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The connective real K-theory of
Brown—Gitler spectra

PAUL THOMAS PEARSON

We calculate the connective real K—theory homology of the mod 2 Brown—Gitler
spectra. We use this calculation and the theory of Dieudonné rings and Hopf rings
to determine the mod 2 homology of the spaces in the connective 2—spectrum for
topological real K—theory.

55T25; 55P42

1 Introduction

Suppose E is a ring spectrum, and let £ = QK E denote the k™ space in its
Q—spectrum. The mod p homology Hi(E) is a Hopf ring; a ring object in the
category of coalgebras over F,. In [9], Goerss defined a category of Dieudonné
rings over the p-adic integers Z p. He showed that the Dieudonné functor Dy (—)
from Hopf rings to Dieudonné rings was symmetric monoidal, thereby establishing an
equivalence of categories and, consequently, an isomorphism between any Hopf ring
H,(E ) and its associated Dieudonné ring D, (Hx(E«)). Building on his earlier work
with Lannes and Morel [11], Goerss also showed there is a surjective map from the
E -homology of Brown—Gitler spectra E4(B(*)) to the Dieudonné ring Dy (H«(E«))
that is periodically an isomorphism. When the mod p (co)homology of the spectrum £
is known, the E-homology of the Brown—Gitler spectra E«(B(*)) can be calculated
via an Adams spectral sequence. Thus, it is often possible to calculate the Hopf ring
Hy(E ) via the Adams spectral sequence for E(B(*)).

Calculating the Hopf ring Hy(E«) using an Adams spectral sequence for Ey(B(x))
is remarkable for several reasons. First, this method for calculating the homology
of the spaces E « is done using only the (co)homology of the spectrum E and the
Brown-Gitler spectra B(x) as input to the Adams spectral sequence. Second, this
approach can be used even when the spaces £, have not been identified in terms
of already-known spaces. Third, unlike the bar spectral sequence, which computes
H,.(E}) inductively on k (ie, one space E at a time), this method computes Hy (E «)
inductively on n (ie, across all spaces E4 at once), and as a result it does well
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at identifying natural generators for the Hopf ring coming from the homotopy and
homology of the spectrum E'.

Every Hopf ring Hy«(E ) has a unique suspension class ¢ € H;(E) such that

(1-1) eo(—): Hy(Ex) > Ha+1(Ek+1).

(1-2) e (=) Hyyi(Ex) > Hq(E),

are the homology suspension and stabilization (ie, infinitely iterated homology suspen-
sion) homomorphisms, respectively. We call an element in a Hopf ring unstable if it is

in the kernel of the stabilization homomorphism, and stable if it is not. There is also a
destabilization function

(1-3) e"(=): Hy(E) — Hy 1 (Ex)

that takes a stable homology class back to its space of origin, ie, for each x € Hy(E)
it finds the smallest k& such that e7°°(x) is nonzero in Hyx(Ey).

P : Bidegree (1 — s, 5):
,}: : : a= (2n,a(n))
b/k . ) [ b= (2n,a(n)+v(2n))
B 3 - c=Q2n+4,a(m)+3)ifv(n)>1
[ DR d=02n+4,a(n)+vH@n))ifv(n) > 1
a(n) AL ¢ and d do not exist if v(n) =0
(2n—)4b 0 —4 -8

Figure 1: The chart C*(2n). Height of gray vertical towers varies with 7,
and the tower connecting ¢ to d does not exist when v(n) = 0.

In this paper we calculate the ko homology of the mod 2 Brown—Gitler spectra via an
Adams spectral sequence. Recall from Ravenel [20] that

(1-4) Hi(ko) = P({}.55.5; i = 3),

where ¢, = x(&5,) is the conjugate of the Milnor generator in the dual of the Steenrod
algebra, and P(x, y,...) denotes a polynomial algebra over IF,. Define the & weight
of a monomial to be

Y/
wie(E1E 6 = Y2
j=1

and define the weight on sums by taking the maximum weight among all terms, ie,
wig (Y gl = maxl{wtg(él)}. If 3 ¢/ =3 &7 under change of basis, set wig (Y ¢
equal to weg (> &7).

Algebraic € Geometric Topology, Volume 14 (2014)



The connective real K—theory of Brown—Gitler spectra 599

Let A; denote the sub-Hopf algebra of the mod 2 Steenrod algebra generated by Sq!
and Sq°. Let C**(0) = Ext:’l* (F,,F,), and define C**(2n) for n > 1 by the chart in
Figure 1 extended to the left and to the right by (8,4) = (¢ —s, s) real Bott periodicity,
deleting everything below Adams filtration s = 0. Let a(n) be the number of ones in
the 2—adic expansion of n, and let v(n) be the number of times that 2 divides 7.

Our main result is the calculation of ko« (B(2n)), the connective real K—theory of a
mod 2 Brown-Gitler spectrum B(2n).

Theorem 1.1 Consider the Adams spectral sequence

Extjj (H*(B(2n)),F,) = ko;_s(B(2n)).

(1) For s = 0, there is a bijection
Exty" (H*(B(2n)), F2) < (¥ ¢! € H(ko) |wig (X ¢") <n).
(2) There is a map
C¥'(2n) — Exty! (H*(B(2n)),F2)
that is injective if s = 0 and an isomorphism if s > 1.

(3) Finally, the Adams spectral sequence for kos(B(2n)) collapses, ie, E; =~ E .

Part (1) of this theorem is presented in Theorem 7.10, while parts (2) and (3) are
presented in Theorem 8.2. The mod 2 Hopf ring for ko was calculated by Morton
using the bar spectral sequence [18; 19]. However, the results are so lengthy and
detailed that discerning the global structure of the Hopf ring for ko is difficult. In
contrast, part (1) of Theorem 1.1 determines all of the stable classes in this Dieudonné
ring by name and part (2) reveals a “lightning bolt and tower” pattern that describes the
unstable classes and the relations among them in the Dieudonné ring D (Hx(kox)).
One limitation of our approach is that the map ko« (B(n)) — Hy(kox), given in
Equation (5-3), is an isomorphism when # is even, but only a surjection when 7 is
odd. However, since B(2n) ~ B(2n + 1) and ko« (B(2n 4+ 1)) — Hp,41(kos) is
surjective, every generator in Hj;,41(kos) is a homology suspension of a generator in
H;, (ko). Consequently, the results of Theorem 1.1 calculate H,, (ko) completely,
and H,,41(kos) up to determination of elements in the kernel of the homology

suspension € o (=): Hap(kog) — Hapt1 (ko 41).

The organization of this paper is as follows. In Section 2 we define categories of
Hopf rings and Dieudonné rings and recall their equivalence. In Section 3, we define
a trigrading on the dual of the mod 2 Steenrod algebra and recall the action of the
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Steenrod algebra on its dual. In Section 4 we recall the Lambda algebra and the Adams
spectral sequence. In Section 5 we give the connection between Brown—Gitler spectra
and Dieudonné rings. In Section 6 we recall the Dieudonné ring and Hopf ring for
the mod 2 Eilenberg—Mac Lane spectrum. In Section 7 we calculate s = 0 line of
the Adams spectral sequence for ko homology, thereby determining the stable classes
in the Dieudonné ring for ko. In Section 8 we calculate the £, term of the Adams
spectral sequence for the ko homology of B(2r) up to stable isomorphism, thereby
determining the unstable classes in the Dieudonné ring for ko.
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2 Hopf rings and Dieudonné rings

Fix a prime p > 0. Let [F, be the finite field of p elements, and let C be the category
of graded connected cocommutative, coassociative coalgebras with counit over [F),.
Graded abelian group and ring objects in C comprise the categories of Hopf algebras
‘HA and Hopf rings HR over [, respectively. A Hopf algebra (or coalgebraic group)
is an algebra with addition 4, multiplication *, conjugation x, and coproduct . Its
multiplication * is a categorical addition with inverse x and zero element [0] = 1. A
Hopf ring (or coalgebraic ring) has an additional product o, which is a categorical
multiplication with unit element [1]. For detailed information about Hopf rings and
coalgebraic algebra, please see Ravenel and Wilson [21], Strickland [24], Hunton and
Turner [12] and Wilson [25].

