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Commensurated subgroups, semistability
and simple connectivity at infinity

GREGORY R CONNER

MICHAEL L MIHALIK

A subgroup Q of a group G is commensurated if the commensurator of Q in G is
the entire group G . Our main result is that a finitely generated group G containing
an infinite, finitely generated, commensurated subgroup H of infinite index in G

is one-ended and semistable at 1 . Furthermore, if Q and G are finitely presented
and either Q is one-ended or the pair .G;Q/ has one filtered end, then G is simply
connected at 1 . A normal subgroup of a group is commensurated, so this result
is a generalization of M Mihalik’s result [17] and of B Jackson’s result [11]. As a
corollary, we give an alternate proof of V M Lew’s theorem that a finitely generated
group G containing an infinite, finitely generated, subnormal subgroup of infinite
index is semistable at 1 . So several previously known semistability and simple
connectivity at 1 results for group extensions follow from the results in this paper.
If �W H ! H is a monomorphism of a finitely generated group and �.H / has
finite index in H , then H is commensurated in the corresponding ascending HNN
extension, which in turn is semistable at 1 .

20F69; 20F65

1 Introduction

Given a group G and a subgroup H of G , the element g of G is in the commensurator
of H in G (denoted Comm.H;G/) if gHg�1 \H has finite index in both H and
gHg�1 . In the mid-1960s, A Borel [1] proved a series of results that highlight the
critical nature of commensurators in the structure of semisimple Lie groups. These
results were extended by G A Margulis [16] in 1975. If G is the commensurator of Q

in G , then Q is commensurated in G . In particular, if H is normal in G , then H is
commensurated in G . The authors [3], develop the basic theory of commensurated
subgroups and showed this theory closely parallels the theory of normal subgroups of
a group, but with subtle differences.

A locally finite, connected CW–complex X is semistable at 1 if any two proper maps
r; sW Œ0;1/!X that converge to the same end are properly homotopic. The early ideas
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of R Lee and F Raymond [14], and F E A Johnson [12], on the “fundamental group of
an end” were instrumental in extending the idea of semistability at 1 of a space to
the notion of the semistability at 1 for a finitely presented group. R Geoghegan [7]
introduced the idea of using shape theory as the correct setting to study the homology of
ends of groups. The best reference for the fundamentals of the subject of semistability
at 1 is R Geoghegan’s book [8]. Many classes of finitely generated groups are known
to be semistable at 1 (see Mihalik [17; 19; 20; 21; 22], for instance). It is unknown if
all finitely presented groups are semistable at 1. If a finitely presented group G is
semistable at 1, then one can define invariants for G , such as the fundamental group
at an end of G , independent of choice of basepoint ray in some associated space. The
idea of semistability at 1 is also of interest in the study of cohomology of groups.
R Geoghegan and M Mihalik [9], have shown that if the group G is finitely presented
and semistable at 1, then H 2.GIZG/ is free abelian. It should be noted that a basic
unsolved problem in the study of group cohomology is whether or not H 2.GIZG/ is
free abelian for all finitely presented groups G .

The study of ends of groups was started by H Freudenthal [6] and H Hopf [10]. A
finitely generated group G has either 0, 1, 2 or an infinite number of ends. It is
elementary to see that finitely presented groups with either 0 or 2 ends are semistable
at 1. By Mihalik [21], and Dunwoody’s accessibility theorem [5], the semistability
question for finitely presented groups reduces to the question of whether or not all
one-ended finitely presented groups are semistable at 1.

The strongest result to date in this subject is the following combination result of
M Mihalik and S Tschantz [24].

Theorem 1.1 (M Mihalik, S Tschantz) If G DA�H B is an amalgamated product
where A and B are finitely presented and semistable at 1 and H is finitely generated,
then G is semistable at 1. If G D A�H is an HNN-extension where A is finitely
presented and semistable at 1 and H is finitely generated, then G is semistable at 1.

This result generalizes to the obvious statement about graphs of groups and was used
by Mihalik and Tschantz [23] to prove that all one relator groups are semistable at 1.
It should be noted that this result is non-trivial when A and B are free groups.

All word-hyperbolic groups are semistable at 1 (see G Swarup [28]). R Geoghe-
gan [7] has shown that a one-ended CAT(0) group G is semistable at 1 if and only if
some (equivalently, any) visual boundary for G has the shape of a locally connected
continuum. It is elementary to construct a semistable at 1, one-ended CAT(0) group
with non-locally connected boundary. For instance, the direct product of the integers
with the free group of rank 2 has visual boundary homeomorphic to the suspension of
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a Cantor set. While the suspension of a Cantor set is non-locally connected, it has the
same shape as the Hawaiian earring, which is a locally connected space. Mihalik [20]
defined a notion of semistability at 1 for a finitely generated group that generalizes
the original definition (ie a finitely presented group is semistable at 1 with respect to
the alternative definition if and only if it is semistable at 1 with respect to the original
definition). With this more general definition, the finitely generated analogs to the main
results obtained in [17; 19] are quite apparent. In fact, this more general definition is
used to show certain finitely presented groups are semistable at 1 (see [20]). In his
PhD dissertation, Lew [15] proved that if G is a finitely generated group containing an
infinite, finitely generated, subnormal subgroup H of infinite index in G , then G is
one-ended and semistable at 1. Lew’s proof of this theorem generalized arguments
used in the proofs in [17] and [19]. Our main theorem is used in Section 5 to produce
an alternative proof of Lew’s theorem.

Theorem 1.2 (Main theorem) If a finitely generated group G has an infinite, finitely
generated, commensurated subgroup Q, and Q has infinite index in G , then G is one-
ended and semistable at 1. Furthermore, if G and Q are finitely presented and either
Q is one-ended or the pair .G;Q/ has one filtered end, then G is simply connected
at 1.

As an example, the cyclic subgroup hxi of the Baumslag–Solitar group

B.m; n/� hx; t W t�1xmt D xn
i (for non-zero integers m; n/

is commensurated in B.m; n/.

A connected CW–complex X is simply connected at 1 if for each compact set C in
X there is a compact set D in X such that loops in X �D are homotopically trivial
in X �C . Simple connectivity at 1 implies semistability at 1. As with semistability
at 1, the idea of simple connectivity at 1 can be extended from spaces to finitely
presented groups and if G is finitely presented and simply connected at 1, then
H 2.GIZG/ is trivial. L Siebenmann [26] developed the idea of simple connectivity
at 1 to give an obstruction to finding a boundary for an open manifold. R Lee and
F Raymond [14] used the idea of the simple connectivity at 1 of a group in order to
analyze manifolds covered by Euclidean space. B Jackson [11] proves:

Theorem 1.3 (B Jackson) If 1! H ! G! K! 1 is a short exact sequence of
infinite, finitely presented groups and either H or K is one-ended, then G is simply
connected at 1.

In his thesis, J Profio [25] improved Jackson’s result:
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Theorem 1.4 (J Profio) Suppose H C N C G where G and H are finitely presented,
H is 1–ended and H has infinite index in G . Then G is simply connected at 1.

M Davis [4] constructs examples of aspherical closed n–manifolds for n� 4 that are
not covered by Rn . In fact, Davis argues that the fundamental groups of his manifolds
are semistable at 1, but not simply connected at 1 (and hence not covered by Rn ).
All of Davis’s groups are subgroups of finite index in finitely generated Coxeter groups.
Mihalik [22] showed all Artin and Coxeter groups are semistable at 1.

