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Displacing Lagrangian toric fibers by extended probes

MIGUEL ABREU

MATTHEW STROM BORMAN

DUSA MCDUFF

In this paper we introduce a new way of displacing Lagrangian fibers in toric sym-
plectic manifolds, a generalization of McDuff’s original method of probes. Extended
probes are formed by deflecting one probe by another auxiliary probe. Using them,
we are able to displace all fibers in Hirzebruch surfaces except those already known to
be nondisplaceable, and can also displace an open dense set of fibers in the weighted
projective space P .1; 3; 5/ after resolving the singularities. We also investigate the
displaceability question in sectors and their resolutions. There are still many cases in
which there is an open set of fibers whose displaceability status is unknown.

53D12; 14M25, 53D40

1 Introduction and main results

1.1 Introduction

Let .M; !/ be a connected, but possibly noncompact, symplectic manifold without
boundary. A subset X �M is said to be displaceable if there is a compactly supported
Hamiltonian diffeomorphism � 2 Ham.M; !/ such that �.X /\ xX D ∅, and if no
such � exists, then X is said to be nondisplaceable. Ever since Arnold conjectured that
certain Lagrangian submanifolds are nondisplaceable, a central theme in symplectic
topology has been to determine what subsets are displaceable and what subsets are not.

We will work with symplectic toric manifolds, where a 2n–dimensional symplectic
manifold .M 2n; !/ is toric if it is equipped with an effective Hamiltonian action of an
n–torus Tn . Associated to a toric manifold is a moment map

ˆW M 2n
!Rn; ˆ.x/D .ˆ1.x/; : : : ; ˆn.x//;

where the Hamiltonian flow of ˆk generates the action of the k th component circle
in Tn , and if ˆ is proper the image of ˆ is a polytope �Dˆ.M /, called the moment
polytope. Symplectic toric manifolds come with a natural family of Lagrangian tori,
namely for each u 2 Intˆ.M / the fiber Lu Dˆ

�1.u/ is a Lagrangian torus and an
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orbit of the Tn –action. In this paper we will restrict ourselves to the study of the
displaceability of the Lagrangian toric fibers in symplectic toric manifolds, and will
assume unless explicit mention is made to the contrary that the moment map is proper.

Determining which Lagrangian fibers are nondisplaceable involves two complementary
tasks: building and computing invariants that obstruct displaceability, and finding
general sufficient criteria for when Lagrangian fibers are displaceable. There are
now many well-developed Floer-theoretic tools that can be used to prove that certain
Lagrangian fibers are nondisplaceable: quasistates from Hamiltonian Floer homology
(see Borman [4], Entov and Polterovich [12; 13] and Fukaya, Oh, Ohta and Ono [15]),
Lagrangian Floer homology (see Biran and Cornea [2], Cho [8] and Fukaya, Oh, Ohta
and Ono [16; 17; 14]) and quasimap Floer homology (see Woodward [25] and Wilson
and Woodward [24]). In contrast the only known general method for proving that a
Lagrangian fiber is displaceable was introduced by McDuff in [21] and involves the
affine geometric notion of a probe in the moment polytope. Chekanov and Schlenk [6]
also used this method of displacement in a slightly different context. The method of
probes was later reinterpreted by Abreu and Macarini in [1] in terms of symplectic
reduction. However the main contribution of that paper was to the other side of the
problem in that it allowed one to deduce many nondisplaceability results from a few
basic examples.

For very simple examples the method of probes perfectly complements the proven
nondisplaceability results. For instance if .M 2n; !;ˆ/ is closed and monotone
with 2n � 6, then the method of probes displaces everything except an identified
fiber Lu0

[21, Theorem 1.1], and Lu0
is known to be nondisplaceable.

However, in general the method of probes does not perfectly complement the proven
nondisplaceability results. The simplest such example is a Hirzebruch surface F2kC1

for k � 1, which is the projectivization P .O2kC1˚C/, where O2kC1! CP1 is a
line bundle of Chern class 2kC 1. Here these methods leave a line segment of points
with unknown displaceability properties. The next basic example is (a blowup of) the
weighted projective space P .1; 3; 5/, the quotient of C3 X f0g by the group action

e2�it
� .z0; z1; z2/D .e

2� itz0; e
2�i3tz1; e

2� i5tz2/:

It was pointed out in [21] that it is possible to resolve the singularities of P .1; 3; 5/
by small blowups in such a way that there is an open set of points not displaceable by
probes. On the other hand for smooth toric 4–manifolds, the nondisplaceable fibers
detected by the Floer theoretic methods of [14] lie on a finite number of line segments
(cf the proof of Proposition 4.1.4). One expects that all fibers with vanishing invariants
are displaceable. Our current methods do give better results than standard probes in
many cases, but still are not powerful enough to prove this even in four dimensions.
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As we show in Proposition 4.1.4, the method of quasimap Floer homology, developed
by Woodward [25], gives no more information than standard Floer theoretic methods
in the closed smooth case. However, it applies also in the orbifold and noncompact
cases and in those cases can give open sets of fibers that are nondisplaceable because
they have nonvanishing quasimap invariants (called qW invariants, for short); see also
the orbifold version of the standard approach by Cho and Poddar [10]. Figure 4.6.1
illustrates the current knowledge about the displaceability of points in P .1; 3; 5/. Here
the displaceable points are displaced by standard probes.1 As we explain in Section 4.1
the open set of nondisplaceable points comes from varying the position of certain
“ghost” facets; cf also the proof of Theorem 4.4.1(i). These facets are precisely the
ones that can be used to resolve the singular points, and once one has used them for
this purpose, so that their position is fixed, the numbers of points with nonvanishing
invariants decreases. Thus as one resolves singularities by blowing up, the set of points
with nonvanishing qW invariants tends to decrease.

1.2 Main results

In this paper we will introduce a technique for extending a given probe by deflecting
it by an auxiliary probe. In contrast to the nondisplaceability results explained above,
this technique gives no new information for very simple orbifolds such as P .1; 3; 5/.
Instead it starts to displace more fibers as we resolve the singularities by blowup.
Because it is a geometric method, it is very sensitive to the exact choice of blowup,
ie to the choice of support constant that determines where the new facet is in relation
to the others. In higher dimensions one could use this technique in more elaborate
ways, for example by deflecting a probe several times in different directions. However,
we will restrict to the 2–dimensional case since, even in this simple case, the results
are quite complicated to work out precisely. The next paragraph describes our results
rather informally. More complete definitions and statements are given later.

1.2.1 The method of extended probes We say that two integral vectors in R2 are
complementary if they form a basis for the integral lattice Z2 . Let � be a rational
polygon in R2 , ie the direction vectors dF of the edges F are integral. We call it
smooth if the direction vectors at each vertex are complementary. A probe P in � is a
line segment in � starting at an interior point of some edge F (called its base facet),
whose direction vP is integral and complementary to dF . By [21], if u 2� lies less
than halfway along a probe P then the corresponding fiber Lu is displaceable. For
short, we will say that the point u itself is displaceable.

1As remarked in Section 1.2.4 below, extended probes do not help in triangles.
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A probe Q is said to be symmetric if it is also a probe when its direction is reversed.
That means that its exit point also lies at an interior point of an edge F 0 and also
that dF 0 is complementary to vQ . All points other than the midpoint of a symmetric
probe are displaceable. Moreover there is an affine reflection AQ of a neighborhood
of Q in � that reverses its direction.

In this paper we show how to lengthen a probe P so that it still has the property that
points less than halfway along are displaceable. There are three basic methods whose
effects are described in the following theorems.

(a) Theorem 2.2.6: Deflecting P via a symmetric probe.

(b) Theorem 3.1.2: Deflecting P by a parallel probe Q, ie one whose base facet FQ

is parallel to the direction vP of P ; these probes have flags that are parallelo-
grams.

(c) Theorem 5.2.3: Deflecting P by an arbitrary probe Q; these probes have
trapezoidal flags.

In case (a), the extended probe P (often denoted SP for clarity) is a union of line
segments, and can be used to displace points less than halfway along it, whether these
points lie before or after the intersection with Q. In cases (b) and (c), the extended
probe P (or more precisely FP ) is the union of the initial segment of P together with
a “flag” emanating from Q, a parallelogram in case (b) (cf Figure 3.1.1) or trapezoid
in case (c) (cf Figure 5.2.1). One can only displace points less than halfway along FP
that also lie before the intersection with Q. Another difficulty with case (c) is that
the flag may taper to a point, which severely restricts its length. In particular, if the
ray in direction P meets the base facet FQ of Q at yPQ then FP cannot be longer
than the line segment from the initial point bP of P to its intersection yPQ with FQ .
Therefore this variant is less useful, though it does displace some new points in certain
bounded regions; see Proposition 5.3.1.

1.2.2 Examples Symmetric extended probes solve the displaceability problem for
Hirzebruch surfaces Previous results show that all Hirzebruch surfaces Fn for n� 0,
with the exception of certain surfaces F1 that are (small) blowups of CP2 , have
precisely one fiber with nonvanishing Floer homology. Proposition 2.3.1 shows that all
the other fibers are displaceable by symmetric extended probes. (The case nD 1 can
be fully understood using standard probes.)

Using parallel extended probes We next consider open regions of two elementary
types. Section 3.2 considers the regions

Un;m.�/D fz 2C2
j �njz1j

2
Cmjz2j

2
C � > 0g;
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�n;m �U
n;m.�/ �n;m.�/

Figure 1.2.1: Three basic moment polytopes; in each case, the slant edge has
normal vector .�n;m/

where m> n� 1 are relatively prime integers and � > 0, with moment polytope

�U
n;m.�/D f.x1;x2/ j x1;x2 � 0;�nx1Cmx2C � > 0g;

as in Figure 1.2.1. Lemmas 3.2.1 and 3.2.2 specify the points that can be displaced by
probes and extended probes. Figure 3.2.2 shows that there are open regions of points
in the moment polytope of Un;m.�/ where extended probes are needed.

The second basic region represents the quotient Mn;m DC2=� , where the generator
� D e2�i=m of � D Z=mZ acts via

� � .z1; z2/D .�
nz1; �z2/:

Its moment polytope is the sector

�n;m WD f.x1;x2/ j x1;x2 � 0;�nx1Cmx2 � 0gI

cf Figure 1.2.1 and Section 4.3.1. Here we contrast the set of probe displaceable points
with the set of points that are nondisplaceable because they have nonvanishing qW
invariants. Theorem 4.4.1 states the precise result. There is an open set of points with
unknown behavior whenever the Hirzebruch–Jung continued fraction

(1.2.1)
n

m
WD

1

E1�
1

E2����
1

Ek

DW .E1; : : : ;Ek/

has at least one of E1;Ek greater than 2.

Resolving a singular vertex: Unbounded case As one resolves the singular point
of �n;m by blowing up, the set of probe displaceable points increases while that of
points with nontrivial invariants decreases. Proposition 4.4.4 explains what happens after
a single blowup, with exceptional divisor corresponding to the horizontal edge x2 D � .
The moment polytope is then �n;m.�/, the closure of �U

n;m.�/. Remark 4.4.5(ii)
points out that usually there is an open set of unknown points.

In Section 4.5 we look at some complete minimal resolutions x�n;m . In this case all
qW invariants vanish, while typically there is still an open subset of points that we do

Algebraic & Geometric Topology, Volume 14 (2014)



692 Miguel Abreu, Matthew Strom Borman and Dusa McDuff

not know how to displace; cf Figure 4.5.3. As we show in Corollary 4.5.3, even in the
easy case of an An singularity (which has all Ei D 2) there are k � 1 lines of points
of unknown status, where k is as in (1.2.1).

Special cases of �n;m and x�n;m The first, the case nD 1, is treated in Section 4.2.
Here the status of all interior points can be determined by our methods. In fact,
Lemmas 4.2.1 and 4.2.3 show that all points are displaceable except in the case of �1;m

with m odd, in which case there is a ray of points with nontrivial qW invariants; see
Figure 4.2.1.

The second is when m=nD .E1;E2/ in the notation of (1.2.1). Then, although there
may be an open set of unknown points of �n;m , Corollary 4.5.1 shows that there is at
most one line of such points in the resolution x�n;m , namely the (affine) bisector of the
angle between the two new edges; see Figure 4.5.1.

Using general extended probes in regions of finite area The above results only use
extended probes of types (a) and (b), and it is easy to see that extended probes of
type (c) would give nothing new. To demonstrate the use of this kind of extension,
Proposition 5.3.1 considers the resolution of an open finite volume An –singularity,
ie one whose moment polytope has an open upper boundary x2 < K . As shown in
Figure 5.3.1, there are some points that can be reached only by these new probes;
however there is still an open set of unknown points.

1.2.3 Displaceability in compact toric orbifolds and their resolutions Finally, we
discuss a simple family of examples with closed moment polytope, namely the weighted
projective spaces P .1;p; q/ (with 1< p < q relatively prime) and its resolutions. The
moment polytope of P .1;p; q/ is a triangle with vertices at .0; 0/; .p; 0/ and .0; q/.
Thus it has two singular vertices, the one at .p; 0/ modelled on �p;q and the one
at .0; q/ modelled on �q�kp;p , where 0 < q � kp < p . If these sectors (or their
resolutions) have unknown points, and the new edges coming from the resolutions are
sufficiently short, one would expect there to be corresponding unknown points in the
compactification P .1;p; q/ and its resolutions. This is the case for P .1;p; q/ itself,
since there are no symmetric or parallel extended probes and there are not enough edges
for there to be any useful probes of type (c); cf Section 1.2.4 below. Figure 4.6.1 shows
the situation for P .1; 3; 5/: there is an open set of points with nonzero qW invariants,
as well as an open set of points with unknown behavior.

One can always displace more points in the resolutions. Some of these newly displace-
able points can be displaced by the same parallel extended probes that are used in the
resolved sectors x�n;m . However, there is another kind of extended probe, constructed
using a symmetric probe Q, that always displaces at least a few more points, though
typically there is still an open set of points with unknown behavior; cf Proposition 4.6.4.
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The case P .1; 3; 5/ is special since in this case one can reverse the direction of the
deflected probes formed from Q. As illustrated in Figure 4.6.2, when the singularity of
P .1; 3; 5/ at .3; 0/ is resolved, one can displace an open dense set of fibers by probes
or extended probes, leaving just a line segment of points together with one more point
that cannot be determined by our methods. In particular, all points near .3; 0/ can be
displaced with the help of the symmetric probes Q, though they are not all displaceable
in the corresponding resolved sector x�3;5 . The picture does not change significantly
when one fully resolves both singular vertices in P .1; 3; 5/; cf Proposition 4.6.2 and
Figure 4.6.3.

1.2.4 General results Proposition 4.1.4 shows that qW invariants give no more
information than standard Floer homology in the case where the moment polytope �
is a smooth closed polytope of Rn . If in addition � is compact and 2–dimensional,
it is easy to understand geometrically when the qW invariant qW.u/ does not vanish.
For a typical point with qW.u/¤ 0, the set of facets that are closest to it has at least
three elements. The exception is when there are two closest facets that are parallel.
Thus the set of points with nontrivial invariants is the union of a finite set together with
at most one line segment.

By Remarks 2.2.7 and 5.2.4, one cannot lengthen a probe P by deflecting it by a
probe Q that starts from the facet at which P exits �. Thus extended probes do not
displace extra points in the sectors �n;m , since these have only two edges. It is also
not hard to check that they also do not help in triangles such as P .1;p; q/, though they
do help with the blowup �n;m.�/ of �n;m .

1.2.5 Organization of the paper After a brief introduction to affine geometry, we
describe probes and symmetric extended probes. Theorem 2.2.6 explains which points
can be displaced by these new probes, and the section ends by illustrating their use in
the Hirzebruch surfaces Fn . Theorem 3.1.2 describes the points that can be displaced
by parallel extended probes. The rest of Section 3 illustrates how to use this result
to understand the displaceability of points in the open sectors �U

n;m.�/. Next, in
Section 4 we describe the qW invariants, and use them to prove the results stated above
about closed sectors �n;m , weighted projective planes P .1;p; q/, and their resolutions.
Finally in Section 5 we describe extended probes with trapezoidal flags, and use them
in an open polytope of finite area. The last section, Section 6, contains the proofs of all
the main theorems about probes.
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2 Symmetric extended probes

2.1 Moment polytopes and integral affine geometry

Let .M 2n; !;T / be a toric symplectic manifold with moment map ˆW M ! t� ,
where t� is the dual of the Lie algebra t of the torus T . We will identify t together
with its integer lattice tZ with .Rn;Zn/, and, using the natural pairing h � ; � i, will also
identify the pair .t�; t�Z/ with .Rn;Zn/. Thus we write

t� t� WDRn
�Rn

!R; .�;x/ 7! h�;xi:

For clarity, we use Greek letters for elements in t and Latin letters for elements of t� .

