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Gordian adjacency for torus knots

PETER FELLER

A knot K1 is called Gordian adjacent to a knot K2 if there exists an unknotting
sequence for K2 containing K1 . We provide a sufficient condition for Gordian
adjacency of torus knots via the study of knots in the thickened torus S1 �S1 �R .
We also completely describe Gordian adjacency for torus knots of index 2 and 3
using Levine–Tristram signatures as obstructions to Gordian adjacency. Our study
of Gordian adjacency is motivated by the concept of adjacency for plane curve
singularities. In the last section we compare these two notions of adjacency.

57M27; 14B07

1 Introduction

Let K1 and K2 be smooth knots in R3 or S3 . Their Gordian distance dg.K1;K2/

is the minimal number of crossing changes needed to get from K1 to K2 ; see eg
Murakami [17]. The unknotting number u.K/ of a knot K , which was already studied
by Wendt [25], is the distance dg.K;O/, where O denotes the unknot. The Gordian
distance induces a metric on the set of (isotopy classes of) all smooth knots. This
discrete metric space is huge. For example, every Zn can be quasi-isometrically
embedded into the subspace consisting of all torus knots by a result of Gambaudo and
Ghys [8]. In this paper we study the subspace of torus knots and the simple question,
‘When is the triangle inequality dg.K1;K2/� dg.K2;O/� dg.K1;O/ an equality?’

Definition 1 Let K1 and K2 be knots. We say K1 is Gordian adjacent to K2 ,
denoted by K1 �g K2 , if dg.K1;K2/D u.K2/�u.K1/.

Equivalently, a knot K1 is Gordian adjacent to K2 if K2 can be unknotted via K1 ,
that is, if there exists a unknotting sequence for K2 that contains K1 . An unknotting
sequence for a knot K is a sequence of u.K/C1 knots starting with K and ending with
the unknot O such that any two consecutive knots are related by a crossing change; see
Baader [2]. The name ‘Gordian adjacency’ is motivated by the connection to algebraic
adjacency; see below. Gordian adjacency is a partial order.
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For two coprime natural numbers n� 2 and m� 2 we denote by T .n;m/D T .m; n/

the (positive) torus knot obtained as the standard closure of the n–strand positive braid
.�1 � � � �n�1/

m or alternatively as the knot of the singularity xn�ym ; see Section 6.
The index of a torus knot T .n;m/ is the minimum of n and m.

Our main results on Gordian adjacency for torus knots are the following.

Theorem 2 Let .n;m/ and .a; b/ be pairs of coprime natural numbers with n � a

and m� b . Then the torus knot T .n;m/ is Gordian adjacent to the torus knot T .a; b/.

Theorem 3 Let n and m be natural numbers with n odd and m not a multiple of 3.
Then the torus knot T .2; n/ is Gordian adjacent to T .3;m/ if and only if n� 4

3
mC 1

3
.

The core of the proof of Theorem 2 is a generalization to knots in S1 �S1 �R of the
following elementary fact. If a knot K in R3 has a knot diagram with n crossings, then
u.K/� n�1

2
. The proof of Theorem 3 relies on explicit constructions of the required

adjacencies and on Levine–Tristram signatures as obstructions to Gordian adjacency.

As a consequence of Theorem 2 Gordian adjacency and Gordian distance for torus
knots of a fixed index are completely described, ie if a natural number a is fixed, then

T .a; b/�g T .a; c/ if and only if b � c

for all b; c coprime to a. Hence,

dg.T .a; b/;T .a; c//D ju.T .a; b//�u.T .a; c//j D
.a� 1/jb� cj

2
;

where the second equation follows from the Milnor conjecture, which determines the
unknotting number of torus knots; see (1). For torus knots T .a; b/ and T .c; d/ of
different indices it is in general not clear how Gordian adjacency is characterized in
terms of a; b; c and d . Theorem 3 provides such a characterization for the case of
index 2 and 3.

Remark 4 To completely determine Gordian adjacency for torus knots of index 2

and 3, additionally to Theorem 3, one has to show that no torus knot of index 3 is
adjacent to a torus knot of index 2. More generally, Borodzik and Livingston show that
a torus knot cannot be Gordian adjacent to a torus knot of strictly smaller index [4,
Lemma 3.1]. Using signature obstructions we can only partially prove this result; see
Section 4.

An obvious motivation for finding Gordian adjacencies is that, by definition, every
Gordian adjacency determines the Gordian distance of the involved knots. But Gordian
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adjacencies can also lead to good estimates of Gordian distances between nonadjacent
torus knots. For example, the adjacencies T .2; 7/�g T .2; 9/ and T .2; 7/�g T .3; 5/

yield

dg.T .2; 9/;T .3; 5//� u.T .2; 9//�u.T .2; 7//Cu.T .3; 5//�u.T .2; 7//

D 4� 3C 3� 2D 2:

The converse inequality can be proven using signatures; thus, dg.T .2; 9/;T .3; 5//D 2.
Trying to generalize this example for any two torus knots T1 and T2 we look for the
highest unknotting number u.K/ realized by a knot K , adjacent to both T1 and T2 ,
and ask if u.T1/�u.K/Cu.T2/�u.K/ is close to the Gordian distance dg.T1;T2/.
An ambitious future goal is to use such Gordian adjacencies to determine Gordian
distances between all torus knots up to a constant factor, similarly to what was done
for cobordism distance by Baader [3].

The cobordism distance between two knots K1 and K2 is defined to be the minimal
genus of a connected, oriented, and smoothly embedded surface F in S3 � Œ0; 1� with
@F DK1�f0g[K2�f1g. Similar to the unknotting number for the Gordian distance,
the slice genus or 4–ball genus of a knot, denoted by gs , is the cobordism distance
to the unknot O . As a crossing change can be realized by a cobordism of genus 1,
the Gordian distance is larger than the cobordism distance and a Gordian adjacency
between knots K1 and K2 yields a cobordism of genus u.K2/�u.K1/.