Example 2.1 Let E be a ring spectrum and let E; = Q®° X% E be the k™ space in
its Q—spectrum. Write H, x for H,(Ey). Then H, j = H«(Ey) is a Hopf algebra
over [, for each k, and Hy s« = H«(E+) is a Hopf ring over [F,,. Three sub-Hopf
rings of Hy x are Hox, Hy o and {Hy i} (1 k)eNxN -

Every Hopf algebra H = H, j over I, has Frobenius and Verschiebung maps. Let
HY = Homp,_noq(H,Fp) denote the ), —linear dual of H.

Definition 2.2 Fix k € Z. The Frobenius F: H, j — H,, j is defined by F(x)=x*?.
The Verschiebung V: Hy ;. — Hyjp i is the Fp—linear dual of the p" power map
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The connective real K—theory of Brown—Gitler spectra 601

f:HY - HY, f: x+> xP,and V is zero when p } n. If H is of finite type, it is
equivalent to define the Verschiebung by V(x) = ax’ if the iterated coproduct is

vP D(x)=ax' X' ®---®x' + (other terms),

p factors

where each of the other terms have at least one tensor factor different from the others.

The Verschiebung is a homomorphism of Hopf rings (2-1), but the Frobenius is not.
Instead, these maps satisfy the Frobenius reciprocity relations (2-2) and (2-3):

(2-1) Vixoy)=V(x)oV(y)
(2-2) F(xoV(y))=F(x)oy
(2-3) F(V(x)oy)=xo0F(y)

The following Hopf algebras are used to define the Dieudonné functor.

Definition 2.3 Let CW(0) = Z plZ] be the Hopf algebra over Zp concentrated in
degree 0 with coproduct ¥ ([r]) = [r] ® [r]. For n > 0, write n = p%b, where
ged(p,b) =1, and let CW(n) = Zp[xo,...,xa]. For 0 <i < a, give CW(n) the
grading |x;| = p'b and the unique coproduct such that the Witt polynomials

%l xpi—l ) xpi—2 .
wi =xo” +px;” +pPST T+ 4l

are primitive.

Let H(n) be the Hopf algebra over [F,, that is the mod p reduction of CW(n). Let
v: H(n) — H(pn) be the identity map if » = 0 and the inclusion v: x; — x; if n > 0.
Let f: H(pn) — H(n) be f([r]) =[rp]if n =0 and the map f: x; — (x;—1)? if
n>0, where x_1 = 0.

We now define the categories DM and DR of graded Dieudonné modules and rings
over Z p respectively. Then, we show that the Dieudonné functor D establishes an
equivalence between the categories of Hopf rings over I, and Dieudonné rings over
7 p - For more details on Dieudonné rings, please see Goerss [9], and Buchstaber and
Lazarev [6].

Definition 2.4 Fix k € Z. A graded Dieudonné module M = M, j over Zp is
a non-negatively graded abelian group with a Frobenius map F: M — My, i
and a Verschiebung map V: M,y — My p i, which is zero when p ¢ n, such that
F(V(x)) = V(F(x)) = px, V is the identity on M, ;, and pa+1Mpab,k = 0 if
ged(p,b) = 1.
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Definition 2.5 Fix k € Z. Let H = H, j be a Hopf algebra over IF,,. The Dieudonné
module D4 (H) is the graded abelian group { Dy (Hy k)}nen With

Dy(Hy k) = Homya(H (n), Hy k).
The Frobenius and Verschiebung

F = f*: Dy(Hy ) = Dpn(Hy ).

V =v*: Dpn(Hy ) = Dp(Hy j)

are induced by the maps f and v of Definition 2.3.

Remark 2.6 The fixed integer k € Z in Definitions 2.4 and 2.5 plays no role for an
individual Dieudonné module and could be omitted from these definitions. The index
k € 7 was inserted into Definitions 2.4 and 2.5 because it will be used later to assemble
an indexed collection of Dieudonné modules into a Dieudonné ring.

Theorem 2.7 (Schoeller’s Theorem [22; 9, Theorem 4.7]) The Dieudonné functor
D has a right adjoint U , and the pair (D, U) is an equivalence between the category
HA of Hopf algebras and DM of Dieudonné modules.

We now define the category DR of Dieudonné rings.

Definition 2.8 A graded commutative Dieudonné ring over Z p is a collection of
Dieudonné modules {M, j }xez together with bilinear maps

or Mpm, j ®Zp My ) — Mm+n,j+k

such that equations (2-1)—(2-3) are satisfied. Graded commutativity is expressed by
xoy=(=1)"+ikyox for x € My, ; and y € My, .

In [9], Goerss constructed symmetric monoidal products Xy, 4 and Kppq for the
categories of Hopf algebras and Dieudonné modules. He showed that the Dieudonné
functor was symmetric monoidal, and thus established an equivalence between the
category of Hopf rings over I, that are group rings in degree zero and Dieudonné
rings over Zp.

Theorem 2.9 (Goerss’s Theorem [9, Theorem 7.7]) For any H, K € H.A such that
Hy j and K j are group rings for every integer k , there is a natural isomorphism of
Dieudonné modules

D*(H) gDM D*(K) — D*(H leA K)
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The connective real K—theory of Brown—Gitler spectra 603

Example 2.10 Let E be a ring spectrum. Then

Ho(E) = Fplro(Ex)] = Fpln5, (E)]

is a group ring for each k. By Theorem 2.9, the Hopf ring H«(E«) over [ is

equivalent to the Dieudonné ring Dy (Hx(E«)) over Zp, and under this equivalence
H,(E}) corresponds to Dy, (Hx«(Ey)).

3 The dual of the Steenrod algebra

In this section, we recall the dual of the Steenrod algebra at the prime 2 as a trigraded
object. In this section and the remainder of the paper, denote the mod 2 Eilenberg—Mac
Lane spectrum by HF . Recall from Milnor [17] that the [F,—linear dual of the mod 2
Steenrod algebra is AY = H,(HF) =F,[&; | i > 0]/(5o = 1). Let §; = x(&;), where
X is the canonical antiautomorphism. Then AY = F[; | i > 1], and x is a change of
basis. For [ = (iy,....ip), let £f = L in

Definition 3.1 The degree function deg: AY — N is given by deg(l1) = 0 and
deg(&,) = deg(¢,) = 2" — 1 and satisfies deg(xy) = deg(x) + deg(y). Sums of
monomials in 4¥ must have homogeneous degree.

Definition 3.2 The & weight function wtg: AY — N is given by wtg(1) = 0 and
wtg (&,) = 2(=1) and satisfies Wt (xp) = weg (x) + wtg(p). If S el =3 ¢/ under
change of basis, then the value of wtg(_ ¢’ is set equal to wtg (3 gl).

Definition 3.3 The ¢ weight function wtz: AY — N is given by wtz(1) = 0 and
wtz ($n) = 2(m=1) and satisfies wig (xy) = wig (x) + wig(p). If S el =3 ¢/ under
change of basis, then the value of wty (D& Ty is set equal to wte (D¢ 7.

Definition 3.4 Define the & factors function factg: AY — N is given by factg(1) =0
and factg(§,) = 1 and satisfies factg (xy) = factg(x) + factg(y). If ) =3¢l
under change of basis, then the value of factg(}_ ¢ 7Y is set equal to facte (D& Ty,
The degree, & weight, and & factors satisfy a linear dependence relation.

Lemma 3.5 Given Y &1 € H;(HF), the degree d = deg(>_ &), the maximum

number of factors k = factg ()& Ty, and the maximum weight n = wtg (D€ Ty satisfy
d+k=2n.
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Proof Let Y &/ € H;(HF). For any monomial £/, we have
d = deg(£}' €7 -+ §,")
12 . L . L
=Y ij@/ - = z(z ijzf—l) =) ij =2wig(E") —factg (£7)
j=1 j=1 j=1
and thus
(3-1) deg(&7) 4 facte (£7) = 2 wig (£7).

Since every monomial in the sum Y_ £ has the same fixed degree d = deg(£7), any
monomial £7 in the sum that has the maximum number of &—factors must also have
the maximum &-weight by Equation (3-1). Thus, d + k = 2n. a

We recall the action of the Steenrod algebra on its dual, which will be used in Adams
spectral sequence computations.

Lemma 3.6 [16, Theorem 6.17; 5, Lemma 6.1] Let Sq = Zizo Sqi be the total
Steenrod square. The canonical right action of the Steenrod algebra on its dual AV is

En-Sq="4&n+&p—1, é‘n'sq:Zéﬁi—i'

i=0
4 The Lambda algebra and the Adams spectral sequence

We recall the Lambda algebra, the Araki—-Kudo (or Dyer—Lashof) algebra, and the
Adams spectral sequence at the prime p = 2.

