ Kht�1
2t�9

.L1=2Ct /ŠQ f�7;�1g 4
(t even, t < 0) Kh�14

�29
.L1=2�6/ŠQ Kht�8

2t�17
.L1=2Ct /ŠQ

Half integral Kh7
15
.L1=2C5/ŠQ2 KhtC2

2tC1
.L1=2Ct /ŠQ2 f�5; 1g 4

(t odd, t > 0) Kh14
23
.L1=2C5/ŠQ KhtC7

2tC9
.L1=2Ct /ŠQ

Half integral Kh4
7
.L1=2C6/ŠQ Kht�2

2t�5
.L1=2Ct /ŠQ f�7;�1g 4

(t even, t > 0) Kh11
15
.L1=2C6/ŠQ KhtC5

2tC3
.L1=2Ct /ŠQ

Third integral Kh�4
�9
.L1=3�8/ŠQ Kh�4

�t�17
.L1=3Ct /ŠQ f�t � 9;�t � 3g 4

(t < 0) Kh�11
�17

.L1=3�8/ŠQ Kh�11
�t�25

.L1=3Ct /ŠQ

Kh1
1
.L�1=3�6/ŠQ Kh1

�t�5
.L�1=3Ct /ŠQ f�t � 7;�t � 1g 4

Kh�9
�13

.L�1=3�6/ŠQ Kh�9
�t�19

.L�1=3Ct /ŠQ

Third integral Kh1
�15

.L1=3C8/ŠQ2 Kh1
�t�7

.L1=3Ct /ŠQ2 f�t � 9;�t � 1g 5
(t > 0) Kh�8

�25
.L1=3C8/ŠQ Kh�8

�t�17
.L1=3Ct /ŠQ

Kh1
�13

.L�1=3�8/ŠQ2 Kh1
�t�7

.L�1=3Ct /ŠQ2 f�t � 9;�t C 1g 5

Kh�6
�19

.L�1=3�8/ŠQ Kh�6
�t�11

.L�1=3Ct /ŠQ

Fourth integral Kh�8
�19

.L1=4�9/ŠQ KhtC1
2t�1

.L1=4Ct /ŠQ f�3; 3g 4
(t odd, t < 0) Kh�9

�15
.L1=4�9/ŠQ7 Kht

2tC3
.L1=4Ct /ŠQ7

Kh�9
�27

.L�1=4�9/ŠQ2 Kht
2t�9

.L�1=4�t /ŠQ2 f�9;�3g 4

Kh�10
�23

.L�1=4�9/ŠQ2 Kht�1
2t�5

.L�1=4�t /ŠQ2

Fourth integral Kh�11
�29

.L1=4�8/ŠQ Kht�3
2t�13

.L1=4Ct /ŠQ f�7;�1g 4
(t even, t < 0) Kh�12

�25
.L1=4�8/ŠQ7 Kht�4

2t�9
.L1=4Ct /ŠQ7

Kh�7
�19

.L�1=4�8/ŠQ KhtC1
2t�3

.L�1=4�t /ŠQ f�5; 1g 4

Kh�8
�15

.L�1=4�8/ŠQ2 Kht
2tC1

.L�1=4�t /ŠQ2

Fourth integral Kh8
19
.L1=4C7/ŠQ2 Kht

2tC5
.L1=4Ct /ŠQ2 f�1; 5g 4

(t odd, t > 0) Kh9
15
.L1=4C7/ŠQ KhtC1

2tC1
.L1=4Ct /ŠQ

Kh6
9
.L�1=4C9/ŠQ2 Kht�3

2t�9
.L�1=4Ct /ŠQ2 f�3;�9g 4

Kh9
9
.L�1=4C9/ŠQ2 Kht

2t�9
.L�1=4Ct /ŠQ2

Fourth integral Kh6
11
.L1=4C8/ŠQ2 Kht�2

2t�5
.L1=4Ct /ŠQ2 f�7;�1g 4

(t even, t > 0) Kh7
7
.L1=4C8/ŠQ2 Kht�1

2t�9
.L1=4Ct /ŠQ2

Kh7
15
.L�1=4C8/ŠQ Kht�1

2t�1
.L�1=4Ct /ŠQ f�5; 1g 4

Kh8
11
.L�1=4C8/ŠQ Kht

2t�5
.L�1=4Ct /ŠQ

Table 1: For each type of a=b (first column), Kh.La=bCt0
/ can be seen

to have width at least 4 (columns 2, 4, and 5). Furthermore, due to the
isomorphisms exhibited in Lemma 5.2, these graded components persist (up
to consistent grading shifts) for all jt j > jt0j (column 3), which proves that
Kh.La=bCt / always has width at least 4 (columns 3,4, and 5).
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When a=b D˙1=3, the analysis is identical to that of the case when a=b D 0, except
that D0 and D0