A polytope �� t� �Rn is rational if it is the finite intersection of half-spaces

�D

N\
iD1

fx 2Rn
j h�i ;xiC �i � 0g;

where �i 2 Zn are primitive vectors and are the interior conormals for the half-spaces.
A rational polytope ��Rn is simple if each codimension k face of � meets exactly k

facets. A rational simple polytope ��Rn is smooth, if at each codimension k face,
the k conormal vectors for the facets meeting at the face can be extended to an integral
basis of Zn � tZ . Moment polytopes for symplectic toric manifolds are smooth.
Delzant [11] proved that the moment map gives a bijective correspondence between
closed symplectic toric manifolds of dimension 2n, up to equivariant symplectomor-
phism, and smooth compact polytopes in Rn , up to integral affine equivalences by
elements of Rn Ì GLn.Z/.

Remark 2.1.1 Lerman and Tolman [20] generalized Delzant’s classification result
to closed symplectic toric orbifolds, showing that these are uniquely determined by
the image of their moment map, a rational simple compact polytope together with a
positive integer label attached to each of its facets. Equivalently, we can allow the
conormal vectors �i to the facets to be nonprimitive, interpreting the label as the gcd
of their entries. Using the convexity and connectedness results Lerman, Meinrenken,
Tolman and Woodward in [19], Karshon and Lerman [18] have further extended this
classification to the noncompact setting, provided one assumes that the moment map
is proper as a map ˆW M 2n! U �Rn , where U is a convex open set. In this case
ˆ.M 2n/ is an open polytope as in [24, Definition 3.1]; cf the polytope �U

m;n.�/ in
Figure 1.2.1 above.
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An affine hyperplane A � t� � Rn is rational if it has a primitive conormal vector
� 2 Zn , in which case A D fx 2 Rn j h�;xi C � D 0g for some � 2 R. The affine
distance between a rational affine hyperplane A, as above, and a point x 2Rn is

daff.x;A/ WD jh�;xiC �j:

For a rational hyperplane A, as above, a vector v 2Rn is parallel to A if h�; vi D 0,
where � is the defining conormal for A. An integral vector v is integrally transverse
to A if there is an integral basis of Zn� t� consisting of v and vectors w 2Zn parallel
to A, or equivalently if jh�; vij D 1. Note also that if v is integrally transverse to A,
then there is an integral affine equivalence of Rn taking A and v to fx1 D 0g and
.1; 0; : : : ; 0/.

An affine line LD zCRv in Rn is rational if the direction vector v can be taken to
be a primitive integral vector in Zn . Given a rational line L with primitive direction
vector v 2Zn , the affine distance daff.x;y/ between two points x;y 2L is defined by

daff.x;y/ WD jt j; where t 2R is such that x�y D tv 2Rn:

For a primitive vector v 2 Zn and a rational hyperplane A, the affine distance along v
between a point x 2Rn and A is defined as

dv.x;A/ WD daff.x;y/ if y 2A is on the rational ray xCR�0v .

If x CR�0v does not meet A, then dv.x;A/ WD 1. If v0 is integrally transverse
to A and the ray xCR�0v0 meets A, then dv0

.x;A/ D daff.x;A/, but otherwise,
somewhat paradoxically, we have

dv0
.x;A/ < daff.x;A/:

For example, if ADfx1D 0g, xD .1; 0; : : : ; 0/ and v0D .�2; 3/, then daff.x;A/D 1

while dv0
.x;A/D 1

2
.

2.2 Probes and extended probes

We now recall the definition of a probe in a rational polytope from [21] and state the
method of probes.

Definition 2.2.1 A probe P in a rational polytope �� t��Rn , is a directed rational
line segment contained in � whose initial point bP lies in the interior of a facet FP

of � and whose direction vector vP 2 t
�
Z � Zn is primitive and integrally transverse

to the base facet FP . If eP is the endpoint of P , then the length `.P / of P is defined
as the affine distance daff.eP ; bP /.
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Note that if �FP
is the interior conormal for the facet FP , then the definition requires

that h�FP
; vP i D 1 since vP needs to be integrally transverse and be inward pointing

into �.

Lemma 2.2.2 [21, Lemma 2.4] Let P be a probe in a moment polytope � for a toric
symplectic orbifold .M 2n; !;ˆ/. If a point u on the probe P is less than halfway
along P , meaning that daff.u;FP / <

1
2
`.P /, then the Lagrangian fiber Lu Dˆ

�1.u/

is displaceable.

Since the inverse image of P by the moment map is symplectomorphic to the product
of a disc D of area `.P / with Tn�1 , it is easy to construct a proof of this lemma
from the remarks after Equation (6.0.2) below. To generalize this method, let us first
introduce the notion of a symmetric probe and the associated reflections.

Definition 2.2.3 A probe Q in a rational polytope �� t� �Rn is symmetric if the
endpoint eQ lies on the interior of a facet F 0

Q
that is integrally transverse to vQ .

Associated to a symmetric probe Q is an affine reflection AQW t
�! t�

(2.2.1) AQ.x/D xCh�F 0
Q
� �FQ

;xivQC .�
0
� �/vQ

that swaps the two facets

FQ D fx 2 t
�
j h�FQ

;xiC � D 0g; F 0Q D fx 2 t
�
j h�F 0

Q
;xiC �0 D 0g;

since h�FQ
; vQi D 1 and h�F 0

Q
; vQi D �1. Let yAQW t

�! t� be the associated linear
reflection

(2.2.2) yAQ.x/D xCh�F 0
Q
� �FQ

;xivQ:

Observe that AQ preserves Q setwise, yAQ.vQ/D�vQ , and yA�
Q
.�FQ

/D �F 0
Q

.

Note that AQ need not preserve the polytope �, but it does preserve a small neighbor-
hood of Q. Our first generalization of the method of probes deflects a given probe by
a symmetric probe.

Definition 2.2.4 Let Q be a symmetric probe in a rational polytope � � t� � Rn ,
and let P be another probe with direction vP such that P ends at the point xPQ in
the interior of Q. A symmetric extended probe SP formed by deflecting P with Q is
a union

SP D P [Q[P 0 ��;
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where the extension P 0 is a rational line segment in � with direction vP 0 starting
at x0

PQ
, where

vP 0 WD
yAQ.vP /; x0PQ WDAQ.xPQ/:

We define the length of the extended probe SP to be `.SP/ WD `.P /C `.P 0/. Thus
the endpoint eP 0 of P 0 is eP 0 WD x0

PQ
C `.P 0/vP 0 .

Remark 2.2.5 A visual description of x0
PQ

is that it is the unique point on Q so that

daff.xPQ;FQ/D daff.x
0
PQ;F

0
Q/I

cf Figure 2.2.1. Note that if vP is parallel to FQ , then yAQ.vP / is parallel to F 0
Q

,
being the projection of vP to the linear hyperplane fx 2 t� j h�F 0

Q
;xi D 0g along �vQ .

FQ

xPQ

u

P

FP

Q

x0
PQ

P 0

F 0
Q

FP

P

FQ
Q

xPQ

x0
PQ

F 0Q

u

P 0

Figure 2.2.1: Two ways of using Theorem 2.2.6. Left: u is on P . Right: u

is on P 0 .

Theorem 2.2.6 Let SP be a symmetric extended probe formed by deflecting the
probe P with the symmetric probe Q, in a moment polytope �Dˆ.M / for a toric
symplectic orbifold .M 2n; !;T ; ˆ/. For a point u in the moment polytope �,

� if u is in the interior of P and daff.u;FP / <
1
2
`.SP/, or

� if u is in the interior of P 0 and `.P /C daff.x
0
PQ
;u/ < 1

2
`.SP/,

then the Lagrangian torus fiber Lu Dˆ
�1.u/ is displaceable in .M; !/.

See Section 6 for the proof. The idea is to join P to P 0 using a symplectomorphism
of ˆ�1.nbhdQ/�M that equals the identity on one boundary component and the lift
of the reflection AQ on the other.
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x2

P

Q

u
xPQ

x0
PQ P 0

x1

bP D .0; 2/

uD .2; 2/
xPQ D .3; 2/
x0

PQ
D .3; 1/

eP 0 D .4; 0/

Figure 2.2.2: Illustration of Remark 2.2.7. If P were extended past xPQ it
would exit the polytope at the point .4; 2/ , so its length is at most 4 . This
is not enough to displace u since daff.bP ;u/D 2 . Using Q as a deflecting
probe does not help; the length of the resulting extended probe is equal to 4 .
Of course the fiber Lu is nondisplaceable since it is the Clifford torus in CP 2 .

Remark 2.2.7 Let SP D P [Q[P 0 be a symmetric extended probe. Because eP 0

must stay in �, which is convex, then `.P 0/� dvP 0
.x0

PQ
;F 0

Q
/. Also because AQ is

an integral affine equivalence in t� Ì GL.t�Z/, then dvP
.xPQ;FQ/D dvP 0

.x0
PQ
;F 0

Q
/.

Combining these two we see that

`.SP/� `.P /C dvP
.xPQ;FQ/D dvP

.bP ;FQ/I

the length of the extended probe `.SP/ is less than dvP
.bP ;FQ/, which is the maxi-

mum length the probe P can have before it hits the affine hyperplane FQ . In particular,
this means that one cannot make a probe P displace more points by deflecting it
with a symmetric probe Q that is based at the facet on which P would exit �; see
Figure 2.2.2.

In the next section we will generalize the notion of extended probes to the case where Q

is not a symmetric probe. But before that let us first explain how Theorem 2.2.6 suffices
to settle the question of which Lagrangian fibers in Hirzebruch surfaces are displaceable.

2.3 Hirzebruch surfaces

Let m� 0 be an integer and � a real number so that � >m. The moment polytope for
the mth Hirzebruch surface is

�1;m.�/D f.x1;x2/ 2R2
j x1 � 0;x2 � 0;�x2C 2� 0;�x1�mx2C �Cm� 0g:
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x2

u1

u0

L

x1

u1 D .
mC1

2
.� �m/;mC 2� �/

u0 D .
�
2
; 1/

LD f2x1Cmx2 D �Cmg

Figure 2.3.1: The moment polytope �1;m.�/ for mD 3 and � D 7
2

. Points
not on the line L can be displaced by horizontal probes. When m is even,
probes with directions .�m

2
;˙1/ based on the two horizontal facets displace

everything on L except u0 .

When m 6D 1, the only known nondisplaceable fiber is u0 D .
�
2
; 1/ [1; 14; 25] and

when m is even, standard probes displace every other fiber. However for odd m and
� <mC 1, [21, Lemma 4.1] proves that the point

u1 D .
mC1

2
.� �m/;mC 2� �/;

which is different from u0 , cannot be displaced by probes, so in these cases probes do
not perfectly complement the known nondisplaceability results. In fact, in these cases
one cannot use probes to displace any of the points on a line segment that starts at u1

and runs through and a bit past u0 . We will now show that these unknown fibers can
all be displaced using Theorem 2.2.6.

Proposition 2.3.1 When m 6D 1, then every fiber in the polytope �m.�/ of the mth

Hirzebruch surface is displaceable except for

u0 D .
�
2
; 1/ 2�m.�/:

Hence u0 is a stem and therefore is nondisplaceable.

Recall that a fiber of a moment polytope is called a stem if every other fiber is displace-
able. It is proven in [12, Theorem 2.1] using the theory of quasistates that every stem
is nondisplaceable.

Proposition 2.3.1 stands in contrast to the well-studied case of mD 1, which corre-
sponds to a toric blowup of CP2 , where standard probes do complement the known
nondisplaceability results. Methods in [1; 4; 8; 14; 25] prove that when 1< � < 2, the
fibers

u0 D .
�
2
; 1/; u1 D .� � 1; 3� �/;
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in �1.�/ are nondisplaceable, and when � � 2 only the fiber u0 in �1.�/ is nondis-
placeable.

Proof of Proposition 2.3.1 The vector .1; 0/ is integrally transverse to fx1 D 0g and
.�1; 0/ is integrally transverse to fx1Cmx2D �Cmg. It is easy to check that probes
in these directions displace every point x 2 Int�m.�/ not on the median

LD f2x1Cmx2 D �Cmg:

When m is even, one can use a probe with direction .m
2
;�1/ based on the facet

fx2 D 2g and a probe with direction .�m
2
; 1/ based on the facet fx2 D 0g to displace

all the points on L except u0 .

When m� 3 is odd, we will use symmetric extended probes to show that every point
on L, except u0 , is displaceable. Such points w can be written as

(2.3.1) w D .1
2
.�Cm.1�w2//; w2/; w2 ¤ 1;

and we will divide this into two cases: 1<w2 < 2 and 0<w2 < 1. In both cases we
will use the symmetric deflecting probe Q, where

bQ D .
1
2
.� �m/; 2/; vQ D .1;�1/; FQ D fx2 D 2g; F 0Q D fx2 D 0g:

We will use probes with direction vP D .˙1; 0/, which are parallel to both FQ and F 0
Q

,
so it follows that vP 0 D

yAQ.vP /D vP .

For 1<w2 < 2, cf Figure 2.3.2, let P be the probe with

bP D .�Cm.1�w2/; w2/; vP D .�1; 0/; FP D fx1Cmx2 D �Cmg;

and let SP D P [Q[P 0 be the associated extended probe, where

xPQ D .
1
2
.� �m/C 2�w2; w2/; `.P /D 1

2
.�C 3m/C .1�m/w2� 2;

x0PQ D .
1
2
.� �m/Cw2; 2�w2/; `.P 0/D 1

2
.� �m/Cw2;

eP 0 D .0; 2�w2/; `.SP/D �C .m� 2/.1�w2/:

The point w from (2.3.1) lies on P and therefore using 1<w2 we have

daff.w;FP /D
1
2
.�Cm.1�w2// <

1
2
`.SP/:

Hence Lw is displaceable by Theorem 2.2.6.

For 0<w2 < 1, cf Figure 2.3.3, let P be the probe with

bP D .0; 2�w2/; vP D .1; 0/; FP D fx1 D 0g;
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x2

xPQ
w

Q

P

P 0
x0

PQ

x1

Figure 2.3.2: The symmetric extended probe SP that displaces w when
1<w2 < 2

and let SP D P [Q[P 0 be the associated extended probe, where

xPQ D .
1
2
.� �m/Cw2; 2�w2/; `.P /D 1

2
.� �m/Cw2;

x0PQ D .
1
2
.� �m/C 2�w2; w2/; `.P 0/D 1

2
.�C 3m/C .1�m/w2� 2;

eP 0 D .�Cm.1�w2/; w2/; `.SP/D �Cm.1�w2/C 2.w2� 1/;

and the point w is on P 0 .

x2

P xPQ

Q

x0
PQ

w
P 0

x1

Figure 2.3.3: The symmetric extended probe SP that displaces w when
0<w2 < 1

Since w2 < 1 we have

`.s1/C daff.x
0
PQ; w/D

1
2
.�Cm.1�w2//C 2.w2� 1/ < 1

2
`.SP/;

and therefore Theorem 2.2.6 implies that Lw is displaceable.
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3 Extended probes with flags: Parallel case

The use of symmetric extended probes is fairly restrictive since a symmetric probe Q

represents a torus bundle over S2 . In cases where Q does not exit the polytope (or
does so nontransversally) then the following construction can be used with Q to deflect
probes.

3.1 The definition and the displaceability method

Definition 3.1.1 Let P and Q be probes in a rational polytope � � Rn where the
probe P ends at the point xPQ on Q, and suppose that vP is parallel to the base
facet FQ of Q. The parallel extended probe with flag FP formed by deflecting P

with Q is the subset
FP D P [Q[F ��:

Here the flag F is the convex hull of the points fxF ;x
0
F ; eF ; e

0
Fg, where xF and x0F

lie on Q, and the vector xF � eF D x0F � e0F is parallel to P (see Figure 3.1.1). The
length of the flag `.F/ is daff.xF ; eF / so that

(3.1.1) xF � eF D x0F � e0F D `.F/vP :

The length of the extended probe is `.FP/D `.P /C `.F/.

eF e0F

xF x0F

FQ

xPQ

Q

u

P

FP

F

Figure 3.1.1: An extended probe with flag FP D P [Q[F

The following theorem explains how one can use parallel extended probes to displace
Lagrangian torus fibers.
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Theorem 3.1.2 Let FP D P [Q [ F � � be a parallel extended probe in the
moment polytope �D ˆ.M / of the toric symplectic orbifold .M 2n; !;T ; ˆ/, and
let u 2 Int.P / � Int.�/. Then the Lagrangian fiber Lu D ˆ

�1.u/ is displaceable if
the following conditions both hold:

� The affine distance from u to the facet FP satisfies

(3.1.2) daff.u;FP / <
1
2
`.FP/:

� The flag F satisfies the inequality

(3.1.3) daff.xPQ;FQ/ < daff.xF ;x
0
F /:

In Section 5 we will further generalize this to the case where P is not parallel to the
facet FQ ; see Section 6 for the proofs.

