A weak Zassenhaus Lemma for discrete subgroups of $\operatorname{Diff}(I)$

Azer Akhmedov

Abstract

We prove a weaker version of the Zassenhaus Lemma for subgroups of $\operatorname{Diff}(I)$. We also show that a group with commutator subgroup containing a non-Abelian free subsemigroup does not admit a C_{0}-discrete faithful representation in $\operatorname{Diff}(I)$.

37C05; 20F65

In this paper, we continue our study of discrete subgroups of $\operatorname{Diff}_{+}(I)$; the group of orientation-preserving diffeomorphisms of the closed interval $I=[0,1]$. Following recent trends, we try to view the group Diff $_{+}(I)$ as an analogue of a Lie group, and we study still basic questions about discrete subgroups of it. This paper can be viewed as a continuation of Akhmedov [1] although the proofs of the results of this paper are independent of [1].

Throughout the paper, the letter G will denote the group Diff $_{+}(I)$. Assume G has the metric induced by the standard norm of the Banach space $C^{1}[0,1]$. We will denote this metric by d_{1}. Sometimes, we also will consider the metric on G that comes from the standard sup norm $\|f\|_{0}=\sup _{x \in[0,1]}|f(x)|$ of $C[0,1]$, which we will denote by d_{0}. However, unless specified, the metric in all the groups $\operatorname{Diff}_{+}^{r}(I), r \in \mathbb{R}, r \geq 1$ will be assumed to be d_{1}.

The central theme of the paper is the Zassenhaus Lemma. This lemma states that in a connected Lie group H there exists an open non-empty neighborhood U of the identity such that any discrete subgroup generated by elements from U is nilpotent (see Raghunathan [6]). For example, if H is a simple Lie group (such as $\mathrm{SL}_{2}(\mathbb{R})$), and $\Gamma \leq H$ is a lattice, then Γ cannot be generated by elements too close to the identity.

In this paper we prove weak versions of the Zassenhaus Lemma for the group $G=$ Diff $_{+}(I)$. Our study leads us to showing that finitely generated groups with exponential growth that satisfy a very mild condition do not admit faithful C_{0}-discrete representations in G :

Theorem A Let Γ be a subgroup of G, and $f, g \in[\Gamma, \Gamma]$ such that f and g generate a non-Abelian free subsemigroup. Then Γ is not C_{0}-discrete.

We also study the Zassenhaus Lemma for the relatives of G such as $\operatorname{Diff}_{+}^{1+c}(I), c \in \mathbb{R}$, $c>0$; the group of orientation-preserving diffeomorphisms of regularity $1+c$. In the case of $\operatorname{Diff}_{+}^{1+c}[0,1]$, combining Theorem A with the results of [3], we show that C_{0}-discrete subgroups are more rare.
Theorem B Let Γ be a C_{0}-discrete subgroup of $\operatorname{Diff}_{+}^{1+c}[0,1]$. Then Γ is solvable with solvability degree at most $k(c)$.

Theorem B can be strengthened if the regularity is increased further; combining Theorem A with the results of Navas [3], Plante and Thurston [5] and Szekeres [7] we obtain the following:

Theorem C If Γ is C_{0}-discrete subgroup of $\operatorname{Diff}_{+}^{2}[0,1]$ then Γ is meta-Abelian.
It follows from the results of [1], as remarked there, that the Zassenhaus Lemma does not hold either for Diff ${ }_{+}(I)$ or for Homeo $+(I)$ in metrics d_{1} and d_{0} respectively.
In the increased regularity the lemma still fails: given an arbitrary open neighborhood U of the identity diffeomorphism in G, it is easy to find two C^{∞} "bump functions" in U that generate a discrete group isomorphic to $\mathbb{Z} \imath \mathbb{Z}$; thus the lemma fails for Diff $_{+}^{\infty}(I)$.
Because of the failure of the lemma, it is natural to consider strongly discrete subgroups, which we have defined in [1]. Indeed, for strongly discrete subgroups, we are able to obtain positive results that are natural substitutes for the Zassenhaus Lemma.
Let us recall the definition of strongly discrete subgroup from [1]:
Definition 1 Let Γ be a subgroup of $\operatorname{Diff}_{+}(I)$. Γ is called strongly discrete if there exists $C>0$ and $x_{0} \in(0,1)$ such that $\left|g^{\prime}\left(x_{0}\right)-1\right|>C$ for all $g \in \Gamma \backslash\{1\}$. Similarly, we say Γ is C_{0}-strongly discrete if $\left|g\left(x_{0}\right)-x_{0}\right|>C$ for all $g \in \Gamma \backslash\{1\}$.