Definition 4.1 The Lambda algebra A is the associative bigraded differential algebra
over IF, with generators A,, a > —1, of bidegree (1,a + 1) = (s,7) modulo the
two-sided ideal generated by the relations

c—1 .

(4-1)  Aghp = Z (2C . 2a) Aatcrpe, if 0<2a<b,
[(b—2a)/2]1<c<b—2a

and the left ideal A{A_;}. Its differential dq(Ap) = A_1Ap is a derivation.

If I = (i1,...,is) is an s—tuple of nonnegative integers, set Ay = A;, ---A;, and

Ay = 1. We say that Ay is admissible if 2i; > i; 1 for 1 < j <s. The admissible
monomials form a basis for A.
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The connective real K—theory of Brown—Gitler spectra 605

The Lambda algebra provides an E;—term for the Adams spectral sequence (Bousfield,
Curtis, Kan, Quillen, Rector and Schlesinger [3]). Let A denote the mod 2 Steenrod
algebra.

Theorem 4.2 (Adams spectral sequence [2; 3]) Let X be a complex or spectrum of
finite type, and let E be a spectrum. The E|—term of the Adams spectral sequence for
E homology is the differential right (A, di)-module

(4-2) ET™(A,EAX)=H«(EAX)®R, A
with differential di(z ® Af) = Y ;20 2+Sq' ®A;—1(Ay). Its Ey~term is

4-3) EY'(A,EAX)=Ext] (H*(EAX),F2) = 15 (EAX)= E—s(X).

If H*(E) is a Hopf algebra quotient of the Steenrod algebra, the Adams spectral
sequence for calculating E.(X) can be simplified by a change of rings theorem.

Theorem 4.3 (Change of rings [2]) If E is a ring spectrum such that H*(E) =
AJ/C = A ®c IF, for some sub-Hopf algebra C C A, then there is an isomorphism,
natural in X,

Exty! (H*(X),F,) = Ext} (H*(E A X),F»).

Define a sub-Hopf algebra Ay C A by A; = (qui |0<i<h)andset A_| =TF,.
Then when E = eo;, we may use the change of rings theorem since H *(eop) =
A Ap = A®4, Fr = A/A(SG™ |0 =i <h}.

5 Brown-Gitler spectra and Dieudonné rings

Brown and Gitler constructed a family of spectra at the prime 2 in [4]. Analogues of
these spectra at odd primes were later constructed by R Cohen [7]. In this section we
specialize to the prime 2, although analogous results also exist for odd primes [9].

The n™ mod 2 Brown-Gitler spectrum, which was originally denoted B(#) and indexed
by n € %N in [4], will be denoted B(2n) and indexed by N. There is a homotopy
equivalence B(2n) ~ B(2n+1) forall n € N, and B(0) and B(2) are the 2 complete
sphere spectrum and mod 2 Moore spectrum, respectively. The Brown—Gitler spectra
realize certain cyclic modules over the Steenrod algebra. They are characterized up to
homotopy 2—equivalence by the following theorem.
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Theorem 5.1 [4] Foreach n € N there is a 2—complete spectrum B(2n) satisfying:
(1) H*(BQ2n)) = A/A{x(Sq") | i > n} as left A modules.

(2) Ifi: B(2n) — HF classifies the element 1 € H°(B(2n)), then the induced map
of reduced homology theories t«: B(2n);(X) — H;(X) is an epimorphism for
all complexes X and 0 <i <2n+1.

The homology of Brown—Gitler spectra can be described as a right A submodule of
AV using the ¢ weight function. This weight function is induced by the May filtration
of Q283 by identifying the Thom spectrum of the canonical bundle on 253 with
HF (Mahowald [14]).

Lemma 5.2 [14] There is an isomorphism of right A—modules

Hi(B(2n)) = Fp{¢f € AV | wie(¢1) < n}.
Remark 5.3 The right A-module structure of AY = H,(HF) is given in Lemma 3.6.
The following Mahowald cofiber sequence is very useful for computations.

Lemma 5.4 [9] For each integer n > 1, there is a cofiber sequence of spectra
(5-1) B(2n—2) — B(2n) —> X" B(n),

which induces a short exact sequence of left A—modules

(5-2)  0<«— H*(B(2n—2)) «— H*(Bn)) <— S"H*(B(n)) <— 0
in which v*(Z"1) = x(Sq").

We now show that E.(B(x)) is a Dieudonné ring.

Example 5.5 Let E.(—) be a generalized homology theory. There are pairings
B(m) A B(n) — B(m + n) that make B(*) = {B(n)},eNn a graded commutative ring
spectrum, and B(*)«(E) a graded commutative ring. Additionally, there are maps
f: Z"B(n) —> B(2n) and v: B(2n) — X" B(n) so that fv and vf are multiplication
by 2. The map v is the map in the Mahowald cofiber sequence of Equation (5-1). The
maps f and v induce the Frobenius and Verschiebung maps in the Dieudonné ring
E«(B(*)). For more details, please see [9].

The next theorem states that Brown—Gitler spectra are, in some sense, the representing
objects for the Dieudonné functor.
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Theorem 5.6 [9, Proposition 11.3] For any ring spectrum E and all (n,k) e N X Z,
the map
T: Ey—i(B(n)) > Du(H«(Ex))

is a surjective homomorphism of Dieudonné rings that respects the Frobenius and
Verschiebung, and is an isomorphism when n is even.

To calculate Dieudonné ring and Hopf ring for a ring spectrum FE, we use the composite

(53)  EF*(AEAB() = Ex(B()) —> Dy(Hx(Ex)) —> Hi(Ex)

of the Adams spectral sequence, the canonical antiautomorphism yx induced by the
transposition map, the surjective map 7' which is an isomorphism half of the time, and
the right adjoint U of the Dieudonné functor D.

We also need integral versions of Brown—Gitler spectra for our later calculations. The
n™ integral Brown—Gitler spectrum, which was originally denoted Bj(n) and indexed
by n e %N in Shimamoto [23], and Goerss, Jones and Mahowald [10], will be denoted
Bo(4n). Forall n € N and 1 <i < 3, set Byo(4n) = Bo(4n + i) and then index
Bo(n) by n € N. The integral Brown—Gitler spectra realize certain cyclic modules
over the Steenrod algebra, and are characterized up to homotopy 2—equivalence by the
following theorem.

Theorem 5.7 [10; 23] For n € N there is a 2—complete spectrum By(4n) satistying:

(1) H*(Bo(4n)) = H*(B(4n)®4,F2 = A/A{x(Sq"),Sq" | i > 2n} as left A-
modules.

(2) If v: Bo(4n) — HZZ classifies the element 1 € HO(BO(4n);Zz), then the
induced map of reduced homology theories t+: By(4n);(X) — H;(X;Z,) is an
epimorphism for all complexes X and 0 <i <4n+1.

The following Shimamoto cofiber sequences relate the mod 2 and integral Brown—Gitler
spectra and are very useful for computations.

Lemma 5.8 [23, Theorem 2.15] There are cofiber sequences of spectra

(5-4) Bo(4n—4) — By(4n) — B(4n), forn>1,

(5-5) By(4n) 2 Bo(4n) — B(@4n+2), forn=>0,

that induce short exact sequences of left A—modules

(5-6) 0 «— H*(Bo(4n)) <— H*(B(4n)) <— S H*(By(4n —4)) <— 0,
(5-7)  0<«— H*(Bo(4n)) «— H*(B(4n +2)) «— X' H*(By(4n)) <— 0.
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6 The Hopf ring H,.(HF,)

In this section we recall the structure of the Hopf ring Hy(HF ), define its conjugate
generators z; and define its destabilization function.

Recall that H«(HF 1) = H«(RP*°) = F,{b; | i > 1}, where |b;| =i. The product is
bi xbj = (HZ'J) bjy j, the Frobenius is F(b;) = b;“z = 0, and the indecomposables
are the module *—Ind(Hy(HF ;)) = Fo{x; | i > 0}, where x; = b,i . The coproduct
is ¥ (bn) = Y _g<i<n bn—i ® b;, the Verschiebung is V(by;) = b; and V(by;41) =0,
and the primitives are given by Newton polynomials, which are defined recursively by
Ni = Ni(by,....b;) = ib; + Y 5_\ bj x Ni_j(by.....bi—j) mod 2 for i =1 (see [2,
pages 93-94; 13, Section 3] for more details). The suspension class is e = xog = by .
The stabilization homomorphism is e*°(x;) = &;, and satisfies e*°(x; * x;) = 0 and
e®(x;oxj) = §;&;. Note: by definition

Hy(HF) = lim H,i(HE ),

where the limit is taken by iterating the homology suspension e o (—): H,+x(HF ;) —
Hyq 41 (HEg4q).