The remainder of the paper is organized as follows. In Section 2 we give the basics
of commensurated subgroups of groups. This includes a geometric characterization
of commensurated groups and a result connecting the filtered ends of a Cayley graph
of a group to the ends of a Schreier coset graph. In Section 3, we say what it means
for a finitely generated group to be semistable at 1 and list a number of equivalent
formulations of this concept. The proof of the main theorem takes up most of Section 4.
Section 5 is devoted to an alternative proof of a theorem of V M Lew. Section 6 contains
a generalization of a result of B Jackson about simply connected at1 group extensions.
The techniques of proof in sections 4, 5 and 6 are geometric. The working definition
of commensurated subgroup is used to construct proper homotopies between proper
edge path rays in certain Cayley 2–complexes and to homotopically kill certain loops
by homotopies that avoid prescribed compact sets.

2 Commensurable preliminaries

If S is a finite generating set for a group G , �.G;S/ the Cayley graph of G with
respect to S and H a subgroup of G , then for any g1;g2 2G , the Hausdorff distance
between g1H and g2H , denoted DS .g1H;g2H /, is the smallest integer K such
that for each element h of H the edge path distance from g1h to g2H in � is at
most K and the edge path distance from g2h to g1H in � is at most K . If no such
K exists, then DS .g1H;g2H / D1. Conner and Mihalik [3] prove the following
geometric characterization of commensurated subgroups of finitely generated groups.
This characterization is the working definition of commensurated subgroup in this
paper.

Proposition 2.1 (G Conner, M Mihalik) Suppose S is a finite generating set for a
group G and H is a subgroup of G . Then g 2G is in Comm.H;G/ if and only if the
Hausdorff distance DS .H;gH / <1 if and only if DS .H;gHg�1/ <1.

In particular, a subgroup Q of a finitely generated group G is commensurated in G

if and only if the Hausdorff distance DS .Q;gQ/ is finite for all g 2G if and only if
DS .Q;gQg�1/ is finite for all g 2G .
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Suppose G is a group with finite generating set S and H is a subgroup of G . Let
ƒ.S;H;G/ be the graph with vertices the left cosets gH of G and a directed edge
(labeled s ) from gH to fH if for some s 2S and h1; h2 2H , we have gh1sh2D f .
(Equivalently, in the Cayley graph �.S;G/, there is an edge labeled s with initial
point in gH and end point in fH .) Basically, ƒ is a (left) Schreier coset graph. Note
that ƒ may have several edges labeled s at a vertex.

The following result appears in [3] and is used in the proof of our main theorem.

Proposition 2.2 (G Conner, M Mihalik) Suppose G is a group with finite generating
set S and Q is commensurated in G . Then the graph ƒ.S;Q;G/ is locally finite
and G acts (on the left) transitively on the vertices of ƒ and by isometries (using the
edge path metric) on ƒ. For the Cayley graph �.S;G/ of G , the projection map
pW �.S;G/!ƒ.S;Q;G/ respects the action of G and induces a bijection from the
filtered ends of �.S;G/ to the ends of ƒ.S;Q;G/. The graph ƒ.S;Q;G/ has 0, 1,
2 or infinitely many ends.

3 Semistability preliminaries

Much of the groundwork for studying the notion of semistability for a finitely presented
group has appeared in [11; 12; 13; 14; 17], and is well-organized in [7]. We will recall
some of the ideas presented in these papers to set the notation for future use.

A continuous function f W X ! Y is proper if for each compact subset C of Y ,
f �1.C / is compact in X . A proper map r W Œ0;1/!X is called a ray in X . If K is
a locally finite, connected CW–complex, then one can define an equivalence relation
� on the set A of all rays in K by setting r � s if and only if for each compact set
C �K , there exists an integer N.C / such that r.ŒN.C /;1// and s.ŒN.C /;1// are
contained in the same unbounded path component of K �C (a path component of
K�C is unbounded if it is not contained in any compact subset of K ). An equivalence
class of A=� is called an end of K , the set of equivalence classes of A=� is called
the set of ends of K and two rays in K , in the same equivalence class, are said to
converge to the same end. The cardinality of A=�, denoted by e.K/, is the number
of ends of K .

If G is a finitely generated group with generating set S , then denote the Cayley graph
of G with respect to S by �.G;S/. We define the number of ends of G , denoted
by e.G/, to be the number of ends of the Cayley graph of G with respect to a finite
generating set. (In particular, e.G/D e.�.G;S/.) This definition is independent of
the choice of finite generating set for G . If G is finitely generated, then e.G/ is either
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0, 1, 2 or is infinite (in which case it has the cardinality of the real numbers). We let �
denote the basepoint of �.G;S/, which corresponds to the identity of G .

If f and g are rays in K , then one says that f and g are properly homotopic if there is
a proper map H W Œ0; 1��Œ0;1/!K such that H jf0g�Œ0;1/Df and H jf1g�Œ0;1/Dg .
If f .0/D g.0/D v , one says f and g are properly homotopic relative to v (or relfvg)
if additionally H jŒ0;1��f0g D v .

Definition 3.1 A locally finite, connected CW–complex K is semistable at 1 if any
two rays in K converging to the same end are properly homotopic.

Mihalik [17, Theorem 2.1; 19, Lemma 9] provided several equivalent notions of
semistability. The space considered in [17] is simply connected, but simple connectivity
is not important in that argument. A slight modification of the proofs give the following
result.

Theorem 3.2 Suppose K is a locally finite, connected and one-ended CW–complex.
Then the following are equivalent:

(1) K is semistable at 1.

(2) For any ray r W Œ0;1/!K and compact set C , there is a compact set D such
that for any third compact set E and loop ˛ based on r and with image in
K�D , ˛ is homotopic relfrg to a loop in K�E , by a homotopy with image
in K�C .

(3) For any compact set C there is a compact set D such that if r and s are rays
based at v and with image in K �D , then r and s are properly homotopic
relfvg by a proper homotopy in K�C .

If K is simply connected, then a fourth equivalent condition can be added to this list:

.4/ If r and s are rays based at v , then r and s are properly homotopic relfvg.

Example 3.3 Note that the one-ended CW–complex obtained by attaching a loop
at 0 to the interval Œ0;1/ is semistable at 1. Consider a ray r that maps Œ0;1/
homeomorphically to Œ0;1/ and a ray s that maps Œ0; 1� once around the loop and then
maps Œ1;1/ homeomorphically to Œ0;1/. Clearly r and s are properly homotopic,
but not by a proper homotopy relf0g.

The following fact is proved by F E A Johnson [12; 13].

Algebraic & Geometric Topology, Volume 14 (2014)



Commensurated subgroups, semistability and simple connectivity at infinity 3515

Theorem 3.4 Suppose X and Y are finite, connected CW–complexes with �1.X /

isomorphic to �1.Y /. Then the universal cover of X is semistable at 1 if and only if
the universal cover of Y is semistable at 1.

Definition 3.5 If G is a one-ended, finitely presented group and X is some (equiva-
lently any) finite, two-dimensional CW–complex with fundamental group G , then we
say G is semistable at 1 if the universal cover of X is semistable at 1.