Let us note that a strongly discrete subgroup of G is discrete, and a C_{0}-strongly discrete subgroup of G is C_{0}-discrete.
For the convenience of the reader, let us recall several basic notions on the growth of groups: if Γ is a finitely generated group, and S a finite generating set, we will define $\omega(\Gamma, S)=\lim _{n \rightarrow \infty} \sqrt[n]{\left|B_{n}(1 ; S, \Gamma)\right|}$, where $B_{n}(1 ; S, \Gamma)$ denotes the ball of radius n around the identity element. (Often we will denote this ball simply by $B_{n}(1)$.) We will also write $\omega(\Gamma)=\inf _{|S|<\infty,\langle S\rangle=\Gamma} \omega(\Gamma, S)$, where the infimum is taken over all finite generating sets S of Γ. If $\omega(\Gamma)>1$ then one says that Γ has uniform exponential growth.
Now we are ready to state weak versions of the Zassenhaus Lemma for the group G. First, we state a theorem about C_{0}-strongly discrete subgroups.

Theorem 2 Let $\omega>1$. Then there exists an open non-empty neighborhood U of the identity $1 \in \operatorname{Diff}_{+}^{1}[0,1]$ such that if Γ is a finitely generated C_{0}-strongly discrete subgroup of $\operatorname{Diff}_{+}^{1}[0,1]$ with $\omega(\Gamma) \geq \omega$, then Γ cannot be generated by elements from U.

By increasing the regularity, we can prove a similar version for strongly discrete subgroups

Theorem 3 Let $\omega>1$. Then there exists an open non-empty neighborhood U of the identity $1 \in \operatorname{Diff}_{+}^{1}[0,1]$ such that if Γ is a finitely generated strongly discrete subgroup of $\operatorname{Diff}_{+}^{2}[0,1]$ with $\omega(\Gamma) \geq \omega$, then Γ cannot be generated by elements from U.

Remark 4 In regard to the Zassenhaus Lemma, it is interesting to ask a reverse question, ie, given an arbitrary open neighborhood U of the identity in G, is it true that any finitely generated torsion free nilpotent group Γ admits a faithful discrete representation in G generated by elements from U ? In Farb and Franks [2], it is proved that any such Γ does admit a faithful representation into G generated by diffeomorphisms from U. Also, it is proved in Navas [4] that any finitely generated nilpotent subgroup of G indeed can be conjugated to a subgroup generated by elements from U.

Remark 5 Because of the assumptions about uniform exponential growth in Theorem 2 and Theorem 3, it is natural to ask whether or not every finitely generated subgroup of G of exponential growth has uniformly exponential growth. This question has already been raised in [3].

Acknowledgements

We are thankful to Andrés Navas for his remarks and for bringing [4] to our attention. We also would like to thank the two anonymous referees for many helpful remarks and suggestions.

Proofs of Theorem 2 and Theorem 3

Proof of Theorem 2 We can choose $\lambda>1$ such that $\lambda<\omega(\Gamma)$. Then the cardinality of the sphere of radius n of Γ with respect to any fixed finite generating set is bigger than the exponential function λ^{n}, for infinitely many n.

Then let $\epsilon>0$ such that $(1-10 \epsilon) \lambda>1$. We let U be the ϵ-neighborhood of the identity in G with respect to d_{1} metric (we always assume d_{1} metric in G unless otherwise stated).

Let Γ be generated by finitely many non-trivial diffeomorphisms $f_{1}, f_{2}, \ldots, f_{s} \in U$. We fix this generating set and denote it by S, ie, $S=\left\{f_{1}, f_{1}^{-1}, \ldots, f_{s}, f_{s}^{-1}\right\}$.
We want to prove that Γ is not C_{0}-strongly discrete. Assuming the opposite, let $x_{0} \in(0,1)$ such that for some $C>0,\left|g\left(x_{0}\right)-x_{0}\right|>C$ for all $g \in \Gamma \backslash\{1\}$.

Let $B_{n}(1)$ be the ball of radius n around the identity in the Cayley graph of Γ with respect to S. Then $\operatorname{Card}\left(B_{n}(1) \backslash B_{n-1}(1)\right)>\lambda^{n}$ for infinitely many $n \in \mathbb{N}$. Let A denote the set of all such n.

Let Δ be a closed subinterval of $(0,1)$ of length less than C such that x_{0} is the left end of Δ.

We denote the right-invariant Cayley metric of Γ with respect to S by $|\cdot|$. For all $g \in \Gamma$, let $\Delta_{g}=g(\Delta)$. Thus we have a collection $\left\{\Delta_{g}\right\} g \in G$ of closed subintervals of $(0,1)$.

Notice that if $g=s w, s \in S$ then by mean value theorem, $\left|\Delta_{s w}\right|>(1-10 \epsilon)\left|s\left(\Delta_{w}\right)\right|$. Then, necessarily, for all $n \in A$, we have $\sum_{|g|=n}\left|\Delta_{g}\right|>(1-10 \epsilon)^{n} \lambda^{n}|\Delta| \rightarrow \infty$ as $n \rightarrow \infty$.

Then there exist $g_{1}, g_{2} \in \Gamma, g_{1} \neq g_{2}$ such that $g_{2}\left(x_{0}\right) \in \Delta_{g_{1}}$. Then $g_{1}^{-1} g_{2}\left(x_{0}\right) \in \Delta$. Since $|\Delta|<C$, we obtain a contradiction.

Now we prove a better result by assuming higher regularity for the representation.