Theorem 6.1 [25; 16] As Hopf algebras over [, with addition + and multiplica-
tion *,
Fy[F ifk =0,
HomEy) = {72 . o
E(xj0--roxj |0=<iy <---=Z1i) ifk>1.
Further, *-Ind (H«(HF «)) = Sym(x; | i > 0), the bigraded symmetric algebra over F,
with addition +, multiplication o, and generators x; € H,; (HF ;).

We now define elements z, that are the destabilization of the conjugate ¢, = x(&,) in
the dual of the Steenrod algebra, following the definition by Milnor [17].

Definition 6.2 An ordered partition of n of length £ is a sequence (a1, ®3,...,0y)
of positive integers whose sum is 7. Let Part(n) denote the set of all 2”~! ordered
partitions of 7. Given an ordered partition (o, ..., ay) € Part(n), let
=1, o(1) oy ifi_
2" —1—-(29) 4...429%)) ifi =0.

Let e = x9 =z9 € Hi(HF ), and for n > 1 define z, € Hyn+1_,(HF n_;) by
(6-1) Zn = Z xga(o) ox;’lf”m Ox;gn@) o... Ole%o(e).

(Ofl,n-ﬂe)

€Part(n)
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Remark 6.3 Every term of the sum (6-1) has 2" —1 = deg({,) factors because for each

oo (0) OxozU(l)o. . .Oxzo(ﬁ)

(a1, ..., ag) €Part(n) the sum of the exponents in the term x, o 0

is 2" — 1 by construction.

We now define the destabilization function ¢~*°: Hy(HF) — H.(HF ). It will be
constructed so that every element in the image of ¢~°° cannot be desuspended any
further and e~ is a right inverse for the stabilization homomorphism ¢*°, ie, the
composite map

6-2) H.(HF) *> H,(HF,) <> H,(HF)

is the identity on Hy(HF). It is clear that the destabilization function ought to be
defined as follows. Since e ([1]) = 1 and e (x°!) = £/, the destabilization function
should satisfy e=*°(1) = [1] and e~*°(&£1) = x°!. Further, if a sum of monomials
> x°! e Hy . x(HF ;) has one or more terms with no o—product factors of e = x,
then it cannot be desuspended further and the destabilization should be e~ (> _ & Iy =
Z on )

Finding an explicit formula for the destabilization function in terms of the x; and z;
remains to be done. In the next definition and lemma, we construct an explicit formula
for the destabilization e~%°(}_ £7), show that all the terms in e~ (3" £7) have the
same bidegree, and show that the destabilization function is well-defined. From the
construction of the formula for the destabilization, it will be evident that elements in the
image of the destabilization cannot be desuspended further and that the destabilization
is a right inverse for the stabilization.

Definition 6.4 The destabilization function e~*°: H,(HF) — H,(HF ) is given
as follows. Set e=*°(1) = [1] € Hy(HF¢) = F,[F,]. Suppose Y &7 = 3¢/ has
d=deg> El)>0and k = factg (3 £7). Then, in terms of the basis of the x;,

o(k— I
(6-3) e (LE) = e (L4) = L ol
In terms of the basis of the z;,

(6-4) e (NE) = (Nt)) =z PP o (7).

Remark 6.5 By construction, every term in the sum (6-3) has exactly k o—product
factors of x;. In contrast, the sum (6-4) does not necessarily have the same number of
o—product factors of z; in each term.

Lemma 6.6 The classes defined by equations (6-3) and (6-4) are in Hy;(HF ;) and
the destabilization function is well-defined.
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Proof Suppose Y &/ =3¢/ € H;(HF) has d > 0 and factg (3 &) = k. First, we
verify that e~ (3" £1) € Hy; (HF ;). By construction, every term in the sum

olk— I
e—oo(ZSI) _ xo(k factg (§1)) o x°!

has exactly k o—product factors of x; and therefore e~ (3" &) € H,(HF ). Also,
from Equation (6-3) it is clear that e®(e=*°(Y_ &7)) =" &! € H;(HF), and therefore
e~®(X¢") € Hyy i (HEy).

Next, we show that

I
g facte €1) | ol _ Z(«;—(cl—k) o (Z ZoJ)'

By Remark 6.3, d > k and under the change of basis 3_ z°/ = Z x°%, every term
x°F has d = deg(>_¢”7) o—product factors. Since d = d — factg (&T )—{—factg (€7) and
d—k =0 and k —factg (§ Iy > 0 for all terms in " &7, it follows that

ZZOJ :ZxoL

O(d factg (£1 )) . o(d —k+k—facte (§1 ))
X0 =2 %
o(k—f: 1 o(d—
_ x(«;(d—k) o ( xo(k factg (67)) | o ) _ xo(d k) oe=(Y £]).
Thus, after desuspending (d — k) times we obtain
o(k— 1 o—(d—
e—OO(Z%-I) _ xo(k factg (§7)) ox°l = z5 d k)(z ZOJ).

Therefore, e (3" £1) = e7>°(3_¢7) and the desuspension function is well-defined.
O

Remark 6.7 The desuspension 28_(d —k) in Equation (6-4) occurs for the following
reason. When 3" z°/ is written in terms of the basis of the x; there may be cancellation

of terms mod 2, and in the sum that remains after cancellation () x°L), the greatest

common factor of the xq is x(‘;(d_k).

Example 6.8 The destabilization of the element &5 + §2&5 = {2 + {3 € Hy4(HF)
with degree d = 14 and k = factg(ég +§12§g) =6 is

TRO(EF +E78) = x5t oxPP + x]P o x5t € Hyo(HF ).

which also equals

(g2 4 £8¢2) = 2008 0 (282 4 298 0 252) € Hao(HF ).
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7 Stable classes in ko, (B (*))

In this section, we calculate the s = 0 line of the Adams spectral sequence
(7-1) Exty' (H*(B(2n)), F;) = ko« (B(2n))
for all n > 0, thereby determining the stable classes in kox(B(x)).

We begin by defining the destabilization function € ~°° for Dieudonné rings that is
equivalent to the destabilization function e~ for Hopf rings. In this section and the
next, the destabilization function € ~°° will be used to show that a permanent cycle on
the s = 0 line of the Adams spectral sequence

H%?(H, (ko) ® Hy(B(d + k) ® A, dy)

determines a nonzero element in Dy (Hx«(kog)) that corresponds to a stable class in
Hy i (kog). We now define the function that induces the Dieudonné ring destabiliza-
tion function Hy(E) — Dy« (Hx(Ex)).

Definition 7.1 Let £ = HF . Define a function
(7-2) € ®: Hy(E) = H«(E) ® Hi(B(c0)) ® A

by e (y)=t(x®1(¥(»)))®1, where v is the coproduct, y is the antiautomorphism,
and 7(x ® y) = y ® x is the graded twist map, which has no sign mod 2.

Lemma 7.2 The destabilization function €~ *° is a ring homomorphism.

Proof We verify €7 °(ab) = € *°(a)e~°°(b) and leave it to the reader to verify
the remaining properties of a ring homomorphism are satisfied. First, note that
and v are ring homomorphisms and that the antiautomorphism yx is also a ring
homomorphism because Hy(B(o0)) = H«(HIF) is commutative. Let a, b € Hy«(HIF)
and write Y (a) = Y_; a; ® aj and Y/(b) = }; b]’. ® bj//. Then
€ X(ab) =t(x® (Y (@) @1 =1(x @ 1Y () ¥ (h))) ® 1

=t(x® U}, g ®a;/)(zj b} ®bj’/))) ®1

=t(x® 1Y, ;jaib; ®ajb)) @1 =3, ;aib] ® x(a))x (b)) ® 1

= (¥ a ® x(@) ® )(Y; b @ x (b)) ® 1)

=(T(x®1Q;a;®a)) @ D(T(x®1(X; b;®@b))® 1)

=1 @)@ Dr(x@ 1Y (1) ®1) =P (a)e”*(b). O
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Example 7.3 On generators of H,(HIF), the destabilization €~ is

(73) X =) &®2,®1€ H(HF) ® Hy(BQ") ® A,
i=0

T4 ) =y 2,8 ® 1 € H(HF)® H(BQ" ' -2)® A,
i=0

where €~ %°(§,) and €~ °°({,) both have bidegree (s,¢) = (0,2" —1).