We now define the notion of semistability for a finitely generated group following
Mihalik [20]. We give the definition for one-ended groups since this is the case that
concerns us. Suppose G is a one-ended finitely generated group with generating set
S � fg1;g2; : : : ;gng and let �.G;S/ be the Cayley graph of G with respect to this
generating set. Suppose f˛1; ˛2; : : : ; ˛mg is a finite set of relations in G written in
the letters fg˙

1
;g˙

2
; : : : ;g˙n g. For any vertex v 2 �.G;S/, there is an edge path cycle

labeled ˛i at v . The two dimensional CW–complex �.G;S/.˛1; : : : ; ˛m/ is obtained by
attaching, to each vertex of �.G;S/, 2–cells corresponding to the relations ˛1; : : : ; ˛n .

Mihalik [20] shows that if S and T are finite generating sets for the group G and
there are finitely many S –relations P such that �.G;S/.P / is semistable at 1, then
there are finitely many T–relations Q such that �.G;T /.Q/ is semistable at 1. Hence
the following definition:

Definition 3.6 We say G is semistable at 1 if for some finite generating set S for
G and finite set of S –relations P , the complex �.G;S/.P / is semistable at 1.

Note that if G has finite presentation hS W P i, then G is semistable at 1 with respect
to Definition 3.5 if and only if G is semistable at 1 with respect to Definition 3.6 if
and only if �.G;S/.P / is semistable at 1.

Lemma 3.7 [20, Lemma 2] Suppose the finitely generated group G is one-ended
and semistable at 1. If S is a finite generating set for G and P is a finite set of
S –relations in G such that �.G;S/.P / is semistable at 1, then there is a finite set Q

of S –relations such that if r and s are rays in �.G;S/.P [Q/ with r.0/D s.0/, then
r is properly homotopic to s relfr.0/g.

Remark 3.8 Using the third equivalent notion of semistability in Theorem 3.2, it can
be shown that in fact the set of relations Q in the previous lemma are unnecessary in
order to draw the same conclusion. If �.G;S/.P / is semistable at 1, and r and s are
rays in �.G;S/.P / with r.0/D s.0/, then r is properly homotopic to s relfr.0/g.
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By an edge path ray in a locally finite, connected CW–complex K , we mean a proper
map r W Œ0;1/!K such that for each positive integer n, r jŒn�1;n� is a homeomorphism
to an edge of K . If G is finitely generated with finite generating set S , then any
edge path ray r W .Œ0;1/; f0g/! .�.G;S/;�/ can be represented as .e1; e2; : : : / at �
with ei 2 S˙ , and ei the label of the i th edge of r . Any edge path .e1; e2; : : : ; ek/

of �.G;S/ corresponds to some group element e0
1
e0

2
� � � e0

k
, where e0i 2 S˙ . But

determining an edge path in �.G;S/ from some word e0
1
e0

2
� � � e0

k
requires a specified

basepoint, since the path .e0
1
; e0

2
; : : : ; e0

k
/ at a vertex v determines a different edge path

than .e0
1
; e0

2
; : : : ; e0

k
/ based at another vertex w . The action of the group element wv�1

on �.G;S/ maps the edge path at v to the edge path at w with the same labeling. If
A is a subcomplex of a locally finite, connected CW–complex K , let St.A/ denote the
subcomplex of K consisting of the union of all 1–cells of K that intersect A along
with any n–cell all of whose vertices lie in St.A/. Note then that A� St.A/ and if A is
a finite subcomplex, then St.A/ is a finite subcomplex by the local finiteness of K . We
recursively define the N th star of A for N D 1; 2; 3; : : : by StN .A/D St.StN�1.A//,
where St0.A/DA. When it is not clear what the over-complex might be, we use the
notation St.A;K/ to denote the star of A in K .

Since any ray r W Œ0;1/ ! K is properly homotopic to an edge path ray, we may
concentrate on edge path rays when dealing with the semistability of a complex.

If e is an edge in K and .e1; e2; e3; : : : / is an edge path in K based at the terminal
point of e , then one denotes by e � .e1; e2; e3; : : : / the edge path given by e followed
by .e1; e2; e3; : : : /.

Definition 3.9 For a group G with finite generating set S and a subset T of S , we
say an edge path in �.G;S/ is a T–path if each edge of the path is labeled by an
element of T˙ . If the path is infinite and proper, we call it a T–ray.

4 Proof of semistability in the main theorem

We prove a more general one-ended result than that stated in our main result.

Proposition 4.1 Suppose A is a finitely generated, infinite subgroup of infinite index
in a finitely generated group G and gAg�1 \A is infinite for all g 2 G . Then G is
one-ended.

Proof Suppose S is a finite set of generators for G containing a generating set SA

for A. Let � be the Cayley graph of G with respect to S and let �A be the Cayley
graph of A with respect to SA . We consider �A to be a subset of � containing �, the
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identity vertex. Let C be a finite subcomplex of � . List elements g1; : : : ;gn of G

such that giA¤ gj A for i ¤ j and g�A\C ¤∅ if and only if gAD giA for some
i 2 f1; : : : ; ng. Choose g0 such that g0�A\C D∅. Let D be a finite subcomplex of
� containing C and all bounded components of gi�A�C for all i 2 f1; : : : ; ng.

It suffices to show that any vertex of � �D can be joined by a path in � �C to g0 .
Suppose v is a vertex of � �D .

First we consider the case v�A\C D∅. Choose y (in the infinite set) .v�Av
�1/\

.g0�Ag�1
0
/ such that d.y;C / >maxfjvj; jg0jg. Then there are paths from y to v�A

and from y to g0�A avoiding C . Hence there is a path from v to g0 avoiding C and
the first case is finished.

Next suppose v�A\C ¤∅. Then v is in an unbounded component K of v�A�C .
Let N Dmaxfjg0j; : : : ; jgnjg. Choose k a vertex of K such that d.k;C / >N . Then
there are paths from v to k and from k to kgi for each i 2 f0; : : : ; ng, all avoiding
C . At least one of kgiA does not intersect C , so by the first case we can connect v
to g0 avoiding C .

For the remainder of the proof of the main theorem, QD fq1; q2; : : : ; qng is a finite
generating set for Q and S D fq1; q2; : : : ; qn; k1; k2; : : : ; ktg is a generating set for
G where ki 62Q. Let KD fk1; : : : ; ktg. Our hypothesis states that for each g 2 G ,
the Hausdorff distance between Q and gQ is finite in �.G;S/.

Consider the left (Scherier) coset graph ƒ.S;Q;G/ with vertex set, the set of all
cosets gQ in G . A directed edge labeled s will have initial vertex g1Q and terminal
vertex g2Q if there is an edge labeled s in �.G;S/ beginning in g1Q and ending
in g2Q. By Proposition 2.2, ƒ.S;Q;G/ is locally finite. There is a quotient map
�W �.G;S/!ƒ.S;Q;G/ respecting the left action of G on these graphs, such that
each edge labeled by an element of Q is mapped to a point.

Lemma 4.2 Suppose S is a finite generating set for the group G and Q is a finitely
generated commensurated subgroup of G (with generating set a subset of S ). There
is an integer F such that if gQ and hQ are distinct cosets (vertices) of ƒ.S;Q;G/
connected by an edge labeled s 2 S˙1 , then for each v 2 gQ � �.S;G/ there is a
Q–path ˛ at v in �.S;G/ of length less than F such that the path .˛; s/ ends in hQ.