3.2 Example: Displaceability in the open region Un;m.�/

Consider the standard toric structure .CN ; !0; .S
1/N ; ˆ0/. The symplectic form is

!0 D
1
�

PN
kD1 dxk ^ dyk , the torus action is

.t1; : : : ; tN / � .z1; : : : ; zN /D .e
2�it1z1; : : : ; e

2� itN zN /;

where tk 2 S1 DR=Z, the moment map is

ˆ0W C
N
!RN ; ˆ0.z1; : : : ; zN /D .jz1j

2; : : : ; jzN j
2/;

and the moment polytope is RN
C �RN .

For ease of notation let us now specialize to the case C2 . Let m> n� 1 be relatively
prime integers and consider the open subset of C2

Un;m.�/D fz D .z1; z2/ 2C2
j �njz1j

2
Cmjz2j

2
C � > 0g;

where � > 0 is any positive constant. Its image under the moment map is

�U
n;m WDˆ0.Un;m/D fx D .x1;x2/ 2R2

j x1 � 0;x2 � 0;�nx1Cmx2C � > 0g:

We will now turn to the investigation of the displaceability of Lagrangian toric fibers
in .Un;m.�/; !0; �

U
n;m.�//.

Let us first explain what is displaceable in .Un;m; !0; �
U
n;m/ by standard probes.

Algebraic & Geometric Topology, Volume 14 (2014)



704 Miguel Abreu, Matthew Strom Borman and Dusa McDuff

x2

�0

�1

�2 �0 D .1; 0/
�1 D .0; 1/
�2 D .�n;m/

�U
n;m.�/

x1

Figure 3.2.1: The moment polytope �U
n;m.�/ for .n;m/D .2; 3/ and � D 2

Lemma 3.2.1 The following points x 2�U
n;m can be displaced by probes based on

the facet fx1 D 0g ��U
n;m :

� Points in fx1 < x2g by probes with direction .1; 1/.

� Points in fx1 <
m
2n

x2C
�

2n
g by probes with direction .1; 0/.

The following points x 2�U
n;m can be displaced by probes based on fx2 D 0g ��U

n;m :

fcx2 < x1 < cx2C �=ng

by probes with direction .c; 1/ for c D 0; 1; : : : ; dm=ne� 1.

Proof An elementary calculation.

Here is what we can do with extended probes.

Lemma 3.2.2 Let x D .x1;x2/ 2�
U
n;m . If x is to the left of the line passing through

.�=n; 0/ with slope 1=.dm=ne� 1/, that is

(3.2.1) x1 < .dm=ne� 1/x2C �=n;

then x can be displaced by a parallel extended probe with flag in �U
n;m .

Proof Let d D dm=ne�1 and let wD .w1; w2/ 2�
U
n;m be a point satisfying (3.2.1).

Consider the probes P and Q where, for some small � > 0,

bP D .0; w2/; vP D .1; 0/; bQ D .
�
n
� �; 0/; vQ D .d; 1/;

and P ends at the point xPQ on Q. Observe that Q is parallel to the line defined
by an equality sign in (3.2.1), so since w satisfies (3.2.1) it follows that w lies in the
interior of P for sufficiently small � .

Note that vP is parallel to the base facet FQ D fx2 D 0g of Q.
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x2 1
3
2

�U
2;3
.2/

x1

x2
5
4 2

5
2

�U
2;5
.2/

x1

x2
7
4 2 3

7
2

�U
2;7.2/

x1

Figure 3.2.2: Comparing Lemmas 3.2.1 and 3.2.2. The points in the gray
regions are displaceable, but extended probes are needed for points in the
dark gray regions; see Remark 3.2.3. In this figure and others the numbers
1; 3

2
; 5

4
; 2; : : : refer to the slope � for the line x1 D �x2 C b defining the

boundary between differently shaded regions.

x2

w xPQ

xF

x0F e0F

eF

�U
2;5.2/

x1

Figure 3.2.3: An extended probe with flag used in the proof of Lemma 3.2.2

For the three parameters ˛; ˛0; `F > 0, consider the parallel extended probe with flag
FP D P [Q[F , where

5xPQ D bQCw2.d; 1/; xF D bQC˛.d; 1/; x0F D bQC˛
0.d; 1/;

`.P /D �
n
Cw2d; `.F/D `F ; `.FP/D �

n
Cw2d C `F I
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see Figure 3.2.3 for an example. First take `F sufficiently large so that (3.1.2) is
satisfied as

daff.w; bP /D w1 <
1
2
.�

n
Cw2d C `F /D

1
2
`.FP/:

Then take ˛; ˛0 > n
m�nd

`F to ensure that the endpoints of the flag

eF D bQC˛.d; 1/C`F .1; 0/; e0F D bQC˛
0.d; 1/C`F .1; 0/D .

�
n
C˛0dC`F ; ˛

0/;

stay in �U
n;m . Finally taking ˛0>˛Cw2 ensures that condition (3.1.3) in Theorem 3.1.2

is satisfied. Therefore for these parameter values the extended probe FP displaces the
Lagrangian fiber Lw � Un;m .

Remark 3.2.3 If dm=ne > 2, then there are dm=ne � dm=2ne regions of infinite
measure in �U

n;m consisting of points that can be displaced by extended probes but
not by standard probes. If dm=ne D 2, then the only points in �U

n;m where extended
probes are needed are the points on a ray with direction .1; 1/; see Figure 3.2.2 for
examples.

4 Displaceability in toric orbifolds and their resolutions

Wilson and Woodward [24] recently observed that the quasimap Floer homology
developed in [25], can be used in orbifold and noncompact settings to obtain large
families of nondisplaceable Lagrangian fibers. As we will see, after (partially) resolving
an orbifold singularity, many of these nondisplaceable fibers become displaceable by
extended probes. In this section we investigate this phenomenon.

4.1 Proving nondisplaceability results with potential functions

Given a presentation of a rational simple polytope

(4.1.1) �D fx 2Rn
j `i.x/� 0; i D 1; : : : ;N g with `i.x/D h�i ;xiC �i ;

where �i 2R and �i 2Zn are integer vectors, one can build a symplectic toric orbifold
.M 2n

�
; !;Tn; ˆ/ such that ˆW M�!Rn is proper and �Dˆ.M�/, which is unique

up to equivariant symplectomorphism by [18].

By [25, Proposition 6.8], � has at least one vertex exactly if M� can be represented as a
symplectic reduction CN==G of the standard .CN ; !0; .S

1/N ; ˆ0/, where G� .S1/N

is a suitable .N � n/–dimensional subtorus and ˆW M�! Rn � t� is the moment
map for the action of T D .S1/N =G on M� . If � does not have a vertex, then,
as was noted in [25, Corollary 6.9], � Š �0 � V , where �0 is a rational simple
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polytope with a vertex, V D fx 2Rn j h�i ;xi D 0 for i D 1; : : : ;N g, and one can take
M� DM�0 � .T

�S1/r , where r D dim.V /. By [25, Proposition 6.10], the results of
[25; 24] hold in both cases.

Consider the field of generalized Laurent series in the variable q ,

ƒD

�X
d2R

adqd

ˇ̌̌̌
ad 2C and fd j ad 6D 0g �R is discrete and bounded below

�
:

The field ƒ is complete with respect to the norm k � k D e��.�/ induced by the non-
Archimedean valuation

�W ƒ!R[f1g; �

�X
d

adqd

�
Dmin.d j ad 6D 0/;

with the convention that �.0/D1, and � satisfies

�.xy/D �.x/C �.y/; �.xCy/�min.�.x/; �.y//;

where the inequality is an equality if �.x/ 6D �.y/. The subring of elements with
only nonnegative powers of q , ƒ0 D f� � 0g is a local ring with maximum ideal
ƒC D f� > 0g. Completeness gives that the exponential function expW ƒ0 ! ƒ0 ,
defined via the standard power series, is surjective onto the units ƒ�

0
D f� D 0g.

Associated to a rational simple polytope � there is the bulk deformed potential that for
each x 2 Int� and ˛ D .˛1; : : : ; ˛N / 2ƒ

N
0

is a function

(4.1.2) Wx;˛W ƒ
n
0!ƒ0; Wx;˛.ˇ/D

NX
iD1

exp.h�i ; ˇiC˛i/q
`i .x/;

where �i and `i are from (4.1.1).

The following theorem allows one to prove nondisplaceability results merely by finding
critical points of the potential function Wx;˛ . It was proved by Fukaya, Oh, Ohta and
Ono [14, Theorem 9.6] for smooth closed toric manifolds (and for geometric W ), by
Woodward [25, Proposition 6.10 and Theorem 7.1] for rational simple polytopes, and
by Wilson and Woodward [24, Theorem 4.7] for rational simple polytopes for open
symplectic toric orbifolds.

Theorem 4.1.1 For a toric orbifold .M�; !;ˆ/ as above and x 2 Int.�/, if there
exists ˛ 2 ƒN

0
such that Wx;˛W ƒ

n
0
! ƒ0 has a critical point, then the Lagrangian

torus fiber ˆ�1.x/DLx � .M�; !/ is nondisplaceable.
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The basic idea is due to Cho and Oh [9], where the holomorphic disks used to define
the A1–structure associated to the Lagrangian Floer homology and quasimap Floer
homology for Lx are explicitly classified. It turns out that if ˇ is a critical point
for Wx;˛ then, in the smooth case, Lagrangian Floer homology with differential dˇ

depending on ˇ is defined and nonzero for Lx , so that Lx is nondisplaceable. For
general Wx;˛ a similar statement holds for the quasimap Floer homology of Lx . Note
that the parameters ˛ and ˇ correspond to bulk deformations and weak bounding
cochains, in the language of Fukaya, Oh, Ohta and Ono. If x 2 Int.�/ is a critical
point of Wx;˛ we will say that it has nontrivial (or nonzero) qW invariants.

Remark 4.1.2 (i) Observe that the potential function Wx;˛ depends on the presenta-
tion of � in (4.1.1) as a polytope and not just on � as a subset of Rn . Equivalently Wx;˛

depends on the presentation of M� as a reduction of CN and not just on M� as
a symplectic toric orbifold. In papers such as [9; 14] that work in the context of
Lagrangian Floer homology on smooth manifolds it is assumed that the polytope �
has precisely N facets, and one builds the invariant by counting holomorphic discs
in M� that intersect these facets. In this case, we call Wx;˛ the “geometric” potential
function. However, in the quasimap approach of Woodward [25], the invariant is built
from holomorphic discs in CN , that intersect the N facets of RN

C . Since the geometry
takes place in CN there is no need for each of these N facets to descend to a geometric
facet of �; some of them may be “ghosts” with constants �i chosen so large that
`i.x/ > 0 for all x 2�nf where f is a (possibly empty) face of dimension less than
n� 1.

(ii) It is clear from Equation (4.1.2) above, that if a ghost facet is parallel to a
geometric facet of � then we can amalgamate the two corresponding terms in Wx;˛ :
if the geometric facet has `1.x/D h�1;xiC�1 then the ghost facet is h�1;xiC�

0
1
D 0

where �0
1
> �1 , so that if W is the original potential and W 0 is the potential with the

ghost facet, we have that W 0x;˛0 DWx;˛ , where

˛0 D .˛01; ˛1; ˛2; : : : ; ˛N /; ˛ D .˛1C log.1C exp.˛01�˛1/q
�0

1
��1/; ˛2; : : : ; ˛N /:

Thus, the parallel ghost facet affects the terms in ˛ with positive q weight; in the
language of [17] it is a bulk deformation.

Remark 4.1.3 If � is a smooth compact moment polytope with rational support
constants, it follows from [16, Proposition 4.7] and [17, Theorem 4.5] that there is
always a u 2 Int.�/ such that the geometric potential Wu;˛ has a critical point for
some ˛ 2ƒN

0
.
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In [24], Wilson and Woodward observed that ghost facets can give new information if �
has singularities or corresponds to an open symplectic toric orbifold. Lemma 4.2.1 and
Remark 4.2.2 below show precisely how ghost facets may create lines with nontrivial
invariants and Theorem 4.4.1(i) is an example where ghost facets create open sets with
nontrivial invariants. In contrast to this we will now prove that ghost facets give no new
information if the polytope is smooth and closed, which explains [25, Remark 6.11].
Note that part (i) of the next proposition has analogs in all dimensions, but we restrict
to dimension 2 for simplicity.

Proposition 4.1.4 Let � be a smooth closed polytope in Rn .

(i) If � is compact and 2–dimensional, the set of points in � with nontrivial qW
invariants is the union of a finite number of points with at most one line segment.

(ii) In any dimension, adding ghost facets to the potential does not change the set of
points u 2 Int� such that Wu;˛ has a critical point for some ˛ 2ƒN

0
.

Proof We use the notation of (4.1.1). We first prove (i) in the case of the geometric
qW potential to explain the idea in a simple case. We then prove (ii), which implies (i)
in the general case.

For each point u 2 � define s.u/ WD mini�N `i.u/ and denote the set of edges that
are closest to u by E1.u/ D fi 2 f1; : : : ;N g j `i.u/ D s.u/g. If #E1.u/ D 2, and
the edges in E1.u/ are not parallel then we can choose coordinates so that one edge
in E1.u/ has equation x1 D 0, while the other has the form ax1C bx2 D 0, where
b ¤ 0. Then, because for all ˛ 2ƒ0 we have e˛ D zC positive powers of q , where
z 2C� , we find that

@ˇ2
Wu;˛ D zbeaˇ1Cbˇ2qs.u/

CO.qc/; c > s.u/;

which means that u is not a critical point of Wu;˛ . A similar argument shows that u

is not critical when #E1.u/ D 1. On the other hand if the two edges in E1.u/ are
parallel and we choose coordinates so that these have equations ˙x1C � D 0, then
@ˇ1

Wu;˛ D 0 can be solved to lowest order in q . Further the equation @ˇ2
Wu;˛ D 0

starts with terms involving qc where c > s.u/, and its lowest order terms also have a
solution if at least two of these involve the same power of q . Equivalently, we need
#E2.u/ > 1, where E2.u/ consists of those facets not in E1.u/ that are closest to u.
We may now appeal to [17, Theorem 4.5] which says that if the system of lowest order
equations has a solution, then one can choose the higher order terms in ˛; ˇ to obtain
a solution of the full system of equations @ˇ1

Wu;˛.ˇ/D 0; @ˇ2
Wu;˛.ˇ/D 0.
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All the other critical points have #E1.u/� 3. Since there are only finitely many such
points, it remains to check that there is at most one line segment consisting of points
with #E1.u/D 2.

To see this, note first that for any two parallel edges, the set of points equidistant from
them is convex. Hence if there are two such line segments, � must have two sets of
parallel sides, and hence be the blowup of a rectangle. But in a rectangle only one
set of parallel lines can appear as E1.u/, and if it is a square there are no points with
#E1.u/D 2. This proves (i).

Now consider (ii). Remark 4.1.2 deals with the case when the ghost facet is parallel
to some facet of �. Therefore suppose it is not. Without loss of generality, we may
suppose that `g.x/C�� 0 defines a ghost facet for �� 0 that intersects � when �D 0

in a codimension d face f`g D `1 D � � � D `d D 0g. Then we may choose coordinates
so that `i.x/D xi and `g.x/D a1x1C� � �Cadxd where ai � 1. So in particular we
see that for any interior point x and any � � 0,

(4.1.3) 0< `i.x/ < `g.x/C � for i D 1; : : : ; d :

The potential with the ghost facet added is given by W .g/u;˛DWu;˛Ce`g.ˇ/C˛g q`g.u/ .
Observe for j > d that @

ǰ
W is unaffected by the ghost term. For j � d , it follows

from (4.1.3) that the leading order terms in @
ǰ
W are unaffected by the ghost term.

Therefore the leading order term critical point equation for W .g/u;˛ and Wu;˛ are
the same, so again by [17, Theorem 4.5] both potentials have the same set of points
u 2 Int.�/ that give rise to critical points. This proves (ii).

