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A quadratic refinement of the
Grothendieck–Lefschetz–Verdier trace formula

MARC HOYOIS

We prove a trace formula in stable motivic homotopy theory over a general base
scheme, equating the trace of an endomorphism of a smooth proper scheme with
the “Euler characteristic integral” of a certain cohomotopy class over its scheme of
fixed points. When the base is a field and the fixed points are étale, we compute
this integral in terms of Morel’s identification of the ring of endomorphisms of the
motivic sphere spectrum with the Grothendieck–Witt ring. In particular, we show
that the Euler characteristic of an étale algebra corresponds to the class of its trace
form in the Grothendieck–Witt ring.

14F42; 47H10, 11E81

1 Introduction and examples

Let k be a field, X a smooth proper k–scheme and f W X !X a k–morphism. The
Grothendieck–Lefschetz–Verdier trace formula, originally proved by Grothendieck
in [11, Exposé III, Section 4], identifies the trace of the action of f on the `–adic
cohomology of X with the integral of a cohomology class on the scheme of fixed
points Xf. In the special case where Xf is étale over k , the trace formula takes the
following simple form:

Theorem 1.1 Let k be a field, X a smooth and proper k–scheme and f W X !X a
k–morphism with étale fixed points. ThenX

i

.�1/i tr
�
f �jH i

` .X/
�
D

X
x2Xf

Œ�.x/ W k�;

where X is the pullback of X to an algebraic closure of k , ` ¤ char k is a prime
number and H�

`
.�/ is `–adic cohomology with coefficients in Q` .

The trace formula is thus an equality between two integers associated with f . The
starting point of the present article is the observation that the left-hand side of the
trace formula has a canonical refinement to an element of the Grothendieck–Witt ring
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3604 Marc Hoyois

GW.k/ of the field k . To explain why, we need to recall some facts from stable motivic
homotopy theory.

Let Smk be the category of smooth separated schemes of finite type over k . Consider
the functor

C `� W Smk! bD.Spec kKet;Z`/

that sends pW X ! Spec k to the `–adic sheaf pŠpŠZ` on Spec kKet (here bD.BKet;Z`/
is the 1–categorical limit over n � 0 of the derived categories D.BKet;Z=`

n/). By
standard properties of `–adic cohomology and the definition of the stable motivic
homotopy category SH.k/, there is a canonical factorization

Smk bD.Spec kKet;Z`/

SH.k/

†1
C

C `�

R`

where R` is a symmetric monoidal functor. The functor †1
C

satisfies a generalized
version of Poincaré duality, which asserts in particular that, if X is smooth and proper
over k , †1

C
X is strongly dualizable. Thus, if f W X ! X is a k–morphism, †1

C
f

has a trace tr.†1
C
f / which is an endomorphism of the motivic sphere spectrum

1k 2SH.k/. Since symmetric monoidal functors commute with traces, R`.tr.†1C f //D
tr.R`.†1C f // D tr.C `�f /; and it is clear that tr.C `�f / equals the alternating sum
appearing in Theorem 1.1.

Recall that GW.k/ is the group completion of the semiring of isomorphism classes
of nondegenerate symmetric bilinear forms over k (or equivalently of nondegenerate
quadratic forms if char k ¤ 2). Associating to such a form the rank of its underlying
vector space defines a ring homomorphism

rkW GW.k/! Z

which is an isomorphism if and only if k is quadratically closed. Given u 2 k� , we
denote by hui the class of the symmetric bilinear form k � k ! k , .a; b/ 7! uab .
These basic classes generate GW.k/ as a group. A fundamental result of Morel1 states
that there is a natural isomorphism

(1-2) GW.k/' End.1k/:

1This result is proved by Morel in [20] under the assumption that k is perfect. However, Morel actually
computes the Nisnevich sheaf on Smk associated with the presheaf X 7! Œ†1

C
X; 1k � , and combining this

stronger result with the base change arguments from [13, Appendix A] allows us to remove the assumption
on k .
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To describe Morel’s isomorphism, we first consider a more general construction. Sup-
pose that V is a vector bundle over a scheme X and that �W V

�
! V is a linear

automorphism of V . The vector bundle V induces a self-equivalence †V of SH.X/,
which can be informally described as “smash product with the sphere bundle of V ”.
The composition

1X '†�V†V 1X
†�

��!†�V†V 1X ' 1X

is an automorphism of the motivic sphere spectrum over X , which we denote by h�i.2

The isomorphism (1-2) is then given by sending hui to hui, viewing u 2 k� as a linear
automorphism of A1

k
.

Putting all these facts together, we can identify tr.†1
C
f / with a lift of the integer

tr.C `�f / to GW.k/. It is then natural to ask whether the right-hand side of the
Grothendieck–Lefschetz–Verdier trace formula also lifts to GW.k/, ie whether there
exist fixed-point indices i.f; x/ 2 GW.k/, of rank Œ�.x/ W k�, such that

tr.†1C f /D
X
x2Xf

i.f; x/:

An affirmative answer is given in Corollary 1.10 below.3 It is a consequence of some
more general results which we now discuss.

We consider an arbitrary base scheme B . If X is a smooth B –scheme such that
†1
C
X 2 SH.B/ is strongly dualizable, eg a smooth proper B –scheme, we write

�.X/D tr.†1C idX / 2 End.1B/

for its Euler characteristic in SH.B/. More generally, if ! is an endomorphism of 1X
in SH.X/, we define Z

X

! d�D tr.p]!/ 2 End.1B/;

where pW X ! B is the structure map and p]W SH.X/! SH.B/ is left adjoint to the
base change functor p�. Note that, by this adjunction, an endomorphism of 1X is the
same thing as a morphism †1

C
X ! 1B in SH.B/. The map ! 7!

R
X ! d� is thus an

End.1B/–linear functional on the algebra of 1B –valued functions on †1
C
X , such thatR

X 1 d�D �.X/.

We can now state the main result of this paper. Let X be a smooth B–scheme,
f W X ! X a B –morphism and i W Xf ,! X the inclusion of the scheme of fixed
points of f . We say that f has regular fixed points if:

2This construction is of course the algebro-geometric analog of the J–homomorphism.
3The existence of such a fixed-point formula was mentioned by Morel in [19, Remark 4.12(2)].
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� Xf is smooth over B .

� The endomorphism of the conormal sheaf Ni induced by id � i�.df / is an
isomorphism.

Theorem 1.3 Let X be a smooth and proper B–scheme and f W X ! X a B –
morphism with regular fixed points. Then

tr.†1C f /D
Z
Xf
h�i d�;

where � is the automorphism of the conormal sheaf of the immersion i W Xf ,! X

induced by id� i�.df /.

Theorem 1.3 will be proved in Section 4. The following special case is worth recording:

Corollary 1.4 Let X be a smooth and proper B –scheme and f W X ! X a B –
morphism. If tr.†1

C
f /¤ 0, then f has a fixed point.

Along the way we will observe that �.X/ D 0 if �X=B has a nonvanishing global
section (see Remark 4.7):

Theorem 1.5 Let X be a smooth and proper B –scheme. If Œ�X=B �D ŒOX �C ŒE � in
K0.X/ for some locally free sheaf E , then

R
X ! d�D 0 for all ! 2 End.1X /.

The properness hypothesis in Theorems 1.3 and 1.5 is essential: there are many smooth
B –schemes that become strongly dualizable in SH.B/ without being proper (eg the
complement of a smooth closed subscheme in a smooth proper scheme) but these
theorems clearly do not extend to all such schemes.

Before giving examples, we make some general remarks on the notion of regular
fixed points appearing in Theorem 1.3. Let �X � X �B X be the diagonal and let
�f �X �B X be the graph of f . It is clear that we have the following implications:

�f and �X intersect transversely

+

f has regular fixed points

+

�f and �X intersect cleanly

(The last simply means that Xf is smooth over B .) Moreover, both implications are
strict: the transposition on X�BX has regular fixed points if and only if multiplication
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A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula 3607

by 2 on �X=B is invertible. Even in the case of a transverse intersection, we will see
in Example 1.7 below that

R
Xf h�i d� can depend on � . In particular, the trace of

†1
C
f is not determined by the derived fixed points of f , since the latter coincide with

the underived fixed points when the intersection of �f and �X is transverse. This is a
significant difference between stable motivic homotopy and `–adic cohomology.

Example 1.6 (Fixed points of Frobenius) Let q be a prime power, X a smooth and
proper Fq –scheme and f W X !X the Frobenius endomorphism. Then

Xf'
a
X.Fq/

Spec Fq

and df D 0. By Theorem 1.3, tr.†1
C
f / 2 GW.Fq/ is simply the Euler characteristic

of Xf , which is the number of Fq –rational points of X by additivity of the trace.

Example 1.7 (The Euler characteristic of P1 ) We can compute the Euler character-
istic of projective space Pn by induction on n using the cofiber sequence

†1C Pn�1!†1C Pn! SAn

and the additivity of the trace (see May [17]). We find that

�.Pn/D

�
�.Pn�1/C 1 if n is even,
�.Pn�1/C � if n is odd,

where � 2End.1B/ is the desuspension of the transposition SA1^SA1 'SA1^SA1.4

If B is the spectrum of a field k , it is well-known that � corresponds to h�1i 2GW.k/.
As a consistency test, we use Theorem 1.3 to show that the Euler characteristic of
the projective line P1 over k is the hyperbolic form h1;�1i 2 GW.k/. Since an
odd-degree extension of finite fields induces an isomorphism on Grothendieck–Witt
rings, we may assume without loss of generality that k has at least 4 elements. Choose
a 2 k� with a2¤ 1 and let f be the automorphism of P1 given by Œx W y� 7! Œa2x W y�.
A homotopy between the matrices�

1 0

0 1

�
and

�
a 0

0 a�1

�
in SL2.k/ induces a homotopy between idP1 and f , so that �.P1/D tr.†1

C
f /. We

have
.P1/f D f0;1g

4Here we use the following fact: if C is a symmetric monoidal category and L2C is ˝–invertible, then
�.L/ 2 End.1/ corresponds to the transposition under the canonical isomorphism End.L˝L/' End.1/ .
We leave the elementary proof to the reader.
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(a disjoint union of two copies of Spec.k/), df0 D a2 , and df1 D a�2 . Thus, the
endomorphism id� i�.df / of i�.�P1/ ' Ni is multiplication by 1� a2 at 0 and
by 1� a�2 at 1. By Theorem 1.3, the trace of f is h1� a2; 1� a�2i D h1;�1i, as
expected.

Example 1.8 (Relations in the endomorphism ring of the motivic sphere spectrum)
The fact that tr.†1

C
f / is an invariant of the homotopy class of f produces interesting

relations in the ring End.1B/. For example, if k is a field and a0; : : : ; an 2 k� are
nC 1 distinct elements whose product is 1, then the endomorphism Œx0 W : : : W xn� 7!

Œa0x0 W : : : W anxn� of Pn over k is homotopic to the identity. It follows that its trace,
which by Theorem 1.3 is the class

nX
iD0

Y
j¤i

h1� aj =ai i 2 GW.k/;

is independent of the choice of the elements ai and equals the Euler characteristic
of Pn .

Our proofs of Theorems 1.3 and 1.5 remain valid if the functor B 7! SH.B/ is
replaced by any motivic triangulated category in the sense of Cisinski–Déglise [5,
Definition 2.4.45]. On the other hand, by the 1–categorical universality of SH.B/ for
fixed B established by Robalo [24], our theorems admit the following generalizations.
Let C be a pointed symmetric monoidal presentable 1–category and F W SmB ! C a
symmetric monoidal functor satisfying A1–homotopy invariance, Nisnevish descent,
and P1–stability (ie the cofiber of F.1/! F.P1B/ is ˝–invertible). Then F sends
smooth proper B –schemes to strongly dualizable objects and Theorems 1.3 and 1.5
are true with †1

C
replaced by F . For example, when B is a field and F D C `� ,

Theorem 1.3 recovers Theorem 1.1.