In particular: Suppose ˛ � .e1; e2; : : : / is an edge path (possibly infinite) at v 2
ƒ.S;Q;G/ (with i th edge labeled ei ) and v0 is a vertex of �.G;S/ such that �.v0/Dv
(equivalently v0QD v ). Then there is an edge path ˛0� .˛0

0
; e1; ˛

0
1
; e1; : : : / at v0 with

˛0i a Q–edge path of length less than F such that the edge path (determined by) �˛0 is
˛ , ie there is a .Q;F /–“approximate” path lifting for � .
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Proof Suppose v 2 gQ and the edge labeled s at v ends in hQ. By translation, we
assume v D 1 2 G , g D 1 and h D s . As Q is commensurated in G , sQs�1 \Q

has finite index in Q. Hence there is an integer Fs , such that for any vertex w 2Q,
there is a Q–edge path in �.S;G/ of length less than Fs from w to a vertex w0 of
Q\ sQs�1 . As w0 2 sQs�1 , w0s 2 sQ, ie the edge labeled s at w0 ends in sQ. Let
F DmaxfFsgs2S˙1 .

Remark 4.3 For ˛ and ˛0 as in Lemma 4.2, we call ˛0 a .Q;F /–approximate lift
of ˛ . Note that Lemma 4.2 does not imply that if v and w are vertices of the same
coset uQ, then there are approximate lifts of a path ˛ at �.v/ 2ƒ.S;Q;G/ to v and
w that are G translates of one another in �.G;S/.

The next lemma basically has the same proof as [19, Lemma 3].

Lemma 4.4 For each vertex v of ƒ.S;Q;G/, there is an edge path ray sv at v ,
such that for any finite subgraph C of ƒ.S;Q;G/ only finitely many sv intersect C .
Furthermore, if w 2 v � wQ, and we let sw be a .Q;F /–approximate lift of s�.w/ to
w 2 �.G;S/, then:

(i) For any finite subgraph D of �.G;S/ there are only finitely many vertices
w 2 �.G;S/ such that sw intersects D non-trivially.

(ii) For any w 2G , only finitely many vertices z of sw are such that zQ intersects
D non-trivially.

Proof If G is a locally finite, infinite graph, then for each vertex v of G there is an
edge path ray sv at v such that for any finite subgraph C of G only finitely many v are
such that sv intersects C . (The idea is this: Choose a base vertex x . For any integer
n> 0, G�Stn.x/ has only finitely many components. For the finitely many vertices v
in St.x/ or a bounded component of G�St.x/, choose sv to be an arbitrary edge path
ray at v . If v is a vertex of St2.x/ or of a bounded component of G � St2.x/, and sv
is not defined, then v belongs to an unbounded component of G�St.x/. Choose sv to
be an edge path ray at v in G � St.x/. Continue in this fashion.) Now pick such edge
path rays for the vertices of ƒ.S;Q;G/.

As �.sw/D s�.w/ , sw intersects D if and only if s�.s/ intersects �.D/. Hence we may
finish the proof of (i) by showing at most finitely many vertices v of a coset gQ are such
that sv intersects D . Otherwise there are infinitely many distinct vertices v1; v2; : : :

in gQ� �.G;S/ such that each edge path ray svi
passes through the vertex d of D .

In ƒ.S;Q;G/, write the edge path ray sgQ � .e1; e2; : : : /. By Lemma 4.2, we may
write svi

D .˛i;1; e1; ˛i;2; e2; : : : / in �.G;S/, where ˛i;j is a Q–edge path of length
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less than F . Let n.i/ be such that some vertex of ˛i;n.i/ is d . Since the vi are distinct
and the length of each ˛i;j is less than F , the sequence of integers fn.1/; n.2/; : : : g is
unbounded. But then the initial vertex of en.i/ (on sgQ � .e1; e2; : : : /) is �.d/. This
is impossible since sgQ � .e1; e2; : : : / is proper, and (i) is proved.

Part (ii) follows immediately from the fact that �.sw/D s�.w/ is a proper map.

By Lemma 4.2, if two distinct cosets g1Q and g2Q of G are connected by an edge in
�.G;S/, then they are of Hausdorff distance at most F . Choose M such that if two
vertices of Q in �.G;S/ are within 2F C 1 of one another, then their Q–distance is
at most M . Let P be the set of all S –relations in G of length at most 2F C 1CM .
Let z� be �.G;S/.P /.

Lemma 4.5 [19, Lemma 2] At each vertex v of �.G;S/ there exists a Q–ray qv ,
such that for any finite subcomplex C in �.G;S/ there are only finitely many vertices
v such that qv meets C .

For each S –relation r of G , consider the K–word rK obtained by eliminating from
r , the Q–letters (and their inverses). If v is a vertex of �.G;S/ and ˛ the edge
path loop corresponding to r at v , then �.˛/ (in ƒ.S;Q;G// has labeling rK . Let
zƒ.S;Q;G/ be the 2–complex obtained from ƒ.S;Q;G/ by attaching a 2–cell to each
loop �r (with label rK ) where r is a loop of �.G;S/ of length at most 2F CM C 1

(only one 2–cell for a given such loop in ƒ.S;Q;G/). Then zƒ.S;Q;G/ is locally
finite and there is a natural map z�W z�.G;S/! zƒ.S;Q;G/ extending � and respecting
the action of G .

Lemma 4.6 If k 2 K˙ labels an edge of z� from v to w and r D .e1; e2; e3; : : : /

is a Q–ray at v , then r is properly homotopic relfvg to k � .f1; f2; : : : /, where
.f1; f2; : : : / is a Q–ray at w , by a homotopy H whose image is a subset of

StSt2FCMC1.Im.r/; z�/;

and the image of z� ıH is a subset of the finite complex St.z�.k//.

Proof Let vi be the terminal vertex of ei . Let v0 D v , w0 D w , ˛0 be the empty
path. For each i � 1, Lemma 4.2 implies there is a Q–edge path ˛i of length less
than F at vi so that .˛i ; k/ ends at wi 2 kQ. Note that in z� the distance from wi

to wiC1 is at most 2F C 1. For i � 1, let fi be a Q–edge path in z� of length at
most M from wi�1 to wi . The loop .˛i ; k; fiC1; k

�1˛�1
iC1

; e�1
iC1

/ has length at most
2F C 1CM and so bounds a 2–cell of z� . Hence .e1; e2; : : : / is properly homotopic
to k � .f1; f2; : : :/ by a homotopy H with image in St2FC1CM .Im.r//; z�/. As each
˛i and each fi is a Q–word, z� ıH has image in St.z�.k//.
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Recall, for each vertex v2 z� , sv is a .Q;F /–approximate lift of s�.v/ (see Lemma 4.4).

Lemma 4.7 Suppose D is a finite subcomplex of z� . Then there exists a finite complex
E1.D/� z� such that if bD .e1; e2; e3; : : : / is a Q–ray at v with image in z��E1.D/,
then b is properly homotopic relfvg to sv by a homotopy in z� �D .

