A weak Zassenhaus Lemma for discrete subgroups of Diff(*I*)

AZER AKHMEDOV

We prove a weaker version of the Zassenhaus Lemma for subgroups of Diff(I). We also show that a group with commutator subgroup containing a non-Abelian free subsemigroup does not admit a C_0 -discrete faithful representation in Diff(I).

37C05; 20F65

In this paper, we continue our study of discrete subgroups of $\text{Diff}_+(I)$; the group of orientation-preserving diffeomorphisms of the closed interval I = [0, 1]. Following recent trends, we try to view the group $\text{Diff}_+(I)$ as an analogue of a Lie group, and we study still basic questions about discrete subgroups of it. This paper can be viewed as a continuation of Akhmedov [1] although the proofs of the results of this paper are independent of [1].

Throughout the paper, the letter G will denote the group $\text{Diff}_+(I)$. Assume G has the metric induced by the standard norm of the Banach space $C^1[0, 1]$. We will denote this metric by d_1 . Sometimes, we also will consider the metric on G that comes from the standard sup norm $||f||_0 = \sup_{x \in [0,1]} |f(x)|$ of C[0,1], which we will denote by d_0 . However, unless specified, the metric in all the groups $\text{Diff}^r_+(I), r \in \mathbb{R}, r \ge 1$ will be assumed to be d_1 .

The central theme of the paper is the Zassenhaus Lemma. This lemma states that in a connected Lie group H there exists an open non-empty neighborhood U of the identity such that any discrete subgroup generated by elements from U is nilpotent (see Raghunathan [6]). For example, if H is a simple Lie group (such as $SL_2(\mathbb{R})$), and $\Gamma \leq H$ is a lattice, then Γ cannot be generated by elements too close to the identity.

In this paper we prove weak versions of the Zassenhaus Lemma for the group $G = \text{Diff}_+(I)$. Our study leads us to showing that finitely generated groups with exponential growth that satisfy a very mild condition do not admit faithful C_0 -discrete representations in G:

Theorem A Let Γ be a subgroup of G, and $f, g \in [\Gamma, \Gamma]$ such that f and g generate a non-Abelian free subsemigroup. Then Γ is not C_0 -discrete.

Published: 9 January 2014

We also study the Zassenhaus Lemma for the relatives of G such as $\text{Diff}_{+}^{1+c}(I), c \in \mathbb{R}$, c > 0; the group of orientation-preserving diffeomorphisms of regularity 1 + c. In the case of $\text{Diff}_{+}^{1+c}[0, 1]$, combining Theorem A with the results of [3], we show that C_0 -discrete subgroups are more rare.

Theorem B Let Γ be a C_0 -discrete subgroup of Diff_+^{1+c}[0, 1]. Then Γ is solvable with solvability degree at most k(c).

Theorem B can be strengthened if the regularity is increased further; combining Theorem A with the results of Navas [3], Plante and Thurston [5] and Szekeres [7] we obtain the following:

Theorem C If Γ is C_0 -discrete subgroup of Diff_+²[0, 1] then Γ is meta-Abelian.

It follows from the results of [1], as remarked there, that the Zassenhaus Lemma does not hold either for $\text{Diff}_+(I)$ or for $\text{Homeo}_+(I)$ in metrics d_1 and d_0 respectively.

In the increased regularity the lemma still fails: given an arbitrary open neighborhood U of the identity diffeomorphism in G, it is easy to find two C^{∞} "bump functions" in U that generate a discrete group isomorphic to $\mathbb{Z} \wr \mathbb{Z}$; thus the lemma fails for $\text{Diff}^{\infty}_{+}(I)$.

Because of the failure of the lemma, it is natural to consider strongly discrete subgroups, which we have defined in [1]. Indeed, for strongly discrete subgroups, we are able to obtain positive results that are natural substitutes for the Zassenhaus Lemma.

Let us recall the definition of strongly discrete subgroup from [1]:

Definition 1 Let Γ be a subgroup of $\text{Diff}_+(I)$. Γ is called *strongly discrete* if there exists C > 0 and $x_0 \in (0, 1)$ such that $|g'(x_0) - 1| > C$ for all $g \in \Gamma \setminus \{1\}$. Similarly, we say Γ is C_0 -strongly discrete if $|g(x_0) - x_0| > C$ for all $g \in \Gamma \setminus \{1\}$.

