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A quadratic refinement of the
Grothendieck-Lefschetz—Verdier trace formula

MARC HOYOIS

We prove a trace formula in stable motivic homotopy theory over a general base
scheme, equating the trace of an endomorphism of a smooth proper scheme with
the “Euler characteristic integral” of a certain cohomotopy class over its scheme of
fixed points. When the base is a field and the fixed points are étale, we compute
this integral in terms of Morel’s identification of the ring of endomorphisms of the
motivic sphere spectrum with the Grothendieck—Witt ring. In particular, we show
that the Euler characteristic of an étale algebra corresponds to the class of its trace
form in the Grothendieck—Witt ring.

14F42; 47H10, 11E81

1 Introduction and examples

Let k be a field, X a smooth proper k—scheme and f: X — X a k—morphism. The
Grothendieck—Lefschetz—Verdier trace formula, originally proved by Grothendieck
in [11, Exposé III, Section 4], identifies the trace of the action of f on the £—adic
cohomology of X with the integral of a cohomology class on the scheme of fixed
points X /. In the special case where X/ is étale over k, the trace formula takes the
following simple form:

Theorem 1.1 Let k be a field, X a smooth and proper k—scheme and f: X — X a
k—morphism with étale fixed points. Then

YD w(fHHYX) = Y [k(x) <k

i xeX/S

where X is the pullback of X to an algebraic closure of k, £ # chark is a prime
number and H(—) is £—adic cohomology with coefficients in Q.

The trace formula is thus an equality between two integers associated with f. The
starting point of the present article is the observation that the left-hand side of the
trace formula has a canonical refinement to an element of the Grothendieck—Witt ring

Published: 15 January 2015 DOI: 10.2140/agt.2014.14.3603


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=14F42, 47H10, 11E81
http://dx.doi.org/10.2140/agt.2014.14.3603

3604 Marc Hoyois

GW (k) of the field k. To explain why, we need to recall some facts from stable motivic
homotopy theory.

Let Smy, be the category of smooth separated schemes of finite type over k. Consider
the functor
Cf: Smy — D(Spec kg, Zy)

that sends p: X — Speck to the £—adic sheaf pyp'Z; on Specky (here ]S(Bét, Zy)
is the co—categorical limit over n > 0 of the derived categories D(Bg, Z/{")). By
standard properties of £—adic cohomology and the definition of the stable motivic
homotopy category SH(k), there is a canonical factorization

ct
Smy —— D(Spec kg, Zy)

7
=% L7
SH(k)

where Ry is a symmetric monoidal functor. The functor ¥%° satisfies a generalized
version of Poincaré duality, which asserts in particular that, if X is smooth and proper
over k, XX is strongly dualizable. Thus, if f: X — X is a k-morphism, ¥ f
has a trace tr(X5° f) which is an endomorphism of the motivic sphere spectrum
1; € SH(k). Since symmetric monoidal functors commute with traces, Ry (tr(Z5° f)) =
tr(R(X 1)) = tr(C£ f), and it is clear that tr(C{ f) equals the alternating sum
appearing in Theorem 1.1.

Recall that GW(k) is the group completion of the semiring of isomorphism classes
of nondegenerate symmetric bilinear forms over k (or equivalently of nondegenerate
quadratic forms if char k # 2). Associating to such a form the rank of its underlying
vector space defines a ring homomorphism

rk: GW(k) —> Z

which is an isomorphism if and only if k is quadratically closed. Given u € k>, we
denote by (u) the class of the symmetric bilinear form k x k — k, (a,b) > uab.
These basic classes generate GW (k) as a group. A fundamental result of Morel! states
that there is a natural isomorphism

(1-2) GW(k) ~ End(1).

IThis result is proved by Morel in [20] under the assumption that k is perfect. However, Morel actually
computes the Nisnevich sheaf on Smy associated with the presheaf X — [23_<> X, 1], and combining this
stronger result with the base change arguments from [13, Appendix A] allows us to remove the assumption
onk.
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A quadratic refinement of the Grothendieck—Lefschetz—Verdier trace formula 3605

To describe Morel’s isomorphism, we first consider a more general construction. Sup-
pose that V is a vector bundle over a scheme X and that ¢: V SV is a linear
automorphism of V. The vector bundle V induces a self-equivalence X" of SH(X),
which can be informally described as “smash product with the sphere bundle of V.
The composition

»¢
Iy ~> "1y S5 2V 1y ~ 1y

is an automorphism of the motivic sphere spectrum over X , which we denote by (¢).2

The isomorphism (1-2) is then given by sending (u) to (u), viewing u € k™ as a linear
automorphism of A}c.

Putting all these facts together, we can identify tr(X5° f) with a lift of the integer
tr(CL f) to GW(k). It is then natural to ask whether the right-hand side of the
Grothendieck—Lefschetz—Verdier trace formula also lifts to GW(k), ie whether there
exist fixed-point indices i ( f, x) € GW(k), of rank [k(x) : k], such that

w(EPL )= Y i(fix).

xeXx/

An affirmative answer is given in Corollary 1.10 below.> It is a consequence of some
more general results which we now discuss.

We consider an arbitrary base scheme B. If X is a smooth B-—scheme such that
XX € SH(B) is strongly dualizable, eg a smooth proper B-scheme, we write

1(X) =t (XPidy) € End(1p)

for its Euler characteristic in SH(B). More generally, if @ is an endomorphism of 1x
in SH(X), we define

/ w dy = tr(pyw) € End(1p),
X

where p: X — B is the structure map and py: SH(X) — SH(B) is left adjoint to the
base change functor p*. Note that, by this adjunction, an endomorphism of 1y is the
same thing as a morphism £5°X — 1p in SH(B). The map o — [y w dy is thus an
End(1p)-linear functional on the algebra of 1p-valued functions on X°X, such that

Jx Ldx = x(X).