Another motivation for the study of Gordian adjacency comes from the notion of
adjacency for singularities of algebraic curves in C2 studied by Arnold [1], which
yields a notion of adjacency for algebraic knots; see Section 6. Such an adjacency of
algebraic knots K1 and K2 yields a smooth algebraic curve F in C2 such that K1

and K2 are realized as transversal intersection of F with two spheres around the origin
of different radii r1 < r2 , ie

KiDF\f.x;y/2C2
j kxk2Ckyk2D r2

i g� f.x;y/2C2
j kxk2Ckyk2D r2

i gŠS3:

By a theorem of Kronheimer and Mrowka [13, Corollary 1.3], known as the Thom
conjecture, the slice genus gs.Ki/ of Ki equals the genus of the intersection of F

with the ball centered at the origin of Ci of radius ri ; thus, the cobordism

F \f.x;y/ 2C2
j r2

1 � kxk
2
Ckyk2 � r2

2 g

in
f.x;y/ 2C2

j r2
1 � kxk

2
Ckyk2 � r2

2 g Š S3
� Œ0; 1�

has minimal genus gs.K2/�gs.K1/. By the Milnor conjecture, a consequence of the
Thom conjecture, the slice genus and the unknotting number of algebraic knots are
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equal, eg for torus knots one has

(1) u.T .n;m//D gs.T .n;m//D
.n� 1/.m� 1/

2

for all coprime natural numbers n;m.

In summary, we know that u and gs coincide on algebraic knots, and both adjacency
notions, which could be thought of as relative versions of u and gs , respectively,
have similar properties. Namely, for both notions it holds that if K1 is adjacent
to K2 , then u.K1/D gs.K1/� u.K2/D gs.K2/ and the cobordism distance equals
u.K2/�u.K1/Dgs.K2/�gs.K1/. Furthermore, for both notions T .n;m/ is adjacent
to T .a; b/ if n� a and m� b ; see Theorem 2 and Proposition 22. It is then natural to
wonder whether the two concepts of adjacency coincide, for example, on torus knots.
We answer in the negative in Section 6, but we give a heuristic argument supporting
the conjecture that if two torus knots are Gordian adjacent, then they are algebraically
adjacent.

To decide whether a knot is Gordian adjacent to another knot, the unknotting numbers
of the involved knots should certainly be known; thus, even ignoring the connection to
algebraic adjacency, equality (1) is relevant to the study of Gordian adjacency for torus
knots. It is used throughout the text.

Section 2 discusses examples of Gordian adjacent torus knots of index 2 and 3. In
Section 3 we study unknotting of knots in S1�S1�R and use it to prove Theorem 2.
Section 4 introduces Levine–Tristram signatures as obstructions to Gordian adjacencies
and uses them to prove Theorem 3. In Section 5 we study Gordian adjacencies between
torus knots of higher indices. The relation between algebraic and Gordian adjacency
is discussed in Section 6. In particular, Proposition 23 provides an infinite family of
examples of algebraic adjacent torus knots that are not Gordian adjacent.

Acknowledgements I thank Sebastian Baader for introducing me to unknotting and
for his ongoing support. Thanks also to Masaharu Ishikawa for enlightening comments
and technical references that led to Proposition 23. Finally, I wish to thank the referee
for helpful suggestions and corrections. I gladly acknowledge support from the Swiss
National Science Foundation (project number 137548).

2 Examples of Gordian adjacencies

By definition, the unknot O is adjacent to every knot K . Let k be a natural number.
The unknotting number of the torus knot T .2; 2kC 1/ is k . An unknotting sequence
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of T .2; 2kC 1/ is provided by

T .2; 2kC 1/! T .2; 2k � 1/! � � � ! T .2; 5/! T .2; 3/!O:

Consequently, T .2; 2l C 1/ �g T .2; 2k C 1/ for all l � k , a simple instance of
Theorem 2. We now construct explicit examples of Gordian adjacencies that are not
provided by Theorem 2. Let b � c denote the integer part of a real number.

Proposition 5 For every natural number k we have

T .2; 2kC 1/�g T .3; b3
2
kC 1c/:

Proof The knot T .2; 2kC 1/ is the standard closure of the braid

k � 3 f
:::

k � 3 f
:::

where k � 3 denotes the number of the crossings not drawn. We introduce a crossing
change for knots containing a part that looks (in an appropriate diagram) like the above
T .2; 2kC 1/.

(2)

:::

:::

D

:::

:::

D

:::

:::

crossing change
 ���������

:::

:::

D

:::

:::

D

:::

:::

;

where the first and the two last equalities are obtained by applying the braid relation

�2�1�2 D D
:
D �1�2�1:
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First consider the case when k is odd. We use (2) inductively.

T .2; 2kC 1/  �

k � 5 f
:::

k � 5 f
:::

D

k � 5 f
:::

k � 5 f
:::

 �

k � 7 f
:::

k � 7 f
:::

D

k � 7 f
:::

k � 7 f
:::

 � � � �  � � � � � � � � � �  � � � �  �„ ƒ‚ …
k�5

2
crossing changes

T .3; 3
k � 1

2
C 2/;

where every arrow indicates a crossing change as in (2). Thus

dg.T .2; 2kC 1/;T .3; 3k�1
2
C 2//� k�1

2
D .3k�1

2
C 1/� k

(1)
D u.T .3; 3k�1

2
C 2//�u.T .2; 2kC 1//:

The case when k is even has essentially the same proof except that the last crossing
change does not use (2) but a slight variation of it.

3 Unknotting on the torus and proof of Theorem 2

Knots in R3 can be studied via knot diagrams on R2 up to Reidemeister equivalence.
Similarly, for a surface F knots in F �R can be studied via knot diagrams on F .

In a knot diagram on R2 with n crossings one needs to change at most bn�1
2
c of the

crossings to get the unknot. This is easily proved geometrically by drawing a knot
in R3 that projects to the curve on R2 given by the diagram and that descends (or
ascends) monotonically except over one point in the diagram (see Figure 1)
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p �! p

Figure 1: Any curve c in R2 is the projection of the unknot in R3 given by
starting at any point p in R3 that projects to c and then descending while
following c .

and remarking that such a knot is the unknot. To prove Theorem 2, which is a statement
entirely about knots in R3 , one is surprisingly led to ask whether a similar fact holds
for knots in S1 � S1 �R. We provide such a result, which we then use to prove
Theorem 2.

Let F be a surface. In what follows a closed smooth curve cW Œ0; 1�! F is called
presimple if its lift zcW R! zF to the universal cover zF of F is injective and if c is
homotopic to a simple closed curve. A knot in F �R that is isotopic to a knot that
projects to a simple closed curve on F is called unknotted.

Remark 6 There is at most one unknot (up to isotopy) in every homotopy class of
closed curves in F �R. This follows from the fact that homotopic simple closed curves
in surfaces are isotopic; see Epstein [7].