Let us note that a strongly discrete subgroup of G is discrete, and a C_0 -strongly discrete subgroup of G is C_0 -discrete.

For the convenience of the reader, let us recall several basic notions on the growth of groups: if Γ is a finitely generated group, and *S* a finite generating set, we will define $\omega(\Gamma, S) = \lim_{n \to \infty} \sqrt[n]{|B_n(1; S, \Gamma)|}$, where $B_n(1; S, \Gamma)$ denotes the ball of radius *n* around the identity element. (Often we will denote this ball simply by $B_n(1)$.) We will also write $\omega(\Gamma) = \inf_{|S| < \infty, \langle S \rangle = \Gamma} \omega(\Gamma, S)$, where the infimum is taken over all finite generating sets *S* of Γ . If $\omega(\Gamma) > 1$ then one says that Γ has uniform exponential growth.

Now we are ready to state weak versions of the Zassenhaus Lemma for the group G. First, we state a theorem about C_0 -strongly discrete subgroups.

Theorem 2 Let $\omega > 1$. Then there exists an open non-empty neighborhood U of the identity $1 \in \text{Diff}^1_+[0, 1]$ such that if Γ is a finitely generated C_0 -strongly discrete subgroup of $\text{Diff}^1_+[0, 1]$ with $\omega(\Gamma) \ge \omega$, then Γ cannot be generated by elements from U.

By increasing the regularity, we can prove a similar version for strongly discrete subgroups

Theorem 3 Let $\omega > 1$. Then there exists an open non-empty neighborhood U of the identity $1 \in \text{Diff}_{+}^{1}[0, 1]$ such that if Γ is a finitely generated strongly discrete subgroup of $\text{Diff}_{+}^{2}[0, 1]$ with $\omega(\Gamma) \ge \omega$, then Γ cannot be generated by elements from U.

Remark 4 In regard to the Zassenhaus Lemma, it is interesting to ask a reverse question, ie, given an arbitrary open neighborhood U of the identity in G, is it true that any finitely generated torsion free nilpotent group Γ admits a faithful discrete representation in G generated by elements from U? In Farb and Franks [2], it is proved that any such Γ does admit a faithful representation into G generated by diffeomorphisms from U. Also, it is proved in Navas [4] that any finitely generated nilpotent subgroup of G indeed can be conjugated to a subgroup generated by elements from U.

Remark 5 Because of the assumptions about uniform exponential growth in Theorem 2 and Theorem 3, it is natural to ask whether or not every finitely generated subgroup of G of exponential growth has uniformly exponential growth. This question has already been raised in [3].

Acknowledgements

We are thankful to Andrés Navas for his remarks and for bringing [4] to our attention. We also would like to thank the two anonymous referees for many helpful remarks and suggestions.

Proofs of Theorem 2 and Theorem 3

Proof of Theorem 2 We can choose $\lambda > 1$ such that $\lambda < \omega(\Gamma)$. Then the cardinality of the sphere of radius *n* of Γ with respect to any fixed finite generating set is bigger than the exponential function λ^n , for infinitely many *n*.

Then let $\epsilon > 0$ such that $(1 - 10\epsilon)\lambda > 1$. We let U be the ϵ -neighborhood of the identity in G with respect to d_1 metric (we always assume d_1 metric in G unless otherwise stated).

Let Γ be generated by finitely many non-trivial diffeomorphisms $f_1, f_2, \ldots, f_s \in U$. We fix this generating set and denote it by S, ie, $S = \{f_1, f_1^{-1}, \ldots, f_s, f_s^{-1}\}$.

We want to prove that Γ is not C_0 -strongly discrete. Assuming the opposite, let $x_0 \in (0, 1)$ such that for some C > 0, $|g(x_0) - x_0| > C$ for all $g \in \Gamma \setminus \{1\}$.

Let $B_n(1)$ be the ball of radius *n* around the identity in the Cayley graph of Γ with respect to *S*. Then $\operatorname{Card}(B_n(1) \setminus B_{n-1}(1)) > \lambda^n$ for infinitely many $n \in \mathbb{N}$. Let *A* denote the set of all such *n*.