4.2 A simple example and its resolution to O.�m/, for m� 2

For an integer m� 2, consider the orbifold .Mm; !;ˆm/ whose moment polytope is
the sector

�1;m D fx D .x1;x2/ 2R2
j `0.x/ WD x1 � 0; `2.x/ WD �x1Cmx2 � 0g:

Here Mm DC2=Zm where the generator in the cyclic group acts by diagonal multipli-
cation by e2�i=m . If the torus T2 acts via

.�1; �2/ � .z1; z2/D .�1�2z1; �2z2/;

the moment map is given by

ˆ1;m.z1; z2/D .jz1j
2; 1

m
jz1j

2
C

1
m
jz2j

2/:

The orbifold singularity at the origin can be resolved with the facet

f`�1.x/ WD x2C � � 0g; � < 0:
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In fact, if � < 0, then the polytope

(4.2.1) x�1;m.�/D fx 2R2
j `0.x/� 0; `�1.x/� 0; `2.x/� 0g

is smooth and is the moment polytope for the standard toric structure on the line bundle
O.�m/!CP1 . On the other hand if � � 0 then x�1;m.�/D�1;m as subsets of R2 ,
so f`�

1
.x/� 0g defines a ghost facet in the presentation (4.2.1). The effect of resolving

the orbifold singularity in this case is easy to explain, while the answers become more
complicated for the later examples.

x2

`0

`�
1

`0 D `2

`2

x1

Figure 4.2.1: The moment polytope �1;m when mD 3 . The displaceable
points are in light gray and the nondisplaceable points are on the line `0D `2 .
The nondisplaceability proof uses ghost facets f`�

1
.x/� 0g for varying � � 0 .

4.2.1 The displaceable and nondisplaceable fibers before resolving

Lemma 4.2.1 If x 2�1;m is on the line `0.x/D `2.x/, then the Lagrangian fiber Lx

is nondisplaceable. If x is not on the line `0.x/D `2.x/, then Lx is displaceable by a
horizontal probe.

Proof The displaceability statement is straightforward.

For each x 2�1;m on the line `0.x/D `2.x/, there is some � � 0 such that

(4.2.2) `0.x/D `2.x/D `
�
1.x/:

For a given x and the associated �� 0, consider the presentation x�1;m.�/ from (4.2.1),
which has the ghost facet f`�

1
.x/� 0g. Its potential function is

Wx;˛.ˇ1; ˇ2/D eˇ1q`0.x/C e�ˇ1Cmˇ2q`2.x/C eˇ2C˛q`
�
1
.x/:

By setting @ˇ1
Wx;˛ D @ˇ2

Wx;˛ D 0 and using (4.2.2) to cancel out the powers of q ,
we get

(4.2.3) eˇ1 � e�ˇ1Cmˇ2 D 0; me�ˇ1Cmˇ2 C eˇ2C˛ D 0:
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These equations are solved by .ˇ1; ˇ2; ˛/ D .0; 0; log.�m// over C . Therefore by
Theorem 4.1.1, the Lagrangian fiber Lx is nondisplaceable.

Remark 4.2.2 (i) The ghost facet was needed, for without it the potential function is

Wx;˛.ˇ1; ˇ2/D eˇ1C˛2qx1 C e�ˇ1Cmˇ2C˛1q�x1Cmx2 ;

which has no critical points since @ˇ2
Wx;˛ has just one nonzero term for all x and ˛ .

(ii) The bulk deformation e˛ is also needed when mD 2. To see this, note that under
the substitution y1 D eˇ1 and y2 D eˇ2 (4.2.3) becomes

y2
1 D ym

2 ; y1 D�mym�1
2 :

For mD 2 this says
y2

1 D y2
2 ; y1 D�2y2;

which has no solution except y1 D y2 D 0.

4.2.2 Resolving �1;m to O.�m/ If � < 0, then x�1;m.�/ is a resolution of �1;m .
The next result shows that all the previously nondisplaceable fibers can now be displaced,
either by standard probes based on the new facet f`�

1
.x/D 0g or by parallel extended

probes deflected by a probe Q that is based on the new facet.

Lemma 4.2.3 If � < 0, then the Lagrangian fiber Lu � O.�m/ is displaceable by
extended probes for all u 2 x�1;m.�/.

Proof Just as in the Hirzebruch surface case, for even m� 2 standard probes displace
everything. When m > 2 is odd, horizontal probes displace everything except the
points x 2 x�1;m.�/ on the line `0.x/D `2.x/, which up to translation is identified
with

(4.2.4) fx1 D
m
2

x2C
��
2
g � fx 2R2

C j �x1Cmx2� � > 0g DW�U
1;m.��/:

So it suffices to prove that points on the line in (4.2.4) are displaceable and this follows
from Lemma 3.2.2 since m=2<m� 1.

4.3 Cyclic surface singularities and their Hirzebruch–Jung resolutions

4.3.1 The orbifolds For relatively prime positive integers m > n � 2 consider the
complex orbifold Mn;m D C2=� , where � D �n;m is the cyclic subgroup of U.2/

generated by the matrix �
exp.2� i n=m/ 0

0 exp.2� i=m/

�
:
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The standard symplectic toric structure on .C2; !0; .S
1/2; ˆ0/ induces a symplectic

toric orbifold structure on .Mn;m; !;T ; ˆn;m/ with an orbifold singularity at the origin,
where

ˆn;m.Œz1; z2�/D .jz1j
2; n

m
jz1j

2
C

1
m
jz2j

2/

and the moment polytope is ˆn;m.Mn;m/

(4.3.1) �n;m D fx 2R2
j `v.x/ WD x1 � 0; `s.x/ WD �nx1Cmx2 � 0g:

Note that interior conormals for �n;m are

`v.x/D h�v;xi; where �v D .1; 0/; `s.x/D h�s;xi; where �s
D .�n;m/;

and we will call f`v D 0g the vertical edge and f`s D 0g the slant edge. Note
f`v.x/D `s.x/g defines the line fx1 D

m
nC1

x2g, which we will call the midline.

x2

`v

.1; 0/ .�n;m/

`s

�n;m

x1

Figure 4.3.1: The moment polytope �n;m for .n;m/D .3; 7/

In terms of the polytope, the assumption that m> n is harmless since if n>m� 2,
then by applying a shear .x1;x2/ 7! .x1;�x1Cx2/, which is in GL2.Z/, we see that
.Mn;m; �n;m/ is equivalent to .M.n�m;m/; �.n�m;m//.

4.3.2 Hirzebruch–Jung resolutions Associated to .Mn;m; �n;m/ is a minimal res-
olution of the symplectic toric orbifold singularity at the origin which is known in
algebraic geometry as a Hirzebruch–Jung resolution. The version in the symplectic
toric setting is due to Orlik and Raymond [23]; see also Calderbank and Singer [5].
To find the resolution, one writes n=m as a continued fraction using positive integers
Ej � 2:

(4.3.2)
n

m
D

1

E1�
1

E2����
1

Ek

DW .E1; : : : ;Ek/
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The positive integers Ej are given by the Euclidean algorithm where 0� rjC1 < rj ,

(4.3.3) r�1 Dm; r0 D n; EjC1 D
˙ rj�1

rj

�
; rjC1 DEjC1rj � rj�1;

and k is the smallest number such that rk D 0. The sequence of integers E1; : : : ;Ek

determine a sequence of kC2 interior conormals in tZ , starting with the conormal for
the vertical edge

�0 D �
v
D .1; 0/; then �1 D .0; 1/;

and then defined recursively for 1� j � k by

�jC1 DEj�j � �j�1;

where the last one is the conormal for the slant edge

�kC1 D �
s
D .�n;m/:

These conormals are such that if �jC1 D .�nj ;mj /, then

njC1

mjC1

D
1

E1�
1

E2����
1

Ej

D .E1; : : : ;Ej /:

For appropriate support constants � D .�1; : : : ; �k/ 2Rk
<0

the polytope

(4.3.4) x�n;m.�/D fx 2R2
j `0.x/� 0; `

�1

1
.x/� 0; : : : ; `

�k

k
.x/� 0; `kC1.x/� 0g;

where

`0.x/D `
v.x/D x1; `

�j
j .x/ WD h�j ;xiC �j ; `kC1.x/D `

s.x/D�nx1Cmx2;

has kC 2 edges, is smooth, and corresponds to a symplectic toric manifold

. SMn;m; x!� ; x̂n;m/

that is called a minimal resolution of .Mn:m; �n;m/.

4.3.3 Symmetries The class of examples .Mn;m; �n;m/ where m> n� 2 has the
following symmetry, which we will exploit to shorten the proofs below. Let .zn; q/ be
the integers that solve

(4.3.5) mq� nznD�1 for minimum positive zn;

so that 1< zn<m and 0< q < zn. Then the matrix

(4.3.6) S D

�
�zn m

�q n

�
; with S

�
0

1

�
D

�
m

n

�
and S

�
m

zn

�
D

�
0

1

�
;
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has det S D�1 and S.�zn;m/D�n;m . Furthermore, S interchanges the roles of the
vertical edge and the slant edge, while mapping the midline to the midline.

x2

x1 D
m

nC1
x2

`v

`s

�n;m

x1

x2

x1 D
m

znC 1
x2

`v

`s
�zn;m

x1

Figure 4.3.2: Left: �n;m . Right: �zn;m . The matrix S in (4.3.6) maps �zn;m
to �n;m , mapping the light gray region to the light grey region, and likewise
for the dark grey regions. Here .n;m/D .5; 7/ and .zn; q/D .3; 2/ .

Therefore we will often only need to prove a result for points to the left of the midline:
the properties of the points to the right of the midline will be deduced by applying the
matrix S .

This symmetry provided by S 2 GL.t�Z/ is compatible with the resolution given by
the continued fraction expansion. Namely if E1; : : : ;Ek are associated with the pair
.n;m/, then

zn
m
D .Ek ; : : : ;E1/;

so that .zn;m/ is given by reversing the order of the Ej . If �0; : : : ; �kC1 are the
conormals associated with x�n;m , and z�0; : : : ; z�kC1 are the conormals associated
with x�zn;m , then one can check that

S��j D z�kC1�j ;

where S� 2 GL.tZ/ is the transpose. Therefore S maps one minimal resolution from
(4.3.4) to the other:

S.x�zn;m.z�//D x�n;m.�/; z�kC1�j D �j

In particular we have that the first three and the last three conormals for x�n;m are

�0 D .1; 0/; �1 D .0; 1/; �2 D .�1;E1/;(4.3.7)

�kC1 D .�n;m/; �k D .�q; zn/; �k�1 D .�.Ekq� n/;Ekzn�m/:(4.3.8)
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4.4 Displaceability in sectors and their blowups

For relatively prime positive integers m> n� 2, consider the symplectic toric orbifold
.Mn;m; �n;m/ from (4.3.1). Let zn; q be given by (4.3.5) and let E1; : : : ;Ek be the
sequence of integers from (4.3.3) associated to .n;m/. In this section we will use the
notation

E DE1 WD
˙

m
n

�
; zE DEk WD

˙
m
zn

�
:

4.4.1 The displaceable and nondisplaceable fibers in �n;m

Theorem 4.4.1 Let x D .x1;x2/ 2�n;m .

(i) The Lagrangian fiber Lx is nondisplaceable if

(4.4.1)
E

2
x2 � x1 �

2m� zEzn

2n� zEq
x2:

(ii) If E D zE D 2, then all other fibers Lx are displaceable.

(iii) If E > 2, then all fibers with x1 <
E
2

x2 are displaceable except possibly for
those with m

2n
x2 � x1 <

E
2

x2 .

(iv) If zE > 2, then all fibers with ..2m� zEzn/=.2n� zEq//x2 < x1 are displaceable
except possibly for those with

2m� zEzn

2n� zEq
x2 < x1 �

mzn

nznC 1
x2:

Proof of Theorem 4.4.1(i) Recall that �n;m D fx 2 R2 j `v.x/ � 0; `s.x/ � 0g,
where

`v.x/ WD x1; `s.x/ WD �nx1Cmx2:

For ghost facets, we will use the first two conormals �1 D .0; 1/ and �2 D .�1;E/

associated with the Hirzebruch–Jung resolution. Thus we take

`
�1

1
.x/ WD x2C �1; `

�2

2
.x/ WD �x1CEx2C �2;

which define ghost facets for �n;m when �1; �2 � 0 are nonnegative.

Observe that if the point x 2�n;m satisfies

E

2
x2 � x1 �

m

nC 1
x2
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x2

`v

1
4
3

10
7 5

3

�3;5

.zn; q/D .2; 1/

.E; zE/D .2; 3/`s

x1

x2

`v

7
6

3
2 2

7
3

�3;7

.zn; q/D .5; 2/

.E; zE/D .3; 2/`s

x1

x2

`v

4
3

3
2

7
3

12
5

8
3

�3;8

.zn; q/D .3; 1/

.E; zE/D .3; 3/`s

x1

Figure 4.4.1: Examples of Theorem 4.4.1. The dark grey regions are closed
and nondisplaceable, the light grey regions are open and displaceable, and
the white regions are unknown.

then

(4.4.2) `v.x/D `
�1

1
.x/D `

�2

2
.x/� `s.x/

for suitable �1; �2 � 0. The potential function of �n;m with the added ghost facets
f`
�1

1
� 0g and f`�2

2
� 0g is

Wx;˛.ˇ/D eˇ1C˛1q`
v.x/
C e�nˇ1Cmˇ2q`

s.x/
C eˇ2C˛2q`

�1
1
.x/
C e�ˇ1CEˇ2q`

�2
2
.x/:

Changing variable so that y1 D eˇ1 and y2 D eˇ2 and using (4.4.2), the critical point
equation becomes

(4.4.3)
y1@y1

Wx;˛ D .e
˛1y1�y�1

1 yE
2 � ny�n

1 ym
2 q`

s.x/�`v.x//q`
v.x/
D 0;

y2@y2
Wx;˛ D .e

˛2y2CEy�1
1 yE

2 Cmy�n
1 ym

2 q`
s.x/�`v.x//q`

v.x/
D 0:

Then .y1;y2/D .1; 1/ is a critical point of Wx;˛ when

(4.4.4) e˛1 D 1C nq`
s.x/�`v.x/; e˛2 D�E �mq`

s.x/�`v.x/:
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These equations are solvable by ˛ 2ƒ2
0

since `s.x/� `v.x/ and neither term in (4.4.4)
is zero. Hence Lx is nondisplaceable by Theorem 4.1.1.

So far we have proved that for x 2�n;m such that

(4.4.5)
E

2
x2 � x1 �

m

nC 1
x2;

the fiber Lx is nondisplaceable. Likewise, for y 2�zn;m , Ly is nondisplaceable if

zE

2
y2 � y1 �

m

znC 1
y2:

The image of this region under the symmetry S from (4.3.6) is the subset of Int�n;m

where

(4.4.6)
m

nC 1
x2 � x1 �

2m� zEzn

2n� zEq
x2:

Piecing (4.4.5) and (4.4.6) together, we have proved that if x 2�n;m satisfies (4.4.1),
then Lx is nondisplaceable.

The proof of Theorem 4.4.1 is completed by the following lemma.

Lemma 4.4.2 Probes based on the vertical edge in �n;m displace the following points:

� Points in fx1 < x2g by probes with direction .1; 1/.

� Points in fx1 <
m
2n

x2g by probes with direction .1; 0/.

Probes based on the slant edge in �n;m displace the following points:

� Points in fx1 >
m�zn
n�q

x2g by probes with direction .m� zn; n� q/.

� Points in fx1 >
mzn

nznC1
x2g by probes with direction .�zn;�q/.

Proof of Lemma 4.4.2 The first two claims are similar to Lemma 3.2.1, and are
straightforward to check. The last two claims are the transform under the symmetry S

of the first two claims for the sector �zn;m .

We next show that the lower bound E
2

in Theorem 4.4.1(i) is optimal with our current
methods.

Lemma 4.4.3 The qW invariants vanish for points in �n;m with x1 <
E
2

x2 .
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Proof If the potential function Wx;˛ has a critical point at a point x 2�n;m left of
the midline, there must be at least one ghost facet `�.x/D h�;xiC � such that (4.4.2)
holds for support constants � � 0. If �D .�b; a/ for some nonnegative integers, then
b=a � n=m must hold in order for `� to define a ghost facet. Since `�.x/ D `v.x/
implies .a=.bC 1//x2 � x1 , this gives a potentially new lower bound. The choice
�1 D .0; 1/ is optimal since it gives the bound x2 � x1 . However, adding just this
ghost facet by itself is not enough since the second equation in (4.4.3) would then have
just one term and so have no solution. Any other of � must have a; b > 0 positive, and
we claim that in this case E=2� a=.bC 1/, so that the lower bound is no better than
before.

To see this, recall that E D dm=ne. If aD bC1, then 2� a=b �m=n, so E D 2 and
hence E=2D a=.bC1/. Suppose a� bC2, then since E�1<m=n� a=b , we have
that E=2 � 1

2
..a=b/C 1/ and hence it suffices to prove 1

2
..a=b/C 1/ � a=.bC 1/.