In the case of the torus we can be more precise. A homotopy class of closed curves
in S1 �S1 �R contains an unknot, which is unique up to isotopy, if and only if (via
the usual identification of �1.S

1 �S1/Š �1.S
1 �S1 �R/ with Z2 ) the correspond-

ing element in Z2 has coprime entries or is .0; 0/. This is a reformulation of the
classification of simple closed curves in S1 �S1 , written, for example, in Rolfsen’s
textbook [20].

Lemma 7 For every presimple curve c in S1 �S1 there is a knot O in S1 �S1 �R
that projects to c on S1 �S1 and that is unknotted.

Remark 8 In terms of knot diagrams Lemma 7 means that if a knot K in S1�S1�R
projects to a presimple diagram with n crossings on S1 �S1 , then one can get the
diagram of the unknot by changing at most bn

2
c of the n crossings.

To prove this, we use Lemma 7 to get the unknot O with the same diagram as K ,
except it differs in the choice of crossings. If this new diagram differs from the original
one in less than half of the crossings, we are done. Otherwise we switch all crossings in
the diagram of O yielding a knot diagram of a knot xO . The knot xO is also unknotted,
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as the following shows. Let Ht be an isotopy that changes O to a knot that projects to
a simple closed curve on S1 �S1 . Then parametrize xO in S1 �S1 �R exactly the
same way as O , except changing the sign in the R coordinate. The same isotopy Ht

as for O (with a change of sign in the last coordinate) shows that xO is unknotted.

Clearly the assumption that c is homotopic to a simple closed curve is necessary in
Lemma 7. We conjecture that Lemma 7 holds for all curves c that are homotopic to a
simple closed curve and, furthermore, that Lemma 7 generalizes to all surfaces.

Proof of Lemma 7 Denote S1 �S1 by F . Our strategy is to construct a presimple
homotopy ht of c (meaning ht is presimple for every t 2 Œ0; 1�) to a simple closed
curve and then to find an isotopy Ht of knots in F �R that has ht as projection.

We first lift the curve c to a mapping zcW R ! zF , where 'W zF ! F denotes the
universal covering map. Since c is presimple, zcW R! zF is injective and there exists
a simple closed curve gW Œ0; 1� ! F that is homotopic to c . We take g such that
g.0/D g.1/D c.0/D c.1/ and denote by zgW R! zF its lift to zF with zg.k/D zc.k/
for all k 2 Z. Let zht W R! zF be an equivariant1 isotopy between zc and zg that is
constant on Z; see Figure 2.

zc.0/D zg.0/

zc.1/D zg.1/

Figure 2: An equivariant isotopy (green) of zc (black) to zg (red) is indicated.

Of course ht D ' ı zht W Œ0; 1�! F is a presimple homotopy.

The idea for building Ht is to measure how far away from g points pD ht .s/ are and
then to put this distance d.p/ in the second coordinate of Ht . We need a metric to

1That is zht .s C 1/ D D.zht .s// for all s in R , where D denotes the unique deck transformation
sending zc.0/ to zc.1/ .
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make this precise and the distance will actually be measured in the universal cover. Put
a Riemannian metric on F with constant curvature 0 such that g is a simple closed
geodesic of length 1. The universal cover zF is identified with the Euclidean plane R2

such that 'W zF!F is locally an isometry. Let d W zF!R denote the oriented distance
to the straight line zg .2 We claim that the homotopy

Ht W Œ0; 1�! F �R; s 7! .ht .s/; d.zht .s///;

which projects to the homotopy ht on F , is an isotopy. This claim implies that
H0W Œ0; 1�! F �R is an unknot O that projects to h0 D c ; therefore, it finishes the
proof.

In order to prove that Ht is an isotopy, we assume towards a contradiction that Ht is
not injective for some fixed t . Without loss of generality we assume t D 0, ie zht D zc .
If there exist s ¤ r 2 Œ0; 1/, such that H0.s/DH0.r/, then, by definition of H0 , the
points zp1 D zc.s/ and zp2 D zc.r/ in zF satisfy

'. zp1/D '. zp2/; d. zp1/D d. zp2/:

As d. zp1/Dd. zp2/, there is a geodesic segment parallel to zg from zp1 to zp2 . The length
of this segment is an integer k since '. zp1/D '. zp2/. It follows that zp2 D zc.kC s/ if
the sign of k is chosen correctly. This is seen by lifting c to zF such that the lift starts
at zg.k/D zc.k/; see Figure 3 for a case with k D 1.

zc

zp1

zp2

jd. zp2/j

zg

zg.k/

Lift of c starting at zg.k/

jd. zp1/j

zg.0/

Figure 3: The curve zcjŒ0;1� (black) intersects zcjŒk;kCs� (blue) in zp2 .

But zc.r/D zc.kC s/ and kC s ¤ r contradict the injectivity of zht D zc .

2Ordinary Euclidean distance of points in zF D R2 to the straight line zg with a sign depending on
whether the point is on the left or the right of zg .
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Let us shortly introduce notation and the general strategy for the proof of Theorem 2.
In the following S1 �S1 denotes the standard torus in R3 and N.S1 �S1/ a tubular
neighborhood of S1�S1 . Also, we denote the curve obtained by projecting a knot K

in N.S1 � S1/ to S1 � S1 by �.K/. Such a curve �.K/ (together with crossing
information) provides a knot diagram on S1 �S1 for the knot K in N.S1 �S1/Š

S1 �S1 �R.

To show the adjacency K1 �g K2 for the knots K2 D T .a; b/ and K1 D T .n;m/, ie
to show that dg.K2;K1/ is less than or equal (and thus equal) to u.K2/�u.K1/, we
proceed as follows. We isotope K2 and K1 into N.S1 �S1/ in such a way that:

(I) �.K1/ is simple closed (thus, K1 is unknotted in N.S1 �S1/).

(II) K2 is homotopic to K1 in N.S1 �S1/.

(III) �.K2/ has 2.u.K2/�u.K1// crossings.

In all our cases �.K2/ will have an injective lift to the universal cover R2 . This
together with (I) and (II) yields that �.K2/ is a presimple curve in S1 �S1 . Thus,
Remark 8 applies and, because of (III), guaranties the existence of u.K2/� u.K1/

crossing changes in N.S1 �S1/ Š S1 �S1 �R changing K2 to the unknot. This
unknot is homotopic to K1 by (II) and thus isotopic to K1 by Remark 6.

Before giving a proof of Theorem 2, we apply this strategy in a concrete example.