Let Δ be a closed subinterval of (0, 1) of length less than C such that x_0 is the left end of Δ .

We denote the right-invariant Cayley metric of Γ with respect to S by $|\cdot|$. For all $g \in \Gamma$, let $\Delta_g = g(\Delta)$. Thus we have a collection $\{\Delta_g\}_{g \in G}$ of closed subintervals of (0, 1).

Notice that if $g = sw, s \in S$ then by mean value theorem, $|\Delta_{sw}| > (1 - 10\epsilon)|s(\Delta_w)|$. Then, necessarily, for all $n \in A$, we have $\sum_{|g|=n} |\Delta_g| > (1 - 10\epsilon)^n \lambda^n |\Delta| \to \infty$ as $n \to \infty$.

Then there exist $g_1, g_2 \in \Gamma, g_1 \neq g_2$ such that $g_2(x_0) \in \Delta_{g_1}$. Then $g_1^{-1}g_2(x_0) \in \Delta$. Since $|\Delta| < C$, we obtain a contradiction.

Now we prove a better result by assuming higher regularity for the representation.

Proof of Theorem 3 Let λ , λ_1 , λ_2 be constants such that $1 < \lambda < \lambda_1 < \lambda_2 < \omega(\Gamma)$. Then the cardinality of the sphere of radius *n* of Γ with respect to any fixed finite generating set is bigger than the exponential function λ_2^n , for infinitely many *n*.

We choose $\epsilon > 0, \eta > 0$ to be such that $1 < \eta < \frac{\lambda}{1+\epsilon}$ and $\frac{1+\epsilon}{1-\epsilon} < \frac{\lambda_1}{\lambda}$. Let U be the ball of radius ϵ around the identity diffeomorphism.

We again assume that Γ is generated by finitely many non-trivial diffeomorphisms $f_1, f_2, \ldots, f_s \in U$, and we fix the generating set $S = \{f_1, f_1^{-1}, \ldots, f_s, f_s^{-1}\}$. Let $B_n(1)$ be the ball of radius n around the identity in the Cayley graph of Γ with respect to S. Then we have $\operatorname{Card}(B_n(1) \setminus B_{n-1}(1)) > \lambda_2^n$ for infinitely many $n \in \mathbb{N}$. Let A denote the set of all such n.

We need to show that Γ is not strongly discrete. Assuming the opposite, let $x_0 \in (0, 1)$ such that for some C > 0, $|g'(x_0) - 1| > C$ for all $g \in \Gamma \setminus \{1\}$.

Let C_1 be a positive number such that

$$1 - C < (1 - C_1)^2$$
 and $1 + C > (1 + C_1)^2$.

Let also $N_1 \in \mathbb{N}$ such that for any $n \ge N_1$, we have

$$1 - C_1 < \left(1 - \frac{1}{\eta^n}\right)^n < \left(1 + \frac{1}{\eta^n}\right)^n < 1 + C_1.$$

Notice that for all $n \in A$, $g \in B_n(1) \setminus B_{n-1}(1)$, and $x \in [0, 1]$, we have $(1 - \epsilon)^n < g'(x) < (1 + \epsilon)^n$. Since $\frac{1+\epsilon}{1-\epsilon} < \frac{\lambda_1}{\lambda}$, there exists $n \in A$ and $g_1, g_2 \in \Gamma$ such that

$$n > N_1, \quad g_1 \neq g_2, \quad |g_1| = |g_2| = n$$

but

$$|g_1(x_0) - g_2(x_0)| \le \frac{1}{\lambda^n}(\star_1)$$
 and $1 - C_1 < \frac{g_1'(x_0)}{g_2'(x_0)} < 1 + C_1(\star_2).$

Indeed, by the pigeonhole principle, for all $n \in A$, there exists $j \in \{0, 1, ..., [\lambda^n]\}$ such that

$$\operatorname{Card}\left\{g \in B_n(1) \setminus B_{n-1}(1) \mid g(x_0) \in \left[\frac{j}{\lambda^n}, \frac{j+1}{\lambda^n}\right)\right\} \ge \frac{\lambda_2^n}{\lambda^n+1}$$