Finally, in Section 5, we will prove:

Theorem 1.9 Let k � L be a finite separable field extension, V a finite-dimensional
vector space over L and � an automorphism of V . Then, modulo the isomor-
phism (1-2), Z

L

h�i d�D TrL=khdet.�/i:

Here TrL=k W GW.L/! GW.k/ is the Scharlau transfer associated with the field trace
TrL=k W L ! k , ie it sends a symmetric bilinear form bW V � V ! L to the form
TrL=k ıbW V �V ! k of rank ŒL W k� rk.b/. Note that we allow k to have characteristic
2 or to be imperfect. Combining Theorems 1.3 and 1.9 gives the following result, which
is a motivic version of the Lefschetz–Hopf theorem; see Dold [7, VII, Proposition 6.6]:
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Corollary 1.10 Let k be a field, X a smooth and proper k–scheme and f W X !X a
k–morphism with étale fixed points. Then

tr.†1C f /D
X
x2Xf

Tr�.x/=khdet.id� dfx/i:

Example 1.11 (The Euler characteristic of P1 , continued) Let k be a field such that
p
�1 … k . Consider the endomorphism f W P1! P1 given by Œx W y� 7! Œ�y W x�. It

is again induced by a matrix in SL2.k/ and hence, as in Example 1.7, is homotopic to
idP1 . We have

.P1/f ' Spec k.i/;

where i is a square root of �1. Moreover, dfi is multiplication by i�2 D �1. The
fixed-point index of f at i is therefore

Trk.i/=kh1� .�1/i D h4;�4i D h1;�1i 2 GW.k/:

As predicted by Corollary 1.10, this coincides with the Euler characteristic of P1

computed in Example 1.7.

Conventions The following conventions are in force throughout, except in Appen-
dix C:

� All schemes are assumed to be coherent, ie quasi-compact and quasi-separated.
� Smooth and étale morphisms are assumed to be separated and of finite type.

See however Remark C.14.

Acknowledgements I thank Marc Levine and Jean Fasel for their interest in this
project and for stimulating conversations about it. The first version of this paper
was written while I was visiting the department of mathematics at the University of
Duisburg–Essen and I would like to thank everyone there for their hospitality. Finally,
I am immensely grateful to the anonymous referee whose report lead to considerable
improvements to the original manuscript.

2 Review of the formalism of six operations

To prove Theorem 1.3, we will use the formalism of six operations (f �, f� , fŠ , f Š, ^
and Hom) in stable motivic homotopy theory developed by Ayoub in [3] and revisited
by Cisinski and Déglise in [5]. In this section we briefly review the main features of
this formalism and we introduce several pieces of notation that will be used throughout
this paper.
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Remark 2.1 We do not insist that schemes be noetherian and of finite Krull dimension.
We explain in Appendix C how to extend motivic homotopy theory and the formalism
of six operations to arbitrary schemes.

For a scheme B , we denote by SH.B/ the closed symmetric monoidal triangulated
category of motivic spectra parametrized by B . The monoidal unit, monoidal product,
monoidal symmetry and internal hom in SH.B/ will be denoted by 1B , ^, � and Hom,
respectively. We first give a description of the six operations which is independent of
the specifics of the category SH.B/.

To any morphism of schemes f W Y !X is associated an adjunction

f �W SH.X/� SH.Y / Wf�;

where f � is symmetric monoidal. If f is smooth, f � also admits a left adjoint
denoted by f] . If f is separated of finite type, there is an exceptional adjunction

fŠW SH.Y /� SH.X/ Wf Š

and a natural transformation fŠ ! f� which is an isomorphism when f is proper.
Each of the assignments f 7! f �; f�; fŠ; f

Š; f] is part of a 2–functor on the category
of schemes. In particular, every commutative triangle of schemes gives rise to various
connection isomorphisms, such as .gf /�'f �g� , satisfying cocyle conditions. We will
denote by c any isomorphism which is a composition of such connection isomorphisms.

To any cartesian square of schemes

(2-2)

� �

� �

g

q

f

p

are associated several exchange transformations, such as

Ex��W f
�p�! q�g

�;

Ex�ŠW g�pŠ! qŠf �;

Ex�] W g]q
�
! p�f]:

To a morphism f are also associated several projectors, such as

Pr��W f�E ^F ! f�.E ^f
�F /;

Pr�ŠW f �E ^f ŠF ! f Š.E ^F /;

Pr�] W f].E ^f
�F /! f]E ^F:

Algebraic & Geometric Topology, Volume 14 (2014)
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Each projector comes in left and right variants (for which we use the same symbol)
related to one another via the monoidal symmetry � . There are also projectors involving
the internal hom, but we will not need them. A crucial fact is that the transformations
Ex�Š , ExŠ� and Pr�Š are always isomorphisms. As we will see below, this generalizes the
proper base change theorem (Ex�� is an isomorphism when p is proper), the smooth
base change theorem (Ex�� is an isomorphism when f is smooth) and the projection
formula (Pr�� is an isomorphism when f is proper).

If i W Z ,!X is a closed immersion with open complement j W U ,!X , we have two
localization cofiber sequences

jŠj
Š �
�! id

�
�! i�i

�;

iŠi
Š �
�! id

�
�! j�j

�:

Moreover, the functors i� ' iŠ , jŠ and j� are fully faithful. We will denote by
� W i Š! i� the natural transformation

i Š ' id�i Š
Ex�Š
���! idŠi� ' i�:

If pW V !X is a vector bundle with zero section s , the adjunction

p]s�W SH.X/� SH.X/ WsŠp�

is a self-equivalence of SH.X/, which we will denote by †V a †�V. The functors
†V and †�V will be called Thom transformations, or the V–suspension and V–
desuspension functors, respectively. They are compatible with each of the opera-
tions f � , f� , f] , fŠ and f Š in the following sense: there are canonical isomor-
phisms f �†V '†f

�V f � , †V f� ' f�†f
�V etc. They are also compatible with

the monoidal structure, in the sense that †VE ^F '†V .E ^F / and †�VE ^F '
†�V .E ^F /. In particular,

†V '†V 1X ^ .�/ and †�V '†�V 1X ^ .�/:

If M is a locally free sheaf of finite rank on X , we will also denote by †M and †�M

the functors †V .M/ and †�V .M/ , where V .M/ D Spec.Sym.M// is the vector
bundle on X whose sheaf of sections is dual to M.

If f is smooth, there are canonical isomorphisms

fŠ ' f]†
��f and f Š '†�f f �;

where �f is the sheaf of relative differentials of f . In particular, if f is étale, fŠ' f]
and f Š ' f � . At this point we see that the operations f] , †V and †�V, which are
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not listed among the six operations, are expressible in terms of the latter as

f] ' fŠ†
�f ; †V ' s�pŠ; †�V ' sŠp�:

The Thom transformations are functorial in monomorphisms of vector bundles (ie
epimorphisms of locally free sheaves) as follows. Given a triangle

W V

X

�

q p

where p and q are vector bundles with zero sections s and t and where � exhibits W
as a subbundle of V , we define †� W †W !†V to be the composition

t�qŠ
c
' t��ŠpŠ

�
! t���pŠ

c
' s�pŠ

and we let †�� W †�V !†�W be its mate, which is given by the same composition
with stars and shrieks exchanged. In particular, a linear automorphism �W V

�
! V

induces an automorphism †�V†� of the identity functor on SH.X/, which we denote
by h�i.

For any short exact sequence

0!W ! V ! U ! 0

of vector bundles on X , the exchange transformation Ex�Š provides an isomorphism

(2-3) †V '†W†U

which is natural with respect to monomorphisms of short exact sequence. The properties
of these isomorphisms established in [3, Section 1.5] show that the association V 7!†V

induces a morphism of Picard groupoids

†.�/W K.X/! Aut.SH.X//

from the K–theory groupoid of X to the groupoid of self-equivalences of SH.X/.
In particular, the map � 7! h�i factors through a group homomorphism K1.X/!

Aut.idSH.X//.

Given a commutative triangle

(2-4)
Z X

B

s

q
p

Algebraic & Geometric Topology, Volume 14 (2014)
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where p and q are smooth and s is a closed immersion, we obtain a sequence of
isomorphisms

sŠp� ' sŠ†��ppŠ '†�s
�.�p/sŠpŠ

c
'†�s

�.�p/qŠ '†�s
�.�p/†�qq� '†�Nsq�;

where the last isomorphism is induced by the short exact sequence

0!Ns! s�.�p/
ds
�!�q! 0:

The isomorphism sŠp� '†�Nsq� and its mate p]s� ' q]†Ns are called the purity
isomorphisms and are denoted by …. Although the purity isomorphism appears a
posteriori as a consequence of the formalism of six operations, it must be constructed
“by hand” in both the approach of Ayoub and that of Cisinski–Déglise. We discuss
the purity isomorphism further in Appendix A (where in particular we show that the
constructions of Ayoub and of Cisinski–Déglise are equivalent).

Of course, all this data satisfies many coherence properties, of which an exhaustive list
cannot easily be written down. Let us mention here one kind of coherence that we will
use often. If f is a smooth morphism (resp a proper morphism), then we may want
to replace, in a given expression, occurrences of fŠ and f Š by f]†��f and †�f f �

(resp. occurrences of fŠ by f� ). Such replacements yield canonically isomorphic
expressions and, under these canonical isomorphisms, any exchange transformation is
transformed into another exchange transformation and any projector is transformed into
another projector. For example, consider the cartesian square (2-2) and the exchange
isomorphism Ex�Š W p

�fŠ
�
! gŠq

� . If f is smooth, then q�.�f /'�g and the square

p�fŠ gŠp
�

p�f]†
��f g]q

�†��f

Ex�Š

'

Ex�
]

'

commutes, while the square

p�fŠ gŠp
�

p�f� g�q
�

Ex�Š

Ex��

Algebraic & Geometric Topology, Volume 14 (2014)
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commutes for any f (the vertical maps being isomorphisms when f is proper).
Similarly, when f or p is smooth, the exchange transformation Ex�Š transforms into
the isomorphism ExŠŠ or Ex�� .

Let us now describe these functors more explicitly. For a scheme B , we denote by SmB
the category of smooth B –schemes and by H.�/.B/ the (pointed) motivic homotopy
category of B (we refer to Appendix C for the definitions in the generality considered
here). We denote by

†1C W H.B/! SH.B/;

†1W H�.B/! SH.B/

the canonical symmetric monoidal functors, called stabilization functors. If X 2 SmB
and U ,!X is an open subscheme, X=U is the quotient of the presheaf represented
by X by the presheaf represented by U , viewed as an object of H�.B/. If V is a
vector bundle on X 2 SmB , we denote its Thom space by

ThX .V /D
V

V �X
2 H�.B/:

If V is a vector bundle over B itself, we also write SV for ThB.V / or for its stabi-
lization †1ThB.V /.

For f W Y ! X , the functor f �W SH.X/! SH.Y / is induced by the base change
functor SmX ! SmY , so that

f �†1CU '†
1
C .U �X Y /:

If f is smooth, the functor f] is similarly induced by the forgetful functor SmY!SmX .
In particular, if pW X ! B is smooth, then

†1CX ' p]p
�1B ' pŠpŠ1B 2 SH.B/:

If i W Z ,!B is a closed immersion with open complement j W U ,!B and if X 2SmB ,
the localization cofiber sequence

j]†
1
CXU !†1CX ! i�†

1
CXZ

shows that
i�†
1
CXZ '†

1.X=XU /:

In particular, if V is a vector bundle on X , then †V 1X'SV and hence †V 'SV^.�/.
If pW X ! B is smooth and V is a vector bundle on X , we deduce that

†1ThX .V /' p]†
V p�1B ' pŠ†V pŠ1B 2 SH.B/:

Algebraic & Geometric Topology, Volume 14 (2014)
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Consider a commutative triangle

Y X

B

f

q p

where p and q are smooth. Under the isomorphisms †1
C
X ' pŠp

Š1B and †1
C
Y '

qŠq
Š1B , the map †1

C
f in SH.B/ is given by the composition

qŠq
Š1B

c
' pŠfŠf

ŠpŠ1B
�
! pŠp

Š1B

(this is [4, Lemme C.2]). More generally, suppose that V and W are vector bundles
on X and Y and let �W W ,! f �V be a monomorphism of vector bundles. Then
the map of Thom spectra †1ThY .W /!†1ThX .V / induced by � is given by the
composition

qŠ†
W qŠ1B

†�

��!qŠ†
f �V qŠ1B

c
'pŠfŠ†

f �V f ŠpŠ1B'pŠ†V fŠf ŠpŠ1B
�
!pŠ†

V pŠ1B :

This is easily proved by considering the localization cofiber sequences defining ThY .W /
and ThX .V / and applying the previous result to the maps W �Y !V �X and W !V .

Finally, given the triangle (2-4) with p and q smooth and s a closed immersion,
the purity isomorphism …W p]s�1X ' q]†Ns1X is the stabilization of the unstable
isomorphism

X

X �Z
' ThZ.V .Ns//

in H�.B/ constructed by Morel and Voevodsky [21, Theorem 2.23].