We can now state the main result of this paper. Let X be a smooth B-scheme,
f: X - X a B-morphism and i: X f <> X the inclusion of the scheme of fixed
points of f. We say that f has regular fixed points if:

2This construction is of course the algebro-geometric analog of the J—homomorphism.
3The existence of such a fixed-point formula was mentioned by Morel in [19, Remark 4.12(2)].
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3606 Marc Hoyois

e X/ is smooth over B.

e The endomorphism of the conormal sheaf N; induced by id —i*(df) is an
isomorphism.

Theorem 1.3 Let X be a smooth and proper B-scheme and f: X — X a B-
morphism with regular fixed points. Then

wET )= [ @hdx
X/
where ¢ is the automorphism of the conormal sheaf of the immersion i: X feXx
induced by id — i *(df).

Theorem 1.3 will be proved in Section 4. The following special case is worth recording:

Corollary 1.4 Let X be a smooth and proper B—scheme and f: X — X a B-
morphism. If (X% f) # 0, then [ has a fixed point.

Along the way we will observe that y(X) = 0 if Qy,p has a nonvanishing global
section (see Remark 4.7):

Theorem 1.5 Let X be a smooth and proper B —scheme. If [2y,g] = [Ox] + [€] in
Ko(X) for some locally free sheaf £, then fX wdy =0 forall w € End(1y).

The properness hypothesis in Theorems 1.3 and 1.5 is essential: there are many smooth
B —schemes that become strongly dualizable in SH(B) without being proper (eg the
complement of a smooth closed subscheme in a smooth proper scheme) but these
theorems clearly do not extend to all such schemes.

Before giving examples, we make some general remarks on the notion of regular
fixed points appearing in Theorem 1.3. Let Ax C X xp X be the diagonal and let
'y C X xp X be the graph of f. Itis clear that we have the following implications:

I'r and Ay intersect transversely

U

f has regular fixed points

U

I'y and Ay intersect cleanly

(The last simply means that X /" is smooth over B.) Moreover, both implications are
strict: the transposition on X xp X has regular fixed points if and only if multiplication
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by 2 on Qx/p is invertible. Even in the case of a transverse intersection, we will see
in Example 1.7 below that [y (¢) dy can depend on ¢. In particular, the trace of
X% f is not determined by the derived fixed points of f, since the latter coincide with
the underived fixed points when the intersection of I'y and Ay is transverse. This is a
significant difference between stable motivic homotopy and £-adic cohomology.

Example 1.6 (Fixed points of Frobenius) Let g be a prime power, X a smooth and
proper F,—scheme and f: X — X the Frobenius endomorphism. Then

X/~ ]_[ SpecFy
X(Fq)
and df = 0. By Theorem 1.3, (2% /) € GW(IFy) is simply the Euler characteristic
of X/, which is the number of [F4—rational points of X by additivity of the trace.

Example 1.7 (The Euler characteristic of P 1y We can compute the Euler character-
istic of projective space P” by induction on n using the cofiber sequence

TP & RPP" > §A”
and the additivity of the trace (see May [17]). We find that

y(P" 1)+ 1 ifniseven,

P") =
() y(P" 1)+ 1 ifnisodd,

where 7 € End(1p) is the desuspension of the transposition SAASA! ~ gAl N gAl 4
If B is the spectrum of a field k, it is well-known that T corresponds to (—1) € GW (k).
As a consistency test, we use Theorem 1.3 to show that the Euler characteristic of
the projective line P! over k is the hyperbolic form (1,—1) € GW(k). Since an
odd-degree extension of finite fields induces an isomorphism on Grothendieck—Witt
rings, we may assume without loss of generality that k has at least 4 elements. Choose
a € k™ with a® # 1 and let f be the automorphism of P! given by [x : y] > [a2x : y].
A homotopy between the matrices

10 and a 0
01 0a!

. . . 1 _
in SL(k) induces a homotopy between idp: and f, so that y(P*) = (25 f). We
have
1
(P17 = 10,00}
“4Here we use the following fact: if C is a symmetric monoidal category and L € C is ®—invertible, then

x(L) € End(1) corresponds to the transposition under the canonical isomorphism End(L ® L) ~ End(1).
We leave the elementary proof to the reader.
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(a disjoint union of two copies of Spec(k)), dfo = a?, and dfs = a~2. Thus, the
endomorphism id — i *(df) of i*(Qp1) ~ A is multiplication by 1 —a? at 0 and
by 1 —a~2 at co. By Theorem 1.3, the trace of f is (1 —a?,1—a~2) = (1,—1), as
expected.

Example 1.8 (Relations in the endomorphism ring of the motivic sphere spectrum)
The fact that tr(X%° /) is an invariant of the homotopy class of f* produces interesting
relations in the ring End(1p). For example, if k is a field and ao, ...,a, € k™ are
n + 1 distinct elements whose product is 1, then the endomorphism [xg : ... : x,] —

which by Theorem 1.3 is the class

n
Y Tt —aj/ai) e GW (k).
i=0j#i
is independent of the choice of the elements a; and equals the Euler characteristic
of P".

Our proofs of Theorems 1.3 and 1.5 remain valid if the functor B — SH(B) is
replaced by any motivic triangulated category in the sense of Cisinski—Déglise [5,
Definition 2.4.45]. On the other hand, by the co—categorical universality of SH(B) for
fixed B established by Robalo [24], our theorems admit the following generalizations.
Let C be a pointed symmetric monoidal presentable co—category and F: Smp — C a
symmetric monoidal functor satisfying A!—-homotopy invariance, Nisnevish descent,
and P! —stability (ie the cofiber of F(oc0) — F (IP’llg) is ®—invertible). Then F sends
smooth proper B—schemes to strongly dualizable objects and Theorems 1.3 and 1.5
are true with X replaced by F. For example, when B is a field and F = Cf,
Theorem 1.3 recovers Theorem 1.1.

Finally, in Section 5, we will prove:

Theorem 1.9 Let k C L be a finite separable field extension, V a finite-dimensional
vector space over L and ¢ an automorphism of V. Then, modulo the isomor-
phism (1-2),

[L () dy = Trz i (det(@)).