Proof Let LD 2FCMC1 (the constant of Lemma 4.6). There are only finitely many
vertices w 2 zƒ such that the edge path rays sw of Lemma 4.4 intersect St.z�.D//, non-
trivially. Call these vertices y1;y2; : : : ;yl . Since each syi

is proper, there are integers
Ji such that each edge of the ray syi

following the J th
i edge is in zƒ� St.z�.D//. Let

J be the maximum Ji for i D 1; 2; : : : ; l . By Lemma 4.4, if w is any vertex of z� and
e is the j th edge of sw for j > FJ , then z�.e/D d (or a vertex of d ) for d the k th

edge of s�.w/ for some k > J . By the definition of J , d does not intersect St.z�.D//
and so z�.e/ does not intersect St.z�.D//. In particular:

.�/ If w is any vertex of z� and e is the j th –edge of sw for j > FJ , then z�.e/�
zƒ� St.z�D/.

Let E1.D/ be a compact subcomplex of z� such that StFJL.D/ � E1.D/ and such
that E1.D/ contains the finite set of vertices v in z� such that sv intersects StFJL.D/.
Assume b and v satisfy the hypothesis of the lemma. The edge path ray sv (in
z� � StFJL.D/) has the form .˛0; c1; ˛1; c2; : : : /, where ˛i is a Q–path of length
less than F and ci is a K–edge. Here sv is a .Q;F /–approximate lift of s�.v/ D

.c0
1
; c0

2
; : : : / (where c0i has the same label as ci ).

Let vi ; wi be the initial and terminal vertices of ci , respectively. Let b0 be the Q–
edge path ray .˛�1

0
; b/. By Lemma 4.6, b0 is properly homotopic relfv1g to c1 � b1 ,

where b1 is a Q–ray at w1 , by a proper homotopy H1 with image in StL.Im.b0//.
In particular, b1 has image in z� � St.FJ�1/L.D/. Again by Lemma 4.6, .˛�1

1 ; b1/ is
properly homotopic relfv2g to c2 � b2 , where b2 is a Q–edge path ray, by a proper
homotopy H2 with image in

StL.Im.b1//� z� � St.FJ�2/L.D/:

Iterating the above process, the Q–ray .˛�1
j ; bj / is properly homotopic relfvjC1g

to cjC1 � bjC1 , where bjC1 is a Q–ray, by a proper homotopy HjC1 with image
in StL.Im.bj //. Let H be the homotopy of b to sv obtained by patching together
these Hi . For i � FJ , Hi has image in z� �D . By Lemma 4.6, z� ıHj has image
in St.z�.cj //. By .�/, if j > FJ , then z�.cj / misses St.z�.D//. So St.z�.cj // misses
z�.D/. For all positive integers j , Hj misses D and H misses D .
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It remains to show that H is a proper. Let C � z� be a finite subcomplex. Since
z�.sv/ is proper in zƒ, there exists an integer R such that if j >R, then z�.cj / misses
St.z�.C //. As z� ıHj has image in St.z�.cj //, Hj misses C when j >R. Since only
finitely many of the proper homotopies Hj have image that intersect an arbitrary finite
subcomplex C , H is proper.

Lemma 4.8 Suppose D � z� is compact. There exists a compact set E2.D/ � z�

such that if e is an edge in z� �E2.D/ from v to w , then the Q–ray qv is properly
homotopic to e � qw relfvg by a proper homotopy in z� �D .

Proof Again let L D 2F CM C 1 (the constant of Lemma 4.6). Let E2.D/ be a
compact subcomplex of z� containing StL.E1.D// and the finite set of vertices x

such that qx intersects StL.E1.D//. If e 2K˙1 , then by Lemma 4.6, qv is properly
homotopic to e �ˇ relfvg, where ˇ is a Q–ray at w and this homotopy has image in
StL.Im.qv//. In particular, ˇ avoids E1.D/. By Lemma 4.7, ˇ and qw are properly
homotopic relfwg to sw by proper homotopies in z��D . Combining these homotopies
gives the result.

If e 2 Q˙1 , then Lemma 4.7 implies qv and e � qw are both properly homotopic
rel.v/ to sv by a proper homotopy in z��D . Combining homotopies gives the desired
homotopy.

Lemma 4.9 Suppose s D .s1; s2; s3; : : : / is an edge path ray at a vertex v in z� , then
s is properly homotopic to qv relfvg.

Proof Choose a sequence of compact subcomplexes fCig
1
iD1

such that
S1

iD1 Ci D
z� ,

Ci is contained in the interior of CiC1 , and such that CiC1 contains E2.Ci/. Let vi

be the end point of si . Define H W Œ0;1/� Œ0;1/! z� as follows: If R is the largest
integer such that the edge si misses CR , then by definition of CR , qvi�1

is properly
homotopic relfvi�1g to si � qvi

by a proper homotopy Hi , missing CR�1 . Define H

on Œi � 1; i �� Œ0;1/ to be Hi .

In order to check that H is proper, it suffices to show that for any compact set C � z�

only finitely many Hj intersect C . This follows from the fact that C � Ci for some
index i . Since s is proper, there is an integer W .i/ such that for all j �Wi , sj lies in
z� �CiC1 . So, Hj avoids C and therefore H is proper.

This completes the semistability part of our main theorem.

If H is a group and �W H ! H is a monomorphism the group with presentation
ht;H W t�1ht for all h 2H i is called the ascending HNN extension of H by � and
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is denoted H�� . The main theorem of Mihalik [18] states that if H is a finitely
presented group and �W H !H a monomorphism, then the ascending HNN extension
H�� is one-ended and semistable at 1. Consider a general finite presentation of
the form ht; h1; : : : ; hn W r1; : : : ; rn; t

�1h1t D w1; : : : ; t
�1hnt D wni, where ri and

wi are words in fh˙1
1
; : : : ; h˙1

n g for all i . The group G of this presentation is the
ascending HNN extension H�� , where H is generated by fh1; : : : ; hng and � is the
monomorphism �W H ! H , �.hi/D wi for all i . While G is finitely presented it
would seem rare that the finitely generated group H would be finitely presented. It has
long been suggested that ascending HNN extensions of this form may be a good place
to search for non-semistable at 1, finitely presented groups. Conner and Mihalik [3]
show that if H is finitely generated and the image of the monomorphism �W H !H

has finite index in H , then H is commensurated in H�� . As a direct consequence of
this result and our main theorem we have:

Corollary 4.10 Suppose H is a finitely generated group and �W H!H is a monomor-
phism such that �.H / has finite index in H . Then, the ascending HNN extension
H�� is semistable at 1.

5 A theorem of Lew

Our goal in this section is to give an alternate proof of a theorem of V M Lew [15].

Theorem 5.1 (V M Lew) Suppose H is an infinite, finitely generated, subnormal
subgroup of the finitely generated group G and H has infinite index in G . Then G is
one-ended and semistable at 1.

Proof Suppose k > 0 and H D N0 C N1 C N2 C � � � C Nk D G is a subnormal
series. For k 2 f1; 2g and G finitely presented, semistability was proved by Mihalik
[17; 19]. Those proofs easily generalize to the finitely generated case. The result that G
is one-ended can be concluded from results of Cohen [2] or Stallings [27]. A geometric
proof of this fact was given by Lee and Raymond [14]. We may assume that the index
ŒG WNk�1�D1, as G is semistable at 1 if and only if any subgroup of finite index
is semistable at 1.