Example 9 In this example, we will show that T .3; 5/ is Gordian adjacent to T .3; 7/.
Since u.T .3; 7//� u.T .3; 5// D 2 we need to show that we can change T .3; 7/ to
T .3; 5/ via 2 crossing changes. First we isotope T .3; 7/ into N.S1 �S1/ as shown
on the left in Figure 4.

Projecting this T .3; 7/ to S1 � S1 yields a curve �.T .3; 7// with 4 crossings that
is presimple; namely, �.T .3; 7// has an injective lift to R2 and is homotopic to the
standard embedding of the torus knot T .3; 5/. Thus, by Remark 8 changing 2 of the
crossings suffices to produce a knot K in N.S1�S1/ that is unknotted. As the knot K

and the standard T .3; 5/ are homotopic unknots in N.S1 �S1/ they are isotopic in
N.S1 �S1/ by Remark 6. In particular, K and T .3; 5/ are isotopic as knots in R3 ;
thus, dg.T .3; 5/;T .3; 7//D 2. In this example with only 4 crossings one can quickly
exhibit the knot K explicitly. For example, the right side of Figure 4 provides a knot K

that is obtained from the knot on the left side of Figure 4 by performing two crossing
changes in N.S1 �S1/ and that is isotopic to the standard T .3; 5/ as predicted by
Remark 8. This last isotopy can be seen by applying braid relations (similarly as in the
proof of Proposition 5) and checking that these can be realized while staying within
N.S1 �S1/.
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D

Figure 4: Knots contained in a tubular neighborhood of the standard torus
(green) that are homotopic in this neighborhood. Five arcs (red) are on the
upper half of the torus, the rest of the knots (black) lie on the lower half. Left:
The knot T .3; 7/ with 4 crossings when projected on to the torus. Right:
Two isotopic (in a neighborhood of the torus) occurrences of the knot T .3; 5/ ,
one of them without crossings.

Proof of Theorem 2 By assumption .a; b/ and .n;m/ are pairs of coprime natural
numbers such that n� a and m� b . Without loss of generality we suppose that a< b

and n<m.

Let us first consider the case nD a, for which we proceed as in Example 9. We need
to show that dg.T .a; b/;T .n;m// is equal to

u.T .a; b//�u.T .n;m//D
.b� 1/.a� 1/

2
�
.m� 1/.n� 1/

2
D
.b�m/.a� 1/

2
:

We consider the knot T .a; b/ as the closure of the braid .�1�2 � � � �a�1/
b and isotope

it into a neighborhood N.S1 � S1/ of the standard torus S1 � S1 in R3 . Namely,
we isotope m arcs on the upper half of the torus and the rest of T .a; b/ on the lower
half of the torus, in such a way that the curve �.T .a; b// winds m times around
the core of S1 � S1 and n D a times in the direction of the core of S1 � S1 ; see
left-hand side of Figure 4. Since n and m are coprime, there is a simple closed curve
in S1 �S1 that is homotopic to �.T .a; b// by the second part of Remark 6, namely
the standard embedding of the torus knot T .n;m/ in S1 � S1 . Also, �.T .a; b//
lifts injectively to the universal cover R2 ; thus, �.T .a; b// is presimple. The m

arcs do not intersect the rest of the curve �.T .a; b// on the torus, so �.T .a; b//
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has .b�m/.a� 1/ crossings on the torus. By Remark 8 we need to change at most
.b�m/.a� 1/=2 crossings in the diagram on the torus (which correspond to crossing
changes in N.S1 �S1/Š S1 �S1 �R) to get an unknot K in N.S1 �S1/. As the
unknotted K and the standard T .n;m/ are homotopic in N.S1 �S1/ they are also
isotopic by Remark 6. Of course K is isotopic to T .n;m/ in R3 via the same isotopy
as in N.S1�S1/. Therefore, dg.T .a; b/;T .n;m//� .b�m/.a�1/=2 as we wanted.
The same argument works if mD b or aDm.

This leaves the case n< a and m< b . In the first case we interpreted T .a; b/ as the
closure of a braid on a strands, in the following we see T .a; b/DT .b; a/ as a braid on b

strands. We may assume m> b�a, otherwise we replace (inductively) a; b by a; b�a

(respectively by b� a; a if b� a< a) since by the first case T .a; b� a/�g T .a; b/.
To apply the same idea as before we reduce the braid on b strands to one on m strands.
More precisely, the representation of T .a; b/ as the closure of the b–strand braid

(3) .�1 � � � �b�1/
a
D �a � � � �1.�2 � � � �b�1/

a;

has the same closure as the .b� 1/–strand braid

�b�1 D �a�1 � � � �1.�1 � � � �b�2/
a
I

see Figure 5.

b

a D

b

aC 1

a
D

b� 1

a

a

Figure 5: The first equality is the pictorial version of (3). The second equality
is a Markov destabilization, ie a Reidemeister I move on the closed braid.

If m D b � 1, we isotope T .a; b/ (seen as the closure of �b�1 ) into N.S1 � S1/

such that n of the a over-passing arcs in the right part of Figure 5 project to the
upper half of the torus and the rest of �.T .a; b//, including a� 1C .a� n/.b � 2/

crossings, lies on the lower half. The curve �.T .a; b// is presimple since it winds n

respectively m times around the torus, ie it is homotopic in N.S1�S1/ to the standard
embedding of the knot T .n;m/, and �.T .a; b// lifts injectively to R2 . Therefore, we
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can use Remark 8 to get T .n;m/ by at most a�1C.a�n/.b�2/
2

crossing changes. Thus,
dg.T .n;m/;T .a; b// is less than or equal to

a� 1C .a� n/.b� 2/

2
D
.a� 1/.b� 1/

2
�
.n� 1/.b� 2/

2
Du.T .a; b//�u.T .n;m//:

Suppose now m < b � 1. We no longer isotope T .a; b/ into N.S1 �S1/. We first
apply some crossing changes in R3 and then isotope the result into N.S1 � S1/.
Namely, we change a crossing in �b�1 to get

(4) �a�1 � � � �2�
�1
1 .�1 � � � �b�2/

a
D �a�1 � � � �2�2 � � � �b�2.�1 � � � �b�2/

a�1

and then replace in (4) the part .�1 � � � �b�2/
a�1 by �a�1 � � � �1.�2 � � � �b�2/

a�1 as in
(3), which has the same closure as the b� 2 braid

�b�2 D .�a�2 � � � �1�1 � � � �b�3/
2.�1 � � � �b�3/

a�2
I

see Figure 6.

b� 1

a

a
�!

b� 1

a

a
D

b� 1

a

a� 1

D

b� 2

a� 1

a� 1

Figure 6: The arrow �! indicates the changing of the marked (red) crossing.
The two equalities are seen as in Figure 5. The two marked (green) crossings
on the right side indicate the crossing changes that are necessary to obtain
�b�3 from �b�2 , which is needed when m< b� 2 .