Remark 7.4 Later, in Lemma 7.8, the element € ~°°(§,) of Equation (7-3) will be
shown to represent a Dieudonné ring generator in D,n (Hx(HIF 1)) that corresponds to
the Hopf ring generator x, in Ho: (HF ).

Lemma 7.5 For the spectrum E = HTF, every element in the image of the destabiliza-
tion €~*° is a permanent cycle.

Proof We begin by showing that €~°°(§,) is a cycle for all » > 0. By the Cartan
formula (x ® y)-Sq = (x-Sq) ® (y-Sq), we have

(2 soiy)sa= 2 (X (884508, )) = ¥ soi,
0<i<n 0<i<mn “i<j=<n 0<i<n

because all terms cancel except when i = j, and thus Sq° is nonzero but qu is zero
for k> 1. Since A_;-1 =0 and (Y1_o & ®¢2,)-Sq* = 0 for k > 1, it follows that

d1 (€7 (&) = Z(( Y E® ;,3"_,.) -qu) ® hp—1-1=0.
k>0 0<i<n

Since the coproduct ¥ and total Steenrod square Sq are ring homomorphisms, and
d; is an F,—module homomorphism, it follows that d;(e~*°(>_&7)) =0 for all
S ¢! € H (HF).

Finally, we show that € ~*°(3_ £7) must be a permanent cycle. By change of rings
(Theorem 4.3),

Exty" (Fy, He(HF) ® Hy(B(00))) = Exty (F2, Hi(B(00))).
Thus, the spectral sequence is concentrated on the s = 0 line and collapses. |

In the next definition and lemma, we show that €~ preserves degree d, the maximum
number of & factors k, and the maximum weight n. Note that the antiautomorphism x
and the twist map 7 in the definition of € ~°° have the effect of mapping the & weight
in Hy(E) to the ¢ weight in the second tensor factor of Hyx(E) ® Hx(B(0c0)) ® A.
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Definition 7.6 Foreach Y x;® y; ® 1 € Hy(E) ® Hx(B(c0)) ® A, let
facté (> xi ® yi ® 1) = max; {factg (x;)},
Wiz (3 xi ® yi ® 1) = max; {wig (1)},
Wiz (X xi ® yi ® 1) = max; {wig (37}
Lemma7.7 IfY &' =Y ¢/ € H(HF) has d = deg(}_&7), k = facte (3" &7) and
n=wtg(Y £T), then fact;(e_c’o(z g1)) =k and
e (Y &7) € H*(H.(HF) ® Hi(B(2n)) ® A.d)).

Proof It is clear that €~ preserves degree and that the lemma is true for e ~°°(1) =
1®1®1. Suppose Y &/ £ 1. First, we show that €~ preserves k. From
Equation (7-3), it is clear that factg (e7°°(&,)) =1. Since €~*° is aring homomorphism
and e (Y £ = (X £7)® 1 ® 1 + (other), it follows that facté (e e =k.

Second, we show that €~ preserves n. From Equation (7-4), it is apparent that
W™ (En) = w1 ® 4 @ 1).
Since €~ is a ring homomorphism, it follows that
wig(e (T e =wg(®(THe)=wgle(XtHe ) =n
Therefore, e (Y £1) € H*(H,(HF) ® Hy«(B(2n)) @ A, d}). o

The following lemma shows that the Dieudonné ring destabilization €~° is, in fact,
equivalent to the Hopf ring destabilization ¢ ~>°.

Lemma 7.8 Suppose
Y&l =3¢’ € Hq(HF)

with d = deg(>_£1), k = factg(Z§I), and n = wtg(ZSI). Then under the
Dieudonné equivalence of Equation (5-3), the destabilized element

(L EN =X ¢7) € Hyvk (HE)

corresponds to
(L€l = e™°(X ) € E3 (4. HF A B(2n)) = D, (Hi(HFy)).

In particular,
U(T (e €M) =2 x°,
where T and U are the maps in Equation (5-3).
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Proof From Lemma 3.5, d + k = 2n and thus Hy 4, (HF ;) = H,,(HF ) is equiv-
alent to D,,(H«(HF)). From Equation (5-3), it is clear that for any generator
€n € Hyn_y (HF),

U(T (e (5n))) = xn
in the rank 1 module H,»(HIF ). The one-to-one correspondence follows for any
Y &l € H.(HF) since e is a ring homomorphism and the right adjoint U to the
Dieudonné functor preserves + and o. a

Example 7.9 The destabilization of the element ¢ § +¢ f{ § = 532 +£& lzég € Hi4(HF)
with degree d = 14, k = fp(§2 + £263) = 6, and n = wtg(§2 + £2€5) = wte (2 +
¢2¢3) =10 is
EREHEED = HEEQIQI+E QG+ (E+8) 0 ®1
+ERI®I+IREG+HIHH®!
=@ +HE)®181+(G+4) 8 R1+5 8 ®]
+ 001+ 1®EE+IHH®1
€ H*'*(H.(HF) ® H«(B(20)) ® A.d;)
and corresponds to the class

o4 02 02 o4 __ _o(—8) 02 o8 _o2
Xo 0X3  +Xx{Tox, =z, 0(23 +z{%0z; )GHZO(HF6).

Theorem 7.10 There is a bijection

(7-5) e :{> ¢! € Hy(ko) | wig (X ¢T) <n}
—> H%*(H, (ko) ® Hy(B(2n)) ® A, d,).

Proof First, we show the map ¢~°° in (7-5) is well-defined. Take E = ko in
Equation (7-2).

From Equation (7-4), it is clear that the elements in the first tensor factor of €~°°(¢,)
are in Hx(ko) when n > 3, and the same is true for e_oo(éf) and e‘“({%). Since
€% is a ring homomorphism, it follows that if }_ ¢/ € Hy(ko), then the first tensor
factor of €7°°(3_¢7) is also in Hy (ko).

Now suppose > ¢! € Hy(ko) satisfies wtg (D ¢y < n. From (7-4), e (&) =
1 ® &, ® 1 + (other), where all of the other terms have second tensor factor of smaller
¢ weight than wtg(§,) = 2" — 1. Since €~ *° is a ring homomorphism, it follows that
ety =1® O &!) ® 1 + (other), where all of the other terms have second
tensor factor of smaller {—weight than wtz(_ £7), and none of the other terms cancel
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with 1 ® (3" &) ® 1. Since wte (D gl = wtg (D ¢1y, it follows that €= (>_¢1) is
in H%*(Hy (ko) ® H«(B(2n)) ® A, d).

Second, we show that €~ in (7-5) is injective. Since e (> =X ¢He1e1+
(other), where none of the other terms cancels with (3" ¢/)® 1 ® 1, €~ is injective.

Third and finally, we show €~ in (7-5) is surjective. Suppose z € H%*(Hy (ko) ®
H,(B(22n))®A,dy). Since Hy (ko) C Hy(HTF), itis clear that diagram (7-6) commutes.

He(ko) > H* (H.(ko) ® Hy(B(00)) ® A, d1)
(7-6)

H, (HF) —> H®*(H.(HF) ® Hx«(B(c0)) ® A. d))
From diagram (7-6), z can be included as an element H%*(H,(HF) ® H.(B(2n)) ®
A.dy), which determines an element ¢/ € H,(HF). Thus, z = e () ¢l) =
(> ¢T)® 1 ® 1 + (other) where none of the other terms cancel with (3. ¢/)®1®1,
and thus Y ¢! € Hi(ko) by the definition of €=*. Since z € H*(Hy (ko) ®
Hi(B2n))® A.dp) and z = e (3¢ =1® O El) ® 1 + (other) where none

of the other terms cancel with 1 ® (3" &) ® 1, we must have wte (D& Iy < n. But,
wte (Y& Iy = wtg (3¢ Ty, and therefore ¢~ in Equation (7-5) is also surjective. O

Corollary 7.11 The destabilization ¢e~°°: Hy (ko) >> Hy(kox) is a restriction of the
destabilization e~*°: H,(HF) >~ H.(HF ), ie, diagram (7-7) is commutative.

