
msp
Algebraic & Geometric Topology 14 (2014) 539–550

A weak Zassenhaus Lemma for
discrete subgroups of Diff.I/

AZER AKHMEDOV

We prove a weaker version of the Zassenhaus Lemma for subgroups of Diff.I/ . We
also show that a group with commutator subgroup containing a non-Abelian free
subsemigroup does not admit a C0 –discrete faithful representation in Diff.I/ .

37C05; 20F65

In this paper, we continue our study of discrete subgroups of DiffC.I/; the group of
orientation-preserving diffeomorphisms of the closed interval I D Œ0; 1�. Following
recent trends, we try to view the group DiffC.I/ as an analogue of a Lie group, and
we study still basic questions about discrete subgroups of it. This paper can be viewed
as a continuation of Akhmedov [1] although the proofs of the results of this paper are
independent of [1].

Throughout the paper, the letter G will denote the group DiffC.I/. Assume G has
the metric induced by the standard norm of the Banach space C 1Œ0; 1�. We will denote
this metric by d1 . Sometimes, we also will consider the metric on G that comes from
the standard sup norm kf k0 D supx2Œ0;1� jf .x/j of C Œ0; 1�, which we will denote by
d0 . However, unless specified, the metric in all the groups Diffr

C.I/; r 2R; r � 1 will
be assumed to be d1 .

The central theme of the paper is the Zassenhaus Lemma. This lemma states that in
a connected Lie group H there exists an open non-empty neighborhood U of the
identity such that any discrete subgroup generated by elements from U is nilpotent
(see Raghunathan [6]). For example, if H is a simple Lie group (such as SL2.R/), and
� �H is a lattice, then � cannot be generated by elements too close to the identity.

In this paper we prove weak versions of the Zassenhaus Lemma for the group G D

DiffC.I/. Our study leads us to showing that finitely generated groups with expo-
nential growth that satisfy a very mild condition do not admit faithful C0 –discrete
representations in G :

Theorem A Let � be a subgroup of G, and f;g 2 Œ�; �� such that f and g generate
a non-Abelian free subsemigroup. Then � is not C0 –discrete.
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We also study the Zassenhaus Lemma for the relatives of G such as Diff1Cc
C .I/, c 2R,

c > 0; the group of orientation-preserving diffeomorphisms of regularity 1C c . In the
case of Diff1Cc

C Œ0; 1�, combining Theorem A with the results of [3], we show that
C0 –discrete subgroups are more rare.

Theorem B Let � be a C0 –discrete subgroup of Diff1Cc
C Œ0; 1�. Then � is solvable

with solvability degree at most k.c/.

Theorem B can be strengthened if the regularity is increased further; combining
Theorem A with the results of Navas [3], Plante and Thurston [5] and Szekeres [7] we
obtain the following:

Theorem C If � is C0 –discrete subgroup of Diff2
CŒ0; 1� then � is meta-Abelian.

It follows from the results of [1], as remarked there, that the Zassenhaus Lemma does
not hold either for DiffC.I/ or for HomeoC.I/ in metrics d1 and d0 respectively.

In the increased regularity the lemma still fails: given an arbitrary open neighborhood
U of the identity diffeomorphism in G, it is easy to find two C1 “bump functions”
in U that generate a discrete group isomorphic to Z o Z; thus the lemma fails for
Diff1C .I/.

Because of the failure of the lemma, it is natural to consider strongly discrete subgroups,
which we have defined in [1]. Indeed, for strongly discrete subgroups, we are able to
obtain positive results that are natural substitutes for the Zassenhaus Lemma.

Let us recall the definition of strongly discrete subgroup from [1]:

Definition 1 Let � be a subgroup of DiffC.I/. � is called strongly discrete if there
exists C > 0 and x0 2 .0; 1/ such that jg0.x0/� 1j> C for all g 2 �nf1g. Similarly,
we say � is C0 –strongly discrete if jg.x0/�x0j> C for all g 2 �nf1g.

Let us note that a strongly discrete subgroup of G is discrete, and a C0 –strongly
discrete subgroup of G is C0 –discrete.