If mD b� 2 we isotope the closure of �b�2 into N.S1 �S1/ in such away that it is
homotopic to T .n;m/; namely, such that n of the a over-passing arcs get to lie on
the upper part of the torus and the reminding part (including 2.a� 2/C .a�n/.b� 3/

crossings) lies on the lower part. Therefore, Remark 8 implies that T .n;m/ can be
obtained from the closure of �b�2 by changing 2.a�2/C.a�n/.b�3/

2
crossings. Thus,
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dg.T .n;m/;T .a; b// is less than or equal to

1C
2.a� 2/C .a� n/.b� 3/

2
D

2a� 2C .a� n/.b� 3/

2

D
2a� 2C .a� 1/.b� 3/

2
�
.n� 1/.b� 3/

2

D
.a� 1/.b� 1/

2
�
.n� 1/.b� 3/

2

D u.T .a; b//�u.T .n;m//:

For general m> b� a it follows similarly that we need to change

1C 2C � � �C .b�m� 1/D
.b�m/.b�m� 1/

2

crossings of T .a; b/ to get the closure of the m braid

�m D .�a�.b�m/ � � � �1�1 � � � �m�1/
b�m.�1 � � � �m�1/

a�.b�m/
I

see Figure 7. In Figure 6 we have indicated (green) how to obtain �b�3 from �b�2 .

a� .b�m/C 1

m

a� .b�m/ b�m

Figure 7: The braid �m , which can be obtained from T .a; b/ by 1C 2C

� � �C .b�m� 1/ crossing changes.

We isotope the closure of �m into N.S1�S1/ such that n of the a over-passing arcs lie
on the upper half of the torus and .b�m/.a�.b�m//C.a�n/.m�1/ crossings on the
lower half. Thus, we get T .n;m/ from �m by changing .b�m/.a�.b�m//C.a�n/.m�1/

2

crossings by Remark 8. Combined we have that dg.T .n;m/;T .a; b// is less than or
equal to

.b�m/.b�m� 1/C .b�m/.a� .b�m//C .a� n/.m� 1/

2
;

which is equal to u.T .a; b//�u.T .n;m//.
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4 Levine–Tristram signatures as obstructions to adjacency

The goal here is to prove Theorem 3 using Levine–Tristram signatures [14; 23]. For
torus knots they are easy to calculate and yield good obstructions to adjacency; see
Lemma 15 and Proposition 13, respectively.

Definition 10 [14; 23] Let A be a Seifert matrix of a knot K and ! in S1nf1g �C .
The !–signature �!.K/2Z is defined to be the number of negative eigenvalues minus
the number of positive eigenvalues of the Hermitian matrix .1�!/AC .1� x!/At .

The !–signature is independent of the choice of Seifert matrix and �! D �x! . Setting
! D�1 one recovers the classical signature ��1 introduced by Trotter [24]. Note that
our nonstandard sign convention of signatures is such that all (positive) torus knots
have positive signature, eg ��1.T .2; 3//D 2 rather than ��1.T .2; 3//D�2.

We say ! in S1nf1g is regular for a knot K if ! is not a root of the Alexander
polynomial of K . Regular ! ’s are all ! for which .1 � !/AC .1 � x!/At is an
invertible matrix, where A is a Seifert matrix for K . If ! is regular for a knot K , then
the signature �!.K/ is even, and if ! is a root of unity of prime order, then ! is regular
for every knot [23]. For a fixed knot K the signature �!.K/ is piecewise-constant
in ! , “jumping” at the nonregular ! [14].

Let us denote by s.K/ the Rasmussen invariant of a knot K [19]. The next lemma
shows how !–signatures and s behave with respect to crossing changes.

Lemma 11 If K� is obtained from KC via one positive-to-negative crossing change
and if ! is regular for K1 and K2 , then

�!.K�/ 2 f�!.KC/; �!.KC/� 2g:

The same holds for the Rasmussen invariant.

Rasmussen used an observation by Livingston [15, Corollary 2 and 3] to prove
Lemma 11 for s [19]. For !–signatures we only found proofs of the following
weaker statement in the literature (see Kawauchi [11, Theorem 11.2.1] and [8]).

Corollary 12 Let K1 , K2 be knots and let ! be regular for K1 and K2 . Thenˇ̌̌̌
�!.K2/� �!.K1/

2

ˇ̌̌̌
� dg.K1;K2/:

In particular, if K1 is adjacent to K2 , then j�!.K2/��!.K1/
2

j � u.K2/�u.K1/.
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We provide a proof of Lemma 11 at the end of this section using a variation of
Livingston’s observation.

As a consequence of Corollary 12 we prove that most torus knots are not adjacent
to torus knots of index two as claimed in Remark 4. For index two torus knots the
signature equals twice the unknotting number, that is

��1.T .2; n//

2
D u.T .2; n//D

n� 1

2
:

This is also true for T .3; 4/ and T .3; 5/, but for all other torus knots T there is a
signature defect, ie u.T / > ��1.T /

2
. Thus, by Corollary 12,

dg.T .2; n/;T /�
��1.T .2; n//

2
�
��1.T /

2
> u.T .2; n//�u.T /

for all torus knots T not equal to T .3; 4/, T .3; 5/ or some T .2;m/.

The following proposition explains how Lemma 11 gives another obstruction to Gordian
adjacency of torus knots, which is often better than Corollary 12.

Proposition 13 Let T1 �g T2 be a Gordian adjacency of torus knots and let ! be
regular for T1 and T2 . Then �!.T1/� �!.T2/.

Proof For all torus knots T we have s.T /
2
D u.T / [19]. Thus, Lemma 11 yields that

an unknotting sequence of any torus knot involves only positive-to-negative crossing
changes since s has to drop by 2 with every crossing change. Choose an z! that is
regular for every knot and such that �!.T1/D �z!.T1/ and �!.T2/D �z!.T2/. This is
for example achieved by a root of unity of prime order that is close to ! . Let now

T2 DKu.T2/!Ku.T2/�1! � � � ! T1! � � � !K1!K0 DO

be an unknotting sequence for T2 that contains T1 . As it involves only positive-to-
negative crossing changes we have

�z!.T2/� �z!.Ku.T2/�1/� � � � � �z!.T1/� � � � � �z!.O/D 0

by Lemma 11. Therefore �!.T1/D �z!.T1/� �z!.T2/D �!.T2/.