Hi(ko) ——> Hi (ko)
(7-7)

H,(HF) —*> H,(HF,)

8 Unstable classes in ko, (B (%))

We now complete the calculation of the Adams spectral sequences
Ext}! (H*(B(2n)). F,) = ko,_s(B(2n))

for n = 0 begun in Section 7. We begin by calculating the ko homology of the integral
Brown—Gitler spectra, and then use the cofiber sequences of Lemma 5.8 that relate
integral and mod 2 Brown-Gitler spectra to calculate ko (B(x)).
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The Adams spectral sequences for the ko homology of integral Brown—Gitler spectra
are stably isomorphic to truncations (Adams covers) of the spectral sequences for ko
and bsp. The spectral sequences for ko and bsp in Figure 2 collapse at £, and have
(t —s,5) = (8,4) real Bott periodicity. All spectral sequence diagrams in this paper are
indexed by stem 7 — s along the horizontal and Adams filtration s along the vertical.
Note that ko >~ ko ABy(0) and bsp ~ ko ABg(4). Let a(n) be the number of ones
in the 2—adic expansion of #, and let v(n) be the number of times that 2 divides .
These functions satisfy n = a(n) +v(n!) and v(n!) =), <;<, v(i).

Lemma 8.1 [15, Theorem 2.7] For n > 0, the maps

(8-1) gy mD- @MY (4, By (0) — EY' (A1, Bo(8n)).
(8-2) ETV@mN, v (GmD (4, B (4)) > EST (A4, Bo(8n +4)).

are injective for s = 0 and an isomorphism for s > 0. (Note: v((4n)!) = 4n—a(n).)

An Adams k—cover of an Ext chart is the chart obtained by deleting rows below
Adams filtration s = k and reindexing the remaining rows so that row s = k in the
original becomes row s = 0. Lemma 8.1 says that Adams v((4n)!)—covers of the Ext
charts for ko and bsp are stably isomorphic to the Ext charts for ko (B¢ (87)) and
ko« (Bo(8n +4)).

Using the Mahowald and Shimamoto cofiber sequences, we determine the Ext chart
for ko, (B(2n)) up to stable isomorphism.

8le [ [ . [ [ . . ]
4% ; : ; : : '

. ] p . .

° o ° °
0«7 .

0 4 8 12 0 4 8 12 16

Figure 2: Left: Eg’t (A1, Bo(0)) = 7 (ko). Right: E;J(Al, Bo(4)) = 75 (bsp).

Theorem 8.2 For n > 0, the map C*'(2n) — E;’t(Al, B(2n)) is injective for s = 0
and the identity for s > 0. Forn >0 and s > 0, E3' (41, B(2n)) = E33 (A1, B(2n)).
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Proof We use strong induction on n > 1 to calculate E;’t(Al, B(2n)) up to stable
isomorphism. Since ko and bsp, are 8—periodic, each step of the induction falls into
one of four cases (2n =0,2,4,6 mod 8) by Lemma 8.1. Although we present case 0
first, the induction begins with case n = 1 and cycles through all of the cases thereafter.
The reason for this is to make the indexing consistent among all cases and to make
case 0 simpler to state.

‘ Case 0 ‘ Case 1 ‘ Case 2 ‘ Case 3
a (8m,a(m)) @Bm+2,a(m)+1) | @m+4,a(m)+1) | 8m+6,a(m) +2)
b @Bm,a(m—1)+4) @Bm+2,a(m)+2) | 8Bm+4,a(m)+3) | 8m+6,a(m)+ 3)
¢ 8m+4,a(m)+3) DNE 8m + 8, a(m) +4) DNE
d| 8m+4,a(m—1)+5) DNE 8m + 8, a(m) +4) DNE

Table 1: Bidegrees (¢ —s,s) of the elements a, b, ¢, and d used in the proof of Theorem 8.2

Case 0 (2n =8m) To calculate E;’I(Al, B(8m)) for s > 0 we use the Mahowald
and Shimamoto cofiber sequences

(8-3) B(8m —2) —> B(8m) —> 4™ B(4m),
(8-4) Bo(8m) —> B(8m) —> S By(8m —4),

of Lemmas 5.4 and 5.8. These cofiber sequences induce the long exact sequences of
Exty4, groups in (8-5) and the top row of (8-6):

(8-5) L% ESN(B(Sm—2) — ES (BSm) — ES" " (B(4m)) 2> ...

d _ d
<o 1> EY' (Bo(8m)) —= ES' (B(8m)) — EY' ™ (Bo(8m —4)) — ---

o 1 |

d — d
= Ey TN (B0) — EY (Bm) — Ey T (Bo@) =
The top and bottom rows of diagram (8-6) are equal for s > 0 by Lemma 8.1, where
x=v((@dm))=4m—a(m) and y =v(dm—-1)))=4m—1)—a(m—1).

On the top of Figure 3 we display the Mahowald long exact sequence (8-5) by super-
imposing E3 (A1, B(8m —2)) and E3'~*" (4, B(4m)). Similarly, on the bottom
of Figure 3 we display the Shimamoto long exact sequence (8-6) by superimpos-
ing E;+X’I+X(A1, B(0)) and E;+y’l+y_l (Ay, Bo(4)). The charts in Figure 3 have
(t —s,5) = (8,4) Bott periodicity. Consequently, there are effectively four different
possible ways that the bottom edges of these spectral sequences could be truncated,
and we have shown only one of them. The diligent reader is encouraged to verify that
nothing unexpected happens in the other three ways of truncating the bottom edges of
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r[ o0
\O¢
d=dgy:am—1)+5 L de [o] |o| |o
b=bgy, am—1)+4 . o oo
......... o o0 o o
¢ =cgm:a(m)+3 v|oTo o
¢ [o] [o] [o] |
° olo
a=agm:a(m 8/ ¢]0 o o
8m ( ) 1S 5 a
A A A A A A A
& 0 4 O & © & 0 & 0 4 O & ©
o O o d) o (‘) o O o O e C) ® O
4 O &« O &« O &« O 4 O &« O Ole
d=d8m:a(m_l)+5|¢ |¢ 1¢ 1¢ |¢ o ¢O °
b:bgmla(m—1)+4|d &0 EXKe) IY[e) IY[e) acré [
""""" 'K¢ 'K¢ ck:O 'k¢ ® [0 . .
c:CSm;a(m)+3 P O P C) P O P C) Oole ° I
& 0 4 O & © % ©\0 ° o
&[0 &0 &0 ° |0 ° “
1¢ 1¢ ® O . [
a=dagm ;o{(m) P C) < é Ofe ° o
e O e |00 o [ e
(8m—) 12 8 4 0 -4 -8

Figure 3: Case 0: Calculating Ei’t(Al, B(8m)) for s > 0. Top fig-
ure: E;’Z(AI,B(Sm — 2)) displayed using e, E;’Z(Al, sS4 B(4m)) dis-
played using o. Bottom figure: E;” (A1, Bo(8m)) displayed using e,
E g’t (A1, £ By(8m—4)) displayed using o. Gray means killed by differential
dy =\_. Vertical axis label separator --- indicates that height of towers
connecting @ to b and ¢ to d varies with m.

these charts. The bidegrees of the elements «, b, ¢ and d in Figure 3 can be determined
using either of the long exact sequences and are given in Table 1.

Because the Mahowald long exact sequence has no infinite 1y = /o towers, the
connecting homomorphism d; in the Shimamoto long exact sequence must be an
isomorphism where indicated in Figure 3 on bottom. The d; differentials in the
Mahowald long exact sequence are then forced by comparison with the Shimamoto
long exact sequence. The unsolved Ag = hg and Ay = h; extensions in each long
exact sequence are solved by comparison with the other long exact sequence.

It remains to show that the lightning flash containing a and b and the tower containing
¢ and d in E;’t(A(l),B(Sm)) have the same size those as in C*(8m). From
Table 1, the lightning bolts in E;’t(A(l), B(8m)) have height (that is, difference in
Adams filtration)

AF(b)—AF@a)=4+a(m—1)—am)=4+[m—1—v((m—1)")— (m—v(m!))]
=44 [v(m)—1]=v(8m),
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and the towers have height A F(d)— AF(c) = (a¢(m—1)+5)— (¢(m) +3) = v(2m).
For C*!(8m) the height of the lightning bolts is A F(b) — AF(a) = v(8m), and the
height of the towers is A F(d)— AF(c) = v(16m) —3 = v(2m). Thus, the two charts
are stably isomorphic.