Proof of Theorem 3 Let $\lambda, \lambda_{1}, \lambda_{2}$ be constants such that $1<\lambda<\lambda_{1}<\lambda_{2}<\omega(\Gamma)$. Then the cardinality of the sphere of radius n of Γ with respect to any fixed finite generating set is bigger than the exponential function λ_{2}^{n}, for infinitely many n.

We choose $\epsilon>0, \eta>0$ to be such that $1<\eta<\frac{\lambda}{1+\epsilon}$ and $\frac{1+\epsilon}{1-\epsilon}<\frac{\lambda_{1}}{\lambda}$. Let U be the ball of radius ϵ around the identity diffeomorphism.

We again assume that Γ is generated by finitely many non-trivial diffeomorphisms $f_{1}, f_{2}, \ldots, f_{s} \in U$, and we fix the generating set $S=\left\{f_{1}, f_{1}^{-1}, \ldots, f_{s}, f_{s}^{-1}\right\}$. Let $B_{n}(1)$ be the ball of radius n around the identity in the Cayley graph of Γ with respect to S. Then we have $\operatorname{Card}\left(B_{n}(1) \backslash B_{n-1}(1)\right)>\lambda_{2}^{n}$ for infinitely many $n \in \mathbb{N}$. Let A denote the set of all such n.

We need to show that Γ is not strongly discrete. Assuming the opposite, let $x_{0} \in(0,1)$ such that for some $C>0,\left|g^{\prime}\left(x_{0}\right)-1\right|>C$ for all $g \in \Gamma \backslash\{1\}$.

Let C_{1} be a positive number such that

$$
1-C<\left(1-C_{1}\right)^{2} \quad \text { and } \quad 1+C>\left(1+C_{1}\right)^{2}
$$

Let also $N_{1} \in \mathbb{N}$ such that for any $n \geq N_{1}$, we have

$$
1-C_{1}<\left(1-\frac{1}{\eta^{n}}\right)^{n}<\left(1+\frac{1}{\eta^{n}}\right)^{n}<1+C_{1}
$$

Notice that for all $n \in A, g \in B_{n}(1) \backslash B_{n-1}(1)$, and $x \in[0,1]$, we have $(1-\epsilon)^{n}<$ $g^{\prime}(x)<(1+\epsilon)^{n}$. Since $\frac{1+\epsilon}{1-\epsilon}<\frac{\lambda_{1}}{\lambda}$, there exists $n \in A$ and $g_{1}, g_{2} \in \Gamma$ such that

$$
n>N_{1}, \quad g_{1} \neq g_{2}, \quad\left|g_{1}\right|=\left|g_{2}\right|=n
$$

but

$$
\left|g_{1}\left(x_{0}\right)-g_{2}\left(x_{0}\right)\right| \leq \frac{1}{\lambda^{n}}\left(\star_{1}\right) \quad \text { and } \quad 1-C_{1}<\frac{g_{1}^{\prime}\left(x_{0}\right)}{g_{2}^{\prime}\left(x_{0}\right)}<1+C_{1}\left(\star_{2}\right)
$$

Indeed, by the pigeonhole principle, for all $n \in A$, there exists $j \in\left\{0,1, \ldots,\left[\lambda^{n}\right]\right\}$ such that

$$
\operatorname{Card}\left\{g \in B_{n}(1) \backslash B_{n-1}(1) \left\lvert\, g\left(x_{0}\right) \in\left[\frac{j}{\lambda^{n}}, \frac{j+1}{\lambda^{n}}\right)\right.\right\} \geq \frac{\lambda_{2}^{n}}{\lambda^{n}+1} .
$$

For all $n \in A, j \in\left\{0,1, \ldots,\left[\lambda^{n}\right]\right\}$, let

$$
D(n, j)=\left\{g \in B_{n}(1) \backslash B_{n-1}(1) \left\lvert\, g\left(x_{0}\right) \in\left[\frac{j}{\lambda^{n}}, \frac{j+1}{\lambda^{n}}\right)\right.\right\} .
$$

Then, for sufficiently big $n \in A$, there exists $j \in\left\{0,1, \ldots,\left[\lambda^{n}\right]\right\}$ such that

$$
\operatorname{Card}(D(n, j)) \geq \frac{\lambda_{1}^{n}}{\lambda^{n}}\left(\star_{3}\right)
$$

For all $n \in A$, let

$$
J(n)=\left\{j \in\left\{0,1, \ldots,\left[\lambda^{n}\right]\right\} \left\lvert\, \operatorname{Card}(D(n, j)) \geq \frac{\lambda_{1}^{n}}{\lambda^{n}}\right.\right\} .
$$