3 Duality in stable motivic homotopy theory

Fix a base scheme B . Hu–Kriz [14, Appendix A] and Riou [23, Section 2] proved
that smooth and projective B–schemes become strongly dualizable in SH.B/. We
will follow the latter reference and deduce this duality as an easy consequence of the
formalism of six operations. We will then provide alternative descriptions of this duality
that we will need in Section 4 and Section 5.

Recall that an object A in a symmetric monoidal category .C;˝; 1/ is strongly dualiz-
able if there exists an object A_ and morphisms

coevW 1! A˝A_ and evW A_˝A! 1
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such that both compositions

A' 1˝A A˝A_˝A A˝ 1' A;
coev˝ id id˝ ev

A_ ' A_˝ 1 A_˝A˝A_ 1˝A_ ' A_
id˝ coev ev˝ id

are the identity. When it exists, this data is unique up to a unique isomorphism. If objects
A and A_ are given, then a choice of coevaluation and evaluation maps exhibiting
A_ as a strong dual of A is equivalent to a choice of adjunction between A_˝ .�/
and A˝ .�/. The counit and unit of such an adjunction determine the evaluation and
the coevaluation, respectively. If A 2 C is strongly dualizable and f W A! A is an
endomorphism, then the trace of f is the endomorphism of the unit 1 given by the
composition

1
coev
��! A˝A_

f˝id
���! A˝A_

�
' A_˝A

ev
�! 1:

Throughout this section we fix a smooth and proper morphism pW X ! B . Recall that
the projector

Pr�Š W pŠ.E ^p
�F /! pŠE ^F

is always an isomorphism. In particular, for E D p�1B , we obtain a natural isomor-
phism

(3-1) pŠp
�
' pŠp

�1B ^ .�/:

The projectors

p�p
ŠE ^F

Pr��
��! p�.p

ŠE ^p�F /
Pr�Š
��! p�p

Š.E ^F /

are also isomorphisms, the first because p is proper and the second because p is
smooth. For E D 1B we obtain an isomorphism

(3-2) p�p
Š
' p�p

Š1B ^ .�/:

Since pŠp� is left adjoint to p�p
Š , we obtain from (3-1) and (3-2) an adjunction

between pŠp�1B ^ .�/ and p�pŠ1B ^ .�/, ie, a strong duality between pŠp�1B and
p�p

Š1B '†1CX . Under the isomorphisms (3-1) and (3-2), the coevaluation map
1B ! p�p

Š1B ^pŠp�1B is the composition of the units

(3-3) 1B
�
! p�p

�1B
�
! p�p

ŠpŠp
�1B ;

and the evaluation map pŠp�1B ^p�pŠ1B ! 1B is the composition of the counits

(3-4) pŠp
�p�p

Š1B
�
! pŠp

Š1B
�
! 1B :
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Remark 3.5 Composing the coevaluation with the symmetry and the first half of (3-4),
we obtain a map 1B ! pŠp

Š1B '†1CX in SH.B/. This is the motivic analog of the
Becker–Gottlieb transfer in stable parametrized homotopy theory. It is easy to see that
integration against the Euler characteristic is equivalent to precomposition with this
transfer.

Consider the cartesian square

X �B X X

X B

�2

�1

p

p

and denote by ıW X ,!X �B X the diagonal immersion. The key result which will be
the basis for the proof of the main theorem in Section 4 is the following description of
the trace of an endomorphism:

Proposition 3.6 Let f W X ! X be a B –morphism and let ! 2 End.1X /. Then
tr.p]! ı†1C f /W 1B ! 1B is given by the following composition evaluated at 1B :

id p�p
� p��1ŠıŠı

Š� Š2p
� p��1Š�

Š
2p
�

pŠ�2��
�
1p

Š pŠ�2�ı�ı
���1p

Š pŠp
Š id

� ' �

ExŠ� Ex�Š

� ' �

Here the first loop is

p��1Š�
Š
2p
�
c
' p�fŠ�1Š.f � id/Š� Š2p

�
c
' p��1Š.f � id/Š.f � id/Š� Š2p

� �
�! p��1Š�

Š
2p
�

and the second loop is

pŠ ' 1X ^pŠ.�/
!^id
���! 1X ^pŠ.�/' pŠ:

Proof By the base change theorem, the exchange transformations

ExŠŠW �1Š�
Š
2! pŠpŠ and Ex��W p

�p�! �2��
�
1

are invertible. Lemma B.1 shows that, under these isomorphisms, the first row of
the given composition is the coevaluation (3-3) and the second row is the evalua-
tion (3-4). Lemma B.2 shows that the vertical arrow is inverse to the symmetry
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p�p
Š1B ^pŠp�1B ' pŠp�1B ^p�pŠ1B . It remains to prove that, under the isomor-

phism †1
C
X ' p�p

Š1B , the first loop corresponds to †1
C
f ^ id and the second loop

corresponds to id^p]! .

Recall from Section 2 that †1
C
f is the following composition evaluated at 1B :

p�p
Š c
' p�fŠf

ŠpŠ
�
! p�p

Š:

Under the projection isomorphism (3-2), †1
C
f ^ id is therefore the composition

(3-7) p�p
ŠpŠp

�
' p�fŠf

ŠpŠpŠp
� �
�! p�p

ŠpŠp
�:

Applying Lemma B.3 to the pair of cartesian squares

X �B X X �B X X

X X B

f � id

�1

f

�2

�1

p

p

we deduce that (3-7) becomes the first loop under the exchange isomorphisms ExŠŠ .

Denote also by ! the image of ! under the obvious map End.1X /!End.idSH.X//, so
that the second loop is the natural transformation pŠ�2���1!p

Š . By the compatibility
of Thom transformations with the monoidal structure, the transformation ! commutes
with any Thom transformation. The square

p]p
� p]†

��p†�pp� p�p
Š

p]p
� p]†

��p†�pp� p�p
Š

' '

' '

p]!p
� p�!p

Š

is therefore commutative. Under the natural isomorphism (3-1), id^p]! then becomes
pŠp
�p�!p

Š , which is the given loop modulo the exchange isomorphism Ex�� .

In the rest of this section we will give a more explicit description of this duality in
a special case which will be used in Section 5. In what follows we often omit the
stabilization functor †1 from the notation and implicitly view pointed presheaves
on SmB as objects of SH.B/ (we do not mean to say that the maps we consider are
defined unstably, although this will sometimes be the case).
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Definition 3.8 A Euclidean embedding of X is a triple .s; V; ˇ/ where:

� s is a closed immersion X ,!E in SmB .

� V is a vector bundle on B .

� ˇ is a path from s�.V .�E=B// to p�.V / in the K–theory groupoid K.X/.

The proof of [28, Lemma 2.8] shows that X admits a Euclidean embedding if it is
a closed subscheme of a projective bundle over B . Note also that, if X admits a
Euclidean embedding .s; V; ˇ/, then it has one where the closed immersion is the zero
section of a vector bundle, namely X ,! V .Ns/. In addition to being smooth and
proper, we now assume that X admits a Euclidean embedding .s; V; ˇ/, which we fix
once and for all. The path ˇ in K.X/ determines an isomorphism

†s
�.�E/ '†p

�.V /

of self-equivalences of SH.X/. The short exact sequence

0!Ns! s�.�E /
ds
�!�X ! 0

of locally free sheaves on X then induces an isomorphism

†��X '†�p
�.V /†Ns ;

whence
pŠ ' p]†

��X ' p]†
�p�.V /†Ns '†�V p]†

Ns :

Finally, by the purity isomorphism, we obtain

(3-9) pŠ1X '†�V
E

E �X
:

It is worth emphasizing that the isomorphism (3-9) depends not only on s and V but
also on ˇ .

Under the isomorphism (3-9), the coevaluation map (3-3) is the V–desuspension of a
composition

SV �!
E

E �X
�!XC ^

E

E �X
;

and the evaluation map (3-4) is the V–desuspension of a composition

E

E �X
^XC �!†VXC �! SV :

We would like to describe these four maps more explicitly.

Let OpW E!B be the structure map of E and define O�1 and O�2 by the cartesian square:
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E �X X

E B

O�2

O�1

Op

p

Let also t W X ,!E�X be the composition .s� id/ıı . We will define an isomorphism
of short exact sequences:

(3-10)

0 Ns s�.�E / �X 0

0 ı�.Ns�id/ Nt Nı 0

' � ' � �2'

The isomorphism � is the composition

Ns ' ı���1 .Ns/' ı�.Ns�id/:

The isomorphism �2W �X
�
!Nı is defined so that the composition

�X
�2
�!Nı ,! ı�.�X�X /

is ı�.d�1/� ı�.d�2/. In other words, �2 is the composition of the canonical isomor-
phisms

�p ' ı
���1 .�p/' ı

�.��2/'Nı :

It is then clear that the composite equivalence

id' ıŠ� Š2 ' ı
Š†��2��2 '†

ı�.��2 /ıŠ��2 '†
�pıŠ��2

…
'†�p�Nıı���2 '†

�p�Nı

is induced by �2 . Finally, the isomorphism � is defined so that the composition

s�.�E /
�
!Nt ,! t�.�E�X /

is t�.d O�1/� t�.d.s O�2//. It is easy to check that the diagram (3-10) commutes.

Proposition 3.11 Let .sW X ,!E; V; ˇ/ be a Euclidean embedding giving rise to the
isomorphism (3-9).

(1) Suppose that sW X ,!E is the zero section of a vector bundle r W E!X . Then
the map p�p�1B

�
! p�p

ŠpŠp
�1B ' p�pŠ1B ^pŠp�1B is the V–desuspension

of the composition

E

E �X

.r;id/
���!

X �E

X � .E �X/
'XC ^

E

E �X
:
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(2) The map pŠp�1B ^p�pŠ1B ' pŠp�p�pŠ1B
�
! pŠp

Š1B is the V–desuspension
of the composition

E

E �X
^XC '

E �X

.E �X/�X
!

E �X

.E �X/��X

…
' ThX .V .Nt //'†

VXC;

where the last isomorphism is induced by �W Nt ' s
�.�E / and by ˇ .

Proof (1) We must check that the two outer compositions in the following diagram
coincide:

p�†
EpŠ1B p��1ŠıŠı

Š� Š2†
EpŠ1B p�†

EpŠ1B

p��1Š�
Š
2†

EpŠ1B p�p
ŠpŠ†

EpŠ1B p�p
Š1B ^pŠ†EpŠ1B

p]�1]�
�
2†

Ep�1B p]p
�p]†

Ep�1B p]p
�1B ^p]†Ep�1B

ThX .E/ ThX�X .��2E/ XC ^ThX .E/

' '

'

� �

.r; id/

ExŠŠ Pr�Š

Ex�] Pr�]

'

' ' '

' '

id

The three vertical isomorphisms in the second row are obtained by getting rid of shrieks
and rearranging the resulting Thom transformations. Note that .r; id/W ThX .E/ !
ThX�X .��2E/ is the map induced by the diagonal ıW X ! X �B X and the canon-
ical isomorphism ı���2E ' E . We saw in Section 2 that the left-hand rectangle is
commutative. The commutativity of the top square is Lemma B.1(2). Finally, one
verifies easily that the lower rectangle is the stabilization of a commutative rectangle
of presheaves of pointed sets on SmB . Thus, the whole diagram is commutative.

(2) We first express the given composition in terms of the six operations. We have

E �X

.E �X/�X
' p] O�2].s � id/���1p

�1B and
E �X

.E �X/��X
' p] O�2]t�p

�1B ;

and the map
E �X

.E �X/�X
!