For the convenience of the reader, let us recall several basic notions on the growth of
groups: if � is a finitely generated group, and S a finite generating set, we will define
!.�;S/D limn!1

n
p
jBn.1IS; �/j, where Bn.1IS; �/ denotes the ball of radius n

around the identity element. (Often we will denote this ball simply by Bn.1/.) We will
also write !.�/D infjS j<1;hSiD�!.�;S/, where the infimum is taken over all finite
generating sets S of �. If !.�/ > 1 then one says that � has uniform exponential
growth.

Now we are ready to state weak versions of the Zassenhaus Lemma for the group G.
First, we state a theorem about C0 –strongly discrete subgroups.
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Theorem 2 Let ! > 1. Then there exists an open non-empty neighborhood U of
the identity 1 2 Diff1

CŒ0; 1� such that if � is a finitely generated C0 –strongly discrete
subgroup of Diff1

CŒ0; 1� with !.�/ � ! , then � cannot be generated by elements
from U.

By increasing the regularity, we can prove a similar version for strongly discrete
subgroups

Theorem 3 Let ! > 1. Then there exists an open non-empty neighborhood U of the
identity 1 2 Diff1

CŒ0; 1� such that if � is a finitely generated strongly discrete subgroup
of Diff2

CŒ0; 1� with !.�/� ! , then � cannot be generated by elements from U.

Remark 4 In regard to the Zassenhaus Lemma, it is interesting to ask a reverse
question, ie, given an arbitrary open neighborhood U of the identity in G, is it true
that any finitely generated torsion free nilpotent group � admits a faithful discrete
representation in G generated by elements from U ? In Farb and Franks [2], it is
proved that any such � does admit a faithful representation into G generated by
diffeomorphisms from U. Also, it is proved in Navas [4] that any finitely generated
nilpotent subgroup of G indeed can be conjugated to a subgroup generated by elements
from U.

Remark 5 Because of the assumptions about uniform exponential growth in Theorem 2
and Theorem 3, it is natural to ask whether or not every finitely generated subgroup of
G of exponential growth has uniformly exponential growth. This question has already
been raised in [3].
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Proofs of Theorem 2 and Theorem 3

Proof of Theorem 2 We can choose � > 1 such that � < !.�/. Then the cardinality
of the sphere of radius n of � with respect to any fixed finite generating set is bigger
than the exponential function �n , for infinitely many n.
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Then let � > 0 such that .1� 10�/� > 1. We let U be the �–neighborhood of the
identity in G with respect to d1 metric (we always assume d1 metric in G unless
otherwise stated).

Let � be generated by finitely many non-trivial diffeomorphisms f1; f2; : : : ; fs 2 U.
We fix this generating set and denote it by S , ie, S D ff1; f

�1
1
; : : : ; fs; f

�1
s g.

We want to prove that � is not C0 –strongly discrete. Assuming the opposite, let
x0 2 .0; 1/ such that for some C > 0, jg.x0/�x0j> C for all g 2 �nf1g.

Let Bn.1/ be the ball of radius n around the identity in the Cayley graph of � with
respect to S . Then Card.Bn.1/nBn�1.1// > �

n for infinitely many n 2 N . Let A

denote the set of all such n.

Let � be a closed subinterval of .0; 1/ of length less than C such that x0 is the left
end of �.

We denote the right-invariant Cayley metric of � with respect to S by j � j. For all
g 2 �, let �g D g.�/. Thus we have a collection f�ggg2G of closed subintervals of
.0; 1/.

Notice that if g D sw; s 2 S then by mean value theorem, j�swj> .1� 10�/js.�w/j.
Then, necessarily, for all n 2 A, we have

P
jgjDn j�gj > .1� 10�/n�nj�j !1 as

n!1.

Then there exist g1;g2 2 �;g1 ¤ g2 such that g2.x0/ 2�g1
. Then g�1

1
g2.x0/ 2�.

Since j�j< C , we obtain a contradiction.

Now we prove a better result by assuming higher regularity for the representation.

Proof of Theorem 3 Let �; �1; �2 be constants such that 1< � < �1 < �2 < !.�/.
Then the cardinality of the sphere of radius n of � with respect to any fixed finite
generating set is bigger than the exponential function �n

2
, for infinitely many n.

We choose � > 0; � > 0 to be such that 1< �< �
1C�

and 1C�
1��

< �1

�
. Let U be the ball

of radius � around the identity diffeomorphism.