Recall also that for all $g \in D(n, j)$, we have

$$
(1-\epsilon)^{n}<g^{\prime}\left(x_{0}\right)<(1+\epsilon)^{n}
$$

Then, since $\frac{1+\epsilon}{1-\epsilon}<\frac{\lambda_{1}}{\lambda}$, for sufficiently big $n \in A$ and $j \in J(n)$, applying the pigeonhole principle to the set $D(n, j)$, we obtain that (besides the inequality $\left.\left(\star_{3}\right)\right)$ there exist distinct $g_{1}, g_{2} \in D(n, j)$ such that the inequality

$$
1-C_{1}<\frac{g_{1}^{\prime}\left(x_{0}\right)}{g_{2}^{\prime}\left(x_{0}\right)}<1+C_{1}
$$

holds. On the other hand, by definition of $D(n, j)$, we have $\left|g_{1}\left(x_{0}\right)-g_{2}\left(x_{0}\right)\right| \leq \frac{1}{\lambda^{n}}$; thus we established the desired inequalities $\left(\star_{1}\right)$ and $\left(\star_{2}\right)$.
Let now $y_{0}=g_{1}\left(x_{0}\right), z_{0}=g_{2}\left(x_{0}\right), W=g_{1}^{-1}, V=g_{1}^{-1} g_{2}$, and let $W=h_{n} h_{n-1} \cdots h_{1}$ where W is a reduced word in the alphabet S of length n and $h_{i} \in S, 1 \leq i \leq n$.
Let also W_{k} be the suffix of W of length $k, y_{k}=W_{k}\left(y_{0}\right), z_{k}=W_{k}\left(z_{0}\right), 1 \leq k \leq n$. Furthermore, let

$$
\max _{1 \leq i \leq s} \sup _{0 \leq y \neq z \leq 1} \frac{\left|f_{i}^{\prime}(y)-f_{i}^{\prime}(z)\right|}{|y-z|}=M \quad \text { and } \quad L=1+\epsilon .
$$

Then we have $\left|y_{k}-z_{k}\right| \leq L^{k} / \lambda^{n},\left|h_{k+1}^{\prime}\left(y_{k}\right)-h_{k+1}^{\prime}\left(z_{k}\right)\right| \leq M L^{k} / \lambda^{n}, 0 \leq k \leq n-1$. Then

$$
1-\frac{M L^{k+1}}{\lambda^{n}} \leq \frac{h_{k+1}^{\prime}\left(y_{k}\right)}{h_{k+1}^{\prime}\left(z_{k}\right)} \leq 1+\frac{M L^{k+1}}{\lambda^{n}}
$$

for all $0 \leq k \leq n-1$. From here we obtain that

$$
\prod_{k=0}^{n-1}\left(1-\frac{M L^{k+1}}{\lambda^{n}}\right) \leq \prod_{k=0}^{n} \frac{h_{k+1}^{\prime}\left(y_{k}\right)}{h_{k+1}^{\prime}\left(z_{k}\right)} \leq \prod_{k=0}^{n-1}\left(1+\frac{M L^{k+1}}{\lambda^{n}}\right) .
$$

Then, for sufficiently big n in A

$$
\left(1-\frac{1}{\eta^{n}}\right)^{n}=\prod_{k=0}^{n-1}\left(1-\frac{1}{\eta^{n}}\right) \leq \prod_{k=0}^{n-1} \frac{h_{k+1}^{\prime}\left(y_{k}\right)}{h_{k+1}^{\prime}\left(z_{k}\right)} \leq \prod_{k=0}^{n-1}\left(1+\frac{1}{\eta^{n}}\right)=\left(1+\frac{1}{\eta^{n}}\right)^{n} .
$$

Since, by the chain rule,

$$
\prod_{k=0}^{n-1} \frac{h_{k+1}^{\prime}\left(y_{k}\right)}{h_{k+1}^{\prime}\left(z_{k}\right)}=\frac{\left(g_{1}^{-1}\right)^{\prime}\left(y_{0}\right)}{\left(g_{1}^{-1}\right)^{\prime}\left(z_{0}\right)}
$$

we obtain that $1-C_{1}<\left(g_{1}^{-1}\right)^{\prime}\left(y_{0}\right) /\left(g_{1}^{-1}\right)^{\prime}\left(z_{0}\right)<1+C_{1}$. Then

$$
\begin{aligned}
V^{\prime}\left(x_{0}\right) & =\left(g_{1}^{-1}\right)^{\prime}\left(g_{2}\left(x_{0}\right)\right) g_{2}^{\prime}\left(x_{0}\right) \\
& =\frac{\left(g_{1}^{-1}\right)^{\prime}\left(g_{2}\left(x_{0}\right)\right) g_{2}^{\prime}\left(x_{0}\right)}{\left(g_{1}^{-1}\right)^{\prime}\left(g_{1}\left(x_{0}\right)\right) g_{1}^{\prime}\left(x_{0}\right)}\left(g_{1}^{-1}\right)^{\prime}\left(g_{1}\left(x_{0}\right)\right) g_{1}^{\prime}\left(x_{0}\right) \\
& =\frac{\left(g_{1}^{-1}\right)^{\prime}\left(g_{2}\left(x_{0}\right)\right) g_{2}^{\prime}\left(x_{0}\right)}{\left(g_{1}^{-1}\right)^{\prime}\left(g_{1}\left(x_{0}\right)\right) g_{1}^{\prime}\left(x_{0}\right)} \\
& =\frac{\left.\left(g_{1}^{-1}\right)^{\prime}\left(g_{2}\left(x_{0}\right)\right)\right)}{\left.\left(g_{1}^{-1}\right)^{\prime}\left(g_{1}\left(x_{0}\right)\right)\right)} \frac{g_{1}^{\prime}\left(x_{0}\right)}{} \in\left(\left(1-C_{1}\right)^{2},\left(1+C_{1}\right)^{2}\right) \subset(1-C, 1+C) .
\end{aligned}
$$

Thus we proved that $1-C<V^{\prime}\left(x_{0}\right)<1+C$, which contradicts our assumption.