E �X

.E �X/��X

collapsing the complement of the diagonal is given by

(3-12) p] O�2].s � id/���1p
�1B

�
! p] O�2].s � id/�ı�ı���1p

�1B ' p] O�2]t�p�1B ;
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as one can see at the level of pointed presheaves on SmB . Consider the following
diagram:

(3-13)

E

E �X
^XC Op]s�p

�1B ^p]p�1B p]†
Nsp�1B ^p]p�1B

p]p
�
Op]s�p

�1B p]p
�p]†

Nsp�1B

p] O�2] O�
�
1 s�p

�1B p]�2]�
�
1†

Nsp�1B

E �X

.E �X/�X
p] O�2].s � id/���1p

�1B p]�2]†
��1Ns��1p

�1B

' …

…

' …

'

Pr�
]

Ex�
]

Ex��

Pr�
]

Ex�
]

'

The left rectangle is seen to be commutative at the level of pointed presheaves and the
top right square commutes by naturality of Pr�

]
. The lower right rectangle becomes

an instance of the compatibility of Ex�� with compositions of cartesian squares after
replacing lower sharps by lower stars. It remains to prove that the composition

p]p
�p�†

s�.�E/p� ' p]p
�p]†

Nsp�
(3-13)
���!p] O�2].s � id/���1p

�

(3-12)
���!p] O�2]t�p

�
…
' p]†

Ntp�
�
' p]†

s�.�E/p�

is equal to the counit � (when evaluated at 1B ). One finds these two maps as the
boundary of the following diagram, after applying p].�/p� :

p�p�†
s�.�E/ �2��

�
1†

s�.�E/ �2�ı�†
s�.�E/ †s

�.�E/

p�p]†
Ns �2]�

�
1†

Ns �2]ı�†
Ns

�2]†
Ns�id��1 �2]†

Ns�idı� †Nt

O�2].s � id/���1 O�2].s � id/�ı� O�2]t�

Ex�� � '

' ' '

Ex�
]

�

' '

�

… …

� '

…

�

�
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We claim that this diagram commutes. The topmost face commutes by Lemma B.1(1)
and the commutativity of the four small squares is clear. The large rectangle may be
decomposed as follows:

�2�ı�†
s�.�E/ †s

�.�E/

�2]ı�†
Ns �2�ı�†

�X†Ns †�X†Ns

�2]†
Ns�idı� �2]ı�†

ı�.Ns�id/ †Nı†ı
�.Ns�id/

O�2].s � id/�ı� O�2]t� †Nt

'

'
' '

' '

' �2 �

' …

… '

' …

�

The rightmost face commutes by (3-10) and the middle rectangle commutes by the
definitions of � and �2 . Finally, the bottom rectangle commutes by the compatibility
of the purity isomorphisms with the composition of the closed immersions ı and s� id
[3, Section 1.6.4].

The counit �W pŠpŠ1B ! 1B is of course the map †1
C
pW †1

C
X !†1

C
B D 1B . The

unit �W 1B!p�p
�1B is more difficult to describe explicitly and we do not know how to

do it in any kind of generality.5 However, we can at least give a useful characterization
of �:

Proposition 3.14 Let .sW X ,!E; V; ˇ/ be a Euclidean embedding and let

�W SV !
E

E �X

be a map in SH.B/. The following conditions are equivalent:

(1) Under the isomorphism (3-9), � is the V–suspension of the unit �W 1B !
p�p

�1B .

(2) The composition

†VXC
�^id
���!

E

E �X
^XC!†VXC

p
! SV ;

where the second map is given in Proposition 3.11(2), is equal to †V†1
C
p .

5If X is a closed subscheme of a projective bundle over B , it is possible that the unstable map
SV !E=.E�X/ constructed by Voevodsky in [28, Theorem 2.11(2)] (for a specific Euclidean embedding
.s; V; ˇ/) stabilizes to � , but we did not check it.
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Proof Since the unit �W 1B ! p�p
�1B is dual to �W pŠpŠ1B ! 1B , it is determined

by the equation ev ı .� ^ id/ D � . The equivalence of (1) and (2) is now clear by
Proposition 3.11(2).

In Section 5, we will define a map � satisfying the condition of Proposition 3.14(2)
when B is a field and X is a finite separable extension of B . As a result, the duality
will be completely explicit in this case.

4 Proof of the main theorem

We prove Theorem 1.3. As a warm-up, assume that X admits a Euclidean embedding
.s; V; ˇ/, chosen such that s is the zero section of a vector bundle r W E ! X . By
Proposition 3.11, the trace of †1

C
f is then the V–desuspension of a composition

SV !
E

E �X

.r;id/
���!

X �E

X � .E �X/

f �id
���!

X �E

X � .E �X/

�
'

E �X

.E �X/�X

!
E �X

.E �X/��X
'†VXC! SV ;

where � is the monoidal symmetry. Ignoring the first and last arrows, it is clear that the
remaining composition factors through E=.E �Xf / and hence that tr.†1

C
f /D 0 if

Xf is empty (compare this argument with the proof of the Lefschetz–Hopf theorem by
Dold and Puppe in [8]). It is possible to prove the more precise statement of Theorem 1.3
in this explicit setting, but, to treat the general case where X is proper over an arbitrary
base, we will now switch to the formalism of six operations. Throughout this section
we use the following notation:

Xf X

B ,

i

p
q

X �B X X

X B ,

�2

�1

p

p

Xf �B X
f Xf

Xf B .

�2

�1

q

q

Let also ıW X ,! X �B X and � W Xf ,! Xf �B X
f be the diagonal maps and let

 D .f � id/ ı ı be the graph of f . For the moment we do not assume that f has
regular fixed points.
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Recall from Proposition 3.6 that tr.†1
C
f / can be expressed as a certain composition

id
�
! p�p

�
! pŠp

Š �
! id

evaluated at 1B , where the transformation p�p�! pŠp
Š is the solid boundary of the

following commutative diagram:

(4-1)

p�p
� p��1ŠıŠı

Š� Š2p
� p��1Š�

Š
2p
�

p��1Š.f�id/ŠıŠıŠ.f�id/Š� Š2p
� p��1Š.f�id/Š.f�id/Š� Š2p

�

p��1ŠŠ
Š� Š2p

� p��1Š�
Š
2p
�

pŠ�2�Š
Š��1p

Š pŠ�2��
�
1p

Š

pŠ�2�Š
Šı�ı

���1p
Š pŠ�2�ı�ı

���1p
Š

pŠi�i
ŠpŠ pŠ

Šı�p
Š pŠp

Š

' �

�

�

�

�

'

ExŠ�

' '

' �

' ' �

� �

' '

The map at the bottom left is the exchange transformation ExŠ�W i�i
Š!  Šı� associated

with the cartesian square

(4-2)

Xf X

X X �B X ,

i

i



ı

and it is an isomorphism by the base change theorem. The dashed arrows in (4-1) can
then be defined so as to make the diagram commute. Lemma B.4 shows that the bottom
row in (4-1) is the counit �W pŠi�i ŠpŠ! pŠp

Š . Note that this diagram already proves
Corollary 1.4: if Xf is empty, then i�i Š is the zero functor and hence tr.†1

C
f /D 0.
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The dashed arrow p�p
�! pŠi�i

ŠpŠ in (4-1) is the composition of the right column
and the bottom row in the following diagram:

(4-3)

p�i�i
�p� p�p

�

p��1ŠıŠi�i
�ıŠ� Š2p

� p��1ŠıŠı
Š� Š2p

�

p��1ŠŠi�i
� Š� Š2p

� p��1ŠŠ
Š� Š2p

�

pŠ�2�Ši�i
� Š��1p

Š pŠ�2�Š
Š��1p

Š

pŠ�2�Ši�i
Šı���1p

Š pŠ�2�Š
Šı�ı

���1p
Š

pŠi�i
ŠpŠ pŠ

Šı�p
Š.

�

�

�

�

'

ExŠ�

'

ExŠ�

'

'

'

Ex�Š

'

'

'

'

�

'

The commutativity of each square in this diagram is clear, except that of the fourth
square which follows from the definition of the exchange transformation ExŠ� in terms
of Ex�Š (see [3, Section 1.2.4]).

The left column of (4-3) is a natural transformation q�q�! qŠq
Š which, by (4-1) and

Lemma B.4, makes the following diagram commute:

(4-4)

p�p
� pŠp

Š

id id.

q�q
� qŠq

Š(4-3)

� �

�

�

�

�

Assume now that f has regular fixed points, ie that q is smooth and that id� i�.df /
restricts to an automorphism �W Ni

�
!Ni . By Proposition 3.6,

R
Xf h�i d� is a certain

composition

(4-5) id
�
! q�q

�
! qŠq

Š �
! id
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evaluated at 1B . In view of (4-4), to conclude the proof of Theorem 1.3, it will suffice
to show that the segment q�q�! qŠq

Š in (4-5) is equal to the left column of (4-3).
This segment (as given by Proposition 3.6) is the composition of the top row and the
right vertical arrows in the following diagram:

(4-6)

q�q
� q��1Š�Š�

Š�Š2q
� q��1Š�

Š
2q
�

qŠ�2��Š�
Š��1q

Š qŠ�2��
�
1q
Š

qŠ�2��Š�
Š��1q

Š qŠ�2��
�
1q
Š

qŠ�2��Š�
Š���

���1q
Š qŠ�2����

���1q
Š

qŠ�2��Š�
���1q

Š qŠq
Š

'

'

'h�i

�

'�

' �

' h�i

�

'

�

�

�

�

'

'

�

where h�i acts after qŠ in both columns. Each square commutes by the naturality of the
given transformations, except the last square which commutes by a triangle identity for
the adjunction �� ' �Š a � Š . The triangle at the bottom left commutes by Lemma B.5.

Remark 4.7 In the diagram (4-6), one can replace h�i by any endomorphism of
1Xf and Xf itself by any smooth proper B –scheme. Theorem 1.5 follows from the
observation that the natural transformation

� W � Š��1 ! ����1

is zero if Œ�Xf �D ŒOXf �C ŒE � in K0.Xf /. Indeed, by Proposition A.4, this transfor-
mation can be identified to the transformation †�N�!†0 induced by the epimorphism
N� ! 0. Since N� is isomorphic to �Xf , this transformation factors through the
transformation †�A1 !†0 induced by the zero section of the trivial line bundle,
which is clearly zero (see for example [3, Lemme 1.6.1]).

We now compare the left column of (4-3) with the left column of (4-6). Both columns
are of the form q�.q

�! qŠ/, where the respective maps q�! qŠ are the left and right
columns of the following diagram:
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q�

i�ıŠ� Š2p
� � Š�Š2q

�

i� Š� Š2p
� � Š�Š2q

�

i� Š��1p
Š � Š��1q

Š

� Š��1q
Š

i Šı���1p
Š ����1q

Š

qŠ

'c

'Ex�Š

Ex�Š

'

Ex�Š

'

Ex�Š

'

˛

'

Ex�Š

' Ex�Š

h�i'

�

' '

' '

Here the isomorphism ˛ is defined by the commutativity of the second square. The com-
mutativity of the first square is clear. Theorem 1.3 is thus reduced to the commutativity
of the pentagon

i� Š��1p
Š � Š��1q

Š

i Šı���1p
Š ����1q

Š.

'

˛

Ex�Š

'

�

h�i

This is the heart of the proof. By transforming the stars into shrieks, this pentagon
becomes

(4-8)
†Ni�i�.�p/qŠ †��qqŠ

†i
�.Nı/�i�.�p/qŠ †N���qqŠ

'

'

h�i

and we now identify the four unlabeled arrows. By definition of ˛ , the top map in (4-8)
is induced by the short exact sequence

0!Ni ! i�.�p/
di
�!�q! 0:

Denote by �1W �X
�
!Nı the isomorphism for which the composition

Algebraic & Geometric Topology, Volume 14 (2014)



A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula 3629

�X
�1
�!Nı ,! ı�.�X�BX /

is ı�.d�2/� ı�.d�1/. The composite isomorphism

id' ı���1 '†
Nı��pıŠ� Š1 '†

Nı��p

is then induced by �1 , and similarly for the isomorphism id ' †N���q (for more
details, see the discussion of the isomorphism �2 before Proposition 3.11). Under
these trivializations, the bottom map in (4-8) is just the identity qŠ! qŠ . The vertical
maps in (4-8) can be identified using Proposition A.4. Applying Proposition A.4 to
the cartesian square (4-2) shows that the left vertical arrow in (4-8) is † where
 W i�.Nı/� Ni is the epimorphism induced by (4-2). Explicitly,  is determined
by the following diagram of short exact sequences:

i�.Nı/ i�ı�.�X�BX / i�.�X /

i��.�X�BX /

Ni i�.�X / �Xf

 

i�.d/

i�.dı/

di

di

'

Finally, applying Proposition A.4 to the pullback of � along itself shows that the right
arrow in (4-8) is †� where � is the epimorphism N� ! 0. The commutativity of (4-8)
is thereby reduced to the commutativity of the following diagram:

†Ni�i�.�X / †Ni�i�.�X / †��Xf

†i
�.Nı/�i�.�X / †0 †N���Xf

�

'

 

'

i�.�1/

'

�1

'

�

Applying †i
�.�X / , it is equivalent to check that the following diagram commutes:

†Ni †Ni †N�CNi

†i
�.Nı/ †i

�.�X / †�Xf CNi .