Here Trz /x: GW(L) — GW(k) is the Scharlau transfer associated with the field trace
Trp k: L — k, ie it sends a symmetric bilinear form b: V x V' — L to the form
Trpjob: VXV —k of rank [L : k]rk(b). Note that we allow k to have characteristic
2 or to be imperfect. Combining Theorems 1.3 and 1.9 gives the following result, which
is a motivic version of the Lefschetz—Hopf theorem; see Dold [7, VII, Proposition 6.6]:
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Corollary 1.10 Let k be a field, X a smooth and proper k—scheme and f: X — X a
k—morphism with étale fixed points. Then

w(EPL ) = D Treeo/k(detid—dfy)).

xex/

Example 1.11 (The Euler characteristic of P!, continued) Let k be a field such that
V—1 ¢ k. Consider the endomorphism f: P! — P! given by [x: y]+ [—y : x]. It
is again induced by a matrix in SL; (k) and hence, as in Example 1.7, is homotopic to
idp1. We have

(Pl)f ~ Speck(i),

where i is a square root of —1. Moreover, df; is multiplication by i 2 = —1. The
fixed-point index of f at i is therefore

Trk(i)/k(l —(=1D)=({4,-4)={1,-1) e GW(k).

As predicted by Corollary 1.10, this coincides with the Euler characteristic of P!
computed in Example 1.7.

Conventions The following conventions are in force throughout, except in Appen-
dix C:

¢ All schemes are assumed to be coherent, ie quasi-compact and quasi-separated.

¢ Smooth and étale morphisms are assumed to be separated and of finite type.
See however Remark C.14.

Acknowledgements I thank Marc Levine and Jean Fasel for their interest in this
project and for stimulating conversations about it. The first version of this paper
was written while I was visiting the department of mathematics at the University of
Duisburg—Essen and I would like to thank everyone there for their hospitality. Finally,
I am immensely grateful to the anonymous referee whose report lead to considerable
improvements to the original manuscript.

2 Review of the formalism of six operations

To prove Theorem 1.3, we will use the formalism of six operations ( f*, f«, fi, f N
and Hom) in stable motivic homotopy theory developed by Ayoub in [3] and revisited
by Cisinski and Déglise in [5]. In this section we briefly review the main features of
this formalism and we introduce several pieces of notation that will be used throughout
this paper.
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Remark 2.1 We do not insist that schemes be noetherian and of finite Krull dimension.
We explain in Appendix C how to extend motivic homotopy theory and the formalism
of six operations to arbitrary schemes.

For a scheme B, we denote by SH(B) the closed symmetric monoidal triangulated
category of motivic spectra parametrized by B. The monoidal unit, monoidal product,
monoidal symmetry and internal hom in SH(B) will be denoted by 1, A, T and Hom,
respectively. We first give a description of the six operations which is independent of
the specifics of the category SH(B).

To any morphism of schemes f: Y — X is associated an adjunction
¥ SH(X) 2 SH(Y) : f«.

where f* is symmetric monoidal. If f is smooth, f* also admits a left adjoint
denoted by fy. If f is separated of finite type, there is an exceptional adjunction

fi: SH(Y) 2 SH(X) : f*

and a natural transformation f; — f« which is an isomorphism when f is proper.
Each of the assignments f — f*, fi. fi. [\, f4 is part of a 2—functor on the category
of schemes. In particular, every commutative triangle of schemes gives rise to various
connection isomorphisms, such as (g f)* ~ f*g*, satisfying cocyle conditions. We will
denote by ¢ any isomorphism which is a composition of such connection isomorphisms.

To any cartesian square of schemes
g
_

(2-2) q

o<—— o
e<— @
]

7
are associated several exchange transformations, such as
Exg: f7pe — qx8™,
Ex*: g% p' = g ¥,
Exg: ggq™ — p* fi.
To a morphism f are also associated several projectors, such as
Pri: fxEANF — fu(EAf*F),
Pr* fY*EA f'F > fYEAF),
Pry: f(EAf*F)— fyE AF.
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Each projector comes in left and right variants (for which we use the same symbol)
related to one another via the monoidal symmetry 7. There are also projectors involving
the internal hom, but we will not need them. A crucial fact is that the transformations
Exy, Exfk and Pry are always isomorphisms. As we will see below, this generalizes the
proper base change theorem (Exj is an isomorphism when p is proper), the smooth
base change theorem (Ex} is an isomorphism when f is smooth) and the projection
formula (Pr} is an isomorphism when f is proper).

If i: Z — X is a closed immersion with open complement j: U < X, we have two
localization cofiber sequences

.. Loon

it sid L iyi ™,

..l €, noo. .

i —>id — jej*.
Moreover, the functors i« >~ iy, ji and jx are fully faithful. We will denote by
o:i' — i* the natural transformation

I>id7i ——id'i T >0,

If p: V — X is a vector bundle with zero section s, the adjunction
pys«: SH(X) 2 SH(X) stp*

is a self-equivalence of SH(X), which we will denote by =" 4 =~V. The functors
>V and =7V will be called Thom transformations, or the V-suspension and V-
desuspension functors, respectively. They are compatible with each of the opera-
tions f*, fx, fy, fr and f " in the following sense: there are canonical isomor-
phisms f*SV ~ S/ * 5V £, ~ £,5/"V etc. They are also compatible with
the monoidal structure, in the sense that SV EAF ~ SV(EAF) and S VEAF ~
Y~Y(E A F). In particular,

V2 sV1x A(=) and STV > V1x A (o).

If M is a locally free sheaf of finite rank on X, we will also denote by XM and x~M
the functors VM) and =V where V(M) = Spec(Sym(M)) is the vector
bundle on X whose sheaf of sections is dual to M.