Let HD fh1; h2; : : : ; hng be a finite generating set for H . Now, G has generating set
S � fh1; h2; : : : ; hn; a1; a2; : : : ; am; k1; k2; : : : ; ktg where, under the projection map
�W G!G=Nk�1 , �.k1/; : : : ; �.kt / generate G=Nk�1 and the set fh1; : : : ; hn; a1; : : : ;

amg is a subset of Nk�1 . Let KD fk1; : : : ; ktg. We also assume that conjugates of
the hi by the kj are among a1; : : : ; am with the corresponding defining relations, say
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kihj ki
�1
� aij , and k�1

i hj ki � bij for i D 1; 2; : : : ; t and j D 1; 2; : : : ; n so that
aij ; bij 2 fa1; a2; : : : ; amg. Define Q to be this set of conjugation relations,

QD
˚
kihj k�1

i a�1
ij ; k

�1
i hj kib

�1
ij W i D 1; : : : ; t and j D 1; : : : ; n

	
:

Let A be the subgroup of Nk�1 generated by A D fh1; : : : ; hn; a1; : : : ; amg. Let
Ai DNi \A for i 2 f1; : : : ; n� 2g. Then the subnormal sequence

H DA0 GA1 G � � � GAk�2 GA

has length k�1. The proof splits naturally into the two cases of whether or not H has
finite index in A. In the case where H has finite index in A, we give a straightforward
argument showing that H is commensurated in G and by our main theorem G is
semistable at 1. Note that if k D 1, this is the only case (since A � N0 DH ). So
when the proof of the first case is concluded, we are in position to apply an induction
argument (with base case in hand) to the remaining case.

Suppose H has finite index in A. Each point of �.A;A/ is within a bounded distance
of aH for any a 2 A. In particular the Hausdorff distance between H and aH is
bounded.

If k 2K˙1 and z 2 kH , then z D kh for some h 2H . Note that khk�1 2A (it is a
product of the a˙1

ij or b˙1
ij ). Since H has finite index in A, this point is close to H .

As each point of kH is close to H , left multiplying by k�1 shows that each point of
H is close to k�1H for all k 2K˙1 . We have that H is commensurated in G . The
conditions of our main theorem are satisfied and so in the case H has finite index in
A, G is semistable at 1.

Now suppose H has infinite index in A. The subnormal sequence H D N0 GN1 G

� � � GNk�1 GG has length k . Case 1 (or Mihalik’s theorem [17]) shows that if k D 1,
then G is semistable at 1. Inductively, we assume that if G0 is finitely generated and
has a subnormal sequence of H 0 D N 0

0
GN 0

1
G � � � GN 0

k�2
GG0 of length k � 1 such

that H 0 is finitely generated and has infinite index in G0 , then G0 is semistable at 1.

In our case, H has infinite index in A, and the k � 1 length subnormal series H D

A0 GA1 G � � � GAk�2 GA implies that A is semistable at 1. Hence we may choose a
finite set of A–relations P so that �.A;A/.P / is semistable. By using Lemma 3.7 or
Remark 3.8, we may assume that if r and s are A–rays at v in �.A;A/.P /, then r and
s are properly homotopic relfvg in �.A;A/.P /. In this case, denote �.G;S/.P [Q/ by
z� (where Q is the set of conjugation relations defined at the beginning of this proof).

If v 2G (so v is a vertex of z� ) and Cv is a compact subcomplex of v�.A;A/.P /� z� ,
there is a compact subcomplex Dv of v�.A;A/.P / such that if r and s are edge
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path rays at w 2 v�.A;A/.P /�Dv , then r and s are properly homotopic relfvg by a
proper homotopy whose image does not intersect Cv . Hence, if C is a compact
subcomplex of z� and we let Cv D C \ v�.A;A/.P / (for the finite set of vertices v
such C \ v�.A;A/.P / ¤ ∅) and let D D [Dv , then any two A–rays r and s at
w 2 v�.A;A/.P /�D are properly homotopic relfwg in z� �C .

We use H–rays rv , as defined in Lemma 4.5.

Choose a sequence of compact subcomplexes fCig
1
iD1

of z� satisfying the following
conditions:

(1)
1[

iD1

Ci D
z� .

(2) St.Ci/ is contained in the interior of CiC1 , and the finite set of vertices v such
that rv intersects Ci is a subset of CiC1 .

(3) If r and s are A–rays both based at a vertex v with images missing Ci , then r

and s are properly homotopic relfvg by a proper homotopy missing Ci�1 .

For convenience define Ci D ∅ for i < 1 and observe that conditions .1/, .2/, and
.3/ remain valid for all Ci . The next lemma concludes the proof of the second case
and the theorem.

Lemma 5.2 If v is a vertex of z� , and s D .s1; s2; : : : / is an S –ray at v , then s is
properly homotopic to rv relfvg.

Proof Assume that s has consecutive vertices v D v0; v1; : : : . By construction, if
vj 2 Ci �Ci�1 , then rvj

avoids Ci�1 . Assume j is the largest integer such that Cj

avoids si . We will show rvi�1
is properly homotopic to si � rvi

relfvi�1g by a proper
homotopy Hi with image avoiding Cj�2 .

If si 2A˙1 , this is clear by condition .3/ with Hi avoiding Cj�1 . If si 2K˙1 , then
si � rvi

is properly homotopic relfvi�1g to an A–ray, tvi�1
(using only 2–cells arising

from Q), and this homotopy has image in St.Im.si � rvi
// � z� �Cj�1 . Since tvi�1

and rvi�1
are A–rays with images avoiding Cj�1 , condition (3) on the sets Ci gives a

proper homotopy between them relfvi�1g, whose image avoids Cj�2 . Patch these two
proper homotopies together to obtain Hi .

Let H be the homotopy relfvg of s to rv , obtained by patching together the homotopies
Hi . We need to check that H is proper. Let C � z� be compact. Choose an index j

such that C � Cj . Since s is a proper edge path to infinity, choose an index N such
that all edges after the N th edge of s avoid CjC2 . Then for all i >N , Hi avoids Cj ,
so H is proper.

This concludes the proof of the theorem.
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6 Simple connectivity at 1

Recall, a connected locally finite CW–complex X is simply connected at 1 if for
each compact set C in X there is a compact set D in X such that loops in X �D

are homotopically trivial in X �C . A group G is simply connected at 1 if given
some (equivalently any; see Lee and Raymond [14, Theorem 3]) finite complex X

with �1.X /DG , the universal cover of X is simply connected at 1.

If G is a group and H a subgroup of G there are various notions for the number of
ends of the pair .G;H /. Geoghegan [7, Chapter 14] gives a good account of these
notions. In particular, the idea of the number of filtered ends of the pair .G;H / is
developed and compared to the standard number of ends of a pair. In any case, the
number of filtered ends of the pair .G;H / is greater than or equal to the number of
standard ends of the pair. [7, Proposition 14.5.9] shows that if H is a normal subgroup
of G , then the number of ends of G=H , the standard number of ends of .G;H / and the
number of filtered ends of .G;H / are all the same. Conner and Mihalik [3] show that if
G is a group with finite generating set S and Q is a finitely generated commensurated
subgroup of G , then the number of filtered ends of .G;Q/ equals the number of ends
of ƒ.S;Q;G/.