�

'

 

�

i�.�1/

'

'

�1'
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By the naturality of the isomorphisms (2-3), it will suffice to verify the commutativity
of the following diagram of locally free sheaves:

Ni i�.�X / �Xf

Ni i�.Nı/ N�

Ni Ni 0
id

�

i�.�1/'

 

�1'

�

This can be checked on sections as follows. Let Œx� be a section of Ni , represented
by a section x of OX vanishing on Xf . Its image in i�.�X / is i�.dx/. By the
definitions of �1 and  , we have

 .i�.�1.dx///D  .i
�Œ1˝ x� x˝ 1�/D Œx� x ıf �D �.Œx�/;

as desired. This concludes the proof of Theorem 1.3.

5 The Euler characteristic of separable field extensions

In this section we prove Theorem 1.9. When LD k , the statement of Theorem 1.9
reduces to the following lemma:

Lemma 5.1 Let V be a finite-dimensional vector space over k and let � be a linear
automorphism of V . Then h�i D hdet.�/i in End.1k/.

Proof Recall from Section 2 that h�i factors through a group homomorphism
K1.k/!Aut.1k/. The lemma then follows from the fact that the determinant induces
an isomorphism K1.k/' k

� .

In view of Lemma 5.1, the following proposition completes the proof of Theorem 1.9:

Proposition 5.2 Let k � L be a finite separable field extension. For any ! 2

End.1L/' GW.L/, Z
L

! d�D TrL=k.!/:

Proof Combine Lemmas 5.8, 5.9 and 5.10.
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Recall that, if pW X ! B is étale, there are canonical isomorphisms pŠ ' p� and
pŠ ' p] . If moreover p is finite, we therefore have a canonical isomorphism p� ' p] .

Lemma 5.3 Let pW X ! B be a finite étale morphism and let ! 2 End.1X /. ThenR
X ! d� 2 End.1B/ is the composition

1B
�
! p�1X ' p]1X

p]!
���! p]1X

�
! 1B :

Proof By Proposition 3.6,
R
X ! d� is the composition

id p�p
� p��1ŠıŠı

Š� Š2p
� p��1Š�

Š
2p
�

pŠ�2��
�
1p

Š pŠ�2�ı�ı
���1p

Š pŠp
Š id,

� ' �

ExŠ� Ex�Š

� ' �

where the loop is ! acting after pŠ . By naturality, we can move this loop to the
next-to-last position pŠpŠ . It then remains to prove that the composition p�p�! pŠp

Š

(without the loop) is the canonical isomorphism. The morphisms p , ı , �1 and �2 are
all finite étale, so we can replace everywhere upper shrieks by upper stars and lower
stars by lower shrieks. This operation transforms the exchange isomorphisms ExŠ� and
Ex�Š into the connection isomorphisms ExŠŠ and Ex�� , and we must then prove that
the following composition is the identity:

pŠp
�
' pŠ�1ŠıŠı

���2p
�
! pŠ�1Š�

�
2p
�
c
' pŠ�2Š�

�
1p
�
! pŠ�2ŠıŠı

���1p
�
' pŠp

�:

Using the coherence of the connection isomorphisms, we are reduced to proving that
the composition

ıŠı
�
' ıŠı

Š �
! id

�
! ı�ı

�
' ıŠı

�

is the identity. This is clear since ı is an open and closed immersion.

Fix a base field k . Recall that there is a canonical isomorphism SA1 ' P1
k
=1 in

H�.k/ given by the zig-zag

A1k=.A
1
k � 0/! P1k =.P

1
k � 0/ P1k =1:

Lemma 5.4 Let aW Spec k ,!A1
k

be a rational point. Then the composition

SA1
' P1k =1!

P1
k

P1
k
� a
' SNa ' SA1
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is the identity in H�.k/, where the last isomorphism is induced by the trivialization
Ok 'Na , 1 7! t � a .

Proof Suppose first that aD 0. We must then show that the composition

A1
k

A1
k
� 0
!

P1
k

P1
k
� 0
' SN0 ' SA1

is the identity, which follows from [28, Lemma 2.2]. The general case is easily reduced
to the case aD 0 by noting that the map

P1=1! P1=1; Œx W y� 7! ŒxC ay W y�;

is A1–homotopic to the identity.

Lemma 5.5 Let L be a finite separable extension of k , pW SpecL ! Spec k the
corresponding morphism of schemes and aW SpecL ,!A1

k
a closed immersion with

minimal polynomial f 2 kŒt �. Then the map

1k
�
! p�1L ' p]1L

is the A1–desuspension of the composition

†A1.Spec k/C ' P1k =1!
P1
k

P1
k
� a
' ThSpecL.Na/'†A1.SpecL/C ;

where Na is trivialized via f=f 0.a/.

Proof Denote by �W SA1! P1
k
=.P1

k
�a/ the first part of the given composition. The

immersion aW SpecL ,! P1
k

and the given trivialization Na 'OL form a Euclidean
embedding of SpecL (Definition 3.8), and the second part of the given composi-
tion is the A1–suspension of the isomorphism (3-9) constructed from this Euclidean
embedding. By Proposition 3.14, it therefore suffices to show that the composition

(5-6) †A1.SpecL/C
�^id
���!

P1L
P1L� aL

h
!†A1.SpecL/C

p
! SA1

is equal to †A1pC in H�.k/, where h is the map described in Proposition 3.11(2).
Explicitly, h is the composition

P1L
P1L� aL

!
P1L

P1L� Qa
' ThSpecL.NQa/'†A1.SpecL/C ;
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where:

� aLW Spec.L˝k L/ ,! P1L is the base change of a .

� QaD aL ı ı is the L–point of P1L above a .

� NQa is trivialized via the isomorphism

(5-7) Na ' a�.�P1
k
/
Qa�.d O�1/
������! Qa�.�P1L

/'NQa

and the given trivialization of Na , where O�1W P1L! P1
k

is the base change of p .

With the identifications

Na D .f /˝kŒt�L and NQa D .t � a/˝LŒt�L;

the isomorphism (5-7) is induced by the inclusion .f /� .t �a/. If f .t/D .t �a/g.t/
in LŒt�, we have

f .t/˝
1

f 0.a/
D .t � a/g.t/˝

1

f 0.a/
D .t � a/˝

g.a/

f 0.a/
D .t � a/˝ 1:

Thus, since Na is trivialized by f=f 0.a/, NQa is trivialized by the monomial t � a .
The composition

†A1.SpecL/C
�^id
���!

P1L
P1L� aL

h
!†A1.SpecL/C

is therefore the identity in H�.k/ by Lemma 5.4 (applied to QaW SpecL ,!A1L ), and
hence (5-6) is equal to †A1pC , as was to be shown.

Let v be a finite place of the field of rational functions k.t/ with residue field �.v/.
As a k–vector space, �.v/ has a basis f1; t; : : : ; tn�1g, where nD deg.v/. We let

�Sch
v W GW.�.v//! GW.k/

be the Scharlau transfer associated with the k–linear map �.v/! k defined by

t i 7!

�
0 if 0� i � n� 2,
1 if i D n� 1.

Let also
�

geom
v W GW.�.v//! GW.k/

be the geometric transfer defined by Morel in [20, Section 4.2].
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Lemma 5.8 Let v be a finite separable place of k.t/ with minimal polynomial f 2
kŒt �. Then, for any ! 2 GW.�.v//,

Tr�.v/=k.!/D �
Sch
v .hf 0.t/i!/:

Proof By [26, III, Section 6, Lemme 2], we have

Tr�.v/=k

�
t i

f 0.t/

�
D

�
0 if 0� i � n� 2,
1 if i D n� 1.

This immediately implies the lemma.

Lemma 5.9 Let v be a finite separable place of k.t/ with minimal polynomial f 2
kŒt �. Then, for any ! 2 GW.�.v//,Z

�.v/

! d�D �
geom
v .hf 0.t/i!/:

Proof If aW Spec �.v/ ,! P1
k

is the closed immersion corresponding to v , �geom
v is

the transfer along the same composition as in Lemma 5.5, except that the conormal
sheaf Na is trivialized via f (see [20, Section 4.2]). The lemma thus follows from
Lemmas 5.3 and 5.5.

Lemma 5.10 For every finite place v of k.t/, �Sch
v D �

geom
v .

Proof For each place v of k.t/, we choose a uniformizer �v 2Ov as follows: if v is
finite, let �v be its minimal polynomial, and let �1 D�1=t . By [20, Theorem 3.15],
there is a unique residue homomorphism

@vW K
MW
�C1.k.t//!KMW

� .�.v//

commuting with multiplication by the Hopf element � 2 KMW
�1 and such that, if

u1; : : : ; un 2O�v ,

@v.Œ�v�Œu1� � � � Œun�/D Œ Nu1� � � � Œ Nun� and @v.Œu1� � � � Œun�/D 0:

On the other hand, there are residue homomorphisms

@vW W.k.t//!W.�.v//

between Witt groups determined by the formulas

@vh�vui D h Nui and @vhui D 0

Algebraic & Geometric Topology, Volume 14 (2014)



A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula 3635

(see Husemoller–Milnor [18, IV, Section 1]). Recalling that �Œu�D hui � h1i, we see
that the following diagram commutes:

(5-11)

KMW
1 .k.t// KMW

0 .�.v//

KW
1 .k.t// KW

0 .�.v//

W.k.t// W.�.v//.

@v

@v

�

By [20, Theorem 3.24], the map

@D .@v/v¤1W K
MW
1 .k.t//!

M
v¤1

KMW
0 .�.v//

is surjective, where the sum is taken over all finite places v . Given v and b 2

KMW
0 .�.v//D GW.�.v//, choose yb 2KMW

1 .k.t// such that @.yb/D b (in particular,
@w.yb/D 0 for w … fv;1g). By the reciprocity formula for Morel’s geometric transfers
[20, (4.8)], we have

(5-12) �
geom
v .b/D�@1.yb/:

We must therefore show that

(5-13) �Sch
v .b/D�@1.yb/:

Since �geom
v .b/ and �Sch

v .b/ are both of rank deg.v/ � rk.b/, (5-12) shows that both
sides of (5-13) have the same rank. In view of the cartesian square

GW.k/ Z

W.k/ Z=2,

rk

it remains to prove that (5-13) holds in the Witt group W.k/. By Scharlau’s reciprocity
theorem for Witt groups [25, Theorem 4.1] and (5-11), we have

�Sch
v .b/D �Sch

v @v.�yb/D�@1.�yb/D�@1.yb/

in W.k/, as was to be shown. There are two points to be made about the statement of
the reciprocity theorem in [25]. First, the minus sign in front of @1 does not appear
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in [25], but it appears here because we used the uniformizer �1=t instead of 1=t
at 1, and we have h�1=ti D �h1=ti in W.k.t//. Second, it is assumed there that
char k ¤ 2, but it was observed in [10, Section 2] that, when the Witt group is defined
using symmetric bilinear forms instead of quadratic forms, the proof works in arbitrary
characteristic.

Appendix A: On the purity isomorphism

In this appendix we achieve two goals:

� We show that the purity isomorphism defined by Ayoub [3, Section 1.6] is the
stabilization of the one defined by Morel and Voevodsky [21, Theorem 2.23].

� We prove that the purity isomorphism …W sŠp� ' †�Nsq� is natural in the
closed immersion s .

The naturality of … plays a central role in the proof of Theorem 1.3 in Section 4.

We start by recalling the definition of the Morel–Voevodsky purity zig-zag. Let C be
the open subscheme of the blowup of X�A1 along Z�f0g whose closed complement
is the blowup of X � f0g along Z � f0g. We then have canonical isomorphisms

C �A1 f0g ' V .Ns/ and C �A1 f1g 'X

(see Fulton [9, Chapter 5]) and diagrams

Z X

B

s

p i

Z �A1 C

B �A1

Os

Op i0

Z V .Ns/

B

s0

p0

where i (resp. i0 ) is the inclusion of the fiber over 1 (resp. over 0). Note that
†�Nss�p�'sŠ0p

�
0 by definition of †�Ns . Denote by r W B�A1!B and r W Z�A1!

Z the projections. Since i is a section of r , there is a transformation r�! i� given
by

(A-1) r�
�
! r�i�i

�
' i�:

Let …1 be the composition

(A-2) r� Os
Š
Op�r�

(A-1)
���! i� OsŠ Op�r�

Ex�Š
���! sŠi� Op�r� ' sŠp�;
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and let …0W r� OsŠ Op�r�! sŠ0p
�
0 be the analogous composition with i replaced by i0 ,

so that we have a zig-zag

sŠp�
…1
 �� r� Os

Š
Op�r�

…0
��! sŠ0p

�
0 :

Proposition A.3 The transformations …1 and …0 are isomorphisms and the compo-
sition …0…�11 coincides with the purity isomorphism ….