This is equivalent to a.b� 1/� b2C b , which holds since a� bC 2.

4.4.2 Displaceable fibers after a blowup Recall that in the proof of Theorem 4.4.1(i)
we used the ghost facets with conormal .0; 1/ to prove the nondisplaceability of the
points in (4.4.5), which are to the left of the midline, and implicitly we used their
transforms under the symmetry in (4.3.6) with conormal S�.0; 1/D .�q; zn/ to deal
with the points to the right of the midline. Hence, if we partially resolve the orbifold
singularity with these two edges, many fibers with previously nonzero qW invariants now
have vanishing invariants. At the same time, since probes with direction .1; 0/ based
on the vertical edge, are parallel to the new edge with conormal .0; 1/ (and likewise
on the right), this partial resolution also causes many fibers to become displaceable
using parallel extended probes with flags.

Proposition 4.4.4 For the polytope �n;m as in (4.3.1), consider a minimal resolution
. SMn;m; x�n;m.�/) given by (4.3.4), where � D .�1; : : : ; �k/ 2 Rk

<0
are the support

constants. If x 2 Int x�n;m.�/ is not in the region

.E1� 1/x2 � x1 �
m� .Ek � 1/zn

n� .Ek � 1/q
x2

then the Lagrangian fiber Lx � . SMn;m; x!�/ can be displaced by extended probes in
x�n;m.�/, provided that the terms in � are sufficiently close to zero.

Proof For x1 < .E1� 1/x2 , it follows from Lemma 3.2.2 that Lx can be displaced
by a parallel extended probe with flag FP D P [Q[ F in x�n;m.�/. Here P is
based on the vertical edge with direction vP D .1; 0/ and Q is based on the new edge
f`
�1

1
D 0g with direction vQ D .E � 1; 1/.
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Observe that

x1 >
m� .Ek � 1/zn

n� .Ek � 1/q
x2

is the transform of x1 < . zE1 � 1/x2 for �zn;m under the transformation S from
(4.3.6). In x�n;m.�/ one builds an extended probe where P is based on the slant
edge, which has direction vP D .�q;�zn/, and the deflecting probe Q has direction
vQ D .m� . zE � 1/zn; n� . zE � 1/q/ and is based on the new edge f`�k

k
D 0g.

Remark 4.4.5 (i) Unwrapping how Proposition 4.4.4 uses Lemma 3.2.2 gives the
following more precise version. Suppose that a (partial) resolution z�n;m of �n;m

contains an edge f`�1

1
D 0g with one endpoint on the vertical edge f`v D 0g and the

other at .y1;y2/, where y1 > 0. Then the points x 2 z�n;m such that

x1�y1 < .E1� 1/.x2�y2/

are displaceable by extended probes using Lemma 3.2.2. The analogous statement
holds when f`�k

k
D 0g appears next to the slant edge f`s D 0g.

(ii) Comparing the results of Proposition 4.4.4 to Theorem 4.4.1, if E DE1 > 2 then
the points x 2�n;m in the region

E
2

x2 � x1 < .E � 1/x2

can be displaced after we partially resolve �n;m with f`�1

1
�0g and are nondisplaceable

before partially resolving. If E1 D 2, then this region is empty.

4.5 Examples of minimal resolutions

In this section we discuss a few of the minimal resolutions x�n;m.�/ in (4.3.4). We
will use standard probes as well as the extended probes described in Proposition 4.4.4
and Remark 4.4.5.2

In general for minimal resolutions . SMn;m; x�n;m.�// there is no known nondisplaceable
fiber. In Section 4.2.2, where k D 1 and hence .n;m/ D .1;m/, we showed in
Lemma 4.2.3 that every fiber is displaceable in a minimal resolution O.�m/D SM1;m .
In every other case there will be fibers that we cannot displace with extended probes.

2We leave it to the reader to check that the probes with trapezoidal flags defined in Section 5 displace
no new points.
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4.5.1 The case kD 2 Suppose the continued fraction expansion for .n;m/ has
length k D 2 given by E1 and E2 . Then

.n;m/D .E2;E1E2� 1/; .zn; q/D .E1; 1/;

and the facets for a minimal resolution x�.E2;E1E2�1/ have interior conormals

�0 D .1; 0/; �1 D .0; 1/; �2 D .�1;E1/; �3 D .�E2;E1E2� 1/:

Note that in this case the upper and lower bounds of Proposition 4.4.4 coincide, so we
have the following corollary taking into account Remark 4.4.5.

x2

`0

4
3

3
2

7
3

12
5

8
3

`3

�3;8

.zn; q/D .3; 1/

E1 DE2 D 3

x1

x2

`0

`
�2

1
D `

�2

2
.x/

`3

x2 D�E2�2

`
�2

2
`
�1

1

x�.E1;E1E2�1/.�/

x1

Figure 4.5.1: Illustration of Corollary 4.5.1. Above: �3;8 before resolving.
Below: The resolution x�.E1;E1E2�1/ drawn in the case .n;m/ D .3; 8/ .
The light gray regions are displaceable and the dark grey regions are nondis-
placeable. It is unknown if the points on the ray with slope E1 � 1 are
displaceable.
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Corollary 4.5.1 Let �1; �2< 0 be such that x�.E2;E1E2�1/.�/ is a minimal resolution
from (4.3.4). A Lagrangian fiber Lx in x�.E2;E1E2�1/.�/ is displaceable by probes
provided it is not on the ray given by

`
�1

1
.x/D `

�2

2
.x/; `

�1

1
.x/�maxf`�1

1
.y/ j y 2 x�.E2;E1E2�1/.�/; `

�2

2
.y/D 0g;

that is

(4.5.1) x1 D .E1� 1/x2C �2� �1; x2 � �E2�2:

Proof We only need to prove that if x is on the line (4.5.1) and x2<�E2�2 , then Lx

is displaceable. These points can be displaced by probes with direction .�1; 0/ based
on the edge f`�2

2
D 0g; see Figure 4.5.1.

Remark 4.5.2 If x lies on the line in (4.5.1), then

`0.x/ > `
�1

1
.x/; `

�1

1
.x/D `

�2

2
.x/; `

�2

2
.x/ < `3.x/;

and hence the potential function Wx;˛.ˇ1; ˇ2/ from (4.1.2) will not have a critical
point. In particular one can check that @ˇ1

Wx;˛.ˇ/ 6D 0 for all ˇ D .ˇ1; ˇ2/ 2 .ƒ0/
2 .

So Theorem 4.1.1 cannot be used to prove Lx is nondisplaceable.

4.5.2 An –singularities The An –singularity is C2=� , where � is the subgroup
of SU.2/ generated by �

��1 0

0 �

�
;

where � D e2�i=.nC1/ . Comparing with Section 4.3.1, we see that the An –singularity
is given by .M.n;nC1/; !;�.n;nC1// and note the associated .zn; q/D .n; n� 1/. The
continued fraction expansion for .n; nC 1/ has length k D n and is given by

E1 D � � � DEn D 2

and the facets for a minimal resolution x�.n;nC1/.�/ have interior conormals

�0D.1; 0/; �1D.0; 1/; �2D.�1; 2/; �3D.�2; 3/; : : : ; �nC1D.�n; nC 1/:

Note that in this case the upper and lower bounds of Proposition 4.4.4 coincide, so we
have the following corollary taking into account Remark 4.4.5.

Corollary 4.5.3 Let � 2Rn
<0

be such that x�.n;nC1/.�/ is a minimal resolution from
(4.3.4). A point x 2 x�.n;nC1/.�/ is displaceable by probes if it does not belong to one
of the .n� 1/ rays given by

`
�j
j .x/D `

�jC1

jC1
.x/; `

�j
j .x/�maxf`�jj .y/ j y 2

x�.n;nC1/.�/; `
�jC1

jC1
.y/D 0g;

for j D 1; : : : ; n� 1.
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x2

`0

`
�1

1

`
�2

2

`
�3

3

`
�4

4

`5

x�4;5.�/

E1 DE2 DE3 DE4 D 2

x1

Figure 4.5.2: Minimal resolution of An –singularity. The light grey regions
are displaceable by standard probes with direction (1,1) or parallel to one
of the added facets. The medium grey regions are displaceable by extended
probes from Proposition 4.4.4. Displaceability for the white rays is unknown.

4.5.3 Open regions of unknown points If E1; : : : ;Ek is the continued fraction
decomposition of .n;m/, suppose that its length is at least k � 3 and some Ej � 3

for j 6D 1; k . Then in any minimal resolution x�n;m.�/ there will be open regions of
points that extended probes do not displace.

Example 4.5.4 Consider a minimal resolution of x�5;8.�/. Since .n;m/ D .5; 8/

we have .zn; q/D .5; 3/ and the upper and lower bounds in Proposition 4.4.4 do not
coincide. Since the continued fraction expansion of .5; 8/ is given by E1D 2, E2D 3,
and E3 D 2, the conormals for x�5;8.�/ are

�0 D .1; 0/; �1 D .0; 1/; �2 D .�1; 2/; �3 D .�3; 5/; �4 D .�5; 8/:

The displaceable fibers in x�5;8.�/ are displayed in Figure 4.5.3; as we can see there is
an open region of unknown fibers.

4.6 The weighted projective planes P .1;p; q/

Consider the weighted projective plane P .1; 3; 5/, with moment polytope

(4.6.1) fx 2R2
j `1.x/ WD x1 � 0; `2.x/ WD x2 � 0; `3.x/ WD�5x1�3x2C15� 0g:

McDuff showed in [21, Lemma 4.4] that � has an open subset of points that cannot
be displaceable by probes; moreover, this open subset persists even after resolving the
orbifold singularities. Wilson and Woodward showed in [24, Example 4.11] that many,
but not all, of the fibers that cannot be displaced by probes are actually nondisplaceable
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x2

`0

`
�1

1
D `

�2

2
`
�2

2
D `

�3

3

`4

`
�3

3

`
�2

2
`
�1

1

x�5;8

E1 D 2;E2 D 3;E3 D 2

x1

Figure 4.5.3: Displaceable fibers in x�5;8.�/ . The light grey regions are
displaceable by standard probes with direction .1; 1/ , .3; 2/ , or parallel
to one of the added facets. The medium gray regions are displaceable by
extended probes from Proposition 4.4.4. Displaceability is unknown for
points in the white rays and regions.

in �. Figure 4.6.1 summarizes their results. Using Remarks 2.2.7 and 5.2.4(ii), one
can see that one cannot do better by using extended probes. In this section we work out
which points can be displaced by extended probes when we resolve the singularities.

.0; 5/

.0; 0/ .3; 0/

.5
4
; 5

2
/

.3
2
; 2/

.3
2
; 3

2
/

.15
13
; 30

13
/

.15
11
; 15

11
/

Figure 4.6.1: The moment polytope for P .1; 3; 5/ . The probe displaceable
points in light gray, the nondisplaceable points in dark grey, and the unknown
points in white.
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Observe that � near the vertex .3; 0/ is locally equivariantly symplectomorphic to a
neighborhood of the origin in �3;5 , and hence locally the results in Figure 4.6.1 match
those in Figure 4.4.1. The region near .0; 5/ in � is literally of the form �5;3 , which
by shearing is equivalent to �2;3 and Theorem 4.4.1 says that in �2;3 there is one
line of nondisplaceable fibers and everything else is displaceable. This is what we see
in the region near .0; 5/ in Figure 4.6.1.

The normals for P .1; 3; 5/ are given by

�1 D .1; 0/; �2 D .0; 1/; �3 D .�5;�3/;

and the interior conormals for a minimal resolution of P .1; 3; 5/ are given by

(4.6.2) �4 D .�1;�1/; �5 D .�3;�2/; �6 D .�2;�1/; �7 D .�1; 0/:

In what follows we include facets

Fj D f`
�j
j .x/ WD h�j ;xiC �j � 0g

for j D 4; 5; 6; 7 into the presentation of � from (4.6.1). For reference let us note that
these half spaces define ghost facets in � when

�4 � 5; �5 � 10; �6 � 6; �7 � 3:

4.6.1 Resolution of singularity at .3; 0/ in P .1; 3; 5/ Consider the resolution of
the singularity at .3; 0/ which is given by �\f`�6

6
� 0; `

�7

7
� 0g, and which we assume

has vertices

(4.6.3)
.0; 0/; .0; 5/; a4 D .3.�6� 5/; 5.6� �6//;

a5 D .�7; �6� 2�7/; a6 D .�7; 0/:

This resolution corresponds to a minimal resolution of the sector �3;5 . Since the
continued fraction expansion of 5

3
is given by .E1;E2/ D .2; 3/, it follows from

Corollary 4.5.1 that there is a line of nondisplaceable points near the resolved vertex
lying on the bisector of the edges F6;F7 and hence in direction .�1; 1/. These points
cannot be displaced in the minimal resolution x�3;5 because, although we can deflect a
vertical probe P starting on the horizontal base facet F2 by a .�1; 0/ probe Q starting
on F6 , the resulting deflected probe F is not parallel. Rather it has a trapezoidal flag
and tapers to a point as it reaches this line; cf Remark 5.2.4(ii). However because of the
vertical edge F1 , the probe Q is symmetric in the partial resolution of P .1; 3; 5/ so
that the deflected probe F has no flag. Moreover, in the case P .1; 3; 5/ (but not in other
P .1; n;m/), the deflected probe F is symmetric, ie it exits the polygon transversally
so that its direction can be reversed. Hence this type of probe displaces all but a
codimension-1 subset; see Figure 4.6.2. Proposition 4.6.1 gives the details.
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.0; 5/

.0; 0/

Q

c3

c2

c1 a4

a5

a6

.0; 5/

.0; 0/

n1
b2

b1

a4
a5

a6

.0; 5/

n2

n1
b2

b1

a4

a5

a6.0; 0/

Figure 4.6.2: Displaceable and nondisplaceable fibers when the singularity at
.3; 0/ in P .1; 3; 5/ is resolved as in (4.6.4). Left: In grey, points displaceable
by symmetric extended probes deflected by a probe Q , that is based on the
edge F6 with conormal .�2;�1/ . Middle: Displacing some more points
with standard probes that have direction ˙.1;�1/ . Right: In light grey
are the fibers that were displaced in the previous two pictures. The point
n1 and the points on the black line segment connecting .0; 5/ and n2 are
nondisplaceable. Displaceability is unknown for points on the white line
segment, and the points b1 , and b2 .

Proposition 4.6.1 In the resolution of the singularity at .3; 0/ in � from (4.6.1),
where

(4.6.4) �\f`
�6

6
.x/ WD �2x1�x2C �6 � 0g\ f`

�7

7
.x/ WD �x1C �7 � 0g;

let �6; �7 be such that the vertices of (4.6.4) are given by (4.6.3).

(i) There is an open dense set of points in �\f`�6

6
� 0; `

�7

7
� 0g, whose Lagrangian

fibers are displaceable by probes or extended probes.

(ii) If x is on the line segment connecting

(4.6.5) .0; 5/ and n2 D .�6� 5; 15� 2�6/

or the point n1 D .�7=2; �6=2� �7=2/ then the Lagrangian fiber Lx is nondis-
placeable.
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Proof of Proposition 4.6.1(ii) If x is on the segment (4.6.5), then for some �4 � 5

one can add a ghost facet f`�4

4
.x/ WD �x1�x2C �4 � 0g to (4.6.4) so that

(4.6.6) `1.x/D `3.x/D `
�4

4
.x/� `

�6

6
.x/; `1.x/ < `2.x/; `1.x/ < `

�7

7
.x/:

Using (4.6.6) and the change of variables y1 D eˇ1 and y2 D e�ˇ1�ˇ2 , the potential
function with the ghost facet added is

Wx;˛ D .e
˛1y1C e˛2y2Cy�2

1 y3
2 Cy�1

1 y2q`
�6
6
.x/�`1.x/

Cy�1
1 y�1

2 q`2.x/�`1.x/Cy�1
1 q`

�7
7
.x/�`1.x//q`1.x/:

Hence the critical point equations at .y1;y2/D .1; 1/ are

@y1
Wx;˛ D .e

˛1 � 2� q`
�6
6
.x/�`1.x/� q`2.x/�`1.x/� q`

�7
7
.x/�`1.x//q`1.x/ D 0;

@y2
Wx;˛ D .e

˛2 C 3C q`
�6
6
.x/�`1.x/� q`2.x/�`1.x//q`1.x/ D 0;

and therefore .y1;y2/D .1; 1/ is a critical point of Wx;˛ when

e˛1 D 2C q`
�6
6
.x/�`1.x/C q`2.x/�`1.x/C q`

�7
7
.x/�`1.x/;

e˛2 D�3� q`
�6
6
.x/�`1.x/C q`2.x/�`1.x/:

It follows from (4.6.6) that such ˛1; ˛2 2ƒ0 exist. Hence Lx is nondisplaceable by
Theorem 4.1.1. Points between n2 and b1 (see Figure 4.6.2) are closer to the facet
f`�

6
D 0g than any other facet, so we cannot prove they are nondisplaceable with a

potential; cf Proposition 4.1.4.