0
are a trefoil, both of whose Kh is supported in i 2 Œ�3; 3�, so we have

Khi
j .L1=3Ct /Š Khi

j�2.L1=3CtC2/ if i 62 Œ�t � 6;�t C 2�;

Khi
j .L�1=3Ct /Š Khi

j�2.L�1=3CtC2/ if i 62 Œ�t � 3;�t C 5�:

When a=b D ˙1=4, the analysis is similar to that of the case when a=b D ˙1=3,
except that D0 and D0

0
are both either the T .2; 4/ or T .2;�4/ torus link, both of

whose Kh is supported in i 2 Œ�4; 4�, so we have

Khi
j .L˙1=4Ct /Š KhiC2

jC4
.L˙1=4CtC2/ if i 62 Œ�5; 5�:

All these cases are concluded by regarding the information in Table 1, as has been done
above.

6 Nonpretzel Montesinos knots

In this section, we discuss small Seifert fibered surgery on nonpretzel Montesinos
knots. By Wu [46; 45], we need only consider a handful of cases: KŒ1=3;�2=3; 2=5�,
KŒ�1=2; 1=3; 2=.2aC 1/� for a 2 f3; 4; 5; 6; g, and KŒ�1=2; 2=5; 1=.2q C 1/� for
q � 1. We prove the following theorem.

Theorem 1.4 Suppose that K is a nonpretzel Montesinos knot and K.˛/ is a small
Seifert fibered space. Then either K DKŒ�1=2; 2=5; 1=.2qC 1/� for q � 5, or K is
on the following list and has the described surgeries:

� KŒ1=3;�2=3; 2=5�.�5/D S2.1=4; 2=5;�3=5/

� KŒ�1=2; 1=3; 2=7�.�1/D S2.1=3; 1=4;�4=7/

� KŒ�1=2; 1=3; 2=7�.0/D S2.1=2; 3=10;�4=5/

� KŒ�1=2; 1=3; 2=7�.1/D S2.1=2; 1=3;�16=19/

� KŒ�1=2; 1=3; 2=9�.2/D S2.1=2;�1=3;�3=20/

� KŒ�1=2; 1=3; 2=9�.3/D S2.1=2;�1=5;�3=11/

� KŒ�1=2; 1=3; 2=9�.4/D S2.�1=4; 2=3;�3=8/

� KŒ�1=2; 1=3; 2=11�.�2/D S2.�2=3; 2=5; 2=7/

� KŒ�1=2; 1=3; 2=11�.�1/D S2.�1=2;�2=7; 2=9/

� KŒ�1=2; 1=3; 2=5�.3/D S2.1=2;�1=3;�2=15/

� KŒ�1=2; 1=3; 2=5�.4/D S2.1=2;�1=6;�2=7/
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� KŒ�1=2; 1=3; 2=5�.5/D S2.�1=3;�1=5; 3=5/

� KŒ�1=2; 1=5; 2=5�.7/D S2.1=2;�1=5;�2=9/

� KŒ�1=2; 1=5; 2=5�.8/D S2.�1=4; 3=4;�2=5/

� KŒ�1=2; 1=7; 2=5�.11/D S2.�1=3; 3=4;�2=7/

Question 1.8 Do the Montesinos knots KŒ�1=2; 2=5; 1=.2qC 1/� with q � 5 admit
small Seifert fibered surgeries?

With the exception of the case noted in the question above, we now prove the list give
in Theorem 1.4 is complete. In proving the theorem, we will consider the three types
of Montesinos knots involved separately. Note that throughout, we assume r 2 Z.

6.1 The case of K Œ1=3;�2=3; 2=5�

First, consider the case when K D KŒ1=3;�2=3; 2=5�. By Wu [51], K.�4/ and
K.�6/ are toroidal, so it suffices to consider K.r/ for �12� r � 2, by Theorem 2.10.
Define Lr , as we have done before (see Figure 27, left side). To show that Lr is not
a Montesinos knot or link, we apply Method 1. In the case of even r , we note that
Lr DU[T .2; 3/, so if Lr is a length three Montesinos link with two components, then
one tangle is either a (1/3)–tangle or a (2/3)–tangle. When such a check is performed,
precisely one match is found: KŒ1=3;�2=3; 2=5�.�5/ is a Seifert fibered space, as
shown in Theorem 1.4.