We again assume that � is generated by finitely many non-trivial diffeomorphisms
f1; f2; : : : ; fs 2 U, and we fix the generating set S D ff1; f

�1
1
; : : : ; fs; f

�1
s g. Let

Bn.1/ be the ball of radius n around the identity in the Cayley graph of � with respect
to S . Then we have Card.Bn.1/nBn�1.1// > �

n
2

for infinitely many n 2 N . Let A

denote the set of all such n.

We need to show that � is not strongly discrete. Assuming the opposite, let x0 2 .0; 1/

such that for some C > 0, jg0.x0/� 1j> C for all g 2 �nf1g.

Algebraic & Geometric Topology, Volume 14 (2014)



A weak Zassenhaus Lemma for discrete subgroups of Diff.I/ 543

Let C1 be a positive number such that

1�C < .1�C1/
2 and 1CC > .1CC1/

2:

Let also N1 2N such that for any n�N1 , we have

1�C1 <
�
1�

1

�n

�n
<
�
1C

1

�n

�n
< 1CC1:

Notice that for all n 2 A;g 2 Bn.1/nBn�1.1/, and x 2 Œ0; 1�, we have .1� �/n <
g0.x/ < .1C �/n . Since 1C�

1��
< �1

�
, there exists n 2A and g1;g2 2 � such that

n>N1; g1 ¤ g2; jg1j D jg2j D n

but

jg1.x0/�g2.x0/j �
1

�n
. ?1/ and 1�C1 <

g0
1
.x0/

g0
2
.x0/

< 1CC1. ?2/:

Indeed, by the pigeonhole principle, for all n 2 A, there exists j 2 f0; 1; : : : ; Œ�n�g

such that

Card
n
g 2 Bn.1/nBn�1.1/

ˇ̌̌
g.x0/ 2

h j

�n
;
j C 1

�n

�o
�

�n
2

�nC 1
:

For all n 2A; j 2 f0; 1; : : : ; Œ�n�g, let

D.n; j /D
n
g 2 Bn.1/nBn�1.1/

ˇ̌̌
g.x0/ 2

h
j

�n
;

jC1

�n

�o
:

Then, for sufficiently big n 2A, there exists j 2 f0; 1; : : : ; Œ�n�g such that

Card.D.n; j //�
�n

1

�n
. ?3/:

For all n 2A, let

J.n/D

�
j 2 f0; 1; : : : ; Œ�n�g

ˇ̌̌̌
Card.D.n; j //�

�n
1

�n

�
:

Recall also that for all g 2D.n; j /, we have

.1� �/n < g0.x0/ < .1C �/
n

Then, since 1C�
1��

< �1

�
, for sufficiently big n2A and j 2J.n/, applying the pigeonhole

principle to the set D.n; j /, we obtain that (besides the inequality . ?3/) there exist
distinct g1;g2 2D.n; j / such that the inequality

1�C1 <
g0

1
.x0/

g0
2
.x0/

< 1CC1
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holds. On the other hand, by definition of D.n; j /, we have jg1.x0/�g2.x0/j �
1
�n ;

thus we established the desired inequalities . ?1/ and . ?2/.

Let now y0Dg1.x0/, z0Dg2.x0/, W Dg�1
1

, V Dg�1
1

g2 , and let W Dhnhn�1 � � � h1

where W is a reduced word in the alphabet S of length n and hi 2 S; 1� i � n.

Let also Wk be the suffix of W of length k , yk DWk.y0/, zk DWk.z0/, 1� k � n.

Furthermore, let

max
1�i�s

sup
0�y¤z�1

jf 0i .y/�f
0

i .z/j

jy � zj
DM and LD 1C �:

Then we have jyk�zk j �Lk=�n , jh0
kC1

.yk/�h0
kC1

.zk/j �MLk=�n , 0� k � n�1.
Then

1�
MLkC1

�n
�

h0
kC1

.yk/

h0
kC1

.zk/
� 1C

MLkC1

�n

for all 0� k � n� 1. From here we obtain that
n�1Y
kD0

�
1�

MLkC1

�n

�
�

nY
kD0

h0
kC1

.yk/

h0
kC1

.zk/
�

n�1Y
kD0

�
1C

MLkC1

�n

�
:

Then, for sufficiently big n in A�
1�

1

�n

�n
D

n�1Y
kD0

�
1�

1

�n

�
�

n�1Y
kD0

h0
kC1

.yk/

h0
kC1

.zk/
�

n�1Y
kD0

�
1C

1

�n

�
D

�
1C

1

�n

�n
:

Since, by the chain rule,
n�1Y
kD0

h0
kC1

.yk/

h0
kC1

.zk/
D
.g�1

1
/0.y0/

.g�1
1
/0.z0/

;

we obtain that 1�C1 < .g
�1
1
/0.y0/=.g

�1
1
/0.z0/ < 1CC1 . Then

V 0.x0/D .g
�1
1 /0.g2.x0//g

0
2.x0/

D
.g�1

1
/0.g2.x0//g

0
2
.x0/

.g�1
1
/0.g1.x0//g

0
1
.x0/

.g�1
1 /0.g1.x0//g

0
1.x0/

D
.g�1

1
/0.g2.x0//g

0
2
.x0/

.g�1
1
/0.g1.x0//g

0
1
.x0/

D
.g�1

1
/0.g2.x0//

.g�1
1
/0.g1.x0//

g0
2
.x0/

g0
1
.x0/

2 ..1�C1/
2; .1CC1/

2/� .1�C; 1CC /:

Thus we proved that 1�C < V 0.x0/ < 1CC , which contradicts our assumption.
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Remark 6 The same proof, with slight changes, works for representations of C 1Cc –
regularity for any real c > 0.

Proofs of Theorems A, B, C

In the proofs of Theorem 2 and of Theorem 3, we consider the orbit of the point x0

under the action of �. By using exponential growth, we find two distinct elements
g1;g2 such that g1.x0/ and g2.x0/ are very close. Then we “pull back” g2.x0/

by g�1
1

, ie, we consider the point g�1
1

g2.x0/ and show that this point is sufficiently
close to x0 . It is at this stage that we heavily use the condition that � is generated by
elements from the small neighborhood of 1 2G, ie, derivatives of the generators are
uniformly close to 1. However, if � is an arbitrary subgroup of the commutator group
ŒG;G�, not necessarily generated by elements close to the identity element, then for any
x0 2 .0; 1/; f 2� and for any � > 0, there exists W 2� such that jf 0.W .x0//�1j<� ;
we simply need to find W such that W .x0/ is sufficiently close to 1 (or to 0). This
fact provides a new idea of taking x0 close to 1, then considering the part of the orbit
that lies in a small neighborhood of 1, then using exponential growth to find points
close to each other in that neighborhood, and then perform the “pull back”.

The following proposition is a special case of Theorem A, and answers [1, Question 2].
For simplicity, we give a separate proof of it.

Proposition 7 F2 does not admit a faithful C0 –discrete representation in G.

Proof Since the commutator subgroup of F2 contains an isomorphic copy of F2 , it
is sufficient to prove that F2 does not admit a faithful C0 –discrete representation in
G.1/ D ŒG;G�.

Let � be a subgroup of G.1/ isomorphic to F2 generated by diffeomorphisms f and
g . Without loss of generality we may assume that � has no fixed point on .0; 1/. Let
also � > 0 and M Dmax0�x�1.jf

0.x/jC jg0.x/j/.

We choose N 2 N; ı > 0 and �N such that 1=N < � , 1 < �N <
2N
p

2, and for all
x 2 Œ1� ı; 1�, the inequality 1=�N < �0.x/ < �N holds where � 2 ff;g; f �1;g�1g.

Let W DW .f;g/ be an element of � such that W .1=N / 2 Œ1�ı; 1�, m be the length
of the reduced word W . Let also xi D i=N; 0� i �N .

For every n 2N , let

Sn D fH 2 Bn.1/ j u.W .x1//�W .x1/ for all suffixes u of H g:

(Here we view H as a reduced word in the alphabet ff;g; f �1;g�1g.) Then jSnj�2n .
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Then (assuming N � 3) we can choose and fix a sufficiently big n such that the
following two conditions are satisfied:

(i) There exist g1;g2 2 Sn such that g1 ¤ g2 , and

jg1W .xi/�g2W .xi/j<
1

2N
p

2
n ; 1� i �N � 1:

(ii) M m.�N /
n 1

2N
p

2
n < � .

Indeed, let .c0; c1; : : : ; cN�1; cN / be a sequence of real numbers such that 2N
p

2 D

cN < cN�1< � � �< c1< c0D 2 and ci >
2N
p

2ciC1 , for all i 2 f0; 1; : : : ;N �1g. Then,
by the pigeonhole principle, for sufficiently big n, there exists a subset Sn.1/ � Sn

such that jSn.1/j � cn
1

and jg1W .x1/�g2W .x1/j< 1=
2N
p

2
n

, for all g1;g2 2 Sn.1/.