Remark 14 By the above proof Proposition 13 remains true for any knot K with
s.K /

2
D u.K/. For example, all knots that are closures of positive braids, which include

algebraic knots.

We prove Theorem 3 using Proposition 13 and the following combinatorial formula for
the Levine–Tristram signatures of torus knots, see [8], for ��1 it is originally due to
Brieskorn and Hirzebruch [5; 10]. We denote the cardinality of a finite set S by ]S .

Algebraic & Geometric Topology, Volume 14 (2014)



Gordian adjacency for torus knots 785

Lemma 15 Let n � 2 and m � 2 be coprime natural numbers. Set S D fk
n
C

l
m
j

1� k � n� 1; 1� l �m� 1g � Œ0; 2�. Then for � 2 Œ0; 1� we have

�e2�i� .T .n;m//D ].S \ Œ�; � C 1�/� ].Sn.�; � C 1//:

Proof of Theorem 3 Fix nD 2kC 1 and note that mD b3
2
kC 1c is minimal with

n � 4
3
mC 1

3
. By Proposition 5 we have T .2; 2kC 1/ �g T .3; b3

2
kC 1c/. Together

with an easy instance of Theorem 2, T .3; b3
2
kC1c/�g T .3;m/ for all m�b3

2
kC1c,

we conclude that T .2; 2kC 1/�g T .3;m/ for all m� b3
2
kC 1c.

For the other direction we let nD 2kC1 be any odd number and write mD d3
2
k � 1e,

which is the largest m that does not satisfy n� 4
3
mC 1

3
. Thus, we have to show that

T .2; 2kC1/—g T .3;m/. For k� 4 calculating unknotting numbers yields T .2; 5/—g

T .3; 2/, T .2; 7/ —g T .3; 4/, and T .2; 9/ —g T .3; 5/. If k � 5 we distinguish two
cases. Either, k equals 1 or 2 modulo 4, or k equals 3 or 4 modulo 4.

For k D 1C 4l; 2C 4l , l � 1 a calculation using Gordon, Litherland and Murasugi’s
reduction formula [9, Theorem 5.2] shows that

��1.T .3;m//D 2k � 2;

which is strictly less than

��1.T .2; 2kC 1//D 2k:

Thus, Proposition 13 yields T .2; 2kC 1/—g T .3;m/.

For k D 3C 4l; 4C 4l , l � 1 we use [9, Theorem 5.2] similarly to see that

(5) ��1.T .3;m//D 2k D ��1.T .2; 2kC 1//:

Here ��1 does not suffice as obstruction directly, but we use (5) to calculate �!.T .3;m//
for ! close to �1, which yields the desired obstruction. More precisely set

(6) ! D e2�i� ; with

(
� 2

�
1
2
�

2
3m
; 1

2
�

1
3m

�
for m even, ie k D 3C 4l;

� 2
�

1
2
�

3
6m
; 1

2
�

1
6m

�
for m odd, ie k D 4C 4l:

By Lemma 15 the value of �!.T .3;m// is the same for all these ! .

Claim 16 For all kD3C4l; 4C4l with l�1 and ! as in (6), we have �!.T .3;m//D
��1.T .3;m//� 2.
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As the above ! can be chosen such that ��1.T .2; 2k C 1// D �!.T .2; 2k C 1//,
Claim 16 and (5) yield

�!.T .3;m//D ��1.T .3;m//� 2< ��1.T .3;m//

D ��1.T .2; 2kC 1//D �!.T .2; 2kC 1//:

Therefore, T .2; 2kC 1/—g T .3;m/ by Proposition 13. It remains to prove Claim 16.

For the case when m is even, Lemma 15 applied to the knot

T D T .3;m/D T .3; d3
2
.3C 4l/� 1e/D T .3; 4C 6l/

yields

��1.T /D ]
�
S \

h
1

2
�

1

3m
C ";

3

2
�

1

3m
C "

i�
� ]
�
Sn
�

1

2
�

1

3m
C ";

3

2
�

1

3m
C "

��
;

�!.T /D ]
�
S \

h
1

2
�

1

3m
� ";

3

2
�

1

3m
� "
i�
� ]
�
Sn
�

1

2
�

1

3m
� ";

3

2
�

1

3m
� "
��
;

for " small enough. Observe that

3

2
�

1

3m
D

2

3
C

5m�2

6m
D

2

3
C

5.4C6l/�2

6.4C6l/
D

2

3
C

3C5l

4C6l
D

2

3
C

3C5l

m
2 S;

1

2
�

1

3m
D � � � D

1

3
C

5k

m
C

1

3

1

m
62 S:

This means�
S \

h
1

2
�

1

3m
� ";

3

2
�

1

3m
� "
i�
P[

n
3

2
�

1

3m

o
D S \

h
1

2
�

1

3m
C ";

3

2
�

1

3m
C "

i
;

Sn
�

1

2
�

1

3m
� ";

3

2
�

1

3m
� "
�
D

�
Sn
�

1

2
�

1

3m
C ";

3

2
�

1

3m
C "

��
P[

n
3

2
�

1

3m

o
:

Therefore, ��1.T /D 2C �!.T /.

If m is odd, we have mD 5C 6l . Similarly to the even case, we get

3

2
�

1

6m
D

2

3
C

4C5l

m
2 S; but 1

2
�

1

6m
62 S:

The rest of the argument is the same.

It remains to prove Lemma 11. Let �K denote the mirror image of a knot K (with
reversed orientation), and let K1 # K2 denote the connected sum of two knots K1

and K2 .
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Lemma 17 Let � be a integer valued knot invariant satisfying

� �.K1 #K2/D �.K1/C�.K1/ and �.�K1/D��.K1/ for all knots K1 and K2 ,

� �.K/� gs.K/ for all knots K ,

� there exists a knot K with �.K/D 1 that can be transformed to the unknot O

by a positive-to-negative crossing change.

Then � is a concordance invariant, j�.K/j � gs.K/ for all knots K and

0� �.KC/� �.K�/� 1

whenever K� is a knot obtained from KC by a positive-to-negative crossing change.