Remark 6 The same proof, with slight changes, works for representations of $C^{1+c_{-}}$ regularity for any real $c>0$.

Proofs of Theorems A, B, C

In the proofs of Theorem 2 and of Theorem 3, we consider the orbit of the point x_{0} under the action of Γ. By using exponential growth, we find two distinct elements g_{1}, g_{2} such that $g_{1}\left(x_{0}\right)$ and $g_{2}\left(x_{0}\right)$ are very close. Then we "pull back" $g_{2}\left(x_{0}\right)$ by g_{1}^{-1}, ie, we consider the point $g_{1}^{-1} g_{2}\left(x_{0}\right)$ and show that this point is sufficiently close to x_{0}. It is at this stage that we heavily use the condition that Γ is generated by elements from the small neighborhood of $1 \in G$, ie, derivatives of the generators are uniformly close to 1 . However, if Γ is an arbitrary subgroup of the commutator group [G, G], not necessarily generated by elements close to the identity element, then for any $x_{0} \in(0,1), f \in \Gamma$ and for any $\epsilon>0$, there exists $W \in \Gamma$ such that $\left|f^{\prime}\left(W\left(x_{0}\right)\right)-1\right|<\epsilon ;$ we simply need to find W such that $W\left(x_{0}\right)$ is sufficiently close to 1 (or to 0). This fact provides a new idea of taking x_{0} close to 1 , then considering the part of the orbit that lies in a small neighborhood of 1 , then using exponential growth to find points close to each other in that neighborhood, and then perform the "pull back".

The following proposition is a special case of Theorem A, and answers [1, Question 2]. For simplicity, we give a separate proof of it.

Proposition $7 \mathbb{F}_{2}$ does not admit a faithful C_{0}-discrete representation in G.
Proof Since the commutator subgroup of \mathbb{F}_{2} contains an isomorphic copy of \mathbb{F}_{2}, it is sufficient to prove that \mathbb{F}_{2} does not admit a faithful C_{0}-discrete representation in $G^{(1)}=[G, G]$.
Let Γ be a subgroup of $G^{(1)}$ isomorphic to \mathbb{F}_{2} generated by diffeomorphisms f and g. Without loss of generality we may assume that Γ has no fixed point on $(0,1)$. Let also $\epsilon>0$ and $M=\max _{0 \leq x \leq 1}\left(\left|f^{\prime}(x)\right|+\left|g^{\prime}(x)\right|\right)$.
We choose $N \in \mathbb{N}, \delta>0$ and θ_{N} such that $1 / N<\epsilon, 1<\theta_{N}<\sqrt[2 N]{2}$, and for all $x \in[1-\delta, 1]$, the inequality $1 / \theta_{N}<\phi^{\prime}(x)<\theta_{N}$ holds where $\phi \in\left\{f, g, f^{-1}, g^{-1}\right\}$.

Let $W=W(f, g)$ be an element of Γ such that $W(1 / N) \in[1-\delta, 1], m$ be the length of the reduced word W. Let also $x_{i}=i / N, 0 \leq i \leq N$.

For every $n \in \mathbb{N}$, let

$$
S_{n}=\left\{H \in B_{n}(1) \mid u\left(W\left(x_{1}\right)\right) \geq W\left(x_{1}\right) \text { for all suffixes } u \text { of } H\right\} .
$$

(Here we view H as a reduced word in the alphabet $\left\{f, g, f^{-1}, g^{-1}\right\}$.) Then $\left|S_{n}\right| \geq 2^{n}$.

Then (assuming $N \geq 3$) we can choose and fix a sufficiently big n such that the following two conditions are satisfied:
(i) There exist $g_{1}, g_{2} \in S_{n}$ such that $g_{1} \neq g_{2}$, and

$$
\left|g_{1} W\left(x_{i}\right)-g_{2} W\left(x_{i}\right)\right|<\frac{1}{\sqrt[2 N]{2}}, \quad 1 \leq i \leq N-1 .
$$

(ii) $M^{m}\left(\theta_{N}\right)^{n} \frac{1}{\sqrt[2 N]{2}^{n}}<\epsilon$.