Suppose now 1 � k � N � 2, and Sn � Sn.1/ � � � � � Sn.k/ such that for all
j 2 f1; : : : ; kg, jSn.j /j � cn

j and for all g1;g2 2 Sn.j / we have

jg1W .xi/�g2W .xi/j<
1

2N
p

2
n ; 1� i � j:

Then by applying the pigeonhole principle to the set Sn.k/ for sufficiently big n, we
obtain Sn.kC1/�Sn.k/ such that jSn.kC1/j � cn

kC1
, and for all g1;g2 2Sn.kC1/

we have

jg1W .xi/�g2W .xi/j<
1

2N
p

2
n ; 1� i � kC 1:

Then, for k DN � 2, we obtain the desired inequality (condition (i)).

Now, let

h1D g1W; h2D g2W; yi DW .xi/; z0i D g1.yi/; z00i D g2.yi/; 1� i �N:

Without loss of generality, we may also assume that g2.y1/� g1.y1/.

Then for all i 2 f1; : : : ;N � 1g, we have

jh�1
1 h2.xi/�xi j D j.g1W /�1.g2W /.xi/�xi j

D j.g1W /�1.g2W /.xi/� .g1W /�1.g1W /.xi/j

D jW �1g�1
1 g2.yi/�W �1g�1

1 g1.yi/j

D jW �1g�1
1 .z00i /�W �1g�1

1 .z0i/j:
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Let u be a prefix of the reduced word g1 , and g1 D uv (so a reduced word v is a
suffix of g1 ). Then, since g1;g2 2 Sn , we have

u�1.z0i/D v.yi/� v.y1/� y1;

u�1.z00i /D u�1.g2.yi//� u�1.g2.y1//� u�1.g1.y1//� v.y1/� y1:

Then by the mean value theorem, we have

jh�1
1 h2.xi/�xi j �M m.�N /

n
jz01� z001 j<M m.�N /

n 1
2N
p

2
n :

Then, by condition (ii), we obtain jh�1
1

h2.xi/�xi j<� . Then we have jh�1
1

h2.x/�xj<

2� for all x 2 Œ0; 1�. Indeed, let x 2 Œxi ;xiC1�. Then

jh�1
1 h2.x/�xj �maxfjh�1

1 h2.xi/�xj; jh�1
1 h2.xiC1/�xjg:

But jh�1
1

h2.xi/�xj � jh�1
1

h2.xi/�xi jC jxi �xj< 2� , and similarly,

jh�1
1 h2.xiC1/�xj � jh�1

1 h2.xiC1/�xiC1jC jxiC1�xj< 2�:

Since � is arbitrary, we obtain that � is not C0 –discrete.

By examining the proof of Proposition 7, we will now prove Theorem A, thus obtaining
a much stronger result. The inequality jSnj � 2n is a crucial fact in the proof of
Proposition 7; we need the cardinality of Sn to grow exponentially. If � is an arbitrary
finitely generated group with exponential growth, this exponential growth of Sn is not
automatically guaranteed. But we can replace Sn by another subset Sn that still does
the job of Sn and that grows exponentially, if we assume a mild condition on �.

First we need the following easy lemma.

Lemma 8 Let ˛; ˇ 2G; z0 2 .0; 1/ such that z0� ˛.z0/�ˇ˛.z0/. Then Uˇ˛.z0/�

z0 , where U D U.˛; ˇ/ is any positive word in letters ˛; ˇ .

Now we are ready to prove Theorem A.

Proof of Theorem A Without loss of generality, we may assume that � has no fixed
point on .0; 1/. Let again � > 0;N 2N; ı > 0; �N > 0,

M D 2 sup
0�x�1

.jf 0.x/jC jg0.x/j/

such that 1=N < �; 1< �N <
2N
p

2, and for all x 2 Œ1� ı; 1�, the inequality 1=�N <

�0.x/ < �N holds where � 2 ff;g; f �1;g�1g.