Lemma 17 is a variation of the statement in [15, Corollary 2 and 3]. The first two
assertions are given in [15, Corollary 2]. The proof of the third assertion given in [15]
needs to be modified as follows to yield a proof Lemma 17. Replace, in the proof
of [15, Corollary 3], the knot T .2; 3/ by a knot K with �.K/D 1 that can be unknotted
by changing one positive crossing to a negative one. This is necessary since we do not
assume that �.T .2; 3//D 1.

Proof of Lemma 11 Rasmussen proves all conditions of Lemma 17 for � D s
2

in [19]
(note that s.T .2;3//

2
D 1). This yields the desired result for s . For every ! that is regular

for K� and KC , there is a root of unity z! of prime order with �z!.K�/D �!.K�/
and �z!.KC/D �!.KC/. Thus, it is enough to check the three conditions of Lemma 17
for �!

2
, where ! is a root of unity of prime order.

For signatures �!.K1 # K2/D �!.K1/C �!.K2/ and �!.�K1/D��!.K1/ follow
from the fact that A1 ˚ A2 is a Seifert matrix for K1 # K2 and �A1 is a Seifert
matrix for �K1 if A1 and A2 are Seifert matrices for K1 and K2 , respectively. If
! D�1, the second condition is proven by Murasugi [18] and for the third condition
we can choose K to be T .2; 3/ as ��1.T .2; 3//D 2. In general, fix a root of unity
! of prime order. The second condition is proven by Tristram [23].3 It remains to
find a suitable K for the third condition. For a natural number k let T .2k � 1/ be
the positive twist knot with 2k � 1 half-twists. These knots can be unknotted by a
positive-to-negative crossing change. One checks that

AD

�
�k 1

0 �1

�
3Note that Tristram formulates this result only for ! D�1 and ! D e.�i.p�1//=p , where p is any

odd prime; however, his proof works for every root of unity of prime order.
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is a Seifert matrix for T .2k � 1/. For sufficiently large k both eigenvalues of the
Hermitian matrix .1�!/AC .1� x!/At are negative. Thus, K can be chosen to be
T .2k � 1/ for a sufficiently large k .

5 A bound on Gordian adjacency for torus knots of higher
indices

This section is concerned with the question, when is T .a; n/ �g T .b;m/ for fixed
a< b and n;m large? Concretely we study the numbers

c.a; b/D lim inf
m!1

n.m/

m
; xc.a; b/D lim sup

m!1

n.m/

m
;

where n.m/ denotes the largest integer such that T .a; n.m//�g T .b;m/. We suspect,
but cannot prove, that c.a; b/ D xc.a; b/ for all a < b 2 N . Certainly we have that
c.2; 3/ D xc.2; 3/ D 4

3
by Theorem 3. Also note that 1 � c.a; b/ by Theorem 2 and

xc.a; b/� b�1
a�1

since

.a� 1/.n.m/� 1/

2
D u.T .a; n.m///� u.T .b;m//D

.b� 1/.m� 1/

2
:

Using !–signatures we get an upper bound for xc.a; b/ that is strictly better than b�1
a�1

.

Proposition 18 If a� b 2N , then

xc.a; b/�
adb

a
e2� .aC 2b/db

a
eC b.bC 1/

.a� 1/b
�

b

a
:

A calculation shows that .adb
a
e2 � .aC 2b/db

a
eC b.bC 1//=..a� 1/b/ D b

a
if and

only if a divides b . If for example b� a equals 1, Proposition 18 yields

xc.a; aC 1/�
aC 2

aC 1
:

This is better than b
a
D

aC1
a

or even b�1
a�1

, but we only know it to be optimal for aD 2;
namely, c.2; 3/D xc.2; 3/D 4

3
.

Proof We will use an approximation given by Gambaudo and Ghys in [8, Proposi-
tion 5.2]. Let l be a natural number. Then

j�e2�i� .T .b;m//�m.2.b� .2l � 1//� C
2l.l � 1/

b
/j � 2b for

l � 1

b
< � �

l

b
:
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Proposition 13 yields �!.T .b;m//��!.T .a; n.m///�0 if ! is regular for T .b;m.n//

and T .a; n/. By the approximation we get

(7) m
�
2.b� .2l � 1//� C

2l.l�1/

b

�
� n.m/

�
2.a� .2l 0� 1//� C

2l 0.l 0�1/

a

�
� �2.aC b/;

where l and l 0 are natural numbers with l�1
b
< � � l

b
and l 0�1

a
< � � l 0

a
, respectively.

Choosing � D 1
a

, (7) becomes

m

�
2
.b� .2db

a
e� 1//

a
C 2
d

b
a
e.db

a
e� 1/

b

�
� n.m/2

a�1

a
� �2.aC b/

or equivalently

(8) n.m/

m
�

adb
a
e2� .aC 2b/db

a
eC b.bC 1/

.a� 1/b
C

a.aCb/

m.a�1/
:

This proves the first inequality.4 The second inequality can be checked by a short
calculation.

Remark 19 Our choice � D 1
a

is the best possible and yields the optimal bound for
xc.a; b/ that can be achieved using the properties of signatures from Lemma 11. This
can be checked using the above approximation from [8].

In order to determine c.a; b/ and xc.a; b/ for .a; b/ ¤ .2; 3/, we now wish to find
geometric constructions in the spirit of Section 2 that at least for some a and b yield a
lower bound for c.a; b/ that is equal to the upper bound given by Proposition 18. So
far we have only found constructions giving lower bounds that do not coincide with
the upper bounds, eg 5

3
� c.2; 4/� xc.2; 4/� 2 and 9

8
� c.3; 4/� xc.3; 4/� 5

4
.

6 Algebraic adjacency

In this section we compare �g with an adjacency notion for plane curve singular-
ities. We first recall the notion of an algebraic knot following Milnor [16]. Let
f W .C2; 0/! .C; 0/ be a polynomial function or a holomorphic function germ that is

4Note the following technical point. If ! D e2� i.1=a/ is nonregular for T .b;m.n// or T .a; n/ , then
Lemma 11 cannot be applied as above. Instead one chooses a sequence of �k tending to 1

a , such that
every e2�i�k is regular for T .b;m.n// and T .a; n/ . Inequality (8) is then obtained by choosing � D �k

in inequality (7) and letting k tend to infinity.
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irreducible5 in the ring of holomorphic function germs Cfx;yg and has an isolated sin-
gularity at the origin. The transversal intersection of its zero set V .f /�C2 with a suffi-
ciently small sphere around the origin S3

" Df.x;y/2C2 j kxk2Ckyk2D "2g is a knot
in S3

" ŠS3 called the knot of the singularity of f . For example, the torus knot T .n;m/

is the knot of the singularity of xn�ym . In this case the small sphere can be taken to be
the standard unit sphere S3 ; thus, T .n;m/D S3\f.x;y/ 2C2 j xn�ymD 0g � S3 .
Knots that can occur as knots of singularities are called algebraic.