For all $n \in A, j \in \{0, 1, ..., [\lambda^n]\}$, let

$$D(n, j) = \left\{ g \in B_n(1) \setminus B_{n-1}(1) \mid g(x_0) \in \left[\frac{j}{\lambda^n}, \frac{j+1}{\lambda^n}\right) \right\}.$$

Then, for sufficiently big $n \in A$, there exists $j \in \{0, 1, ..., [\lambda^n]\}$ such that

$$\operatorname{Card}(D(n,j)) \ge \frac{\lambda_1^n}{\lambda^n}(\star_3).$$

For all $n \in A$, let

$$J(n) = \left\{ j \in \{0, 1, \dots, [\lambda^n]\} \middle| \operatorname{Card}(D(n, j)) \ge \frac{\lambda_1^n}{\lambda^n} \right\}.$$

Recall also that for all $g \in D(n, j)$, we have

$$(1-\epsilon)^n < g'(x_0) < (1+\epsilon)^n$$

Then, since $\frac{1+\epsilon}{1-\epsilon} < \frac{\lambda_1}{\lambda}$, for sufficiently big $n \in A$ and $j \in J(n)$, applying the pigeonhole principle to the set D(n, j), we obtain that (besides the inequality (\star_3)) there exist distinct $g_1, g_2 \in D(n, j)$ such that the inequality

$$1 - C_1 < \frac{g_1'(x_0)}{g_2'(x_0)} < 1 + C_1$$

holds. On the other hand, by definition of D(n, j), we have $|g_1(x_0) - g_2(x_0)| \le \frac{1}{\lambda^n}$; thus we established the desired inequalities (\star_1) and (\star_2) .

Let now $y_0 = g_1(x_0)$, $z_0 = g_2(x_0)$, $W = g_1^{-1}$, $V = g_1^{-1}g_2$, and let $W = h_n h_{n-1} \cdots h_1$ where W is a reduced word in the alphabet S of length n and $h_i \in S$, $1 \le i \le n$. Let also W_k be the suffix of W of length k, $y_k = W_k(y_0)$, $z_k = W_k(z_0)$, $1 \le k \le n$.

Furthermore, let

$$\max_{1 \le i \le s} \sup_{0 \le y \ne z \le 1} \frac{|f'_i(y) - f'_i(z)|}{|y - z|} = M \quad \text{and} \quad L = 1 + \epsilon.$$

Then we have $|y_k - z_k| \le L^k / \lambda^n$, $|h'_{k+1}(y_k) - h'_{k+1}(z_k)| \le M L^k / \lambda^n$, $0 \le k \le n-1$. Then

$$1 - \frac{ML^{k+1}}{\lambda^n} \le \frac{h'_{k+1}(y_k)}{h'_{k+1}(z_k)} \le 1 + \frac{ML^{k+1}}{\lambda^n}$$

for all $0 \le k \le n-1$. From here we obtain that

$$\prod_{k=0}^{n-1} \left(1 - \frac{ML^{k+1}}{\lambda^n} \right) \le \prod_{k=0}^n \frac{h'_{k+1}(y_k)}{h'_{k+1}(z_k)} \le \prod_{k=0}^{n-1} \left(1 + \frac{ML^{k+1}}{\lambda^n} \right).$$

Then, for sufficiently big n in A

$$\left(1 - \frac{1}{\eta^n}\right)^n = \prod_{k=0}^{n-1} \left(1 - \frac{1}{\eta^n}\right) \le \prod_{k=0}^{n-1} \frac{h'_{k+1}(y_k)}{h'_{k+1}(z_k)} \le \prod_{k=0}^{n-1} \left(1 + \frac{1}{\eta^n}\right) = \left(1 + \frac{1}{\eta^n}\right)^n.$$

Since, by the chain rule,

$$\prod_{k=0}^{n-1} \frac{h'_{k+1}(y_k)}{h'_{k+1}(z_k)} = \frac{(g_1^{-1})'(y_0)}{(g_1^{-1})'(z_0)},$$

we obtain that $1 - C_1 < (g_1^{-1})'(y_0)/(g_1^{-1})'(z_0) < 1 + C_1$. Then

$$\begin{aligned} V'(x_0) &= (g_1^{-1})'(g_2(x_0))g_2'(x_0) \\ &= \frac{(g_1^{-1})'(g_2(x_0))g_2'(x_0)}{(g_1^{-1})'(g_1(x_0))g_1'(x_0)}(g_1^{-1})'(g_1(x_0))g_1'(x_0) \\ &= \frac{(g_1^{-1})'(g_2(x_0))g_2'(x_0)}{(g_1^{-1})'(g_1(x_0))g_1'(x_0)} \\ &= \frac{(g_1^{-1})'(g_2(x_0))g_2'(x_0)}{(g_1^{-1})'(g_1(x_0))g_1'(x_0)} \in ((1-C_1)^2, (1+C_1)^2) \subset (1-C, 1+C). \end{aligned}$$