Casel (2n=8m+2) To calculate E;’t(Al, B(8m+2)) we use the following long
exact sequences in Exty, induced by the Mahowald and Shimamoto cofiber sequences
(Lemmas 5.4 and 5.8) together with Lemma 8.1.

d _ d
8-7) - ES(BGBm)) — ES (B8m +2)) » ES4m D (Bam)) ...

d — d
<o = ES'(Bo(8m)) — EY' (B8m +2)) — ES' ™1 (Bo(8m)) —— ---

w

A BT (B(0) — ES(BEm +2) — EyT T (Bo0) o
Here, x = y = v((4m)!) = 4m — a(m). These long exact sequences are displayed in
Figure 4, and the bidegrees of the elements a and b are given in Table 1. Comparing
the two charts stem by stem, the differentials in one chart are forced by the other chart.
The unsolved Ag and A; extensions will be solved later in Corollary 8.4. From Table 1,
the lightning bolts in E;"*(Ay, B(8m + 2)) have height AF(b) — AF(a) = 1, and
those in C**(8m + 2) also have height AF(b) — AF(a) = v(8m + 2) =1, so the
charts are stably isomorphic.

Case2 (2n=8m+4) To calculate E;’t(Al, B(8m+4)) we use the following long
exact sequences in Exty, induced by the Mahowald and Shimamoto cofiber sequences
(Lemmas 5.4 and 5.8) together with Lemma 8.1.

(8-9) --- N ES'(B(8m +2)) — E3 (B(8m +4))

_ d
—s BV (Bam 4 2)) S

d _ d
coo = ESN(Bo(8m +4)) — EJ'(B(8m +4)) — E3' "' (Bo(8m)) —— -+

(8-10) H

‘ - d
. ; E;+x,t+X(B(4)) —_— E;at(B(gm +4)) s E;-H’,H-y 1(30(0)) 91 .

where x = y = v((4m)!) = 4m — a(m). These long exact sequences are displayed
in Figure 5, and the bidegrees of the elements a, b, ¢ and d are given in Table 1.
Comparing the two charts stem by stem, the differentials in one chart are forced by
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Figure 4: Case 1: Calculating E;’t(Al,B(8m + 2)) for s > 0. Top:
E}'(A1, B(8m)) displayed using e, E5' (A, Z4"+1 B(4m)) displayed us-
ing o. Bottom: E3"(Ay, Bo(8m)) displayed using e, E5" (A, ZBo(8m))
displayed using o. Gray means killed by differential d; =\.

the other chart. As in case 0, the unsolved Ay and A; extensions can be solved by
comparing the charts. From Table 1, the lightning bolts in £ ; *(Ay, B(8m +4)) have
height A F(b) — AF(a) = 2, and the towers have height AF(d) — AF(c) = 0. In
C**(8m + 4) the lightning bolt height is A F(b) — AF(a) = v(8m + 4) = 2 and the
tower height is AF(d) — AF(c) = v(16m + 8) —3 = 0. Thus, the charts are stably
isomorphic.

Case3 (2n=8m+6) To calculate E;’t (A1, B(8m +6)) we use the following long
exact sequences in Ext4, induced by the Mahowald and Shimamoto cofiber sequences
(Lemmas 5.4 and 5.8) together with Lemma 8.1.

@11y -0 ES'(B(8m+4)) — EJ'(B(8m + 6))

— d
— EYTOmE) (Bam 4 2)) S

AL BN (Bo(Sm + 4) — B3 (B(Sm + 6) — E5 (Bo(8m +4)) 2w ..
O

d — d
_1) E;+X,I+X(B(4)) —>E;’t(B(8m+6)) — E;+y,t+y 1(80(4)) lﬁ
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Figure 5: Case 2: Calculating E;’I(Al,B(Sm + 4)) for s > 0. Top:
Ey' (A1, B8m + 2)) displayed using e, E3'(Ay, Z*"t2B(4m + 2))
displayed using o. Bottom: E;’Z(Al,Bo(Sm + 4)) displayed using e,
E3'(A1, £ Bo(8m)) displayed using o. Gray means killed by d; =\.

where x = y = v((4m)!) = 4m — a(m). These long exact sequences are displayed
in Figure 6, and the bidegrees of the elements «, b, c and d are given in Table 1.
Comparing the two charts stem by stem, the differentials in one chart are forced by the
other chart. The unsolved A¢ and A; extensions will be solved later in Corollary 8.4.
From Table 1, the lightning bolts in E3"*(A4;, B(8m + 6)) have height AF(b) —
AF(a)=1, and those in C**(8m+6) have heightis AF(b)—AF(a)=v(8m+6)=1.
Thus, the charts are stably isomorphic and the proof by induction is finished.

The spectral sequence E;’t(A(l), B(2n)) collapses (ie, E; = Es) because any pos-
sibly nontrivial differentials are incompatible with the multiplicative structure. a

In the next lemma and corollary, we determine H*(B(4n+2)) as a stable 4;-module
and calculate E;’t(A 1, B(4n+2)) for s > 0. The purpose for this is to resolve the Ag
and A extensions in cases 1 and 3 in the proof of Theorem 8.2.

In [8, page 50], four types of A;—-modules Q; j,i € Z/(4) and j > 0, are constructed
so that Q; ; contains no free A;—submodules and H*(By(4n)) = Q; ; ® F as left
Aj-modules for some i, j and some free 4;—module F. Define Q; ; by induction
on j by the nontrivial extension of left 4;—modules

0_)W_)Qi,j_)Qi,j—l —0
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Figure 6: Case 3: Calculating E;"(AI,B(Sm + 6)) for s > 0. Top:
E}' (A1, B8m + 4)) displayed using e, EJ'(A1, Z*"3B(4m + 2))
displayed using o. Bottom: EE’Z(AI,BO(Sm + 4)) displayed using e,
Eg’t(Al, 3 By(8m + 4)) displayed using o. Gray means killed by d; ="\.

with W =F»{1,Sq? Sq*, Sq> Sq*}, and

Qo.0=F2{1}, Q10=TF2{1,8¢%,Sq’} = H*(By(4)),
020 =J =X7*F{1,5q",S¢%, 59> Sq", Sq* Sq'},
03,0 =T F2{1,5q',Sq% Sq'} = H*(DBy(4)).

as shown in (8-13). Here, W is a bow-shaped module, J denotes the Adams joker,
and DX denotes the Spanier—Whitehead dual of X .

-3 -2 -1 0 1 2 3 4 5

w .v._.v.
(8-13) Q0,0 .
Q1,0 o Te—e
Qz,o ./_.\\.//.:.

o e

QO30 o
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Lemma 8.3 H™*(B(4n+2)) is stably A, isomorphic to a suspension of R; for some
i € 7Z/(4), where R; is defined as in Equation (8-14).

01 2 3 4 5

RO —eo
R, — o o oo
> - Y
8-14
o Ry oo o 00
.CMO
°
R; .@//.:.

Note that Ry =~ H*(B(2)), Ry =~ H*(B(6)), and Rj3 is isomorphic to a suspension
of H*(DB(6)).

Proof From [23], B(4n + 2) ~ B(2) A Bo(4n) for all n. Thus, H*(B(4n + 2)) =
H*(B(2)) @ H*(Bo(4n)) as left A-modules, and as a left 4;-module
H*(B(2)) ® H*(Bo(4n)) = H*(B(2)) ® (Qi,; ® F)
=~ (H*(B(2))® 0;,j) ® (H*(B(2)) ® F)
forsome i € Z/(4) and j > 0. Since H*(B(2))® F is free and H*(B(2))QW =~ A,

by direct calculation there is an isomorphism of left 4;—modules H*(B(2)) ® Q;,;
R; @ F' for some free module F’.

o R

Corollary 8.4 For n > 0, the maps

(8-15) g5V, v (Gm) (4 B(2)) - E3'(4,, B(8n +2)),

(8-16) gy v @mD (4, B(6)) — ES' (A1, B(8n +6)),

are injective for s = 0 and the identity for s > 0.

Proof By direct calculation, E;™*(41, B(2)) = C**(2) and E;™(A;, B(6)) =
F, & C**(6), where F, is in (s,7) = (0,0).

From [1, Theorem 5.1], since H*(B(2n)) is a free left A¢—module, left multiplication
by the Bott element B: E;’t (A1, B(2n)) — E;+4’t+12(A1, B(2n)) is an isomorphism
for s > 0. In particular, if

d d d d
o Py Py B Py 2 P S Py S HF(B(2) — 0
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is an A; free minimal resolution of H*(B(2)), then ker(ds;+ ;) = ker(d;) for all
i, j > 0. By direct calculation, up to suspension ker(d;) = R3_; for 1 <i < 4. Thus,
by Lemma 8.3, E;’*(Al, B(8n 4+ 2)) is an Adams k—cover of E;’*(Al, B(2)), and
from Case 1 in the proof of Theorem 8.2, we find k = v((4n)!).