If f is smooth, there are canonical isomorphisms
A= HEY and  fla 3

where Q¢ is the sheaf of relative differentials of f. In particular, if f is étale, f) >~ fy
and f'~ f*. At this point we see that the operations fi» >V and 7Y, which are
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not listed among the six operations, are expressible in terms of the latter as
Sy = fzr, 2V ~s*p', =TV ~stpr

The Thom transformations are functorial in monomorphisms of vector bundles (ie
epimorphisms of locally free sheaves) as follows. Given a triangle

N/

where p and g are vector bundles with zero sections s and ¢ and where ¢ exhibits W
as a subbundle of V', we define ¢: =% — XV to be the composition

4 o 4
t*q! :t*¢!p! —>t*¢*p! :s*p!
and we let 27%: 27V — =~W be its mate, which is given by the same composition

with stars and shrieks exchanged. In particular, a linear automorphism ¢: V — V
induces an automorphism X~V X% of the identity functor on SH(X), which we denote

by (¢).

For any short exact sequence

0O-W—->V->U-—=0
of vector bundles on X, the exchange transformation Ex*' provides an isomorphism
(2-3) 2V~ Wyl

which is natural with respect to monomorphisms of short exact sequence. The properties
of these isomorphisms established in [3, Section 1.5] show that the association V =V
induces a morphism of Picard groupoids

= K(X) — Aut(SH(X))

from the K—theory groupoid of X to the groupoid of self-equivalences of SH(X).
In particular, the map ¢ +— (¢) factors through a group homomorphism K;(X) —

Aut(idSH(X)) .

Given a commutative triangle

7zl x

(2-4) \ l )
q
B
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where p and ¢ are smooth and s is a closed immersion, we obtain a sequence of
isomorphisms

) C

S'p* ~ S!E—Qpp! ~ E—s*(Qp)S!p. ~ E_S*(Qp)q' ~ E—s*(QI,)EQqq* ~ Z_Mq*,
where the last isomorphism is induced by the short exact sequence
d
0— Ny — s*(Qp) — Q, — 0.

The isomorphism s'p* ~ E_qu* and its mate pysx >~ gy N5 are called the purity
isomorphisms and are denoted by IT. Although the purity isomorphism appears a
posteriori as a consequence of the formalism of six operations, it must be constructed
“by hand” in both the approach of Ayoub and that of Cisinski—-Déglise. We discuss
the purity isomorphism further in Appendix A (where in particular we show that the
constructions of Ayoub and of Cisinski—-Déglise are equivalent).

Of course, all this data satisfies many coherence properties, of which an exhaustive list
cannot easily be written down. Let us mention here one kind of coherence that we will
use often. If f is a smooth morphism (resp a proper morphism), then we may want
to replace, in a given expression, occurrences of f; and f' by fﬁE_Qf and D% f*
(resp. occurrences of f; by f«). Such replacements yield canonically isomorphic
expressions and, under these canonical isomorphisms, any exchange transformation is
transformed into another exchange transformation and any projector is transformed into
another projector. For example, consider the cartesian square (2-2) and the exchange

isomorphism Exy: p* fi = g1g™. If f is smooth, then ¢*(25) ~ Q, and the square

Exy
P ——— aip”

:l l:

P RETY —— g SV
Exn

commutes, while the square

Ex;k

P —— gip”

|

P —— g«q*
Exy
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commutes for any f (the vertical maps being isomorphisms when f is proper).
Similarly, when f or p is smooth, the exchange transformation Ex*! transforms into
the isomorphism Ex'' or Ex**.

Let us now describe these functors more explicitly. For a scheme B, we denote by Smp
the category of smooth B—schemes and by H4)(B) the (pointed) motivic homotopy
category of B (we refer to Appendix C for the definitions in the generality considered
here). We denote by

X% H(B) — SH(B),

X*°: H«(B) — SH(B)
the canonical symmetric monoidal functors, called stabilization functors. If X € Smp
and U — X is an open subscheme, X /U is the quotient of the presheaf represented

by X by the presheaf represented by U, viewed as an object of Hx(B). If V isa
vector bundle on X € Smp, we denote its Thom space by

Thy (V) =

€ H«(B).
7 —x (B)

If V is a vector bundle over B itself, we also write S for Thg (V) or for its stabi-
lization X*°Thg (V).

For f:Y — X, the functor f*: SH(X) — SH(Y) is induced by the base change
functor Smy — Smy , so that

f¥EPU ~ P (U xx Y).

If f is smooth, the functor fy is similarly induced by the forgetful functor Smy — Smy .
In particular, if p: X — B is smooth, then

ETX ~ pﬁp*IB ~ pgp!lB € SH(B).

Ifi: Z — B is aclosed immersion with open complement j: U < B and if X € Smp,
the localization cofiber sequence

JiEP Xy = X - i, SP Xy

shows that
i*ES’rOXZ ~ ¥®(X/Xy).

In particular, if V is a vector bundle on X , then "1y ~ SV andhence =V ~ SV A(-).
If p: X — B is smooth and V' is a vector bundle on X, we deduce that

S®Thy (V) ~ ps=V p*15 ~ p=Y p'15 € SH(B).
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Consider a commutative triangle

y —L . x
N/
B
where p and ¢ are smooth. Under the isomorphisms X°X =~ p, p'lp and Y ~
¢1¢'1p, the map X f in SH(B) is given by the composition

0"l = pfif' p'1e > pip'lp

(this is [4, Lemme C.2]). More generally, suppose that V' and W are vector bundles
on X and Y and let ¢: W < f*V be a monomorphism of vector bundles. Then
the map of Thom spectra X°°Thy (W) — £°Thy (V) induced by ¢ is given by the
composition

3 * *
0= '3 =3 Vg1 2 p ST s~ pi=Y A P S pi3Y P,

This is easily proved by considering the localization cofiber sequences defining Thy (W)
and Thy (V') and applying the previous result to the maps W—Y -V —-X and W - V.

Finally, given the triangle (2-4) with p and g smooth and s a closed immersion,
the purity isomorphism IT: pys«lx >~ gy >Ns1y is the stabilization of the unstable
isomorphism

o = Thz (VL))

in H«(B) constructed by Morel and Voevodsky [21, Theorem 2.23].