Indeed, let $\left(c_{0}, c_{1}, \ldots, c_{N-1}, c_{N}\right)$ be a sequence of real numbers such that $\sqrt[2 N]{2}=$ $c_{N}<c_{N-1}<\cdots<c_{1}<c_{0}=2$ and $c_{i}>\sqrt[2 N]{2} c_{i+1}$, for all $i \in\{0,1, \ldots, N-1\}$. Then, by the pigeonhole principle, for sufficiently big n, there exists a subset $S_{n}(1) \subseteq S_{n}$ such that $\left|S_{n}(1)\right| \geq c_{1}^{n}$ and $\left|g_{1} W\left(x_{1}\right)-g_{2} W\left(x_{1}\right)\right|<1 / \sqrt[2 N]{2}^{n}$, for all $g_{1}, g_{2} \in S_{n}(1)$.

Suppose now $1 \leq k \leq N-2$, and $S_{n} \supseteq S_{n}(1) \supseteq \cdots \supseteq S_{n}(k)$ such that for all $j \in\{1, \ldots, k\},\left|S_{n}(j)\right| \geq c_{j}^{n}$ and for all $g_{1}, g_{2} \in S_{n}(j)$ we have

$$
\left|g_{1} W\left(x_{i}\right)-g_{2} W\left(x_{i}\right)\right|<\frac{1}{\sqrt[2 N]{2}^{n}}, \quad 1 \leq i \leq j .
$$

Then by applying the pigeonhole principle to the set $S_{n}(k)$ for sufficiently big n, we obtain $S_{n}(k+1) \subseteq S_{n}(k)$ such that $\left|S_{n}(k+1)\right| \geq c_{k+1}^{n}$, and for all $g_{1}, g_{2} \in S_{n}(k+1)$ we have

$$
\left|g_{1} W\left(x_{i}\right)-g_{2} W\left(x_{i}\right)\right|<\frac{1}{\sqrt[2 N]{2}^{n}}, \quad 1 \leq i \leq k+1 .
$$

Then, for $k=N-2$, we obtain the desired inequality (condition (i)).
Now, let
$h_{1}=g_{1} W, \quad h_{2}=g_{2} W, \quad y_{i}=W\left(x_{i}\right), \quad z_{i}^{\prime}=g_{1}\left(y_{i}\right), \quad z_{i}^{\prime \prime}=g_{2}\left(y_{i}\right), \quad 1 \leq i \leq N$.
Without loss of generality, we may also assume that $g_{2}\left(y_{1}\right) \geq g_{1}\left(y_{1}\right)$.
Then for all $i \in\{1, \ldots, N-1\}$, we have

$$
\begin{aligned}
\left|h_{1}^{-1} h_{2}\left(x_{i}\right)-x_{i}\right| & =\left|\left(g_{1} W\right)^{-1}\left(g_{2} W\right)\left(x_{i}\right)-x_{i}\right| \\
& =\left|\left(g_{1} W\right)^{-1}\left(g_{2} W\right)\left(x_{i}\right)-\left(g_{1} W\right)^{-1}\left(g_{1} W\right)\left(x_{i}\right)\right| \\
& =\left|W^{-1} g_{1}^{-1} g_{2}\left(y_{i}\right)-W^{-1} g_{1}^{-1} g_{1}\left(y_{i}\right)\right| \\
& =\left|W^{-1} g_{1}^{-1}\left(z_{i}^{\prime \prime}\right)-W^{-1} g_{1}^{-1}\left(z_{i}^{\prime}\right)\right| .
\end{aligned}
$$

Let u be a prefix of the reduced word g_{1}, and $g_{1}=u v$ (so a reduced word v is a suffix of g_{1}). Then, since $g_{1}, g_{2} \in S_{n}$, we have

$$
\begin{aligned}
u^{-1}\left(z_{i}^{\prime}\right) & =v\left(y_{i}\right) \geq v\left(y_{1}\right) \geq y_{1}, \\
u^{-1}\left(z_{i}^{\prime \prime}\right) & =u^{-1}\left(g_{2}\left(y_{i}\right)\right) \geq u^{-1}\left(g_{2}\left(y_{1}\right)\right) \geq u^{-1}\left(g_{1}\left(y_{1}\right)\right) \geq v\left(y_{1}\right) \geq y_{1} .
\end{aligned}
$$

Then by the mean value theorem, we have

$$
\left|h_{1}^{-1} h_{2}\left(x_{i}\right)-x_{i}\right| \leq M^{m}\left(\theta_{N}\right)^{n}\left|z_{1}^{\prime}-z_{1}^{\prime \prime}\right|<M^{m}\left(\theta_{N}\right)^{n} \frac{1}{\sqrt[2 N]{2}^{n}} .
$$

Then, by condition (ii), we obtain $\left|h_{1}^{-1} h_{2}\left(x_{i}\right)-x_{i}\right|<\epsilon$. Then we have $\left|h_{1}^{-1} h_{2}(x)-x\right|<$ 2ϵ for all $x \in[0,1]$. Indeed, let $x \in\left[x_{i}, x_{i+1}\right]$. Then

$$
\left|h_{1}^{-1} h_{2}(x)-x\right| \leq \max \left\{\left|h_{1}^{-1} h_{2}\left(x_{i}\right)-x\right|,\left|h_{1}^{-1} h_{2}\left(x_{i+1}\right)-x\right|\right\} .
$$

But $\left|h_{1}^{-1} h_{2}\left(x_{i}\right)-x\right| \leq\left|h_{1}^{-1} h_{2}\left(x_{i}\right)-x_{i}\right|+\left|x_{i}-x\right|<2 \epsilon$, and similarly,

$$
\left|h_{1}^{-1} h_{2}\left(x_{i+1}\right)-x\right| \leq\left|h_{1}^{-1} h_{2}\left(x_{i+1}\right)-x_{i+1}\right|+\left|x_{i+1}-x\right|<2 \epsilon
$$

Since ϵ is arbitrary, we obtain that Γ is not C_{0}-discrete.