If x D n1 D .�7=2; �6=2� �7=2/, then

(4.6.7) `
�7

7
.x/D `1.x/ < `2.x/D `

�6

6
.x/ < `3.x/:

By (4.6.7) and the change of variables y1 D eˇ1 and y2 D eˇ2 , the potential function
is

Wx;˛ D .e
˛1y1Cy�1

1 /q`1.x/C .e˛2y2Cy�2
1 y�1

1 /q`2.x/Cy�5
1 y�3

2 q`3.x/:

Hence the critical point equations at .y1;y2/D .1; 1/ are

@y1
Wx;˛ D .e

˛1 � 1� 2q`2.x/�`1.x/� 5q`3.x/�`1.x//q`1.x/ D 0;

@y2
Wx;˛ D .e

˛2 � 1� 3q`3.x/�`2.x//q`2.x/ D 0;

and therefore .y1;y2/D .1; 1/ is a critical point of Wx;˛ when

e˛1 D 1C 2q`2.x/�`1.x/C 5q`3.x/�`1.x/; e˛2 D 1C 3q`3.x/�`2.x/:
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By (4.6.7), such ˛1; ˛2 2ƒ0 exist. Therefore, we have that Lx is nondisplaceable by
Theorem 4.1.1.

Proof of Proposition 4.6.1(i) Symmetric extended probes We will displace every-
thing except the points on the black solid lines on the left in Figure 4.6.2. The points
are

c1 D .5� �6=2; �6� 5/; c2 D .�6� 5; 5� �6=2/; c3 D .0; 15=2� �6/:

We will use a symmetric probe Q based arbitrarily close to a5 on f`�6

6
.x/D 0g, with

direction vQ D .�1; 1/ and in particular lies on the line fx1Cx2� �6C �7� � D 0g

for 0< �� 1. The associated reflection is given by

AQ.x1;x2/D .�2x1�x2C �6; 3x1C 2x2� �6/:

Part 1 Let P be based at bP .�/ D .�; 0/ for �6 � 5 � � < �7 , with direction
vP D .0; 1/ and form the symmetric extended probe SP D P [Q[P 0 , where

xPQ.�/D .�; �6� �7��C �/; `.P /D �6� �7��C �;

x0PQ.�/D .�7��� �; �C �6� 2�7C 2�/; `.P 0/D �7��� �;

eP 0.�/D .0; �6��/; `.SP/D �6� 2�;

where the direction vP 0 D
yAQ.vP /D .�1; 2/. The assumption on � ensures that eP 0

exists the polytope on f`2 D 0g. One can check that `.P 0/ < `.P / so the midpoint of
the extended probe always lies on P , in fact it lies on the line fx1Cx2� �6=2D 0g,
which appears as the line connecting c1 and c2 on the left in Figure 4.6.2.

Therefore by Theorem 2.2.6, every point on P before the midpoint is displaceable.
Now observe that since vP 0 D .1;�2/ is integrally transverse to the facet f`1 D 0g, on
which P 0 exits the polytope, we can swap the roles of P and P 0 . Hence everything on
these extended probes past the midpoint are displaceable as well, with the exception of
when eP 0 D .0; 5/, since then eP 0 is not on the interior of a facet. As � and � vary,
this sweeps out the points in the regions

fx1 � �6� 5g\ fx1Cx2� �6C �7 � 0g;

f2x1Cx2� 5< 0g\ fx1Cx2� �6C �7 � 0g;

that are not on the line fx1Cx2� �6=2D 0g. These are the light gray regions on the
left in Figure 4.6.2.

Part 2 Now let P be based at bP .�/ D .�; 0/, with direction vP D .0; 1/ for
0< �� �6� 5 and form the associated symmetric extended probe SP D P [Q[P 0
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given by

xPQ.�/D .�; �6� �7��C �/; `.P /D �6� �7��C �;

x0PQ.�/D .�7��� �; �C �6� 2�7C 2�/; `.P 0/D 15C 2�� 3�6C �7� �;

eP 0.�/D .3.�6� 5��/; 5.6� �6C�//; `.P/D 15��� 2�6;

where the direction vP 0 D
yAQ.vP / D .�1; 2/. Note that the restriction on � is to

ensure that eP 0.�/ lies on f`3D 0g. One can check that `.P 0/ < `.P / so the midpoint
of the extended probe always lies on P .

Therefore by Theorem 2.2.6, every point on P before the midpoint is displaceable.
Now observe that since vP 0 D .1;�2/ is integrally transverse to the facet f`1 D 0g, on
which P 0 exits the polytope, we can swap the roles of P and P 0 . Hence everything on
these extended probes past the midpoint are displaceable as well, with the exception of
when eP 0 D .0; 5/, since then eP 0 is not on the interior of a facet. As � and � vary,
this sweeps out the points in the regions

fx1 � �6� 5g\ fx1Cx2� �6C �7 � 0g;

f2x1Cx2� 5< 0g\ fx1Cx2� �6C �7 � 0g;

that are not on the line segment connecting c2 and c3 . These are the dark gray regions
on the left in Figure 4.6.2.

Standard probes It is straightforward to check that standard probes with directions
˙.�1; 1/ displace everything not already displaced except the points

n1 D .�7=2; �6=2� �7=2/; where `1 D `
�7

7
; `2 D `

�6

6
;(4.6.8)

b2 D .5� �6C �7; 2�6� 2�7� 5/; where `1 D `3; `
�6

6
D `

�7

7
;(4.6.9)

and the points on the line f2x1Cx2D 5g such that .x�a4/ �.1; 1/� 0, whose endpoint
is denoted b2 in Figure 4.6.2; see the middle polytope in Figure 4.6.2.

4.6.2 Resolution of both singularities of P .1; 3; 5/ One can carry out a similar
analysis of the points in the full minimal resolution of P .1; 3; 5/. The result is qual-
itatively the same: there are 4 isolated points that are known to be nondisplaceable
because their qW invariants are nonzero, there are a finite number of line segments of
unknown properties (more than before because there are more vertices), and otherwise
everything is displaceable. Here are the details.

The polytope is given by

(4.6.10) x�.�/D fx 2R2
j `1 � 0; `2 � 0; `3 � 0; `

�j
j � 0 for j D 4; 5; 6; 7g;
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where `�jj .x/ are from (4.6.2), and the support constants satisfy

0< 5� �4� 1; 0< 10� �5� 1; 0< 6� �6� 1; 0< 3� �7� 1;

and are such that the vertices of x�.�/ are

.0; 0/; a1 D .0; �4/; a2 D .�5� 2�4; 3�4� �5/;

a3 D .3.10� �5/; 5.�5� 9//; a4; a5; a6;

where a4; a5; a6 are given in (4.6.3).

a1
a2

a3

Q

a4

a5
a6

a1 a2

a3

a4

a5
a6

a1
a2

a3

n2

n4n3

n1

a4

a5

a6
.0; 0/ .0; 0/ .0; 0/

Figure 4.6.3: Displaceable and nondisplaceable fibers when both singularities
in P .1; 3; 5/ are resolved as in (4.6.10). Left: In grey, points displaceable
by symmetric extended probes that use Q , which is based on f`�6

6 D 0g , as
the deflecting probe. Middle: Displacing some more points with standard
probes that have direction ˙.1;�1/ . Right: In light grey are the fibers
that were displaced in the previous two pictures. The white line segments
are on the lines from (4.6.11). The point n1 is nondisplaceable just as in
Proposition 4.6.1. The point n3 satisfies `1D`

�4

4
D`

�6

6
, the point n2 satisfies

`
�4

4
D `

�5

5
D `

�6

6
, the point n4 satisfies `�5

5
D `3 D `

�6

6
, and all three points

are nondisplaceable. Displaceability is unknown for points on the white line
segments and the points marked with white diamonds; see Remark 4.6.3.

Proposition 4.6.2 In a resolution of P .1; 3; 5/ given by x�.�/, if x 2 x�.�/ does not
lie on one of the lines

(4.6.11) f`1 D `
�4

4
g; f`

�4

4
D `

�5

5
g or f`�5

5
D `3g

and is not the point n1 D .�7=2; �6=2� �7=2/, then Lx is displaceable by probes or
extended probes.
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Proof The proof is the same as the proof of Proposition 4.6.1(i); see Figure 4.6.3.

Remark 4.6.3 The polytope on the right in Figure 4.6.3 depicts stronger displaceability
results than Proposition 4.6.2. They are obtained by using the extended probes with
trapezoidal flags which are introduced in the next section. One can reach some points
on `1 D `

�4

4
above n3 by a probe formed by deflecting P based on `1 D 0 with

direction vP D .1;�1/ by Q based on `�5

5
D 0 with direction vQ D .1;�2/. Also,

points on `�5

5
D `3 above and slightly below n4 , are displaceable by probes formed by

deflecting P , based on `3 D 0 or `�6

6
D 0 with direction vP D .2; 3/, with a probe Q

based on `�5

5
D 0 with direction vQ D .1;�2/.

4.6.3 Resolving P .1; 5; 8/

Proposition 4.6.4 The full minimal resolution of P .1; 5; 8/ has an open set of points
with trivial qW invariants that cannot be displaced by extended probes.

Proof As illustrated in Figure 4.5.3, the full resolution x�5;8 has an open set of
unknown points. In the resolution xP .1; 5; 8/, these would lie near the vertex .5; 0/ in
the region above the ray with direction .�1; 1/. Therefore, when we resolve at .5; 0/
they would lie above the symmetric probes Q starting on the facet F with conormal
.�2; 1/. In the case P .1; 3; 5/ such points were reached by probes starting on the
slant edge with direction .1;�2/ and then deflected by Q to be vertical. But the
corresponding probes do not exist in xP .1; 5; 8/ because .1;�2/ is not complementary
to .5;�8/. Points in this region do lie on the extensions of vertical probes from the base
that are deflected by Q, but they lie more than halfway along such probes. Therefore
these points cannot be displaced. On the other hand, by Proposition 4.1.4, there are at
most finitely many points in this region with nonvanishing qW invariants.

Similarly, the singularity of P .1; 8; 13/ at .0; 13/ is modelled on �5;8 and has a nearby
open set of points that are not probe-displaceable. These arguments generalize to show
that typically the resolution of P .1; q;p/ has an open set of points with unknown
properties.

5 Extended probes with flags: General case

In this section we will generalize extended probes with flags, Definition 3.1.1 and
Theorem 3.1.2, to the case where the probe P is not parallel to the base facet FQ

of Q.
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5.1 Cautionary counterexample

Before diving into the more complicated notation for the nonparallel extended probes,
let us first demonstrate that Theorem 3.1.2 is not valid as stated when the probe P

is not parallel to FQ . We will do this by showing that if it was valid, then we could
displace the Clifford torus in CP2 , which is known to be nondisplaceable; see Biran,
Entov and Polterovich [3] and Cho [7]. If the moment polytope for CP2 is given by

�D fx 2R2
j x1 � 0;x2 � 0;�x1�x2C 6� 0g;

then the fiber Lu over u D .2; 2/ is the Clifford torus. What follows is similar to
Remark 2.2.7 for symmetric extended probes.

x2

P

Q

u xPQ

xF
eF

x0F e0F
x1

Figure 5.1.1: Illustration of Example 5.1.1. Why Theorem 3.1.2 is not valid
if P is not parallel to FQ , the facet on which the deflecting probe is based.

Example 5.1.1 Let P and Q be the probes where

bP D .0; 2/; vP D .1; 0/; bQ D .3; 3/; vQ D .0;�1/:

Form the ‘parallel’ extended probe with flag FP D P [Q[F where

xPQ D .3; 2/; xF D .3;
3
2
/; x0F D .3; 0/; `F D

3
2
:

We have that P D ŒbP ;xPQ� has length `.P /D 3 and passes through u. Since

daff.u;FP /D 2; `.FP/D 9
2

if Theorem 3.1.2 applied then FP would displace the fiber Lu . Of course it does not
apply since P is not parallel to FQ .
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5.2 The definition and the displaceability method

Despite the above failure, the parallel condition in Theorem 3.1.2 can be restrictive
and in trying to relax it we are led to the following general notion of extended probes
with flags.

eF e0F

xF x0F

F

FQ

xPQ Q

u

P

bP FP

Figure 5.2.1: An extended probe with flag FP D P [Q[F� , where the
flag parameter �D 0

Definition 5.2.1 Let P and Q be probes in a rational polytope � � Rn where the
probe P ends at the point xPQ on Q. The extended probe with flag FP formed by
deflecting P with Q is the subset

P D P [Q[F� ��;

where the flag F� is the convex hull of the points fxF ;x
0
F ; eF ; e

0
Fg in �. The

points xF and x0F are on Q, while

eF D xF C `.F/vF� ; where vF� D vP � .1C�/h�Q; vP ivQ;

e0F D x0F C `.F/v
0
F� ; where v0F� D vP ��h�Q; vP ivQ:

The parameter �2 Œ0; 1� affects the shape of the flag, and the length of the flag `.F/� 0

must be small enough so that eF and e0F stay in �.

The length of the extended probe with flag P is `.P/D `.P /C`.F/. We also assume
that the line segment ŒxF ; eF � does not cross the line segment Œx0F ; e

0
F �, so that they

are boundaries of the flag as in Figure 5.2.1.
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Remark 5.2.2 (i) If vP is parallel to the facet FQ where vQ is based, then we have
h�Q; vP i D 0 and hence by (3.1.1), the shape of the flag F is independent of the
parameter �. In this case we recover the definition of a parallel extended probe with
flag, Definition 3.1.1.

(ii) When vP is not parallel to the facet FQ the parameter � affects the shape of the
flag. For the hyperplane HQD fx 2Rn j h�Q;xi D 0g, the projection �QW R

n!HQ

along vQ is
�Q.w/D w� h�Q; wivQ

and the reflection rQW R
n!Rn across HQ via vQ is

rQ.w/D w� 2h�Q; wivQ:

So as � 2 Œ0; 1� varies the shape of the flag F� linearly interpolates between

F0 W where vF0
D �Q.vP / and v0F0

D vP ;

F1 W where vF1
D rQ.vP / and v0F1

D �Q.vP /:

eF e0F

xF x0F

F0
FQ

XPQ Q

u

P

bP FP

eF e0F

xF x0F

F1=2
FQ

XPQ Q

u

P

bP FP

eF e0F

xF x0F

F1
FQ

xPQ Q

u

P

bP FP

Figure 5.2.2: Extended probes with flags P D P [Q[F� for varying flag
parameters, as per Remark 5.2.2(ii)

The following theorem explains how one can use extended probes with flags to displace
Lagrangian torus fibers.

Theorem 5.2.3 Let PDP[Q[F be an extended probe with a flag constructed from
probes P and Q as above, in a moment polytope �D ˆ.M / for a toric symplectic
orbifold .M 2n; !;T ; ˆ/.

For a point u2�, if u is in the interior of P , the affine distance from u to the facet FP

satisfies
daff.u;FP / <

1
2
`.P/

and the flag F satisfies both inequalities

(5.2.1) daff.xPQ;FQ/ < daff.xF ;x
0
F /; `.F/ < dvP

.xPQ;FQ/;

then the Lagrangian fiber Lu Dˆ
�1.u/ is displaceable.
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The second condition in (5.2.1) did not appear in Theorem 3.1.2, for there it is trivially
satisfied since if vP is parallel to FQ , then dvP

.xPQ;FQ/ D 1. Compare the
following remark with Remark 2.2.7.

Remark 5.2.4 (i) If FP and FQ were the only facets in the polytope, then we have
that dvP

.bP ;FQ/ represents the maximum length P could be extended to before it
hit the facet FQ . The second condition in (5.2.1) implies that this maximum length is
an a priori upper bound

(5.2.2) `.P/ < dvP
.bP ;FQ/

on the length `.P/ for an extended probe with flag P formed with probes P and Q.

(ii) This a priori upper bound (5.2.2) has the following consequence: Suppose a
probe P exits the polytope � through the facet F . Then the displaceability results
given by using P as a standard probe cannot be improved on by using Theorem 5.2.3
with a deflecting probe Q based on F .

(iii) In the counterexample in Section 5.1, the deflecting probe Q is based on the
facet through which the probe P would exit the polytope. So in this example, (5.2.2)
is violated and hence the second condition in (5.2.1) is as well.