Proof We will show that both maps in (A-2) are isomorphisms. Consider the diagram:

r� Os
Š
Op�r� i� OsŠ Op�r� sŠp�

r�†
�NOs Os� Op�r� i�†�NOs Os� Op�r� †�Nss�p�

(A-1) Ex�Š

(A-1) '

… ' … ' … '

The first square commutes by naturality of the transformation (A-1) and the second
square commutes by [3, Corollaire 1.6.23]. Moreover, the transformation at the bottom
left is an isomorphism because NOs ' r�.Ns/ and (A-1)r� is an isomorphism. Using
that �W id! r�r

� is an isomorphism, we see that the lower row does not change if we
replace i by i0 . Together with the analogous diagram for …0 , we therefore obtain a
commutative square:

sŠp� sŠ0p
�
0

sŠ0p
�
0 sŠ0p

�
0

…0…
�1
1

… …

id

But the right-hand purity isomorphism …W sŠ0p
�
0 ' s

Š
0p
�
0 is the identity by [3, Proposi-

tion 1.6.28], and hence …D…0…�11 , as claimed.

Proposition A.4 (Purity is natural) Suppose given a cartesian square

W Y

Z X

t

s

g f

in SmB where s and t are closed immersions, and let pW X ! B be the structure map.
Then the induced map  W g�.Ns/!Nt is an epimorphism and the diagrams
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g�sŠp� g�†�Nss�p� †�g
�.Ns/g�s�p�

t Šf �p� †�Nt t�f �p� †�Ntg�s�p�

Ex�Š †� 

…

'

…

'

'

'

gŠs�pŠ gŠ†NssŠpŠ †g
�.Ns/gŠsŠpŠ

t�f ŠpŠ †Nt t Šf ŠpŠ †NtgŠsŠpŠ

Ex�Š † 

…

'

…

'

'

'

are commutative.

Remark A.5 When f is smooth (in which case  is an isomorphism), Proposition A.4
is exactly [3, Proposition 1.6.20], but in Section 4 we need the proposition for f a
closed immersion.

Proof Let I �OX be the defining ideal of s and J �OY that of t . The morphism
 is then the composition

g�.Ns/' g�s�.I/' t�f �.I/! t�.J /'Nt :

Because the square is cartesian, J is exactly the image of f �.I/!OY , and since t�

is right exact,  is an epimorphism.

We will only prove the commutativity of the first diagram; the commutativity of the
second diagram is checked by a dual argument. Let D be the open subscheme of
the blowup of Y �A1 along W � f0g whose complement is the proper transform of
Y � f0g. The given cartesian square then induces cartesian squares

W Y

Z X

t

s

g f i

W �A1 D

Z �A1 C

Ot

Os

Og Of
i0

W V .Nt /

Z V .Ns/

t0

s0

g0 f0

where f0 D V . / and g0 D g . By Lemma B.6, the transformation †� g�s�p� can
be identified with the exchange transformation Ex�ŠW g�0s

Š
0p
�
0! t Š0f

�
0 p
�
0 . By replacing

both occurrences of … by …0…�11 (Proposition A.3) and completing the resulting
diagram with exchange transformations of the form Ex�Š , we are reduced to proving
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the commutativity of the rectangle

i� Og� OsŠ g�i� OsŠ g�sŠi�

i� Ot Š Of � t Ši� Of � t Šf �i�

'

Ex�Š

Ex�Š

Ex�Š

'

Ex�Š

and of the analogous rectangle with i replaced by i0 . By formal properties of exchange
transformations [3, Définition 1.2.1], both compositions in this rectangle are equal to

i� Og�sŠ
c
' . Ogi/�sŠ D .ig/�sŠ

Ex�Š
���! t Š.if /�

c
' t Šf �i�:

Appendix B: Coherence lemmas

Lemma B.1 Let

X �B X X

X B

�2

p

�1 p

be a cartesian square of schemes and let ıW X ,!X �B X be the diagonal. Then:

(1) The counit �W p�p�! id coincides with the composition

p�p�
Ex��
��! �2��

�
1

�
! �2�ı�ı

���1 ' id:

(2) If p is separated of finite type, then the unit �W id! pŠpŠ coincides with the
composition

id' �1ŠıŠıŠ� Š2
�
! �1Š�

Š
2

ExŠŠ
��! pŠp

Š:

Proof The diagram

p�p� p�p��1��
�
1 p�p��2��

�
1 �2��

�
1

p�p��1�ı�ı
���1 p�p��2�ı�ı

���1 �2�ı�ı
���1

p�p�id�id� id�id�

� c �

c �

c

�

� � �

c c

�

is clearly commutative. Comparing the two outer compositions proves (1). The proof
of (2) is identical.
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Lemma B.2 Let

� �

� �

g

q

f

p

be a cartesian square of schemes where p is proper and f is smooth. Then the
following diagram commutes:

pŠp
�1B ^f�f Š1B pŠp

�f�f
Š1B pŠg�q

�f Š1B

f�f
Š1B ^pŠp�1B f�f

ŠpŠp
�1B f�qŠg

Šp�1B

Pr�Š

Pr�ŠPr��

Ex��

ExŠŠ

� ExŠ� Ex�Š

Proof Since p is proper and f is smooth, we can eliminate the shrieks to obtain the
equivalent rectangle:

p�p
�1B ^f�†�f f �1B p�p

�f�†
�f f �1B p�g�†

�gq�f �1B

f�†
�f f �1B ^p�p�1B f�†

�f f �p�p
�1B f�q�†

�gg�p�1B

Pr��

Pr��

Ex��

Ex��

� Ex�� Ex��

This is now a special case of the following diagram, for EDp�1B and F D†�f f �1B :

p�E ^f�F p�.E ^p
�f�F / p�.E ^g�q

�F / p�g�.g
�E ^ q�F /

f�F ^p�E f�.F ^f
�p�E/ f�.F ^ q�g

�E/ f�q�.q
�F ^g�E/

Pr��

Pr��

Ex��

Ex��

Pr��

Pr��

� c �

We will prove that this more general rectangle is commutative. Using the adjunction
.f q/� a .f q/� and the fact that the functors .�/� are symmetric monoidal, it is
equivalent to prove the commutativity of the following rectangle:

g�p�p�E^g
�p�f�F g�E^g�p�f�F g�E^g�g�q

�F g�E^ q�F

q�f �f�F^ q
�f �p�E q�F^ q�f �p�E q�F^ q�q�g

�E q�F^g�E

�^ id

�^ id

Ex��

Ex��

id^ �

id^ �

� ı .c^ c/ �

Algebraic & Geometric Topology, Volume 14 (2014)



A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula 3641

The compositions in this rectangle are now of the form � ı .� ^ / and . 0 ^�0/ ı � ,
and hence we need only check that � D �0 and  D  0 , ie that the squares

g�p�f� g�g�q
�

q�f �f� q�

Ex��

c

�

�

q�f �p� q�q�g
�

g�p�p� g�

Ex��

c

�

�

are commutative. This follows from [3, Proposition 1.2.5].

Lemma B.3 Let

� � �

� � �

g

r 00

f

q

r 0

p

r

be cartesian squares in which all maps are separated of finite type. Then the following
rectangle commutes:

.pf /Šr
00
Š .qg/

Š pŠfŠr
00
Š g
ŠqŠ pŠr

0
ŠgŠg

ŠqŠ pŠr
0
Šq
Š

.pf /Š.pf /
ŠrŠ pŠfŠf

ŠpŠrŠ pŠp
ŠrŠ

c ExŠŠ �

ExŠŠ

c �

ExŠŠ

Proof We break up this rectangle as follows:

.pf /Šr
00
Š .qg/

Š pŠfŠr
00
Š g
ŠqŠ pŠr

0
ŠgŠg

ŠqŠ

pŠfŠf
Šr 0Šq

Š pŠr
0
Šq
Š

.pf /Š.pf /
ŠrŠ pŠfŠf

ŠpŠrŠ pŠp
ŠrŠ

c ExŠŠ

�ExŠŠ

ExŠŠ

�
ExŠŠ

c �

ExŠŠ

The left rectangle commutes by the compatibility of exchange transformations with the
composition of cartesian squares [3, Définition 1.2.1], the top square commutes by [3,
Proposition 1.2.5], and the bottom square commutes by naturality of � .
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Lemma B.4 Let ; ıW X ,! Y be a pair of closed immersions with a common retrac-
tion � W Y !X and let

Z X

X Y

i

i ı



be a cartesian square. Then the composition

i�i
Š

ExŠ�
��!  Šı� ' ���

Šı�
�
! ��ı� ' id

is equal to the counit �W i�i Š! id.

Proof Consider the commutative diagram

i�i
Š  Š�i�i

Š  Šı�i�i
Š  Šı�

���i�i
Š ���

Š�i�i
Š ���

Šı�i�i
Š ���

Šı�

���i�i
Š ��ı�i�i

Š ��ı� ' id

� c �

� c �

c �

c c c c

id
� � �

in which the upper composition is the given one. By coherence of the connection
isomorphisms, the lower composition is the counit �W i�i Š ! id, which proves the
lemma.

Lemma B.5 Let i be a closed immersion. Then the triangle

i Š i�

i Ši�i
�

�

�
' �

is commutative.

Proof This is simply a matter of unwinding the definitions. Recall that � is

Ex�ŠW id�i Š! idŠi�:
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By definition of Ex�Š , this is the composition

id�i Š
�
! id�i Ši�i�

ExŠ�
 �� id�id�idŠi�

�
! idŠi�:

By construction, ExŠ�W id�idŠ! i Ši� is the mate of Ex��W i
�i�! id�id� . Finally, by

definition of Ex�� , the latter is the counit �W i�i�! id, whose mate is �W id! i Ši� .

Lemma B.6 Let

W V

Y X

g

q p

f

be a commutative diagram, where p and q are vector bundles with zero sections s and
t and where g induces a monomorphism of vector bundles �W W ,! f �V . Then the
following diagrams commute (the second assuming that f is separated of finite type):

f �†�V †�f
�V f � †�W f �

f �sŠp� t Šg�p� t Šq�f �

' †��

' '

Ex�Š '

f Š†V †f
�V f Š †W f Š

f Šs�pŠ t�gŠpŠ t�qŠf Š

' †�

' '

Ex�Š '

Proof Let r W f �V ! Y be the pullback of p and let u be the zero section of r .
Recall that †�� is the composition

uŠr�
c
' t Š�Šr�

�
! t Š��r�

c
' t Šq�;

and that � W �Š ! �� is the exchange transformation Ex�ŠW id��Š ! idŠ�� . The
commutativity of the first rectangle then follows from the compatibility of the exchange
transformation Ex�Š with the composition of the following three cartesian squares:

Y W W

Y W f �V

X V

t

�

t �

f

s

The commutativity of the second square is checked in the same way.
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Appendix C: Elimination of noetherian hypotheses

In the foundational paper [21], Morel and Voevodsky define unstable motivic homotopy
theory only for noetherian schemes of finite Krull dimension. In this appendix we
indicate how to properly extend the theory to arbitrary schemes. For simplicity, we
will give our definitions using the language of 1–categories (see Lurie [16]). We
say that a scheme or a morphism of schemes is coherent if it is quasi-compact and
quasi-separated.

There are two issues that arise when dropping the assumption that schemes are noe-
therian and finite-dimensional. The first concerns the definition of the Nisnevich
topology. This topology was originally defined by Nisnevich [22] using the following
pretopology: a family fUi ! Xgi2I is a cover if each Ui ! X is étale and every
morphism Spec k ! X with k a field lifts to Ui for some i 2 I . For noetherian
schemes, it was shown in [21, Proposition 3.1.4] that this topology is generated by a cd-
structure in the sense of [29, Section 2]. For coherent schemes that are not noetherian,
the pretopology and the cd-structure define different topologies, both finer than the
Zariski topology and coarser than the étale topology. We will define the Nisnevich
topology in general by combining the cd-structure and the Zariski topology. This choice
ensures that the “small” Nisnevich 1–topos XNis of a scheme X (ie the 1–category
of Nisnevich sheaves of spaces on étale X –schemes) has good formal properties. For
instance:

(1) If X is coherent, then XNis is coherent and compactly generated by finitely
presented étale X –schemes.

(2) If X is the limit of a cofiltered diagram of coherent schemes X˛ with affine
transition maps, then XNis is the limit of the 1–topoi .X˛/Nis .