Thus we proved that $1 - C < V'(x_0) < 1 + C$, which contradicts our assumption. \Box

Remark 6 The same proof, with slight changes, works for representations of C^{1+c} – regularity for any real c > 0.

Proofs of Theorems A, B, C

In the proofs of Theorem 2 and of Theorem 3, we consider the orbit of the point x_0 under the action of Γ . By using exponential growth, we find two distinct elements g_1, g_2 such that $g_1(x_0)$ and $g_2(x_0)$ are very close. Then we "pull back" $g_2(x_0)$ by g_1^{-1} , ie, we consider the point $g_1^{-1}g_2(x_0)$ and show that this point is sufficiently close to x_0 . It is at this stage that we heavily use the condition that Γ is generated by elements from the small neighborhood of $1 \in G$, ie, derivatives of the generators are uniformly close to 1. However, if Γ is an arbitrary subgroup of the commutator group [G, G], not necessarily generated by elements close to the identity element, then for any $x_0 \in (0, 1), f \in \Gamma$ and for any $\epsilon > 0$, there exists $W \in \Gamma$ such that $|f'(W(x_0))-1| < \epsilon$; we simply need to find W such that $W(x_0)$ is sufficiently close to 1 (or to 0). This fact provides a new idea of taking x_0 close to 1, then considering the part of the orbit that lies in a small neighborhood of 1, then using exponential growth to find points close to each other in that neighborhood, and then perform the "pull back".

The following proposition is a special case of Theorem A, and answers [1, Question 2]. For simplicity, we give a separate proof of it.

Proposition 7 \mathbb{F}_2 does not admit a faithful C_0 -discrete representation in G.

Proof Since the commutator subgroup of \mathbb{F}_2 contains an isomorphic copy of \mathbb{F}_2 , it is sufficient to prove that \mathbb{F}_2 does not admit a faithful C_0 -discrete representation in $G^{(1)} = [G, G]$.

Let Γ be a subgroup of $G^{(1)}$ isomorphic to \mathbb{F}_2 generated by diffeomorphisms f and g. Without loss of generality we may assume that Γ has no fixed point on (0, 1). Let also $\epsilon > 0$ and $M = \max_{0 \le x \le 1} (|f'(x)| + |g'(x)|)$.

We choose $N \in \mathbb{N}, \delta > 0$ and θ_N such that $1/N < \epsilon$, $1 < \theta_N < \sqrt[2N]{2}$, and for all $x \in [1-\delta, 1]$, the inequality $1/\theta_N < \phi'(x) < \theta_N$ holds where $\phi \in \{f, g, f^{-1}, g^{-1}\}$.

Let W = W(f, g) be an element of Γ such that $W(1/N) \in [1-\delta, 1]$, *m* be the length of the reduced word *W*. Let also $x_i = i/N, 0 \le i \le N$.

For every $n \in \mathbb{N}$, let

 $S_n = \{ H \in B_n(1) \mid u(W(x_1)) \ge W(x_1) \text{ for all suffixes } u \text{ of } H \}.$

(Here we view H as a reduced word in the alphabet $\{f, g, f^{-1}, g^{-1}\}$.) Then $|S_n| \ge 2^n$.