5.3 Resolution of a finite volume An–singularity

Let us consider a minimal resolution of an A2 –singularity that now has finite volume,
so the moment polytope is given by

(5.3.1) z�2;3.�/D fx 2R2
j `v.x/� 0; `s.x/� 0; `1.x/ > 0; `

�1

1
.x/� 0; `

�2

2
� 0g;

where the finite volume A2 –singularity is defined by

`v.x/ WD x1; `s.x/ WD �2x1C 3x2; `1.x/ WD �x2C 2

and the minimal resolution at the origin uses

`
�1

1
.x/ WD x2� �1; `

�2

2
.x/ WD �x1C 2x2� �2:

Figure 5.3.1 depicts the polytope z�2;3.�/ when

0< �1 < 2; 0< �2 < 1; �2 < 2�1; �1 < 2�2:

In this example there remains an open region of unknown points, even after using
extended probes.
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x2

.0; 2/

`v

a1

`
�1

1

a2

`
�2

2

a3

`8

.3; 2/
`1

a1 D .0; �1/

a2 D .2�1� �2; �1/

a3 D .3�2; 2�2/

x1

Figure 5.3.1: Displaceable and nondisplaceable fibers in z�2;3.�/ . In light
gray are points displaceable by probes, in medium gray are points displaceable
by extended probes with trapezoidal flags, and in dark grey are nondisplace-
able points.

Proposition 5.3.1 In the resolution of the finite volume A2 –singularity given in (5.3.1),
then in the polytope z�2;3.�/:

(i) The Lagrangian fiber Lx is displaceable by probes if x is in one of the regions

f4x1� 3x2 < 0g; fx2 < 1C �1=2g; f�x1C 3x2 < 2C �2g; f�x1C 2x2 < 2g;

and not on the line segment fx1�x2 D �1� �2;x2 � 2�2g.

(ii) The Lagrangian fiber Lx is displaceable by an extended probe with trapezoidal
flag if x is in the region

fx2 < 1C �2;x1�x2 < �2=2g:

(iii) The Lagrangian fiber Lx is nondisplaceable if x is in the region

f2x1�x2 � 1;x1 � 1C �1;x2 � 1C �2;�x1C 2x2 � 1g

or on the line segment fx1�x2 D �2=2;x2 � 1C �2=2g.

Proof Part (i) is straightforward with using probes with direction .1; 0/ on f`v D 0g,
direction .1; 1/ on f`�1

1
D 0g and f`�2

2
D 0g, direction .�1; 0/ on f`�2

2
D 0g and

direction .�2;�1/ on f`s D 0g.
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Part (iii) is also straightforward. For the points in the region one uses the ghost facets
f`
�1
1 .x/ WD �x2C �1 � 0g and f`�g

g .x/ WD �x1Cx2C �g � 0g for varying �1 � 2

and �g � 1.

x2

.0; 2/

`v

`1 x0F e0F .3; 2/

eF

xF
XPQ

Q

u

P

`
�1

1

`
�2

2

a3 D .3�2; 2�2/

`s

x1

Figure 5.3.2: The nonparallel extended probe with flag from part (ii) of
Proposition 5.3.1 displacing the point u . Points in the dark grey region can
be displaced with these types of extended probes.

For part (ii), let Q be a probe with direction vQ D .1; 1/ based on f`�2

2
D 0g arbitrary

close to a3 D .3�2; 2�2/. Let P be based at bP D .0; �/ for �1 < � < 1C �2 , with
direction vP D .1; 0/, and form the extended probe with flag P D P [Q[F0 where
�D 0 is the flag parameter. The flag is given by

xPQ D .�C �2; �/; `.P /D �C �2;

xF D .2��C 3�2; 2C 2�2��/; x0F D .2C �2; 2/;

eF D xF C `.F/.2; 1/; e0F D x0F C `.F/.1; 0/;
`.F/ < �� 2�2; `.P/ < 2�� �2;

where the upper bound on `.F/ comes from the second condition in (5.2.1) and xF
should be moved slightly closer to xPQ so that the first condition in (5.2.1) is satisfied.
By Theorem 5.2.3, this extended probe displaces everything on P between bP D .0; �/

and .�� �2; �/. As � ranges over �1 < � < 1C �2 , these extended probes displace
precisely the region in (ii).
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6 Proofs of results about probes

Consider the symplectic form !0 D
1
�

dx ^ dy on C . For this symplectic form, the
standard T1 D S1 DR=Z action on C by t � z D e2� itz is given by the moment map
ˆ0W C!R where ˆ0.z/D jzj

2 . The symplectic form !0 is also normalized so that

IntD.a/ !0 D a;

where D.a/ is the disc

D.a/ WD fz 2C j jzj2 � ag � .C; !0/:

We will denote its boundary by

S1.a/D @D.a/D fz 2C j jzj2 D ag;

and the annulus by

A.b; c/DD.c/ n Int D.b/ for 0� b < c :

For each theorem, we have an extended probe P which is in a toric symplectic orbifold
.M 2n; !;T ; ˆ/ and our goal is to displace the Lagrangian torus fiber Lu Dˆ

�1.u/.
To displace Lu , it suffices to build an embedding

(6.0.2)  P W D.`/�Tn�1
! .M 2n; !/

such that for some a< 1
2
`,

(6.0.3)  �P! D �
�!0;  P.S

1.a/�Tn�1/DLu;

where � W D.`/�Tn�1!D.`/ is the projection. Since a< 1
2
` there is a Hamiltonian

isotopy of D.`/ supported away from the boundary that displaces S1.a/, and therefore
the embedding can be used to extend this to a Hamiltonian isotopy of .M; !/ that
displaces Lu .

While the precise details for building  P vary depending on the type of extended probe,
the following outline describes the general process. Here P;Q; E are the three parts
of the extended probe P , where E is either P 0 , F , or F� depending on the type of
extended probe.

Stage 1 For `P D `.P /, produce an embedding

(6.0.4)  P W D.`P /�Tn�1
! .M 2n; !/ with  �P!D�

�!0; Im. P /�ˆ
�1.P /:

Except for the second version of Theorem 2.2.6, we have u 2 Int P and we will show

 P .S
1.a/�Tn�1/DLu
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for aD daff.u;FP / where by assumption a< 1
2
`.

Stage 2 For `D `.P/, produce an embedding

(6.0.5)  E W A.`P ; `/�Tn�1
! .M 2n; !/ with  �E!D�

�!0; Im. E/�ˆ
�1.E/:

In the second version of Theorem 2.2.6, we have u 2 Int P 0 and we will show

 P 0.S
1.a/�Tn�1/DLu

for aD daff.u;x
0
PQ
/C `P where by assumption a< 1

2
`.

Stage 3 Use the deflecting probe Q to build a symplectomorphism ‰ of .M 2n; !/

such that ‰ ı P and  E glue together to form an embedding

 P W D.`/�Tn�1
! .M 2n; !/

that satisfies (6.0.3). Since the fiber Lu is disjoint from ˆ�1.Q/, to ensure  P satisfies
the second condition in (6.0.3) it suffices to prove that ‰ can be built to be supported
in any given neighborhood of ˆ�1.Q/�M .

6.1 Action-angle coordinates

The canonical symplectic form d� on T �T D t� �T is

(6.1.1) d�..v; �/; .v0; �0//D h�0; vi � h�; v0i:

If f�1; : : : ; �ng � tZ and fv1; : : : ; vng � t�Z are dual bases, then in the associated
coordinates .x; �/D .x1; : : : ;xn; �1; : : : ; �n/ 2 t

� �T the canonical symplectic form
is d�D dx^d� and it is clear that the projection �t� W t��T! t� is the moment map
for the obvious T –action. Now let �� t� be the moment polytope for a symplectic
toric orbifold .M 2n; !;T ; ˆ/. Then .M 2n; !;T ; ˆ/ can be modeled by

.��T ; d�;T ; �t�/

by performing a symplectic cut along F � T � � � T for each facet F � �. If
f 2 Int.F /, then this amounts to replacing f �T with f �T=T1

�F
, where T1

�F
� T

is the circle generated by F ’s primitive interior conormal �F 2 tZ . In this way we can
consider the action-angle coordinates .x; �/ 2��T as a global coordinate system on
.M; !;T ; ˆ/.

For example the disk .D.a/; !0/ has action-angle coordinates .s; �/ 2 Œ0; a� � T1

where the circle f.0; �/ j � 2 T1g is collapsed to a point. The explicit identification
.s; �/ 7! e2�i�

p
s pulls !0 back to ds ^ d� . Likewise the annulus .A.b; c/; !0/ has

action-angle coordinates .s; �/ 2 Œb; c��T1 with !0 D ds ^ d� .
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6.1.1 Coisotropic embeddings from probes Let P be a probe with direction
vP 2 t

�
Z , length `P , and based at the point bP on the interior of a facet FP , which

has primitive interior conormal �FP
2 tZ . Since vP is integrally transverse to �FP

and inward pointing, there is a lattice basis for tZ of the form f�0
1
D �FP

; �0
2
; : : : ; �0ng,

where

(6.1.2) h�01; vP i D 1; h�0k ; vP i D 0 for k � 2:

Using the model .��T ; d�;T ; �t�/ for .M; !;T ; ˆ/ define the embedding

 P W D.`P /�Tn�1
! .M 2n; !/;

where if .s; �1; : : : ; �n/ are coordinates for D.`P /�Tn�1 such that .s; �1/ are action-
angle coordinates for .D.`P /; !0/, then  P is given by

(6.1.3)  P .s; �1; �2; : : : ; �n/D .bP C svP ; �1�FP
C�2�

0
2C � � �C�n�

0
n/ 2��T :

This map is well-defined since for fixed .�2; : : : ; �n/ 2 Tn�1 , the image of the map

�1 7!  P .0; �1; �2; : : : ; �n/D .bP ; �1�FP
C�2�

0
2C � � �C�n�

0
n/

lies in FP �T , which in .M; !/ is replaced with FP �T=T1
�FP

. By design,

 �P! D �
�!0;  P .S

1.a/�Tn�1/DLu.a/;

as in (6.0.3), where u.a/D bP C avP is the point on P such that daff.u.a/; bP /D a.
This embedding  P will serve as (6.0.4) in Stage 1 for all the extended probe theorems.

6.1.2 Coisotropic embeddings from rational line segments Let S �� be a ratio-
nal line segment starting at bS and ending at eS in Int�, with length `S Ddaff.bS ; eS /

and direction vS 2 t
�
Z . Let f�0

1
; �0

2
; : : : ; �0ng be an integral basis for tZ that satisfies

(6.1.2) with respect to vS . Then similarly to the case of a probe, using the model
.��Tn; d�;T ; �t�/ for .M; !;T ; ˆ/ we can define an embedding

 S W A.b; bC `S /�Tn�1
! .M; !/

for any b > 0, such that

(6.1.4)  S .s; �1; �2; : : : ; �n/D .bSC.s�b/vS ; �1�
0
1C�2�

0
2C� � �C�n�

0
n/2��T ;

where .s; �1/ 2 Œb; bC `S ��T1 are action-angle coordinates for .A.b; bC `P /; !0/.
Again we have

 �S! D �
�!0;  S .S

1.a/�Tn�1/DLu.a/;

where u.a/D bS C .a� b/vS is the point on S such that daff.u.a/; bS /D a� b . For
S D P 0 , this embedding  P 0 will serve as (6.0.5) in Stage 2 for Theorem 2.2.6.
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6.2 Proving Theorem 2.2.6: Symmetric extended probes

Let P D P [Q [ P 0 be a symmetric extended probe. Let AQ; yAQW t
� ! t� be

the affine and linear reflections from (2.2.1) and (2.2.2) associated to the symmetric
probe Q.

6.2.1 Stage 1 and 2 for Theorem 2.2.6 The probe P has length `P , direction
vP 2 t�Z , starts at bP 2 Int FP , ends at the point xPQ D bP C `PvP 2 Int Q. For
a choice of lattice basis f�FP

; �0
2
; : : : ; �0ng for tZ that satisfies (6.1.2), define the

embedding for Stage 1

 P W D.`P /�Tn�1
! .M; !/

so that for .s; �1/ 2 Œ0; `P ��T1 ,

(6.2.1)  P .s; �1; �2; : : : ; �n/D

�
bP C svP ; �1�FP

C

nX
kD2

�k�
0
k

�
;

as in (6.1.3).

The rational line segment P 0 has length `P 0 , direction vP 0D
yAQ.vP /2 t

�
Z , starts at the

point x0
PQ
DAQ.xPQ/ 2 Int Q, and ends at eP 0 D x0

PQ
C `P 0vP 0 2 Int�. Since yAQ

is an element of GL.t�Z/, the image under yA�
Q

, the dual of yAQ , of the lattice basis
of tZ used for  P ,

f yA�Q.�FP
/; yA�Q.�

0
2/; : : : ;

yA�Q.�
0
n/g 2 tZ;

is still a lattice basis. This new basis satisfies (6.1.2) with respect to vP 0 D
yAQ.vP /

since . yAQ/
2 D id. Define the embedding for Stage 2, where `D `P C `P 0 ,

 P 0 W A.`P ; `/�Tn�1
! .M; !/

so that for .s; �1/ 2 Œ`P ; `��T1 ,

(6.2.2)  P 0.s; �1; �2; : : : ; �n/

D

�
x0PQC .s� `P /vP 0 ; �1

yA�Q.�FP
/C

nX
kD2

�k
yA�Q.�

0
k/

�

D

�
AQ.xPQC .s� `P /vP /; yA

�
Q

�
�1�FP

C

nX
kD2

�k�
0
k

��
as in (6.1.4).
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6.2.2 Stage 3 for Theorem 2.2.6 Recall that for our symmetric probe Q ��, we
have the affine reflection AQW t

�! t� and the linear version yAQW t
�! t� from (2.2.1)

and (2.2.2). Observe that since . yAQ/
2 D id it follows that

(6.2.3) ‰AQ
W .t� �T ; d�/! .t� �T ; d�/; ‰AQ

.v; �/D .AQ.v/; yA
�
Q.�//

is a symplectomorphism with respect to the canonical symplectic form (6.1.1). Compar-
ing (6.2.1) and (6.2.2) we see that to establish Stage 3 it suffices to prove the following
proposition, which can be seen as a local version of McDuff and Tolman [22, Proposi-
tion 5.5].

Proposition 6.2.1 Let Q � � be a symmetric probe in the moment polytope for
a symplectic toric orbifold .M 2n; !;T ; ˆ/. Then for any neighborhood of N of
ˆ�1.Q/ �M , there is a Hamiltonian isotopy of .M; !/ supported in N with time
one map ‰ such that

‰jU D‰AQ
jU

for a smaller neighborhood U �N of ˆ�1.Q/, where ‰AQ
is given by (6.2.3).

Proof of special case of Proposition 6.2.1 Consider the special case where vQ is
parallel to every facet except FQ and F 0

Q
, meaning h�F ; vQi D 0 for all other interior

conormals �F 2 tZ . We have that

�D

N\
jD1

fx 2 t� j h�j ;xiC �j � 0g;

where without loss of generality, we can assume that f�1D �FQ
; �2; : : : ; �ng is a lattice

basis for tZ and �nC1 D �
0
FQ

. Let fv1 D vQ; v2; : : : ; vng be a dual basis for t�Z . We
have that

�nC1 D��1C

nX
iD2

ai
nC1�i ; �nCj D

nX
iD2

ai
nCj�i for j � 2;

since h�1; vQi D 1D h��nC1; vQi and h�j ; vQi D 0 otherwise.