Another point in favor of our definition is that algebraic K–theory, considered as a
presheaf of spaces on coherent schemes, is only known to be a sheaf for our version
of the Nisnevich topology. Note that property (2) determines the 1–topos XNis for
X coherent once it has been defined for X noetherian, since any coherent scheme
is a cofiltered limit of schemes of finite type over Z (see Thomason–Trobaugh [27,
Appendix C]). The second issue is that the Nisnevich 1–topos of a coherent scheme
which is not noetherian and finite-dimensional need not be hypercomplete, ie Nisnevich
descent for a presheaf of spaces does not imply Nisnevich hyperdescent. We do not
want to restrict ourselves to hypercomplete sheaves, since by doing so we might lose
properties (1) and (2) as well as the representability of algebraic K–theory.

In this appendix, a presheaf is by default a presheaf of spaces. If C is a (possibly
large) 1–category, we denote by PSh.C/ the 1–category of presheaves on C . It will
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be convenient to work with a weakening of the notion of topology: a quasi-topology
� on an 1–category C assigns to every X 2 C a collection �.X/ of sieves on X ,
called � –sieves, such that, for every f W Y ! X , f ��.X/ � �.Y /. A presheaf F
on C is a � –sheaf if, for every X 2 C and every R 2 �.X/, the restriction map
Map.X; F /!Map.R; F / is an equivalence. We denote by Shv� .C/ � PSh.C/ the
full subcategory of � –sheaves. A family of morphisms fUi ! Xg in C is called a
� –cover if it generates a � –sieve.

If � is a quasi-topology on C , we denote by x� the coarsest topology containing � .
Our first goal is to show that Shv� .C/ D Shvx� .C/. The following proposition is a
generalization of [1, II, Proposition 2.2] to sheaves of spaces; the proof is exactly the
same.

Proposition C.1 Let C be an 1–category and let E be a collection of presheaves
on C . Let � be the finest quasi-topology on C such that E � Shv� .C/. Then � is a
topology.

Proof To begin with, note that � exists: for X 2 C , �.X/ is the collection of sieves
R ,!X such that, for every f W Y !X in C and every F 2 E , the map

Map.Y; F /!Map.f �R;F /

is an equivalence. To prove that � is a topology, we must verify that, if S 2 �.X/ and
R a sieve on X such that g�R 2 �.X 0/ for every gW X 0! X in S , then R 2 �.X/.
Let f W Y !X be a morphism in C and let F 2 E . We must show that the left vertical
arrow in the square

Map.Y; F / Map.f �S; F /

Map.f �R;F / Map.f �S �Y f �R;F /

is an equivalence. We will show that the other three arrows are equivalences. The top
horizontal arrow is an equivalence because S 2 �.X/. For the right vertical arrow,
write f �S ' colimZ2C=f �S Z as a (possibly large) colimit of representables. Since
colimits in PSh.C/ are universal, f �R �Y f �S ' colimZ2C=f �S f �R �Y Z . For
every Z! f �S , f �R�Y Z belongs to �.Z/ by assumption, and hence

Map.f �S; F /' lim
Z

Map.Z; F /' lim
Z

Map.f �R�YZ;F /'Map.f �R�Y f �S; F /:

The proof that the bottom horizontal arrow is an equivalence is similar: write f �R'
colimZ2C=f �RZ and use that f �S 2 �.Y /.

Algebraic & Geometric Topology, Volume 14 (2014)



3646 Marc Hoyois

Corollary C.2 Let C be an 1–category and � a quasi-topology on C . Then

Shv� .C/D Shvx� .C/:

Proof Note that Shvx� .C/� Shv� .C/. Let � be the finest quasi-topology on C such
that Shv� .C/� Shv�.C/. Tautologically, � contains � . By Proposition C.1, � contains
x� . Hence, Shv�.C/� Shvx� .C/.

We also need an easy-to-use version of the “comparison lemma” [1, III, Théorème 4.1]
for sheaves of spaces:

Lemma C.3 Let D be an 1–category, C a small 1–category and uW C ,!D a fully
faithful functor. Let � and � be quasi-topologies on C and D , respectively. Suppose
that:

(a) Every � –sieve is generated by a cover fUi !Xg such that:

(a1) The fiber products Ui0 �X � � � �X Uin exist and are preserved by u.
(a2) fu.Ui /! u.X/g is a x�–cover D .

(b) For every X 2 C and every �–sieve R ,! u.X/, u�.R/ ,!X is a x� –sieve in C .

(c) Every X 2D admits a x�–cover fUi !Xg such that the fiber products Ui0 �X
� � � �X Uin exist and belong to the essential image of u.

Then the adjunction u� a u� restricts to an equivalence of 1–categories Shv�.D/'
Shv� .C/.

We can rephrase the conclusion of the lemma as follows: a presheaf on D is a �–sheaf if
and only if it is the right Kan extension of a � –sheaf on C . An immediate consequence
of the lemma is that the inclusion Shv�.D/� PSh.D/ admits a left exact left adjoint
a� , namely the composition u�a�u� .

Proof We tacitly use Corollary C.2 throughout the proof. We first show that u� and
u� preserve sheaves. Let U be a � –cover as in (a) and let

LC.U/ 2 Fun.�op;PSh.C//

be its Čech nerve (note that colim LC.U/ is the sieve generated by U). By (a1), uŠ LC.U/'
LC.u.U//, and by (a2), u.U/ is a x�–cover. If F is a �–sheaf, we deduce that

Map.uŠX;F /!Map.uŠ colim LC.U/; F /

is an equivalence. By adjunction, u� preserves sheaves. Let X 2D and let R ,!X be a
�–sieve. We claim that u�.R/ ,!u�.X/ becomes an equivalence after � –sheafification.
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By the universality of colimits in PSh.C/, it suffices to show that, for every Y 2 C and
every morphism u.Y /! X , u�.R�X u.Y // ,! Y is a x� –sieve. This follows from
(b) since R �X u.Y / is a �–sieve. By adjunction, u� preserves sheaves. Thus, the
adjunction u� a u� restricts to an adjunction

u�W Shv�.D/ Shv� .C/ Wu� ;

where u� is fully faithful. It remains to show that u� is conservative on Shv�.D/, but
this follows at once from (c).

A cartesian square of schemes

W V

U X
j

p

will be called a Nisnevich square over X if j is an open immersion, p is étale and
there exists a closed immersion Z ,! X complement to U such that p induces an
isomorphism V �X Z 'Z . We say that such a square is finitely presented if j and p
are finitely presented.

Let B be a scheme. We denote by SmB the category of smooth B–schemes and
by Sm0B � SmB the full subcategory spanned by compositions of open immersions
and finitely presented smooth morphisms. If B is coherent, we also consider the
subcategory Smfp

B � SmB of finitely presented smooth B –schemes. We will define the
following quasi-topologies on SmB :

Nisfp
qc

Zar Nisqc

Nis

The quasi-topology Zar will also be defined on Sm0B , and Nisfp
qc and Nis will also be

defined on Sm0B and Smfp
B . The Zar–sieves are the sieves generated by open covers.

The quasi-topology Nisqc (resp. Nisfp
qc ) consists of:

� The empty sieve on ∅.

� For every Nisnevich square (resp. finitely presented Nisnevich square) as above,
the sieve generated by fj; pg.
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The Nisnevich quasi-topology Nis is then defined as follows on each category: NisD
Zar[Nisqc on SmB , NisD Zar[Nisfp

qc on Sm0B , and NisD Nisfp
qc on Smfp

B .

Lemma C.4 For every Nisqc –sieve R ,! X in SmB , there exists an open cover
ffi W Xi ,!Xg such that f �i R contains a Nisfp

qc –sieve.

Proof Let j W U ,! X  V W p be a Nisnevich square generating R and let Z be
a closed complement of j such that V �X Z ' Z . Taking an open cover of X if
necessary, we may assume that X is coherent. Let fVig be an open cover of V by
coherent schemes and let Xi D p.Vi /. Then Vi !Xi is finitely presented and is an
isomorphism over Z\Xi . Since fU;Xig is an open cover of X , we may assume that
p is finitely presented. As X is coherent, we can write Z D lim˛ Z˛ where each Z˛
is a finitely presented closed subscheme of X . Since p is finitely presented and is
an isomorphism over Z , there exists ˛ such that p is an isomorphism over Z˛ . If
j˛ is the open immersion complement to Z˛ , then fj˛; pg is a Nisfp

qc –cover refining
fj; pg.

We say that a presheaf F on Sm.fp/B satisfies Nisnevich excision if:

� F.∅/' �.

� For every Nisnevich square Q in Sm.fp/B , F.Q/ is cartesian.

Proposition C.5 Let B be a scheme.

(1) A presheaf on SmB is a Nisnevich sheaf if and only if it is the right Kan extension
of a Nisnevich sheaf on Sm0B . In particular, ShvNis.SmB/ is an 1–topos and
the inclusion ShvNis.SmB/� PSh.SmB/ admits a left exact left adjoint.

(2) A presheaf on SmB is a Nisnevich sheaf if and only if it satisfies Zariski descent
and Nisnevich excision.

If B is coherent, then:

(3) A presheaf on SmB is a Nisnevich sheaf if and only if it is the right Kan extension
of a Nisnevich sheaf on Smfp

B . In particular, ShvNis.SmB/' ShvNis.Smfp
B/.

(4) A presheaf on Smfp
B is a Nisnevich sheaf if and only if it satisfies Nisnevich

excision.
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Proof (1) It suffices to verify the assumptions of Lemma C.3 for the inclusion
Sm0B � SmB . The only nontrivial point is (b), which follows from Lemma C.4.

(3) By (1), it suffices to verify the assumptions of Lemma C.3 for the inclusion
Smfp

B � Sm0B . For (c), note that every scheme in Sm0B is quasi-separated.

(2, 4) For Q a Nisnevich square

j W U ,!X  V Wp

in Sm.fp/B , denote by CQ 2 PSh.Sm.fp/B / the colimit of the Čech nerve LC.fj; pg/ (ie
the sieve generated by fj; pg) and by

KQ 2 PSh.Sm.fp/B /

the pushout of Q . Let C (resp. K ) be the class of morphisms of the form CQ !

X (resp. KQ!X ) in PSh.Sm.fp/B /, where Q is any Nisnevich square, together with
the empty sieve on the empty scheme. By definition, a presheaf is a Nis.fp/qc –sheaf if and
only if it is C –local and it satisfies Nisnevich excision if and only if it is K–local. The
arguments of [29, Section 5] show that C and K generate the same class of morphisms
under 2-out-of-3, pushouts and colimits, whence the result.

These technical preliminaries aside, we can now define the unstable motivic homotopy
category H.B/ of an arbitrary scheme B . We say that a presheaf F on SmB is A1–
invariant if, for every X 2 SmB , the projection A1 �X !X induces an equivalence
F.X/' F.A1 �X/. Note that if F is Nisnevich sheaf on SmB , the A1–invariance
condition can be checked on Sm0B , and even on Smfp

B if B is coherent.

We let H.B/�ShvNis.SmB/ be the full subcategory of A1–invariant Nisnevich sheaves.
This definition is of course equivalent to the standard one when B is noetherian and of
finite Krull dimension. By Proposition C.5(1), H.B/ is a presentable 1–category and
the inclusion H.B/� PSh.SmB/ admits a left adjoint

M W PSh.SmB/! H.B/:

Proposition C.6 The functor M preserves finite products.

Proof As M factors through PSh.Sm0B/, it suffices to show that M 0W PSh.Sm0B/!
H.B/ preserves finite products. The functor

LA1 W F 7! colim
n2�op

F.An ��/

is left adjoint to the inclusion of A1–invariant presheaves into all presheaves, and it
preserves finite products since �op is sifted. Let aNis be the Nisnevich sheafification
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functor. A standard argument shows that there exists an ordinal ˛ such that the ˛ th
iteration of LA1 ı aNis , viewed as a pointed endofunctor of PSh.Sm0B/, is equivalent
to M 0 . Since LA1 , aNis and transfinite composition preserve finite products, so does
M 0 .

As is usual, if X 2 SmB , we will commit an abuse of notation and denote by X the
image of X by the functor SmB ! H.B/, composition of the Yoneda embedding and
the localization functor M .

If f W B 0 ! B is a morphism of schemes, the base change functor SmB ! SmB 0
preserves trivial line bundles and Čech nerves of Nisnevich covers. It follows that the
functor

PSh.SmB 0/! PSh.SmB/; F 7! F.��B B
0/

preserves A1–invariant Nisnevich sheaves and hence restricts to a limit-preserving
functor f�W H.B 0/ ! H.B/. We denote by f � its left adjoint; it preserves finite
products by Proposition C.6. If f is smooth, the base change functor SmB ! SmB 0
has a left adjoint, namely the forgetful functor SmB 0 ! SmB , which also preserves
trivial line bundles and Čech nerves of Nisnevich covers. It follows that in this case
f � has a left adjoint f]W H.B 0/! H.B/. We immediately verify that the exchange
transformation Ex�

]
and the projector Pr�

]
are equivalences.