Algebraic & Geometric Topology, Volume 14 (2014)



548 Azer Akhmedov

Let W DW .f;g/ be an element of � such that

ff iW .1=N / j �2� i � 2g[ fgiW .1=N / j �2� i � 2g � Œ1� ı; 1�

and let m be the length of the reduced word W . Let also xi D i=N; 0� i �N and
z DW .1=N /.

By replacing the pair .f;g/ with .f �1;g�1/ if necessary, we may assume that f .z/�
z . Then at least one of the following cases is valid:

Case 1 f .z/� gf .z/

Case 2 z � gf .z/

Case 3 gf .z/� z

If Case 1 holds then we let ˛ D f; ˇ D g; z0 D z . If Case 1 does not hold but Case 2
holds, then we let ˛ D gf; ˇ D f; z0 D z . Finally, if Case 1 and Case 2 do not hold
but Case 3 holds, then we let ˛ D f �1g�1; ˇ D g�1; z0 D gf .z/.

In all the three cases, we will have z0 2 Œ1� ı; 1�; z0 � z , and ˛; ˇ generate a free
subsemigroup, and conditions of Lemma 8 are satisfied, ie, we have z0 � ˛.z0/ �

ˇ˛.z0/. Moreover, we notice that sup0�x�1.j˛
0.x/jC jˇ0.x/j/�M 2 , and the length

of W in the alphabet f˛; ˇ; ˛�1; ˇ�1g is at most 2m.

Now, for every n 2N , let

Sn D fU.˛; ˇ/ˇ˛W j U.˛; ˇ/ is a positive word in ˛; ˇ of length at most ng:

Applying Lemma 8 to the pair f˛; ˇg we obtain that V W �1.z0/� z0 for all V 2 Sn .

Then jSnj � 2n . After achieving this inequality, we proceed as in the proof of
Proposition 7 with just a slight change: there exists a sufficiently big n such that
the following two conditions are satisfied:

(i) There exist g1;g2 2 Sn such that g1 ¤ g2 , and

jg1W .xi/�g2W .xi/j<
1

2N
p

2
n ; 1� i �N � 1:

(ii) M 2mC4.�N /
n 1

2N
p

2
n < � .

Let

h1D g1W; h2D g2W; yi DW .xi/; z0i D g1.yi/; z00i D g2.yi/; 1� i �N:

Without loss of generality, we may also assume that g2.y1/� g1.y1/.
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Then for all i 2 f1; : : : ;N � 1g, we have

jh�1
1 h2.xi/�xi j D j.g1W /�1.g2W /.xi/�xi j

D j.g1W /�1.g2W /.xi/� .g1W /�1.g1W /.xi/j

D jW �1g�1
1 g2.yi/�W �1g�1

1 g1.yi/j

D jW �1g�1
1 .z00i /�W �1g�1

1 .z0i/j:

Since g1;g2 2 Sn , by the mean value theorem, we have

jh�1
1 h2.xi/�xi j �M 2mC4.�N /

n
jz01� z001 j<M 2mC4.�N /

n 1
2N
p

2
n :

By condition (ii), we obtain that jh�1
1

h2.xi/�xi j<� . Then we have jh�1
1

h2.x/�xj<

2� for all x 2 Œ0; 1�. Since � is arbitrary, we obtain that � is not C0 –discrete.

Proof of Theorem B Let H be an arbitrary finitely generated subgroup of Œ�; ��. If
H contains a non-Abelian free subsemigroup then we are done by Theorem A. If H

does not contain a non-Abelian free subsemigroup then by the result from [3], H is
virtually nilpotent. Then again by the result of [3], H is solvable of solvability degree
at most l.c/. Since the natural number l.c/ depends only on c , and not on H , and
since H is an arbitrary finitely generated subgroup of Œ�; �� we obtain that Œ�; �� is
solvable of solvability degree at most l.c/. Hence � is solvable with a solvability
degree at most l.c/C 1.

Proof of Theorem C Let again H be an arbitrary finitely generated subgroup of
Œ�; ��. Again, if H contains a non-Abelian free subsemigroup then we are done by
Theorem A. If H does not contain a non-Abelian free subsemigroup then by the result
from [3] H is virtually nilpotent. Then, by the result of Plante and Thurston [5], H

is virtually Abelian. Then, by the result of Szekeres [7], H is Abelian. Since H is
an arbitrary finitely generated subgroup of Œ�; ��, we conclude that Œ�; �� is Abelian,
hence � is meta-Abelian.
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