To see that Lr is never a Seifert link, we simply note that for odd r , Lr cannot be
a torus knot, by Criterion 2.17, since js.Lr /j < br.�Lr

.q//. If r is even, we note
that Lr D U [ T .2; 3/. A priori, Lr may be a trefoil union one of its core curves;
however, this link has crossing number 7, and the crossing number of Lr is at least
br.VLr

/D 10. Thus, Lr is never a two component Seifert link.

6.2 The case of K Œ�1=2 ; 1=3; 2=.2aC 1/�

In the case where Ka DKŒ�1=2; 1=3; 2=.2aC 1/� for a 2 f3; 4; 5; 6g, we note that
by Wu [51] we have the following toroidal fillings: K3.�2/, K4.5/, K5.2/, K5.�3/

and K6.2/, so we consider surgery slopes r with distance at most 8 from the corre-
sponding toroidal filling.

We proceed as above, considering links and knots La;r (see Figure 27, right side), to
show that La;r is never a Montesinos knot or link, noting in this case that La;r DU [J,
where J is T .2; 5/ if a D 3, T .2; 3/ if a D 4, and the unknot if a D 5 or 6. By
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applying Method 1, we find that the Montesinos links are precisely those stated in
Theorem 1.4.

If r is even, and La;r is a Seifert link, we must have that L3;r is the union of T .2; 5/,
together with a core curve, L4;r is the union of T .2; 3/, together with a core curve,
and L5;r and L6;r have the form T .2; 2n/ for some n. However, L5;r and L6;r

cannot have this form, since they are not alternating, a fact deduced by noticing that
jKh.La;r /j � 3. As above, L4;r cannot have the said form because it must have at
least 9 crossings. Finally, we see that L3;r has linking number ˙1, while T .2; 5/

has linking number ˙5 or ˙2 with its cores. Thus, La;r cannot be a two component
Seifert link.

�8�r 6�r

Figure 27: On the left, we have the Montesinos knot KŒ1=3; 1=3 � 3=5� ,
along with the axis of one of its strong inversions, and the quotient link Lr .
On the right, we have the Montesinos knot KŒ�1=2; 1=3; 2=9� , along with
the axis of its strong inversion, and the quotient link La;r with aD 4 . In the
case of KŒ�1=2; 2=5; 1=.2aC 1/� , we have a picture similar to that on the
right.

If r is odd, we can obstruct most of the La;r from being torus knots by using
Criterion 2.17. However, L3;1 and L4;1 have equal Rasmussen invariant and breadth
of Alexander polynomial. The former, in fact, corresponds to a Seifert fibered space,
so consider L4;1 . Since this knot has determinant 1, if it is to be a torus knot of the
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form T .a; b/, both a and b are odd. Furthermore, since it has Rasmussen invariant
equal to 10, we have 10D .a�1/.b�1/, which is impossible if a and b are both odd.
Thus, La;r is never a torus knot.

6.3 The case of K Œ�1=2 ; 2=5; 1=.2qC 1/�

Finally, we are left with the case when Kq D KŒ�1=2; 2=5; 1=.2qC 1/� and q � 1.
By Wu [51], we have the following toroidal fillings: K1.6/;K2.9/;K3.12/;K4.15/

so for q � 4, we can bound the surgery slope r , and complete the classification. For
larger q , we cannot. Furthermore, we obtain no bound on q , as we have done above.
Below, we argue that when q � 4, our classification is complete.

If we again consider Lq;r , we see that for q � 4 and for any odd r , many Lq;r

have s.Lq;r / < br.�Lq;r
.t// or det.Lq;r / > s.Lq;r /C 1, so they cannot be torus

knots, by Criteria 2.17 and 2.18, respectively. However, det.L1;r /D s.L1;r /C 1 for
r 2 f5; 7; 9; 11; 13g. So, it is possible that L1;r D T .2; r/. However, jKh.L1;r /j D 3

for such r , so they cannot be alternating knots.

When r is even, we note that Lq;r D U [ Jq , where Jq is the 2–bridge knot
KŒ2=.2q � 9/�. This knot is only a torus knot (or the unknot) if q D 3; 4; 5 or 6,
so Lq;r can only be a Seifert link for these values, by Criterion 2.19. However, L4;r

is never alternating, so it cannot be T .2; 2n/, and, L3;r has at least 9 crossings, so it
cannot be the union of a trefoil and a core curve.

We show Lq;r cannot be a Montesinos knot or link by applying Method 1. When r is
even, we note that one tangle would be a .2=.2qC5//–tangle or a ..qC3/=.2qC5//–
tangle.
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