We can identify .M 2n; !;T ; ˆ/ with .M�; !�;T ; ˆ�/, which is built by performing
symplectic reduction on the standard .CN ; !0; .S

1/N ; ˆ0/. In particular it has the
form .M�; !�/D .Z=K; x!0/ where the level set

Z D fHnC1.z/D cnC1; : : : ;HN .z/D cN g � .C
N ; !0/
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for the Hamiltonians

(6.2.4)

HnC1.z/ WDjz1j
2
CjznC1j

2
�

nX
iD2

ai
nC1jzij

2; cnC1 WD �1C�nC1�

nX
iD2

ai
nC1�i;

HnCj.z/ WDjznCjj
2
�

nX
iD2

ai
nCjjzi j

2; cnCj WD�nCj�

nX
iD2

ai
nCj�i;

for j � 2, is symplectically reduced using the action of the .N � n/–dimensional
subtorus K � .S1/N whose action is given by the Hamiltonians HnC1; : : : ;HN on
CN . The moment map for the action of T on Z=K is given by

ˆ�.z/D

nX
jD1

.jzj j
2
� �j /vj 2 t

�:

For a point q on the probe Q, since v1 D vQ and h�j ; vQi D 0 for j D 2; : : : ; n, it
follows that

QD

�
Rv1C

nX
kD2

h�k ; qivk

�
\�� t�

and hence ˆ�1
�
.Q/ is

(6.2.5) fz 2Z j jz2j
2
D h�2; qiC �2; : : : ; jznj

2
D h�n; qiC �ng=K �M�:

Now the standard Hamiltonian U.2/ action on Ce1�CenC1�CN preserves the level
set Z and commutes with the action of K , so it descends to a Hamiltonian U.2/ action
on M� D Z=K . Consider the element B 2 U.2/ so that B.z1; znC1/D .znC1; z1/.
Since

AQ.x/D xC

�
� 2�1C

nX
iD2

ai
nC1�i ;x

�
v1C .�nC1� �1/v1

it follows for z 2Z �CN that we have

.AQ ıˆ�/.z/DAQ

� nX
jD1

.jzj j
2
� �j /vj

�

D .�jz1j
2
C �nC1C

nX
iD2

ai
nC1.jzi j

2
� �i//v1C

nX
jD2

.jzj j
2
� �j /vj

D .jznC1j
2
� �1/v1C

nX
jD2

.jzj j
2
� �j /vj D .ˆ� ıB/.z/;
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where the second to last equality uses that HnC1.z/DcnC1 from (6.2.4) for points on Z .
Therefore up to applying a uniform rotation using the toric action, we have that B2U.2/

acts on .M�; !�/ as the Hamiltonian diffeomorphism ‰AQ
2 Ham.M�; !�/ from

(6.2.3).

Now let X 2 u.2/ be such that exp.X /D B and let H.z1; znC1/ be the autonomous
Hamiltonian whose corresponding Hamiltonian flow 'H

t on .CN ; !0/ is the action of
exp.tX / 2 U.2/. Since H Poisson commutes with jzj j

2 for j D 2; : : : ; n, it follows
that 'H

t in Ham.M�; !�/ preserves level sets of the form

fz 2Z j jz2j
2
D b2; : : : ; jznj

2
D bng=K �M�I

in particular ˆ�1
�
.Q/ is preserved. Now let N �M� be any neighborhood of ˆ�1

�
.Q/

and let �D �.jz2j
2; : : : ; jznj

2/ be a bump function that is a constant 1 near the level
set (6.2.5) and supp.�/�N . Then the time one flow ‰ D '

�H
1

for the Hamiltonian
�H W M�!R is the desired element of Ham.M�; !�/.

Proof of general case of Proposition 6.2.1 Let f�0
1
D �FQ

; �0
2
; : : : ; �0ng 2 tZ be a

lattice basis satisfying (6.1.2) with respect to vQ . If q is a point on Q, then for � > 0

define the rational half-spaces

H2k�1 D fx 2 t
�
j h�0k ;x� qiC � � 0g; H2k D fx 2 t

�
j h��0k ;x� qiC � � 0g;

for k D 2; : : : ; n. Since Q starts and ends at points in the interior of the facets FQ

and F 0
Q

of �, respectively, for � > 0 sufficiently small,

�Q;� D fx 2 t
�
j h�FQ

;xiC � � 0g\ fx 2 t� j h�F 0
Q
;xiC �0 � 0g\

2n\
jD3

Hj ��

is a neighborhood of �Q;0 DQ��. Furthermore �Q;� is the moment polytope for
a symplectic toric manifold .Y 2n

� ; !�;T ; ˆ/, that satisfies the special condition that all
facets except FQ and F 0

Q
are parallel to vQ . By the special case of Proposition 6.2.1

we can build the desired Hamiltonian isotopy ‰ in Ham.Y 2n
� ; !�/ that is generated by

an autonomous Hamiltonian supported in N�Dˆ�1.�Q;�=2/�Y 2n
� . Since N� canon-

ically embeds into .M; !/, preserving the toric structure, we can see ‰ 2Ham.M; !/

as our desired Hamiltonian isotopy.

6.3 Proving Theorem 3.1.2: Parallel extended probes with flags

Let P D P [Q[F be a parallel extended probe with flag. Since the direction vP

of P is parallel to the facet FQ , we can pick dual lattice bases f�1; : : : ; �ng for tZ
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and fe1; : : : ; eng for t�Z so that

vP D e1; vQ D e2; �FP
D �1C

nX
kD2

ak�k ; �FQ
D �2:

Picking action-angle coordinates .x; �/ on t� �T with respect to these bases, we can
let the points on the probe P � t� have coordinates

bP D .0; rPQ; b3; : : : ; bn/; uD .a; rPQ; b3; : : : ; bn/; xPQD .̀ P ; rPQ; b3; : : : ; bn/;

where `P is the length of P and 0 < a < `P is a D daff.u;FP / D dvP
.u; bP /.

Besides xPQ , let the other points on Q� t� be

(6.3.1)

bQ D .`P ; 0; b3; : : : ; bn/;

xF D .`P ; rF ; b3; : : : ; bn/;

x0F D .`P ; r
0
F ; b3; : : : ; bn/;

where rPQ; rF ; r
0
F are positive and rF < r 0F . By (6.3.1), the end points of F are

eF D .`; rF ; b3; : : : ; bn/; e0F D .`; r
0
F ; b3; : : : ; bn/;

where `D `P C `F is the length of the extended probe P and `F is the length of the
flag F . In our coordinates for t� the flag F is given by

F D f.x1;x2; b3; : : : ; bn/ 2 t
�
j `P � x1 � `; rF � x2 � r 0Fg:

6.3.1 Stage 1 for Theorem 3.1.2 In the action-angle coordinates .x; �/ for .M; !/,
the embedding for the probe P

 P W D.`P /�Tn�1
! .M 2n; !/

from (6.1.3) has the form

(6.3.2)  P .s; �1; �2; : : : ; �n/D

�
s rPQ b3 � � � bn

�1 a2�1C�2 a3�1C�3 � � � an�1C�n

�
:

6.3.2 Stage 2 for Theorem 3.1.2 It follows from (3.1.3) that rPQ < r 0F � rF and
therefore by Lemma 6.4.2 there is a Hamiltonian isotopy � of .D.r 0F /; !0/ supported
in the interior so that

(6.3.3) �.S1.rPQ//�A.rF ; r
0
F /:

If .x2; �2/ 2 Œ0; r
0
F ��T1 are action-angle coordinates on .D.r 0F /; !0/, then write this

Hamiltonian diffeomorphisms as �D .�x2
; ��2

/.
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Now let .s; �1/2 Œ`P ; `��T1 be action-angle coordinates on .A.`P ; `/; !0/ and using
the action-angle coordinates .x; �/ on .M; !/ define the embedding

(6.3.4)  F W A.`P ; `/�Tn�1
! .M 2n; !/;

 F .s; �1; �2; : : : ; �n/D

�
s �x2

.rPQ; a2�1C�2/ b3 � � � bn

�1 ��2
.rPQ; a2�1C�2/ a3�1C�3 � � � an�1C�n

�
:

Observe that the formula for  F is just the result of applying � to the .x2; �2/

coordinates in the formula (6.3.2) for  P . It is straightforward to check that this
embedding  F satisfies the conditions for (6.0.5).

6.3.3 Stage 3 for Theorem 3.1.2 In the standard toric structure .Cn; !0; .S
1/n; ˆ0/,

consider the probe Q0 �Rn
C given by

Q0 D f.b1;x2; b3; : : : ; bn/ j x2 2 Œ0; q�g;

where bk are positive, then

(6.3.5) ˆ�1
0 .Q0/D S1.b1/�D.q/�

Y
k�3

.S1.bk//�C �C �Cn�2:

For small �� ı � 0 we define the subsets of Rn
C

N �;ı
WD Œb1� �; b1C ��� Œ0; q� ı��

Y
k�3

Œbk � �; bk C ��;

X �
WD Œb1� �; b1C ��� Œ0; q�� .b3; : : : ; bn/:

Lemma 6.3.1 Let � be any area preserving diffeomorphism of D.q/ that is the identity
near @D.q/. If N0 WDN �;ı for ı > 0 sufficiently small, then there exists a Hamiltonian
isotopy of Cn supported in Int.ˆ�1

0
.N0// such that the time one map of the isotopy ‰

in a small neighborhood U of ˆ�1
0
.Q0/�Cn is given by

(6.3.6) .‰�/jU D .idC ��� idCn�2/jU

in terms of the decomposition in (6.3.5) and in particular ‰�.ˆ�1
0
.X �//Dˆ�1

0
.X �/.

Proof The map � is the time one map of a Hamiltonian isotopy, generated by some
time-dependent Hamiltonian H with support in Int D.q/. Simply multiply H by a
cutoff function ˛W Cn! Œ0; 1� that is a function of the variable y WD

P
k 6D2.xk �bk/

2

and ˛.y/� 1 near yD 0. The time one map ‰� of the Hamiltonian isotopy generated
by ˛H has the desired properties.
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Take now Q0 � Rn
C with b1 D `P and q D r 0F to be a local model for our probe

Q ��. By applying Lemma 6.3.1 to the Hamiltonian diffeomorphism � of D.r 0F /
from (6.3.3) in Stage 2, the resulting Hamiltonian diffeomorphism ‰� can be extended
by the identity outside its support to be an element of Ham.M; !/. It follows from
(6.3.6) that near ˆ�1.Q/ the Hamiltonian diffeomorphism ‰� has the form

(6.3.7) ‰�
�

x

�

�
D

�
x1 �x2

.x2; �2/ x3 � � � xn

�1 ��2
.x2; �2/ �3 � � � �n

�
in our action-angle coordinates .x; �/.

Comparing (6.3.2) and (6.3.4), it is clear that

‰� ı P W D.`P /�Tn�1
! .M; !/;  F W A.`P ; `/�Tn�1

! .M; !/;

glue together to form an embedding  P as in (6.0.2).

6.4 Proving Theorem 5.2.3: Extended probes with flags

Let P D P [Q[F� be a extended probe with flag. We can pick dual lattice bases
f�1; : : : ; �ng for tZ and fe1; : : : ; eng for t�Z so that

vP D c1e1C c2e2; vQ D e2; �FP
D

nX
kD1

ak�k ; �FQ
D �2;

where c1; c2 2 Z are relatively prime and without loss of generality c1 > 0. Picking
action-angle coordinates .x; �/ on t� �T with respect to these bases, we can let the
points on the probe P � t� have coordinates

bP D .0; b2; b3; : : : ; bn/; uD bP C a.c1; c2; 0; : : : ; 0/;

xPQ D bP C `P .c1; c2; 0; : : : ; 0/D .`P c1; rPQ; b3; : : : ; bn/;

where `P is the length of the probe P . The points on Q� t� are

(6.4.1)
bQ D .`P c1; 0; b3; : : : ; bn/; xPQ D .`P c1; rPQ; b3; : : : ; bn/;

xF D .`P c1; rF ; b3; : : : ; bn/; x0F D .`P c1; r
0
F ; b3; : : : ; bn/;

where rPQ; rF ; r
0
F are positive and rF < r 0F . By (6.4.1), the end points of F� are

eF� D .`c1; rF � `F�c2; b3; : : : ; bn/;

e0F� D .`c1; r
0
F C `F .1��/c2; b3; : : : ; bn/;

where `D `P C `F is the length of the extended probe P and `F is the length of the
flag F .
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6.4.1 Stage 1 for Theorem 5.2.3 In action-angle coordinates .x; �/ for .M; !/ the
embedding associated to the probe P

 P W D.`P /�Tn�1
! .M 2n; !/

from (6.1.3) has the form

(6.4.2)  P .s; �1; �2; : : : ; �n/D

�
x

�

�
D

�
sc1 b2C sc2 b3 � � � bn

�1.�/ �2.�/ �3.�/ � � � �n.�/

�
:

6.4.2 Stage 2 for Theorem 5.2.3 Assume now that c2 � 0, so that vP points to-
wards FQ . By Lemma 6.4.2 there is a compactly supported Hamiltonian isotopy � of
.D.r 0F /; !0/ such that

�.D.t//�A.a�.t/; a�.t/C t C �/ for � � t � r 0F � rF � � ;

where
a�.t/D rF ��t C�.r 0F � rF /:

By (5.2.1), we have that rPQ < r 0F � rF and hence

(6.4.3) �.S1.rPQC�c2//�A.rF ��c2�; r
0
F C�.1��/c2/ for 0� �� `F :

Assume that c2 � 0, so that vP points away from FQ . By Lemma 6.4.2 there is a
compactly supported Hamiltonian isotopy � of .D.r 0F C `F .1��/c2/; !0/ such that

�.D.t//�A.a�.t/; a�.t/C t C �/ for � � t � r 0F � rF C `Fc2� � ;

where
a�.t/D rF ��t C�.r 0F � rF /:

By (5.2.1), we have that rPQ < r 0F � rF and hence

(6.4.4) �.S1.rPQC�c2//�A.rF ��c2�; r
0
F C�.1��/c2/ for 0� �� `F :

Now let .s; �1/2 Œ`P ; `��T1 be action-angle coordinates on .A.`P ; `/; !0/ and using
the action-angle coordinates .x; �/ on .M; !/ define the embedding

 F� W A.`P ; `/�Tn�1
! .M 2n; !/;

 F�.s; �1; �2; : : : ; �n/D

�
sc1 �x2

.b2C sc2; �2.�// b3 � � � bn

�1.�/ ��2
.b2C sc2; �2.�// �3.�/ � � � �n.�/

�
:

Observe that the formula for  F� is just the result of applying � to the .x2; �2/

coordinates in the formula (6.4.2) for  P . It is straightforward to check that this
embedding  F� satisfies the conditions for (6.0.5), in particular Im. F�/�ˆ

�1.F�/
follows from (6.4.3) and (6.4.4).
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Remark 6.4.1 When c2 < 0, note that �rPQ=c2 D dvP
.xPQ;FQ/. So the second

assumption in (5.2.1), ie `F < dvP
.xPQ;FQ/, ensures that S1.rPQC�c2/ in (6.4.3)

does not collapse to a point. If it did collapse to a point, then  F� would no longer be
an embedding and this is necessary for our proof.

6.4.3 Stage 3 for Theorem 5.2.3 The rest of the proof is now the same as in the
parallel case. By applying Lemma 6.3.1 to the Hamiltonian diffeomorphism � of D.r 0F /
from in Stage 2, the resulting Hamiltonian diffeomorphism ‰� can be extended by the
identity outside its support to be an element of Ham.M; !/. It follows from (6.3.6)
that near ˆ�1.Q/ the Hamiltonian diffeomorphism ‰� has the form

‰�
�

x

�

�
D

�
x1 �x2

.x2; �2/ x3 � � � xn

�1 ��2
.x2; �2/ �3 � � � �n

�
in our action-angle coordinates .x; �/.

Comparing (6.3.2) and (6.3.4), it is clear that

‰� ı P W D.`P /�Tn�1
! .M; !/;  F W A.`P ; `/�Tn�1

! .M; !/;

glue together to form an embedding  P as in (6.0.2).

6.4.4 Hamiltonian diffeomorphisms of the disk and the associated flags The area
preserving diffeomorphisms of a disk to which we applied Lemma 6.3.1 come from
the following lemma.

For real numbers 0 < A < B , pick a smooth function aW Œ0;B �A�! ŒA;B� that is
nonincreasing, is such that

A� a.s/C s � B; a.B �A/DA;

and the function b.s/ WD a.s/C s is nondecreasing for s 2 Œ0;B �A�. Above we
picked a to have the form

a�.s/DA��sC�.B �A/ for � 2 Œ0; 1�;

where the parameter � corresponds with the flag parameter.

Lemma 6.4.2 For any function a.s/ as above and any � > 0, there is a compactly
supported Hamiltonian diffeomorphism �W Int D.B/! Int D.B/ such that

�.D.s//�A.a.s/; a.s/C sC �/ for all � � s � B �A� � .
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Proof Choose a smooth family of disjoint, contractible closed curves

s �A.a.s/; a.s/C sC �/; s 2 Œ�;B �A� ��;

that each enclose a region of area s . This is possible because � > 0. Next pick a
compactly supported diffeomorphism  of Int D.B/ such that each circle @D.s/ is
mapped to s for all s 2 .�;B�A� �/. Finally isotope  to an area preserving � via
Moser’s method. Using that s encloses the same amount of area as @D.s/, it is not
hard to check that the isotopy is given by flowing along a vector field Xt that at each
time t is tangent to the curves s .

B �A B A B

Figure 6.4.1: The family of circles that build the Hamiltonian diffeomor-
phism � associated to a0 , drawn with AD 4 and B D 9
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