Theorem 6.1 Suppose G is a finitely presented group with finite generating set S

and Q is a finitely presented, infinite commensurated subgroup of infinite index in G .
If Q or ƒ.S;Q;G/ is one-ended, then G is simply connected at 1.

Proof Suppose PDhq1; : : : ; qa; k1; : : : ; kb WRi is a finite presentation of the group G

such that the qi generate the infinite commensurated subgroup Q, no ki is an element
of Q, and R contains relations R0 such that hq1; : : : ; qa WR

0i is a finite presentation
of Q. Assume that Q has infinite index in G . Let X be the Cayley 2–complex of P ,
zX the universal cover for X and zX .Q; v/ � zX the copy of the universal cover of

the Cayley 2–complex for hq1; : : : ; qa WR
0i containing v . Let KD fk1; : : : ; kbg and

QD fq1; : : : qag.

Let N1 be an integer such that if cosets gQ and hQ of G are connected by an edge
in zX , then the Hausdorff distance between gQ and hQ in zX is at most N1 . For each
relator r 2 R, let r 0 be the word obtained from r by removing Q letters. For each
such (non-trivial) r 0 and edge loop in ƒ.S;Q;G/ with edge label r 0 , attach a 2–cell
and call the resulting locally finite 2–complex yƒ.S;Q;G/. Note that �.S;G/ is the
1–skeleton of zX . Extend the map �W �.S;G/!ƒ.S;Q;G/ (see Proposition 2.2) to
�W zX ! yƒ.S;Q;G/. Let C be a finite subcomplex of zX . Let d1 � 1 be an integer
such that for each vertex v of �.C /, there is a K–edge path in yƒ.S;Q;G/ of length
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at most d1 from v to a vertex of yƒ.S;Q;G/� �.C /. In particular, for each vertex v
of zX , there is an edge path at v of length at most N1d1 and with end point w such
that zX .Q; w/\C D∅. For each k 2 fk1; : : : ; kbg assume that Q and kQ are within
Hausdorff distance N1 . Choose N2 so that if q1 and q2 are two Q–vertices of zX with
the edge path distance in zX between q1 and q2 less than or equal to 2N1C 1, then
the edge path distance between q1 and q2 in zX .Q; q1/ is at most N2 . In particular,
there is a Q–edge path between q1 and q2 of length at most N2 . Choose N3 such
that if ˛ is an edge path loop at � 2 zX of length at most 2N1CN2C 1, then ˛ is
homotopically trivial in StN3.�/.

Lemma 6.2 Suppose G is a finitely presented group, Q is a finitely presented, infinite
commensurated subgroup of infinite index in G , P is a presentation of G as above,
and X is the Cayley 2–complex of P . If ˛ is a Q–loop in zX , with image in zX �
Std1N1N3.C /, then ˛ is homotopically trivial in zX �C .

Proof We may assume � is the initial vertex of ˛ . If zX .Q; v/\C D∅, then as ˛
is homotopically trivial in zX .Q; v/, we are finished. If zX .Q; v/\C ¤ ∅, there is
an edge path ˇ D .b1; : : : ; bk/ at v with k �N1d1 and with end point w such that
zX .Q; w/\C D∅. Let v� v0; : : : ; vk �w be the consecutive vertices of ˛ . For each

vertex x of ˛ , there is an edge path of length at most N1 from x to a vertex of zX .Q; v1/

(if b1 is a Q–edge, this path is trivial) and hence ˛ is homotopic relf0; 1g to a loop
.b1; ˛1; b

�1
1
/, where ˛1 is a Q–loop in zX .Q; b1/, by a homotopy in StN3.Im.˛//.

Inductively, ˛ is freely homotopic to a Q–loop ˛k at the end point of ˇ , by a homotopy
in StkN3.Im.˛//� zX �C . As zX .Q; w/\C D∅ and Im.˛k/� zX .Q; w/, ˛k (and
hence ˛ ) is homotopically trivial in zX �C .

Case 1 Q is one-ended There are finitely many vertices w1; : : : ; wn 2
zX such that

zX .Q; wi/\ St.d1N1C1/N3.C / ¤ ∅. As zX .Q; wi/ is one-ended, there is a compact
subcomplex D of zX such that St.d1N1C1/N3.C /�D and for all i 2 f1; : : : ; ng and
vertices

x;y 2 zX .Q; wi/�D;

x and y can be joined by a Q–edge path in zX .Q; vi/ � St.d1N1C1/N3.C /. Now,
suppose ˛ is an arbitrary loop in zX �D with initial vertex v . Choose L a positive
integer such that if q1 and q2 are vertices of zX .Q;�/ that are of distance � N1j˛j

apart in zX , then they are of distance �L in zX .Q;�/. Choose E such that any edge
path loop � at a vertex x of zX , of length � N1j˛j CL, is homotopically trivial in
StE.x/. Let ˇ1 be a Q–path in zX .Q; v/� St.d1N1C1/N3.C / from v to a point

w 2 zX �
�
StE.C /[ Std1N1N3CL.C /[ StN1j˛j.D/

�
:
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Write the edge path ˛ as .e1; : : : ; em/ with consecutive vertices v D v0; : : : ; vm .
As w 2 zX .Q; v/, there is an edge path �1 of length at most N1 from w D w1 to
w2 2

zX .Q; v2/. Let �2 be an edge path of length at most N1 from w2 to w3 2

zX .Q; v3/. Inductively, �m is an edge path of length at most N1 from wm to a vertex
wmC1 2

zX .Q; v/. (Note that �i may be taken as the trivial path if ei is a Q–edge.)
As the edge path .�1; : : : ; �m/ has length at most N1j˛j, there is a Q–path � from
wmC1 to w of length at most L. By the definition of E , the loop � � .�1; : : : ; �m; �/

at w is homotopically trivial in zX �C . Hence, it suffices to show that ˛ is freely
homotopic to � in zX �C . (See Figure 1.)

ˇ0m

ˇm

ˇ0mC1

ˇ1

ˇ2

ˇ0
2

ˇ0
3

em

v1

e1

v2

e2

v3

b1
�1

 1

wm

�m

wmC1

�

w1 D w

�1 D �1

w2

�2

w3

�

C

Std1N1N3.C /

St.d1N1C1/N3.C /

D

Figure 1

First note that each vertex of .�1; : : : ; �m/ is in zX �D , since the vertex w 2 zX �
StN1j˛j.D/. Next, write ˇ1 as the edge path .b1; : : : ; bs/. Let �0 D e1 and let �i be
an edge path of length at most N1 from the end point of bi to a point of zX .Q; v2/.
Let  i be a Q–edge path of length at most N2 from the end point of �i�1 to the
end point of �i . (Choose �s D �1 .) Then the loop .�i�1;  i ; �

�1
i ; b�1

i / has length

Algebraic & Geometric Topology, Volume 14 (2014)



3528 Gregory R Conner and Michael L Mihalik

at most 2N1CN2C 1 and is homotopically trivial by a homotopy in the N3 –star of
the initial point of bi . String together these homotopies, and we have that the edge
path he�1

1
; ˇ1; �1/ is homotopic relf0; 1g to the Q–edge path ˇ0

2
� . 1; : : : ;  m/ by

a homotopy with image in

StN3.Im.ˇ1//� zX � Std1N1N3.C /:

By the definition of D , there is an Q–edge path ˇ2 with the same end points as ˇ0
2

and with image in zX � St.d1N1C1/N3.C /. By Lemma 6.2, ˇ2 and ˇ02 are homotopic
relf0; 1g by a homotopy in zX � C . Continue inductively until ˇm and ˇ0mC1 are
defined. Since

w 2 zX � Std1N1N3CL.C /;

the path � (of length at most L) has image in zX � Std1N1N3.C /. By Lemma 6.2, the
Q–loop .ˇ0

mC1
; �; ˇ�1

1
/ is homotopically trivial in zX �C .