Then (assuming $N \ge 3$) we can choose and fix a sufficiently big *n* such that the following two conditions are satisfied:

(i) There exist $g_1, g_2 \in S_n$ such that $g_1 \neq g_2$, and

$$|g_1 W(x_i) - g_2 W(x_i)| < \frac{1}{\sqrt[2^N]{2^n}}, \quad 1 \le i \le N - 1.$$

(ii)
$$M^m(\theta_N)^n \frac{1}{\frac{2N\sqrt{2}^n}{2N\sqrt{2}^n}} < \epsilon$$

Indeed, let $(c_0, c_1, \ldots, c_{N-1}, c_N)$ be a sequence of real numbers such that $\sqrt[2^N]{2} = c_N < c_{N-1} < \cdots < c_1 < c_0 = 2$ and $c_i > \sqrt[2^N]{2}c_{i+1}$, for all $i \in \{0, 1, \ldots, N-1\}$. Then, by the pigeonhole principle, for sufficiently big *n*, there exists a subset $S_n(1) \subseteq S_n$ such that $|S_n(1)| \ge c_1^n$ and $|g_1W(x_1) - g_2W(x_1)| < 1/\sqrt[2^N]{2^n}$, for all $g_1, g_2 \in S_n(1)$.

Suppose now $1 \le k \le N-2$, and $S_n \supseteq S_n(1) \supseteq \cdots \supseteq S_n(k)$ such that for all $j \in \{1, \ldots, k\}, |S_n(j)| \ge c_j^n$ and for all $g_1, g_2 \in S_n(j)$ we have

$$|g_1 W(x_i) - g_2 W(x_i)| < \frac{1}{\sqrt[2^N]{2^n}}, \quad 1 \le i \le j.$$

Then by applying the pigeonhole principle to the set $S_n(k)$ for sufficiently big *n*, we obtain $S_n(k+1) \subseteq S_n(k)$ such that $|S_n(k+1)| \ge c_{k+1}^n$, and for all $g_1, g_2 \in S_n(k+1)$ we have

$$|g_1 W(x_i) - g_2 W(x_i)| < \frac{1}{\sqrt[2N]{2^n}}, \quad 1 \le i \le k+1.$$

Then, for k = N - 2, we obtain the desired inequality (condition (i)).

Now, let

 $h_1 = g_1 W, \quad h_2 = g_2 W, \quad y_i = W(x_i), \quad z'_i = g_1(y_i), \quad z''_i = g_2(y_i), \quad 1 \le i \le N.$

Without loss of generality, we may also assume that $g_2(y_1) \ge g_1(y_1)$.

Then for all $i \in \{1, \ldots, N-1\}$, we have

$$\begin{aligned} |h_1^{-1}h_2(x_i) - x_i| &= |(g_1W)^{-1}(g_2W)(x_i) - x_i| \\ &= |(g_1W)^{-1}(g_2W)(x_i) - (g_1W)^{-1}(g_1W)(x_i)| \\ &= |W^{-1}g_1^{-1}g_2(y_i) - W^{-1}g_1^{-1}g_1(y_i)| \\ &= |W^{-1}g_1^{-1}(z_i'') - W^{-1}g_1^{-1}(z_i')|. \end{aligned}$$

Let u be a prefix of the reduced word g_1 , and $g_1 = uv$ (so a reduced word v is a suffix of g_1). Then, since $g_1, g_2 \in S_n$, we have

$$u^{-1}(z'_i) = v(y_i) \ge v(y_1) \ge y_1,$$

$$u^{-1}(z''_i) = u^{-1}(g_2(y_i)) \ge u^{-1}(g_2(y_1)) \ge u^{-1}(g_1(y_1)) \ge v(y_1) \ge y_1.$$

Then by the mean value theorem, we have

$$|h_1^{-1}h_2(x_i) - x_i| \le M^m (\theta_N)^n |z_1' - z_1''| < M^m (\theta_N)^n \frac{1}{\frac{2N}{2^n}}.$$

Then, by condition (ii), we obtain $|h_1^{-1}h_2(x_i)-x_i| < \epsilon$. Then we have $|h_1^{-1}h_2(x)-x| < 2\epsilon$ for all $x \in [0, 1]$. Indeed, let $x \in [x_i, x_{i+1}]$. Then

$$|h_1^{-1}h_2(x) - x| \le \max\{|h_1^{-1}h_2(x_i) - x|, |h_1^{-1}h_2(x_{i+1}) - x|\}.$$

But $|h_1^{-1}h_2(x_i) - x| \le |h_1^{-1}h_2(x_i) - x_i| + |x_i - x| < 2\epsilon$, and similarly,

$$|h_1^{-1}h_2(x_{i+1}) - x| \le |h_1^{-1}h_2(x_{i+1}) - x_{i+1}| + |x_{i+1} - x| < 2\epsilon.$$

Since ϵ is arbitrary, we obtain that Γ is not C_0 -discrete.