3 Duality in stable motivic homotopy theory

Fix a base scheme B. Hu—Kriz [14, Appendix A] and Riou [23, Section 2] proved
that smooth and projective B—schemes become strongly dualizable in SH(B). We
will follow the latter reference and deduce this duality as an easy consequence of the
formalism of six operations. We will then provide alternative descriptions of this duality
that we will need in Section 4 and Section 5.

Recall that an object A in a symmetric monoidal category (C, ®, 1) is strongly dualiz-
able if there exists an object AY and morphisms

coev:1—>AQRAY and ev: AV®A—1
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such that both compositions

An1@4 =% 4904V od —28Y , Ax1~ A4,
AV~ AV @1 229, VedaedY —22Y 184V ~ 4y

are the identity. When it exists, this data is unique up to a unique isomorphism. If objects
A and AV are given, then a choice of coevaluation and evaluation maps exhibiting
AV as a strong dual of A is equivalent to a choice of adjunction between AY ® (—)
and A ® (—). The counit and unit of such an adjunction determine the evaluation and
the coevaluation, respectively. If A € C is strongly dualizable and f: A — A is an
endomorphism, then the trace of f is the endomorphism of the unit 1 given by the
composition
coev v Jf®id v T o v ev
1— ARA  — AQRA " ~A"®A— 1.
Throughout this section we fix a smooth and proper morphism p: X — B. Recall that
the projector
Pri: p(EANDP*F)— piEAF

is always an isomorphism. In particular, for E = p*1p, we obtain a natural isomor-
phism

(3-1 pp* = pp*lp A(-).
The projectors
! Pry 1 * pr*! !
P«PD ENF —> pu(PEANP"F) —> pxp (ENF)

are also isomorphisms, the first because p is proper and the second because p is
smooth. For E = 1p we obtain an isomorphism

(3-2) pxp' = pep'lp A(-).

Since pip* is left adjoint to psp', we obtain from (3-1) and (3-2) an adjunction
between p1p*1p A (=) and p«p'lp A (—), ie, a strong duality between pyp*1p and
Px p!l B EfX . Under the isomorphisms (3-1) and (3-2), the coevaluation map
13 — p«p'lp A p1p*1p is the composition of the units

(3-3) 13 > pep*1p > pup'pip*1s.

and the evaluation map p)p*1p A px«p'lp — 1p is the composition of the counits

(3-4) pip*pep'lp > pip'lp > 13.
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Remark 3.5 Composing the coevaluation with the symmetry and the first half of (3-4),
we obtain a map 1g — pip'lp ~ XX in SH(B). This is the motivic analog of the
Becker—Gottlieb transfer in stable parametrized homotopy theory. It is easy to see that
integration against the Euler characteristic is equivalent to precomposition with this
transfer.

Consider the cartesian square

XT)B

and denote by §: X < X xp X the diagonal immersion. The key result which will be
the basis for the proof of the main theorem in Section 4 is the following description of
the trace of an endomorphism:

Proposition 3.6 Let f: X — X be a B-morphism and let @ € End(1x). Then
tr(pgw o X f): 13 — 1p is given by the following composition evaluated at 1p :

. n ~ f)
id = pep* = par8i8'myp* S pamnm p*

Exy, ]\ Ex*!

C/P!ﬂz*ni"p! A pgnz*S*S*ni“p! SoptSid

Here the first loop is

Py p* = pu firyy(f xid) 7 p* = pamiy(f xid)i(f xid)'73 p* S parmyimy p*

and the second loop is
! ! wANid ! !
pxIxnp () —IxAp (=) xp.
Proof By the base change theorem, the exchange transformations

! ! |
Exi: mymy — p'pr and  Exy: p*psx — mosnty

are invertible. Lemma B.1 shows that, under these isomorphisms, the first row of
the given composition is the coevaluation (3-3) and the second row is the evalua-
tion (3-4). Lemma B.2 shows that the vertical arrow is inverse to the symmetry
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p«p'1p A pip*1p ~ pip*1p A psp'1p. It remains to prove that, under the isomor-
phism XX ~ py p'1p, the first loop corresponds to 3% f Aid and the second loop
corresponds to id A pyw.

Recall from Section 2 that X%° f* is the following composition evaluated at 1p:

1 € 1 | € |
pxD = px1f P — pxp

Under the projection isomorphism (3-2), ¥%° f* Aid is therefore the composition

€
(-7 P Pip* = pu Af D' pip* = pp' prp*.

Applying Lemma B.3 to the pair of cartesian squares

f xid 2
XxpgX — XxpX — X

N

X X B
f p

we deduce that (3-7) becomes the first loop under the exchange isomorphisms Ex;

Denote also by w the image of @ under the obvious map End(1x) — End(idgg(x)), so
that the second loop is the natural transformation pymo4 7y wp'. By the compatibility
of Thom transformations with the monoidal structure, the transformation @ commutes
with any Thom transformation. The square

pyp* —— p= =% p* —— pp!

pyop* l lp*wp’

ppt —— ppE s pr = ppt

is therefore commutative. Under the natural isomorphism (3-1), id A pyw then becomes
p1p* prwp’, which is the given loop modulo the exchange isomorphism Ex;. a

In the rest of this section we will give a more explicit description of this duality in
a special case which will be used in Section 5. In what follows we often omit the
stabilization functor ¥°° from the notation and implicitly view pointed presheaves
on Smp as objects of SH(B) (we do not mean to say that the maps we consider are
defined unstably, although this will sometimes be the case).
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Definition 3.8 A Euclidean embedding of X is a triple (s, V, ) where:

e s is aclosed immersion X < E in Smp.
e 1 is a vector bundle on B.

* B is apath from s*(V(Qg,p)) to p*(V) in the K—theory groupoid K(X).