Case 2 ƒ.S; Q; G / is one-ended The letters N1 , N2 and N3 remain as in Case 1
and we recycle letters used for any other constant.

Given a finite subcomplex C of zX , consider

�.C /� yƒ.S;Q;G/:

Choose D a finite subgraph of ƒ.S;Q;G/ such that any two vertices of yƒ.S;Q;G/�
D can be connected by a path in yƒ.S;Q;G/� �.StN3.C //. For each vertex v of
D choose a path x̨v from v to a vertex of yƒ.S;Q;G/ � D . If v is a vertex of
yƒ.S;Q;G/�D , let x̨v be the trivial path. Let N be the length of the longest path
x̨v for v 2D . If v is a vertex of zX such that �.v/ 2D , let ˛v be an edge path of the
form .ˇ1; : : : ; ˇm/ where each ˇi has length at most N1 , and �.ˇi/ has the same end
points as the i th edge of x̨�.v/ (so j˛vj �N1N ). In analogy with previous terminology,
we call ˛v an N1 –approximate lift of x̨�.v/ . If �.v/ 62D , let ˛v be the trivial path.

Choose an integer M such that if v and w are adjacent vertices of St.D/, then there is
an edge path x̨v;w in yƒ.S;Q;G/��.StStN3.C // of length at most M from the end
point of x̨v to the end point of x̨w . Choose an integer B such that if ˇ is a zX –edge
path of length at most .2N CM /N1C1 connecting � (the vertex of zX corresponding
to the identity element of G ) to a vertex q 2Q, then there is a Q–edge path of length
at most B connecting � to q . Choose an integer A such that if ˇ is an edge path
loop at � of length at most .2N CM /N1CBC 1, then ˇ is homotopically trivial
in StA.�/.

We next show that if ˇ is an edge path loop in zX �StA.C /, then ˇ is freely homotopic
to a loop y̌ by a homotopy in zX �C , where y̌ can be chosen so that for each vertex v
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of y̌, �.v/ 62 �.StStN3.C //. If e is a directed edge of zX or ƒ.S;Q;G/, with initial
point a and terminal point b , then let Œa; b� represent this edge. Suppose ˇ is the edge
path .d1; d2; : : : ; dn/ with consecutive vertices b1; : : : ; bnC1 . If (cyclically) neither
�.bi/ nor �.biC1/ is in D , then let y̌i be the single edge di . Otherwise, �.bi/ and
�.biC1/ belong to St.D/. In this case, consider the edge path ıi � .˛�1

bi
; di ; ˛biC1

/

of zX .

If �.bi/¤ �.biC1/, the edge path x̨�.bi /;�.biC1/ joins the end points of �.ıi/ and has
length at most M . Let ˛i be an N1 –approximate lift of x̨�.bi /;�.biC1/ to the initial
point of ıi (otherwise, let ˛i be the trivial path at the initial point of ıi ).

Note that the end point of ˛i and the end point of ıi belong to the same left Q–coset.
As the length of .˛�1

i ; ıi/ is at most .2N CM /N1C 1, there is a Q–edge path i

of length at most B from the initial point to the end point of .˛�1
i ; ıi/. The loop

.�1
i ; ˛�1

i ; ıi/ has length � 2N CM CBC1 and so is homotopically trivial in zX �C

(by the definition of A). Let y̌i D .˛i ; i/, for i 2 f1; : : : ; ng. Let y̌ be the loop
. y̌1; : : : ; y̌n/. Combining homotopies shows that ˇ is freely homotopic to y̌ by a
homotopy in zX�C . As �.˛i/ avoids �.StStN3.C //, �. y̌/ avoids �.StStN3.C //. (See
Figure 2.)

˛i

i

˛bi

˛biC1

bi

biC1

C

StA.C / ˇ

y̌

Figure 2
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We conclude the proof of Case 2 by showing y̌ is homotopically trivial in zX �C . The
proof is analogous to the closing argument of Case 1. Let v be the initial vertex of y̌.
Choose L a positive integer such that if q1 and q2 are vertices of zX .Q;�/ that are of
distance at most N1j

y̌j apart in zX , then they are of distance at most L in zX .Q;�/.
Choose E such that any edge path loop � at a vertex x of zX and of length at most
N1j
y̌jCL is homotopically trivial in StE.x/. Let ˇ1 be a Q–path from v to a point

w 2 zX � StE.C /. Write the edge path y̌ as .e1; : : : ; em/ with consecutive vertices
v � v1; v2; : : : ; vm . As w 2 zX .Q; v/ there is an edge path �1 of length at most N1

from w to w2 2
zX .Q; v2/. Let �2 be an edge path of length at most N1 from w2 to

w3 2
zX .Q; v3/. Inductively, �m is an edge path of length at most N1 from wm to

a vertex wmC1 2
zX .Q; v/. (Note that �i may be taken as the trivial path if ei is a

Q–edge.) As the edge path .�1; : : : �m/ begins and ends in zX .Q; v/ and has length
at most N1j

y̌j, there is a Q–path � from wmC1 to w of length at most L. By the
definition of E , the loop � � .�1; : : : ; �m; �/ at w is homotopically trivial in zX �C .
Hence, it suffices to show that ˛ is freely homotopic to � in zX �C .

y̌

vm
em

v D v1

e1

v2

e2

v3

ˇm

ˇmC1

ˇ1

ˇ2

C

�1

w

ƒ

wmC1

�m

wm

Figure 3

Each vertex b of ˇ1 is such that �.v/D �.b/ 2 yƒ.S;Q;G/� �.StStN3.C // and so
the image of ˇ1 avoids StN3.C /. As in Case 1, this implies that the path .e�1

1
; ˇ1; �1/

is homotopic relf0; 1g to a Q–edge path ˇ2 by a homotopy with image in

StN3.Im.ˇ1//� zX �C:

Each vertex b of ˇ2 is such that �.b/ D �.v2/ 2 yƒ.S;Q;G/� �.StStN3.C // and
so the image of ˇ2 avoids StN3.C /. The path .e�1

2 ; ˇ2; �2/ is homotopic relf0; 1g to
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a Q–edge path ˇ3 by a homotopy with image in StN3.Im.ˇ2//� zX �C . Continue
inductively until ˇmC1 is defined (as a Q–path from v to wmC1 ). As

�.v/ 2 yƒ.S;Q;G/� �.StStN3.C //;

the Q–loop .ˇ1; �
�1; ˇ�1

mC1/ has image in zX .Q; v/ � zX �C , and so is homotopi-
cally trivial in zX � C . (See Figure 3.) Combining homotopies produces a null
homotopy of y̌ with image in zX �C .
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