By examining the proof of Proposition 7, we will now prove Theorem A, thus obtaining a much stronger result. The inequality $|S_n| \ge 2^n$ is a crucial fact in the proof of Proposition 7; we need the cardinality of S_n to grow exponentially. If Γ is an arbitrary finitely generated group with exponential growth, this exponential growth of S_n is not automatically guaranteed. But we can replace S_n by another subset S_n that still does the job of S_n and that grows exponentially, if we assume a mild condition on Γ .

First we need the following easy lemma.

Lemma 8 Let $\alpha, \beta \in G, z_0 \in (0, 1)$ such that $z_0 \le \alpha(z_0) \le \beta \alpha(z_0)$. Then $U\beta \alpha(z_0) \ge z_0$, where $U = U(\alpha, \beta)$ is any positive word in letters α, β .

Now we are ready to prove Theorem A.

Proof of Theorem A Without loss of generality, we may assume that Γ has no fixed point on (0, 1). Let again $\epsilon > 0, N \in \mathbb{N}, \delta > 0, \theta_N > 0$,

$$M = 2 \sup_{0 \le x \le 1} (|f'(x)| + |g'(x)|)$$

such that $1/N < \epsilon$, $1 < \theta_N < \sqrt[2N]{2}$, and for all $x \in [1 - \delta, 1]$, the inequality $1/\theta_N < \phi'(x) < \theta_N$ holds where $\phi \in \{f, g, f^{-1}, g^{-1}\}$.

Algebraic & Geometric Topology, Volume 14 (2014)

Let W = W(f, g) be an element of Γ such that

$$\{f^{i}W(1/N) \mid -2 \le i \le 2\} \cup \{g^{i}W(1/N) \mid -2 \le i \le 2\} \subset [1-\delta, 1]$$

and let *m* be the length of the reduced word *W*. Let also $x_i = i/N, 0 \le i \le N$ and z = W(1/N).

By replacing the pair (f, g) with (f^{-1}, g^{-1}) if necessary, we may assume that $f(z) \ge z$. Then at least one of the following cases is valid:

- **Case 1** $f(z) \le gf(z)$
- **Case 2** $z \le gf(z)$

Case 3 $gf(z) \leq z$

If Case 1 holds then we let $\alpha = f$, $\beta = g$, $z_0 = z$. If Case 1 does not hold but Case 2 holds, then we let $\alpha = gf$, $\beta = f$, $z_0 = z$. Finally, if Case 1 and Case 2 do not hold but Case 3 holds, then we let $\alpha = f^{-1}g^{-1}$, $\beta = g^{-1}$, $z_0 = gf(z)$.

In all the three cases, we will have $z_0 \in [1 - \delta, 1], z_0 \leq z$, and α, β generate a free subsemigroup, and conditions of Lemma 8 are satisfied, i.e., we have $z_0 \leq \alpha(z_0) \leq \beta\alpha(z_0)$. Moreover, we notice that $\sup_{0 \leq x \leq 1} (|\alpha'(x)| + |\beta'(x)|) \leq M^2$, and the length of W in the alphabet $\{\alpha, \beta, \alpha^{-1}, \beta^{-1}\}$ is at most 2m.

Now, for every $n \in \mathbb{N}$, let

 $\mathbb{S}_n = \{U(\alpha, \beta)\beta\alpha W \mid U(\alpha, \beta) \text{ is a positive word in } \alpha, \beta \text{ of length at most } n\}.$

Applying Lemma 8 to the pair $\{\alpha, \beta\}$ we obtain that $VW^{-1}(z_0) \ge z_0$ for all $V \in \mathbb{S}_n$.

Then $|S_n| \ge 2^n$. After achieving this inequality, we proceed as in the proof of Proposition 7 with just a slight change: there exists a sufficiently big *n* such that the following two conditions are satisfied:

(i) There exist $g_1, g_2 \in \mathbb{S}_n$ such that $g_1 \neq g_2$, and

$$|g_1 W(x_i) - g_2 W(x_i)| < \frac{1}{\sqrt[2N]{2^n}}, \quad 1 \le i \le N - 1.$$

(ii) $M^{2m+4}(\theta_N)^n \frac{1}{\sqrt[2n]{2n}} < \epsilon$.