Similarly, if P« — H*(B(6)) — 0 is an A; free minimal resolution, then up to
suspension ker(d;) = R4—; for 1 <i <4. Thus, by Lemma 8.3, E;’*(Al, B(8n+6))
is an Adams k—cover of E ; (A4, B(6)), and from Case 3 in the proof of Theorem 8.2,
we find &k = v((4n)!). O

References

[1] JF Adams, A periodicity theorem in homological algebra, Proc. Cambridge Philos.
Soc. 62 (1966) 365-377 MRO0194486

[2] JF Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathe-
matics, University of Chicago Press (1995) MR1324104

[3] AK Bousfield, EB Curtis, DM Kan, D G Quillen, DL Rector, J W Schlesinger,
The mod—p lower central series and the Adams spectral sequence, Topology 5 (1966)
331-342 MRO0199862

[4] EH Brown, Jr, S Gitler, A spectrum whose cohomology is a certain cyclic module
over the Steenrod algebra, Topology 12 (1973) 283-295 MRO0391071

[51 RR Bruner, JP May, JE McClure, M Steinberger, H, ring spectra and their
applications, Lecture Notes in Mathematics 1176, Springer, Berlin (1986) MR836132

[6] V Buchstaber, A Lazarev, Dieudonné modules and p—divisible groups associated
with Morava K —theory of Eilenberg—Mac Lane spaces, Algebr. Geom. Topol. 7 (2007)
529-564 MR2308956

[71 RL Cohen, Odd primary infinite families in stable homotopy theory, Mem. Amer.
Math. Soc. 242, Amer. Math. Soc. (1981) MR603393

[8] DM Davis, S Gitler, M Mahowald, The stable geometric dimension of vector bundles
over real projective spaces, Trans. Amer. Math. Soc. 268 (1981) 39-61 MR628445

[91 P Goerss, Hopf rings, Dieudonné modules, and EQ*S?, from: “Homotopy invariant
algebraic structures”, (J-P Meyer, ] Morava, W S Wilson, editors), Contemp. Math. 239,
Amer. Math. Soc. (1999) 115-174 MR1718079

[10] P Goerss, JDS Jones, M Mahowald, Some generalized Brown—Gitler spectra, Trans.
Amer. Math. Soc. 294 (1986) 113-132 MR819938

[11] P Goerss, J Lannes, F Morel, Hopf algebras, Witt vectors, and Brown—Gitler spectra,
from: “Algebraic topology”, (M C Tangora, editor), Contemp. Math. 146, Amer. Math.
Soc. (1993) 111-128 MR1224910

Algebraic € Geometric Topology, Volume 14 (2014)


http://www.ams.org/mathscinet-getitem?mr=0194486
http://www.ams.org/mathscinet-getitem?mr=1324104
http://dx.doi.org/10.1016/0040-9383(66)90024-3
http://www.ams.org/mathscinet-getitem?mr=0199862
http://dx.doi.org/10.1016/0040-9383(73)90014-1
http://dx.doi.org/10.1016/0040-9383(73)90014-1
http://www.ams.org/mathscinet-getitem?mr=0391071
http://www.ams.org/mathscinet-getitem?mr=836132
http://dx.doi.org/10.2140/agt.2007.7.529
http://dx.doi.org/10.2140/agt.2007.7.529
http://www.ams.org/mathscinet-getitem?mr=2308956
http://dx.doi.org/10.1090/memo/0242
http://www.ams.org/mathscinet-getitem?mr=603393
http://dx.doi.org/10.2307/1998336
http://dx.doi.org/10.2307/1998336
http://www.ams.org/mathscinet-getitem?mr=628445
http://dx.doi.org/10.1090/conm/239/03600
http://www.ams.org/mathscinet-getitem?mr=1718079
http://dx.doi.org/10.2307/2000121
http://www.ams.org/mathscinet-getitem?mr=819938
http://dx.doi.org/10.1090/conm/146/01218
http://www.ams.org/mathscinet-getitem?mr=1224910

The connective real K—theory of Brown—Gitler spectra 625

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

JR Hunton, PR Turner, Coalgebraic algebra, J. Pure Appl. Algebra 129 (1998)
297-313 MRI1631257

N Kitchloo, G Laures, W S Wilson, The Morava K—theory of spaces related to BO,
Adv. Math. 189 (2004) 192-236 MR2093483

M Mahowald, A new infinite family in ,m.*, Topology 16 (1977) 249-256
MR0445498

M Mahowald, bo—resolutions, Pacific J. Math. 92 (1981) 365-383 MR618072

H Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. 120
(1984) 39-87 MR750716

J Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958) 150-171
MR0099653

DS C Morton, The homology of the spectrum bo and its connective covers, PhD
thesis, Johns Hopkins Univ. (1997) Available at http://www.math. jhu.edu/~wsw/
papers/dena.dvi

D S C Morton, The Hopf ring for bo and its connective covers, J. Pure Appl. Algebra
210 (2007) 219-247 MR2311183

D C Ravenel, Complex cobordism and stable homotopy groups of spheres, 2nd edition,
AMS Chelsea Series 347, Amer. Math. Soc. (2003)

D C Ravenel, W S Wilson, The Hopf ring for complex cobordism, J. Pure Appl. Algebra
9 (1976/77) 241-280 MRO0448337

C Schoeller, Etude de la catégorie des algébres de Hopf commutatives connexes sur
un corps, Manuscripta Math. 3 (1970) 133-155 MR0281709

D H Shimamoto, An integral version of the Brown—Gitler spectrum, Trans. Amer. Math.
Soc. 283 (1984) 383-421 MR737876

NP Strickland, Bott periodicity and Hopf rings, PhD thesis, University of Manchester
(1993) Available at http://neil-strickland.staff.shef.ac.uk/papers/
thesis.dvi

WS Wilson, Hopf rings in algebraic topology, Expo. Math. 18 (2000) 369-388
MR1802339

Department of Mathematics, Hope College
Holland, MI 49422-9000, USA

pearsonp@hope. edu

http://paultpearson.wordpress.com/

Received: 30 October 2011 Revised: 5 August 2013

Geometry € Topology Publications, an imprint of mathematical sciences publishers :.msp


http://dx.doi.org/10.1016/S0022-4049(97)00076-5
http://www.ams.org/mathscinet-getitem?mr=1631257
http://dx.doi.org/10.1016/j.aim.2003.10.008
http://www.ams.org/mathscinet-getitem?mr=2093483
http://www.ams.org/mathscinet-getitem?mr=0445498
http://projecteuclid.org/euclid.pjm/1102736799
http://www.ams.org/mathscinet-getitem?mr=618072
http://dx.doi.org/10.2307/2007071
http://www.ams.org/mathscinet-getitem?mr=750716
http://dx.doi.org/10.2307/1969932
http://www.ams.org/mathscinet-getitem?mr=0099653
http://www.math.jhu.edu/~wsw/papers/dena.dvi
http://www.math.jhu.edu/~wsw/papers/dena.dvi
http://dx.doi.org/10.1016/j.jpaa.2006.09.014
http://www.ams.org/mathscinet-getitem?mr=2311183
http://dx.doi.org/10.1016/0022-4049(77)90070-6
http://www.ams.org/mathscinet-getitem?mr=0448337
http://dx.doi.org/10.1007/BF01273307
http://dx.doi.org/10.1007/BF01273307
http://www.ams.org/mathscinet-getitem?mr=0281709
http://dx.doi.org/10.2307/1999138
http://www.ams.org/mathscinet-getitem?mr=737876
http://neil-strickland.staff.shef.ac.uk/papers/thesis.dvi
http://neil-strickland.staff.shef.ac.uk/papers/thesis.dvi
http://www.ams.org/mathscinet-getitem?mr=1802339
mailto:pearsonp@hope.edu
http://paultpearson.wordpress.com/
http://msp.org
http://msp.org




	1. Introduction
	Acknowledgements

	2. Hopf rings and Dieudonné rings
	3. The dual of the Steenrod algebra
	4. The Lambda algebra and the Adams spectral sequence
	5. Brown–Gitler spectra and Dieudonné rings
	6. The Hopf ring H_*(HF_*)
	7. Stable classes in ko_*(B(*))
	8. Unstable classes in ko_*(B(*))
	References