By examining the proof of Proposition 7, we will now prove Theorem A, thus obtaining a much stronger result. The inequality $\left|S_{n}\right| \geq 2^{n}$ is a crucial fact in the proof of Proposition 7; we need the cardinality of S_{n} to grow exponentially. If Γ is an arbitrary finitely generated group with exponential growth, this exponential growth of S_{n} is not automatically guaranteed. But we can replace S_{n} by another subset \mathbb{S}_{n} that still does the job of S_{n} and that grows exponentially, if we assume a mild condition on Γ.

First we need the following easy lemma.

Lemma 8 Let $\alpha, \beta \in G, z_{0} \in(0,1)$ such that $z_{0} \leq \alpha\left(z_{0}\right) \leq \beta \alpha\left(z_{0}\right)$. Then $U \beta \alpha\left(z_{0}\right) \geq$ z_{0}, where $U=U(\alpha, \beta)$ is any positive word in letters α, β.

Now we are ready to prove Theorem A.

Proof of Theorem A Without loss of generality, we may assume that Γ has no fixed point on $(0,1)$. Let again $\epsilon>0, N \in \mathbb{N}, \delta>0, \theta_{N}>0$,

$$
M=2 \sup _{0 \leq x \leq 1}\left(\left|f^{\prime}(x)\right|+\left|g^{\prime}(x)\right|\right)
$$

such that $1 / N<\epsilon, 1<\theta_{N}<\sqrt[2 N]{2}$, and for all $x \in[1-\delta, 1]$, the inequality $1 / \theta_{N}<$ $\phi^{\prime}(x)<\theta_{N}$ holds where $\phi \in\left\{f, g, f^{-1}, g^{-1}\right\}$.

Let $W=W(f, g)$ be an element of Γ such that

$$
\left\{f^{i} W(1 / N) \mid-2 \leq i \leq 2\right\} \cup\left\{g^{i} W(1 / N) \mid-2 \leq i \leq 2\right\} \subset[1-\delta, 1]
$$

and let m be the length of the reduced word W. Let also $x_{i}=i / N, 0 \leq i \leq N$ and $z=W(1 / N)$.

By replacing the pair (f, g) with $\left(f^{-1}, g^{-1}\right)$ if necessary, we may assume that $f(z) \geq$ z. Then at least one of the following cases is valid:

Case $1 \quad f(z) \leq g f(z)$
Case $2 \quad z \leq g f(z)$
Case $3 \quad g f(z) \leq z$
If Case 1 holds then we let $\alpha=f, \beta=g, z_{0}=z$. If Case 1 does not hold but Case 2 holds, then we let $\alpha=g f, \beta=f, z_{0}=z$. Finally, if Case 1 and Case 2 do not hold but Case 3 holds, then we let $\alpha=f^{-1} g^{-1}, \beta=g^{-1}, z_{0}=g f(z)$.

In all the three cases, we will have $z_{0} \in[1-\delta, 1], z_{0} \leq z$, and α, β generate a free subsemigroup, and conditions of Lemma 8 are satisfied, ie, we have $z_{0} \leq \alpha\left(z_{0}\right) \leq$ $\beta \alpha\left(z_{0}\right)$. Moreover, we notice that $\sup _{0 \leq x \leq 1}\left(\left|\alpha^{\prime}(x)\right|+\left|\beta^{\prime}(x)\right|\right) \leq M^{2}$, and the length of W in the alphabet $\left\{\alpha, \beta, \alpha^{-1}, \beta^{-1}\right\}$ is at most $2 m$.

Now, for every $n \in \mathbb{N}$, let

$$
\mathbb{S}_{n}=\{U(\alpha, \beta) \beta \alpha W \mid U(\alpha, \beta) \text { is a positive word in } \alpha, \beta \text { of length at most } n\} .
$$

Applying Lemma 8 to the pair $\{\alpha, \beta\}$ we obtain that $V W^{-1}\left(z_{0}\right) \geq z_{0}$ for all $V \in \mathbb{S}_{n}$.
Then $\left|\mathbb{S}_{n}\right| \geq 2^{n}$. After achieving this inequality, we proceed as in the proof of Proposition 7 with just a slight change: there exists a sufficiently big n such that the following two conditions are satisfied:
(i) There exist $g_{1}, g_{2} \in \mathbb{S}_{n}$ such that $g_{1} \neq g_{2}$, and

$$
\left|g_{1} W\left(x_{i}\right)-g_{2} W\left(x_{i}\right)\right|<\frac{1}{\sqrt[2 N]{2}^{n}}, \quad 1 \leq i \leq N-1
$$

(ii) $M^{2 m+4}\left(\theta_{N}\right)^{n} \frac{1}{\sqrt[2 N]{2}^{n}}<\epsilon$.