The proof of [28, Lemma 2.8] shows that X admits a Euclidean embedding if it is
a closed subscheme of a projective bundle over B. Note also that, if X admits a
Euclidean embedding (s, V, 8), then it has one where the closed immersion is the zero
section of a vector bundle, namely X < V(N;). In addition to being smooth and
proper, we now assume that X admits a Euclidean embedding (s, V, ), which we fix
once and for all. The path § in K(X) determines an isomorphism

55 QE) ~ (V)
of self-equivalences of SH(X). The short exact sequence

d
0—N; = s*(QE) — Qx — 0
of locally free sheaves on X then induces an isomorphism

> ~ P V)N ;

whence

ORI OmEN vy D YALIEND >l ¥ yith
Finally, by the purity isomorphism, we obtain

E

3-9 Iy~ "V —“—.
(3-9) pilx %
It is worth emphasizing that the isomorphism (3-9) depends not only on s and V' but
also on S.

Under the isomorphism (3-9), the coevaluation map (3-3) is the V—desuspension of a
composition

v E
S —)——>X+/\—,
E-X E-X

and the evaluation map (3-4) is the V—desuspension of a composition
E

E—-X

We would like to describe these four maps more explicitly.

"Xy —32Vx, — sV,

Let p: E — B be the structure map of E and define 71 and 715 by the cartesian square:
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ExX — X
E B

Let also : X — E x X be the composition (s xid)o§. We will define an isomorphism
of short exact sequences:

—>

0 N S*(QE) Qx 0
(3-10) :lg :lp« :lvz
0 —— 8" (Nsxia) Ni N 0

The isomorphism £ is the composition
Ny > 8% f (Ns) = 8% (Nsxia)-
The isomorphism vy: Qx = N is defined so that the composition
Qx > Ns = 8" (Qxxx)

is §*(dm1) — 6*(dms). In other words, v, is the composition of the canonical isomor-
phisms
Qp > 811 () = 8" (Q,) = N

It is then clear that the composite equivalence

id e §'n) = 85 % f o B8 @n)slnr ~ 5 glr £ 5 Noghd ~ 5N

is induced by v, . Finally, the isomorphism p is defined so that the composition
$*(2E) = Ny = 1*(RExx)

is t*(dmy) —t*(d(smz)). It is easy to check that the diagram (3-10) commutes.

Proposition 3.11 Let (s: X — E,V, B) be a Euclidean embedding giving rise to the
isomorphism (3-9).

(1) Suppose that s: X % E is the zero sect1on of a vector bundle r: E — X . Then
the map p«p*1p Ne DD p|p*13 >~ pxp "1 A p1p*1p is the V—desuspension
of the composition

E  (rid) XX E
E-X XX (E—-X)

~ XL A .
T EZX
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(2) Themap pip*1g A pxp'lp =~ prp* psp'lp 5 p1p'lp is the V—-desuspension
of the composition

E ExX ExX 1
AXy o~ ~ Thy (VN;)) ~ =V X,
E-x " T Eo <X  Exx)—ag — x(VAD) *

where the last isomorphism is induced by p: Ny ~ s*(Qg) and by B.

Proof (1) We must check that the two outer compositions in the following diagram
coincide:

id
p2Ep'1p - ps88' ySE p'lp < p«ZEp'lp
€ n

I wE | Ex; | E | Pr?‘ | E |
PxnTy X plp ——> pyp pET plg <— puplp ApXT plp

12

Ex;‘ Pr;‘
pymyy SE p 1l — pyp* py2F p*1p — pyp*lp A pyIF p*lp

~ ~

r,id
Thy(£) Y, Thyxx (2 E) X, AThy (E)

12

The three vertical isomorphisms in the second row are obtained by getting rid of shrieks
and rearranging the resulting Thom transformations. Note that (r,id): Thy (E) —
Thy xx (75 E) is the map induced by the diagonal 6: X — X xp X and the canon-
ical isomorphism §*75 E >~ E. We saw in Section 2 that the left-hand rectangle is
commutative. The commutativity of the top square is Lemma B.1(2). Finally, one
verifies easily that the lower rectangle is the stabilization of a commutative rectangle
of presheaves of pointed sets on Smp. Thus, the whole diagram is commutative.

(2) We first express the given composition in terms of the six operations. We have

ExX . ) % ExX . N
m =~ pﬂﬂzﬁ(s de)*ﬂ'l P 1 and m =~ pﬁﬂzﬁt*[) 15,
and the map
ExX ExX

(E—X)xX _ (ExX)—Ayx

collapsing the complement of the diagonal is given by

(3-12)  pyiay(s xid)xmy p*1p 2 PyTtog(s X id)«848" 1) p*1p = pyfiayts p™1p,
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as one can see at the level of pointed presheaves on Smp. Consider the following
diagram:

E o~ ~ IT
E—x %+ Pyssp*1 A pyp*lg —— py=V p*1p A pyp*1p
Pr;‘ Pr;:;k
pyp* pys«p 1y ———— pyp* py =N p*1p
(3-13) ~ £ B
pﬂffzﬂf[iks*p*lg pﬂnzﬂnikENSp*IB
Ex} =
ExX ~

. . n x
E_X) =X Pufag(s xid)u} p*lp —— pyrop ™1V p*1p

The left rectangle is seen to be commutative at the level of pointed presheaves and the
top right square commutes by naturality of Pr;‘. The lower right rectangle becomes
an instance of the compatibility of Ex} with compositions of cartesian squares after
replacing lower sharps by lower stars. It remains to prove that the composition

(3-13)
~ pep Py =N p* 5 puitay(s ><1d)*ﬂ1p

(3-12) *
OB pufaptap™ = pySNip* K py5s” (@)

*

pyp*ps=* @ p

is equal to the counit € (when evaluated at 15). One finds these two maps as the
boundary of the following diagram, after applying py(—)p™:

€

p*p*ES*(QE) — Jrz*ﬂ’ikzs*(QE) . 5 H2*5*ES*(QE) — $57(QE)

l Ex}

p*p#ENS — nzﬁnfENS — Jrzﬁ(?*ENS w
X.
4

~ ~

N

Ty XV T>7r2ﬁ2 s>

I I I

fog(s x id)sxmy — Tag(s X id) 85 ——> Toyt«
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We claim that this diagram commutes. The topmost face commutes by Lemma B.1(1)
and the commutativity of the four small squares is clear. The large rectangle may be
decomposed as follows:

JTZ*S*ZS*(QE) S Eu (775))
Tapbs TN s 8, SNy S Al
:l v2 | & 2
nzﬁEvaidS* = ”zﬁS*ES*(MYXid) I s ZNSle*(/\/SXid)
HT =

The rightmost face commutes by (3-10) and the middle rectangle commutes by the
definitions of £ and v,. Finally, the bottom rectangle commutes by the compatibility

of the purity isomorphisms with the composition of the closed immersions § and s x id
[3, Section 1.6.4]. O

The counit €: pyp'lp — 1p is of course the map X¥p: EXX — X°B =1p. The
unit 7: 13 — p4« p*1p is more difficult to describe explicitly and we do not know how to
do it in any kind of generality.> However, we can at least give a useful characterization
of n:

Proposition 3.14 Let (s: X — E,V, B) be a Euclidean embedding and Iet
E
S vV X
be a map in SH(B). The following conditions are equivalent:
(1) Under the isomorphism (3-9), ¢ is the V—suspension of the unit n: 13 —
p«p¥lp.
(2) The composition

where the second map is given in Proposition 3.11(2), is equal to £ X p.
5If X is a closed subscheme of a projective bundle over B, it is possible that the unstable map

SV >E /(E—X) constructed by Voevodsky in [28, Theorem 2.11(2)] (for a specific Euclidean embedding
(s, V, B)) stabilizes to 7, but we did not check it.
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Proof Since the unit n: 13 — p4«p*1p is dual to €: p;p'lp — 1p, it is determined
by the equation ev o (n Aid) = €. The equivalence of (1) and (2) is now clear by
Proposition 3.11(2). O

In Section 5, we will define a map ¢ satisfying the condition of Proposition 3.14(2)
when B is a field and X is a finite separable extension of B. As a result, the duality
will be completely explicit in this case.

4 Proof of the main theorem

We prove Theorem 1.3. As a warm-up, assume that X admits a Euclidean embedding
(s, V, B), chosen such that s is the zero section of a vector bundle r: E — X. By
Proposition 3.11, the trace of X° f is then the V—desuspension of a composition

E  (id XxE
E—-X XX (E—-X)
fxid XxE
XX (E—-X)
i3 ExX
T (E-X)xX
ExX

sV

where 7 is the monoidal symmetry. Ignoring the first and last arrows, it is clear that the
remaining composition factors through E/(E — X /) and hence that (X f)=0if
X/ is empty (compare this argument with the proof of the Lefschetz—Hopf theorem by
Dold and Puppe in [8]). Itis possible to prove the more precise statement of Theorem 1.3
in this explicit setting, but, to treat the general case where X is proper over an arbitrary
base, we will now switch to the formalism of six operations. Throughout this section
we use the following notation:

xf oy XxBXi)X XfXBXfL)Xf
\\J/p Nll lp pll Jq
q

Letalso 8: X < X xg X and 0: X/ < X/ xp X/ be the diagonal maps and let
y = (f xid) o § be the graph of f. For the moment we do not assume that f has
regular fixed points.
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Recall from Proposition 3.6 that tr(X° /) can be expressed as a certain composition
id—n>p*p* - pip' S id

evaluated at 1p, where the transformation psp* — pyp' is the solid boundary of the
following commutative diagram:

pep* ———— puméi8'yp* : psnmsp*
| pamnt(fxid)di8' (fxid)' 3 p* S pamny(fxid)(fxid) mhp*
| ~ ‘
psuyy'myp* : pernap*
4-1) | ~ ~ |
E P!7T2*V!V!7Tikp! d ngTZ*ﬂfp!
E n n
E DTy 8x8¥ 1 p' —— s pyaibi8 ) p!
v , - =
N Exy P !
Prisi’ P’ —————> Py’ 8xp ~-=--=--==-=--=-> P

The map at the bottom left is the exchange transformation Exfk: ixi' — y'84 associated
with the cartesian square

xf— ' ,x

(4-2) ; l ls

XT>XXBX,

and it is an isomorphism by the base change theorem. The dashed arrows in (4-1) can
then be defined so as to make the diagram commute. Lemma B.4 shows that the bottom
row in (4-1) is the counit €: pyixi'p' — pi1p'. Note that this diagram already proves
Corollary 1.4: if X/ is empty, then i4i' is the zero functor and hence r(ZF f) =0.
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The dashed arrow p«p* — prixi'p' in (4-1) is the composition of the right column
and the bottom row in the following diagram:

.. n
Prixi™ p* psp”

~ ~

. o.xol | n 1
Pt 181ini *8 5 p* «—— pum818 7y p*

~ ~

RO n 11 %
PxTT1Vlsl Y o P < DxTU1Y TP
4-3) ~ ~
ek )k 0 n 1% !
P\ Y\l Y O P S D1« 1Y T P
Ex*! n

Ex!
.o ! * ! |
P12 Viisi 8wl p’ — P12y 858 ml p’

~ ~

!
Ex,

prixi'p* py'8sp'.

The commutativity of each square in this diagram is clear, except that of the fourth
square which follows from the definition of the exchange transformation Exi in terms
of Ex*' (see [3, Section 1.2.4]).

The left column of (4-3) is a natural transformation g«q* — g1’ which, by (4-1) and
Lemma B.4, makes the following diagram commute:

pxp* —— pip'

(4-4) : 7 . .
x w3 ' e

qxq* —— q1q’

Assume now that f has regular fixed points, ie that ¢ is smooth and that id — i *(df)

restricts to an automorphism ¢: N/; SN By Proposition 3.6, [y s (¢) dy is a certain
composition

(4-5) id 3 gug* > gt Sid
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evaluated at 1g. In view of (4-4), to conclude the proof of Theorem 1.3, it will suffice
to show that the segment gxq* — 1" in (4-5) is equal to the left column of (4-3).
This segment (as given by Proposition 3.6) is the composition of the top row and the
right vertical arrows in the following diagram:

4eq* ——— qep11610'p5q* ——— qupripbg*

(4-6)

[

~

~

T

q1024000' 07" ———— q1p24p}¢"

(¢)

q1p2+010°

n

~

!