Proposition C.7

(1) If B is a coherent scheme, every X 2 Smfp
B is compact in H.B/.

(2) If f W B 0! B is coherent, f�W H.B 0/! H.B/ preserves filtered colimits.

(3) If B is the limit of a cofiltered diagram of coherent schemes B˛ with affine
transition maps, then H.B/' lim˛ H.B˛/ in the 1–category of 1–categories.

Proof (1) It suffices to show that H.B/ is closed under filtered colimits in PSh.Smfp
B/.

In fact, it is obvious that the subcategories of A1–invariant presheaves and of presheaves
satisfying Nisnevich excision are both closed under filtered colimits.

(2) By Zariski descent, we can assume that B is coherent. The 1–category H.B/ is
then generated under colimits by X 2 Smfp

B . By (1), these generators are compact and
are carried by f � to compact objects in H.B 0/. The result follows by adjunction.

(3) In this situation, the category Smfp
B is the colimit of the categories Smfp

B˛
and

hence PSh.Smfp
B/ is the limit of the 1–categories PSh.Smfp

B˛
/. It remains to show

that
F 2 PSh.Smfp

B/

Algebraic & Geometric Topology, Volume 14 (2014)



A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula 3651

is an A1–invariant Nisnevich sheaf if, for all ˛ , its image in PSh.Smfp
B˛
/ is. This

follows from the fact that any trivial line bundle (resp. any Nisnevich square) in Smfp
B

is the pullback of a trivial line bundle (resp. a Nisnevich square) in Smfp
B˛

for some ˛ .

Our next goal is to generalize the gluing theorem of Morel–Voevodsky [21, Theo-
rem 3.2.21] to our setting. The proof in [21] uses the fact that henselian local schemes
form a conservative family of points of the 1–topos ShvNis.SmB/, which is not
true anymore when B is not noetherian of finite Krull dimension. While it is not
difficult to give a proof of the gluing theorem that avoids the use of points and works
in general, we will give instead a shorter argument that reduces the general case to the
Morel–Voevodsky case.

Suppose that B is a cofiltered limit of coherent schemes B˛ , so that H.B/' lim˛H.B˛/:
Let fˇ˛W Bˇ !B˛ be the transition maps and f˛W B!B˛ the canonical projections.
Then, by [16, Lemma 6.3.3.6],

(C-8) idH.B/ ' colim
˛

f �˛ f˛�:

Moreover, since functors of the form f� preserve filtered colimits, the left adjoint
functors f �˛ can be computed as

(C-9) fˇ�f
�
˛ ' colim


fˇ�f

�
˛:

Proposition C.10 Let B be a scheme and let i W Z ,! B be a closed immersion with
open complement j W U ,! B . Then:

(1) For every F 2 H.B/, the square

j]j
�F F

j]j
�B i�i

�F

�

�

is cocartesian.

(2) i�W H.Z/! H.B/ is fully faithful.

Proof (1) By Zariski descent, we can assume that B is coherent. Let fi˛W Z˛ ,!Bg

be the cofiltered poset of finitely presented closed subschemes of B containing Z and
let j˛W U˛ ,! B be the open immersion complement to i˛ . Then Z ' lim˛ Z˛ and
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fU˛g is an open cover of U which is closed under binary intersections. By Zariski
descent, the canonical transformation

colim
˛

j˛]j
�
˛ ! j]j

�

is an equivalence. On the other hand, by (C-9) and a cofinality argument, the canonical
transformation

colim
˛

i˛�i
�
˛ ! i�i

�

is an equivalence. It therefore suffices to prove the result when B is coherent and
i is finitely presented. In that case, we can write i and j as cofiltered limits of
complementary immersions i˛W Z˛ ,!B˛ and j˛W U˛ ,!B˛ , such that B˛ is of finite
type over Z and such that the squares

Z B U

Z˛ B˛ U˛

i

i˛

j

j˛

f˛ f˛ f˛

are cartesian. Let F˛ D f˛�F be the component of F in H.B˛/, so that, by (C-8),
F ' colim˛ f �˛ F˛ . Since B˛ is noetherian of finite Krull dimension, we have a
cocartesian square

j˛]j
�
˛ F˛ F˛

j˛]U˛ i˛�i
�
˛F˛

�

�

in H.B˛/. Applying f �˛ and taking the colimit over ˛ , we obtain a cocartesian square
in H.B/ which maps canonically to the given square. Moreover, the maps on the top
left, bottom left and top right corners are equivalences since f �˛ j˛] ' j]f

�
˛ and since

j] and j � preserve colimits. It remains to prove that the map

colim
˛

f �˛ i˛�i
�
˛F˛! i�i

�F

on the bottom right corner is an equivalence. Since i� preserves filtered colimits, it
suffices to show that the exchange transformation Ex��W f

�
˛ i˛�! i�f

�
˛ is an equiva-

lence. Using (C-9) and the fact that the exchange transformation f �˛i˛�! i�f
�
˛ is

an equivalence (which is a consequence of the gluing theorem for finite-dimensional
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noetherian schemes), we compute

fˇ�f
�
˛ i˛� ' colim


fˇ�f

�
˛i˛� ' colim


fˇ�i�f

�
˛

' colim


iˇ�fˇ�f
�
˛ ' iˇ� colim


fˇ�f

�
˛ ' iˇ�fˇ�f

�
˛ ' fˇ�i�f

�
˛ :

One verifies easily that this composition coincides with fˇ�Ex�� , which completes the
proof.

(2) Applying (1) to i�F , we deduce that the unit id! i�i
� is an equivalence on i�F .

It follows from a triangle identity that the counit i�i�! id becomes an equivalence
after applying i� . By [12, Proposition 18.1.1], H.Z/ is generated under colimits by
pullbacks of smooth B–schemes. It follows that i� is conservative and hence fully
faithful.

Denote by H�.B/ the undercategory H.B/B= . All the features of H.B/ discussed
so far have obvious analogs for H�.B/. The smash product ^ on H�.B/ is the
unique symmetric monoidal product which is compatible with colimits and for which
the functor .�/CW H.B/! H�.B/ is symmetric monoidal. One can then define the
1–category SH.B/ as a symmetric monoidal presentable 1–category as in [24,
Definition 4.8], by formally inverting SA1 for the smash product on H�.B/. We thus
have a symmetric monoidal colimit-preserving functor

†1W H�.B/! SH.B/;

and we let †1
C
D†1 ı .�/C . Note that SH.B/ is stable since SA1 is the suspension

of the pointed motivic space .A1 � 0; 1/. Because the cyclic permutation of SA1 ^

SA1 ^SA1 is homotopic to the identity, SH.B/ can also be described as the following
limit of 1–categories:

(C-11) SH.B/D lim
�
� � �

�A1

���! H�.B/
�A1

���! H�.B/
�
;

where �A1 is right adjoint to †A1 [24, Corollary 4.24].

If f W B 0 ! B is a morphism of schemes, then f��
A1 ' �A1f� and hence f�

induces a limit-preserving functor f�W SH.B 0/! SH.B/. Its left adjoint f � is the
unique colimit-preserving symmetric monoidal functor f �W SH.B/! SH.B 0/ such
that f �†1

C
X D†1

C
.X �B B

0/ for X 2 SmB .

Proposition C.12

(1) SH.B/ is generated under colimits by objects of the form †�An†1
C
X for

X 2 SmB and n� 0.
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(2) If B is a coherent scheme and X 2 Smfp
B , †1

C
X 2 SH.B/ is compact.

(3) If f W B 0!B is coherent, f�W SH.B 0/! SH.B/ preserves colimits (and hence
admits a right adjoint).

(4) If B is the limit of a cofiltered diagram of coherent schemes B˛ with affine tran-
sition maps, then SH.B/' lim˛ SH.B˛/ in the 1–category of 1–categories.

Proof (1) Let E 2 SH.B/ have components En 2 H�.B/. By [16, Lemma 6.3.3.6],

E ' colim
n�0

†�An†1En;

and each †�An†1En is clearly an iterated colimit of objects of the desired form.

(2) By Proposition C.7(1), H�.B/ is compactly generated by XC , X 2 Smfp
B . The

object SA1 2 H�.B/ is compact, being a finite colimit of compact objects, and so the
functor �A1 W H�.B/! H�.B/ preserves filtered colimits. The assertion now follows
immediately from (C-11).

(3) We can assume that B is coherent. By (1) and (2), f � sends a family of compact
generators of SH.B/ to compact objects in SH.B 0/. By adjunction, f� preserves
filtered colimits. Since f� preserves limits and both SH.B 0/ and SH.B/ are stable, it
also preserves finite colimits.

(4) This follows from Proposition C.7(3) and (C-11).

Finally, we prove that SH.�/ satisfies the proper base change theorem and related
properties:

Proposition C.13 Let

Y 0 Y

X 0 X

g

pp0

f

be a cartesian square of schemes where p is proper.

(1) For every E 2 SH.Y /, the exchange transformation Ex��W f
�p�E! p0�g

�E is
an equivalence.

(2) For every E 2 SH.Y / and F 2 SH.X/, the projector Pr��W p�E^F ! p�.E^

p�F / is an equivalence.

(3) Suppose that f is smooth. For every E 2 SH.Y 0/, the exchange transformation
Ex]�W f]p0�E! p�g]E is an equivalence.
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Proof If p is a closed immersion, all three statements follow easily from the gluing
theorem. The argument of [3, Section 1.7.2] shows that the map p] ! p��1]ı�
induced by Ex]� is an equivalence when p is a projection PnX ! X . The proof of
[5, Lemma 2.4.23] then shows that (1–3) hold for such p . By Zariski descent, one
immediately deduces (1–3) for p projective. It remains to extend the results to p
proper.

(1) By Zariski descent, we can assume that X and X 0 are coherent. Let C W SH.Y /!
SH.X 0/ be the cofiber of the transformation Ex�� . Since SH.X 0/ is stable and compactly
generated, it will suffice to show that ŒK; C.E/� D 0 for every E 2 SH.Y / and
every K 2 SH.X 0/ compact. Fix xW K! C.E/ and consider the poset ˆ of closed
subschemes i W Z ,! Y such that the image of x in ŒK; C.i�i�E/� is not zero. If
fi˛W Z˛ ,!Y g is a cofiltered diagram of closed subschemes of Y with limit i W Z ,!Y ,
it follows from (C-9) that colim˛ i˛�i�˛ ' i�i

� . Since the source and target of Ex��
preserve filtered colimits, the canonical map

colim
˛

C.i˛�i
�
˛E/! C.i�i

�E/

is an equivalence. By compactness of K , we deduce that ˆ is closed under cofiltered
intersections. On the other hand, using Chow’s lemma [2, XII,§7], the gluing theorem,
and (1,3) for p projective, we easily verify that ˆ does not have a minimal element.
Hence, ˆ is empty.

(2) Same proof as (1).

(3) Arguing as in (1) proves the result when f is coherent. It also proves that Ex]�g�

is an equivalence, whence the result when f is an open immersion. Without loss of
generality, assume now that X is coherent. Then SH.Y 0/ is generated under colimits
by the images of h] where h is the pullback of the inclusion of an open subscheme of
X 0 which is coherent over X , so the general case follows.

By Nagata’s compactification theorem [6] and Proposition C.13(3), we can apply
Deligne’s gluing theory and define the exceptional adjunction

fŠW SH.X/� SH.Y / Wf Š

at the level of triangulated categories, for f W X ! Y a separated morphism of finite
type between coherent schemes. Following Cisinski–Déglise [5, Section 2], we then
obtain the complete formalism of six operations for coherent schemes as described in
Section 2.

Remark C.14 It is possible to define SH.�/ as a contravariant functor from the cate-
gory of schemes to the 1–category of symmetric monoidal presentable 1–categories.
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Using the 1–categorical generalization of Deligne’s gluing theory developed by
Liu and Zheng [15], one can define the exceptional adjunction fŠ a f Š , the natural
transformation fŠ! f� and all the exchange transformations and projectors involving
exceptional functors, at the level of 1–categories (for f a separated morphism of
finite type between coherent schemes). Since SH.�/ is a Zariski sheaf, one can further
define all this data for any morphism f which is locally of finite type. Once this is done,
the conventions set at the end of Section 1 can be ignored altogether and “separated of
finite type” can be replaced everywhere by “locally of finite type”.
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