Arnold studied adjacency of singular function germs [1, Definition 2.1]; see also
Siersma [21]. As we are interested in knots, we study singular function germs only
up to topological type, ie up to the isotopy class of their knots of singularity; see eg
Brieskorn and Knörrer [6]. Thus, we use the following version of adjacency.

A deformation of f 2 Cfx;yg is a smooth family ht 2 Cfx;yg, defined for small
enough real t � 0, with h0 D f .

Definition 20 Let K1 and K2 be algebraic knots. We say K1 is algebraically adjacent
to K2 , denoted by K1 �a K2 , if there exists a germ f 2Cfx;yg with K2 as knot of
the singularity and a deformation ht of f , such that for small nonzero t the germ ht

has K1 as knot of the singularity.

Remark 21 Since every holomorphic germ yields the same knot as its Taylor polyno-
mials of large enough degrees, one can study polynomials or holomorphic germs.

Isotopy classes of algebraic knots can be identified canonically with �–constant-
homotopy classes of irreducible germs .C2; 0/ ! .C; 0/, where � is the Milnor
number. With this identification the above notion of adjacency for algebraic knots
corresponds to the concept of �–adjacency studied by Siersma in [21]. We sketch
this identification. If two plane curves can be connected by a �–constant path, then
the associated algebraic knots are isotopic; see Tráng and Ramanujam [22]. For the
converse assume that two irreducible germs f0 and f1 have the same knot of singularity.
After coordinate changes they are both of the form ymC cm�1.x/y

m�1C� � �C c0.x/,
where m is the multiplicity of f0 and f1 , and where the ck 2Cfxg are holomorphic
germs with ck.0/ D 0. If f0 and f1 have the same knot of singularity, then they
have the same essential terms in their corresponding Puiseux expansions y0.x

1=m/

and y1.x
1=m/; see eg [6]. Thus, the two Puiseux expansions can be connected by a

family of Puiseux expansions yt .x
1=m/ with the same essential terms. This yields a

5With the weaker assumption ‘squarefree’ most of what is done in this section still works, but we get
links instead of knots.
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�–constant family of germs

ft D

Y
�mD1

.y �yt .�x
1=m// 2Cfx;yg

that connects f0 to f1 .

As described in the introduction both notions of adjacency have a lot of properties in
common. For example, Theorem 2 is known and easy to show for �a instead of �g .

Proposition 22 If n� a and m� b , then T.n;m/�a T .a; b/.

Proof Regard T .a; b/ as the knot of the singularity of ya � xb and choose as
deformation ht .x;y/Dya�xbCt.yn�xm/. For t small (but fix) we make, in a small
chart around the origin, a biholomorphic coordinate change, which does not change
the topological type of the singularity, such that ht D yn.t Cya�n/�xm.t Cxb�m/

becomes yn�xm .

The obstruction to Gordian adjacency given in Corollary 12 also holds for algebraic
adjacency. Actually Corollary 12 and its counterpart for �a are a consequence of the
fact that j.�!.K2/��!.K1//=2j is less than or equal to the cobordism distance of K1

and K2 , and the following. For algebraic knots both K1 �g K2 and K1 �a K2 yield
a cobordism in S3 � Œ0; 1� between K1 and K2 of minimal genus u.K2/�u.K1/D

gs.K2/�gs.K1/. For an algebraic adjacency given by a deformation ht this cobordism
is given as follows. Let S2 be a sufficiently small sphere with K2 D S2 \ V .h0/.
Then, by transversality, t can be chosen small enough such that S2\V .ht / is still K2

and K1 D S1 \V .ht / for a small enough sphere S1 . By a small perturbation of ht

the zero set V .ht / becomes a smooth algebraic curve F with K2 D S2 \ F and
K1DS1\F . The cobordism between K1 and K2 , which is given by F , has minimal
genus u.K2/�u.K1/D gs.K2/�gs.K1/ by the Thom conjecture [13, Corollary 1.3].

Despite these similarities the two notions of adjacency do not agree for algebraic
knots or even torus knots. The obstruction given in Proposition 13, that the signature
decreases on Gordian adjacent torus knots, does not hold for algebraic adjacency.
Concretely we have T .2; 15/ �a T .3; 10/, but T .2; 15/ —g T .3; 10/ by Theorem 3.
We generalize an example of an algebraic adjacency calculated by Arnold [1, A5 E6 ].
This gives a large class of examples of algebraic adjacencies of torus knots, including
T .2; 15/�a T .3; 10/, which are not covered by Proposition 22.

Proposition 23 Let a; b; c be natural numbers with a� b , then T .a; bc/�a T .b; ac/.
In particular, T .2; 3c/�a T .3; 2c/.
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Proof Suppose that a< b , regard T .b; ac/ as the knot of the singularity of yb �xac

and choose ht D yb � .xc � ty/a as deformation. For fixed small t > 0 we change
coordinates by x 7!x;y 7! xc�y

t
, so htD .

xc�y
t
/b�ya . Then we write htD t�bxbc�

ya C p.x;y/, where the degrees of the monomials in p lie on the line through
.bc; 0/ and .0; b/; in particular, they lie strictly above the line through .bc; 0/ and
.0; a/. Therefore, ht and xbc � ya have the same knot of singularity by a result of
Kouchnirenko [12, Corollaire 1.22].

Remark 24 Proposition 23 gives an algebraic proof of an observation by Baader,
which states that the cobordism distance of T .a; bc/ and T .b; ac/ is equal to

bcC a� ac � b

2
D
.b� a/.c � 1/

2

and which is a key proposition in [3].

Proposition 23 shows that if we define an algebraic counterpart of c.a; b/ in Section 5,
it is larger or equal to b

a
, whereas in the Gordian setting c.a; b/ is smaller or equal

to b
a

by Proposition 18. Thus, asymptotically, whenever T .a; n/�g T .b;m/ for a� b

we get roughly n� b
a
m and, therefore, T .a; n/�a T .b;m/. We take this as evidence

to conjecture that for torus knots Gordian adjacency implies algebraic adjacency.
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