Let

 $h_1 = g_1 W$, $h_2 = g_2 W$, $y_i = W(x_i)$, $z'_i = g_1(y_i)$, $z''_i = g_2(y_i)$, $1 \le i \le N$. Without loss of generality, we may also assume that $g_2(y_1) \ge g_1(y_1)$.

Then for all $i \in \{1, \ldots, N-1\}$, we have

$$|h_1^{-1}h_2(x_i) - x_i| = |(g_1W)^{-1}(g_2W)(x_i) - x_i|$$

= $|(g_1W)^{-1}(g_2W)(x_i) - (g_1W)^{-1}(g_1W)(x_i)|$
= $|W^{-1}g_1^{-1}g_2(y_i) - W^{-1}g_1^{-1}g_1(y_i)|$
= $|W^{-1}g_1^{-1}(z_i'') - W^{-1}g_1^{-1}(z_i')|.$

Since $g_1, g_2 \in S_n$, by the mean value theorem, we have

$$|h_1^{-1}h_2(x_i) - x_i| \le M^{2m+4} (\theta_N)^n |z_1' - z_1''| < M^{2m+4} (\theta_N)^n \frac{1}{\frac{2N}{2^n}}$$

By condition (ii), we obtain that $|h_1^{-1}h_2(x_i) - x_i| < \epsilon$. Then we have $|h_1^{-1}h_2(x) - x| < 2\epsilon$ for all $x \in [0, 1]$. Since ϵ is arbitrary, we obtain that Γ is not C_0 -discrete.

Proof of Theorem B Let H be an arbitrary finitely generated subgroup of $[\Gamma, \Gamma]$. If H contains a non-Abelian free subsemigroup then we are done by Theorem A. If H does not contain a non-Abelian free subsemigroup then by the result from [3], H is virtually nilpotent. Then again by the result of [3], H is solvable of solvability degree at most l(c). Since the natural number l(c) depends only on c, and not on H, and since H is an arbitrary finitely generated subgroup of $[\Gamma, \Gamma]$ we obtain that $[\Gamma, \Gamma]$ is solvable of solvability degree at most l(c) + 1.

Proof of Theorem C Let again *H* be an arbitrary finitely generated subgroup of $[\Gamma, \Gamma]$. Again, if *H* contains a non-Abelian free subsemigroup then we are done by Theorem A. If *H* does not contain a non-Abelian free subsemigroup then by the result from [3] *H* is virtually nilpotent. Then, by the result of Plante and Thurston [5], *H* is virtually Abelian. Then, by the result of Szekeres [7], *H* is Abelian. Since *H* is an arbitrary finitely generated subgroup of $[\Gamma, \Gamma]$, we conclude that $[\Gamma, \Gamma]$ is Abelian, hence Γ is meta-Abelian.

References

- A Akhmedov, On free discrete subgroups of Diff(I), Algebr. Geom. Topol. 10 (2010) 2409–2418 MR2748336
- [2] B Farb, J Franks, Groups of homeomorphisms of one-manifolds, III: Nilpotent subgroups, Ergodic Theory Dynam. Systems 23 (2003) 1467–1484 MR2018608
- [3] A Navas, Growth of groups and diffeomorphisms of the interval, Geom. Funct. Anal. 18 (2008) 988–1028 MR2439001

- [4] A Navas, Sur les rapprochements par conjugasion en dimension 1 et classe C¹ (2013) arXiv:1208.4815v3
- [5] JF Plante, WP Thurston, Polynomial growth in holonomy groups of foliations, Comment. Math. Helv. 51 (1976) 567–584 MR0436167
- [6] MS Raghunathan, Discrete subgroups of Lie groups, Ergeb. Math. Grenzgeb. 68, Springer, New York (1972) MR0507234
- [7] G Szekeres, *Regular iteration of real and complex functions*, Acta Math. 100 (1958) 203–258 MR0107016

Mathematics Department, North Dakota State University Fargo, ND 58102, USA

azer.akhmedov@ndsu.edu

Received: 28 November 2012 Revised: 13 August 2013