Let
$h_{1}=g_{1} W, \quad h_{2}=g_{2} W, \quad y_{i}=W\left(x_{i}\right), \quad z_{i}^{\prime}=g_{1}\left(y_{i}\right), \quad z_{i}^{\prime \prime}=g_{2}\left(y_{i}\right), \quad 1 \leq i \leq N$.
Without loss of generality, we may also assume that $g_{2}\left(y_{1}\right) \geq g_{1}\left(y_{1}\right)$.

Then for all $i \in\{1, \ldots, N-1\}$, we have

$$
\begin{aligned}
\left|h_{1}^{-1} h_{2}\left(x_{i}\right)-x_{i}\right| & =\left|\left(g_{1} W\right)^{-1}\left(g_{2} W\right)\left(x_{i}\right)-x_{i}\right| \\
& =\left|\left(g_{1} W\right)^{-1}\left(g_{2} W\right)\left(x_{i}\right)-\left(g_{1} W\right)^{-1}\left(g_{1} W\right)\left(x_{i}\right)\right| \\
& =\left|W^{-1} g_{1}^{-1} g_{2}\left(y_{i}\right)-W^{-1} g_{1}^{-1} g_{1}\left(y_{i}\right)\right| \\
& =\left|W^{-1} g_{1}^{-1}\left(z_{i}^{\prime \prime}\right)-W^{-1} g_{1}^{-1}\left(z_{i}^{\prime}\right)\right| .
\end{aligned}
$$

Since $g_{1}, g_{2} \in \mathbb{S}_{n}$, by the mean value theorem, we have

$$
\left|h_{1}^{-1} h_{2}\left(x_{i}\right)-x_{i}\right| \leq M^{2 m+4}\left(\theta_{N}\right)^{n}\left|z_{1}^{\prime}-z_{1}^{\prime \prime}\right|<M^{2 m+4}\left(\theta_{N}\right)^{n} \frac{1}{\sqrt[2 N]{2}}{ }^{n} .
$$

By condition (ii), we obtain that $\left|h_{1}^{-1} h_{2}\left(x_{i}\right)-x_{i}\right|<\epsilon$. Then we have $\left|h_{1}^{-1} h_{2}(x)-x\right|<$ 2ϵ for all $x \in[0,1]$. Since ϵ is arbitrary, we obtain that Γ is not C_{0}-discrete.

Proof of Theorem B Let H be an arbitrary finitely generated subgroup of [Γ, Γ]. If H contains a non-Abelian free subsemigroup then we are done by Theorem A. If H does not contain a non-Abelian free subsemigroup then by the result from [3], H is virtually nilpotent. Then again by the result of [3], H is solvable of solvability degree at most $l(c)$. Since the natural number $l(c)$ depends only on c, and not on H, and since H is an arbitrary finitely generated subgroup of $[\Gamma, \Gamma]$ we obtain that $[\Gamma, \Gamma]$ is solvable of solvability degree at most $l(c)$. Hence Γ is solvable with a solvability degree at most $l(c)+1$.

Proof of Theorem C Let again H be an arbitrary finitely generated subgroup of $[\Gamma, \Gamma]$. Again, if H contains a non-Abelian free subsemigroup then we are done by Theorem A. If H does not contain a non-Abelian free subsemigroup then by the result from [3] H is virtually nilpotent. Then, by the result of Plante and Thurston [5], H is virtually Abelian. Then, by the result of Szekeres [7], H is Abelian. Since H is an arbitrary finitely generated subgroup of $[\Gamma, \Gamma]$, we conclude that $[\Gamma, \Gamma]$ is Abelian, hence Γ is meta-Abelian.

References

[1] A Akhmedov, On free discrete subgroups of Diff(I), Algebr. Geom. Topol. 10 (2010) 2409-2418 MR2748336
[2] B Farb, J Franks, Groups of homeomorphisms of one-manifolds, III: Nilpotent subgroups, Ergodic Theory Dynam. Systems 23 (2003) 1467-1484 MR2018608
[3] A Navas, Growth of groups and diffeomorphisms of the interval, Geom. Funct. Anal. 18 (2008) 988-1028 MR2439001
[4] A Navas, Sur les rapprochements par conjugasion en dimension 1 et classe C^{1} (2013) arXiv:1208.4815v3
[5] J F Plante, W P Thurston, Polynomial growth in holonomy groups of foliations, Comment. Math. Helv. 51 (1976) 567-584 MR0436167
[6] MS Raghunathan, Discrete subgroups of Lie groups, Ergeb. Math. Grenzgeb. 68, Springer, New York (1972) MR0507234
[7] G Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958) 203-258 MR0107016

Mathematics Department, North Dakota State University
Fargo, ND 58102, USA
azer. akhmedov@ndsu.edu

Received: 28 November 2012 Revised: 13 August 2013