*x |

~

(¢)

prqt ———— qip2spiq’

n

0192+010'0:0"pTq' —— q1p246046" p} g’

n|x= ~

Q1p240,0%pt ¢t ———— qi¢*

where (¢) acts after ¢' in both columns. Each square commutes by the naturality of the
given transformations, except the last square which commutes by a triangle identity for
the adjunction 64 ~ 6, 4 6. The triangle at the bottom left commutes by Lemma B.5.

Remark 4.7 In the diagram (4-6), one can replace (¢) by any endomorphism of
1yr and X / itself by any smooth proper B—scheme. Theorem 1.5 follows from the
observation that the natural transformation

o: 0'pF — 0*p}

iszero if [Qy r] =[Oxr]+[€] in Ko (X/). Indeed, by Proposition A.4, this transfor-
mation can be identified to the transformation £~V¢ — %0 induced by the epimorphism
Ny — 0. Since Ny is isomorphic to Qy 7, this transformation factors through the
transformation 4" — 20 induced by the zero section of the trivial line bundle,
which is clearly zero (see for example [3, Lemme 1.6.1]).

We now compare the left column of (4-3) with the left column of (4-6). Both columns
are of the form g« (¢* — ¢'), where the respective maps g* — ¢' are the left and right
columns of the following diagram:
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l*S'JT;p* Ei e!plzq*
[ = | ||
1 Ex* 1
i*y'myp ~ 0°p2q”
Ex*'TN :TEX*!
i*y'nip - 0'pq’
~ | (@)
Ex*! e‘pfq'
lo
i'8* i p' — 0*ptq’
Ex /
x | ~
q

Here the isomorphism « is defined by the commutativity of the second square. The com-
mutativity of the first square is clear. Theorem 1.3 is thus reduced to the commutativity

of the pentagon
Q(qﬁ)
i*y'atp' —— 0'plq’

Bt | |

i'§*nypt —— 0*piq".

This is the heart of the proof. By transforming the stars into shrieks, this pentagon
becomes

(¢)
SNt @) gt = 92—9%1@

Y ! !

S WD @) ! _E L sNo=a )

and we now identify the four unlabeled arrows. By definition of «, the top map in (4-8)
is induced by the short exact sequence

i
0— N; - i*(Q)p) — Q, — 0.

Denote by vy: Qx = N the isomorphism for which the composition
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QX i),/\/’3 —> 8*(QXXBX)
is §*(dmp) — 6*(d ). The composite isomorphism

id~ §*nf ~ NS st ~ s Ns =

is then induced by v{, and similarly for the isomorphism id ~ »No=24 (for more
details, see the discussion of the isomorphism v, before Proposition 3.11). Under
these trivializations, the bottom map in (4-8) is just the identity ¢' — ¢'. The vertical
maps in (4-8) can be identified using Proposition A.4. Applying Proposition A.4 to
the cartesian square (4-2) shows that the left vertical arrow in (4-8) is ¥ where
Y i*(Ns) = N is the epimorphism induced by (4-2). Explicitly, ¥ is determined
by the following diagram of short exact sequences:

i*(d§
F(NG) s 85 (i x) —o i*(Qy)

1

v E iy  (Qxxpx) di

Finally, applying Proposition A.4 to the pullback of 6 along itself shows that the right
arrow in (4-8) is ¢ where ¢ is the epimorphism Ny — 0. The commutativity of (4-8)
is thereby reduced to the commutativity of the following diagram:

sNi—i*(@x) s Ni—it@x) = -9y

v| |

" Ws)—i*(Qx) = 30 = sNo—Qy 1

i*(v1) Vi

Applying %" (€x) it is equivalent to check that the following diagram commutes:

s Ni i s YN g s No+N;

llfl :lw
witWs) = it (Qx) | @y s TN

i*(v1) =
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By the naturality of the isomorphisms (2-3), it will suffice to verify the commutativity
of the following diagram of locally free sheaves:

Ni —— i*(Qx) —> Qxr

N i*(Ns) No
¢l 14 ¢
Ni S N 0

This can be checked on sections as follows. Let [x] be a section of N;, represented
by a section x of Oy vanishing on X/ . Its image in i*(Qx) is i*(dx). By the
definitions of v; and i, we have

Y(*(i(dx) =y (*[1@x—x®1]) =[x —x0 f]=¢([x]).
as desired. This concludes the proof of Theorem 1.3. |
S The Euler characteristic of separable field extensions

In this section we prove Theorem 1.9. When L = k, the statement of Theorem 1.9
reduces to the following lemma:

Lemma 5.1 Let V be a finite-dimensional vector space over k and let ¢ be a linear
automorphism of V. Then (¢) = (det(¢)) in End(1y).

Proof Recall from Section 2 that (—) factors through a group homomorphism
K1 (k) — Aut(1;). The lemma then follows from the fact that the determinant induces
an isomorphism Kj(k) ~ k*. O

In view of Lemma 5.1, the following proposition completes the proof of Theorem 1.9:

Proposition 5.2 Let k C L be a finite separable field extension. For any w €
End(1z) ~ GW(L),
[L wdy =Trg k(o).

Proof Combine Lemmas 5.8, 5.9 and 5.10. O
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Recall that, if p: X — B is étale, there are canonical isomorphisms p' ~ p* and
pr == py. If moreover p is finite, we therefore have a canonical isomorphism ps >~ py.

Lemma 5.3 Let p: X — B be a finite étale morphism and let w € End(1y). Then
Jx @ dy € End(1p) is the composition

n Py €
lB — p*lx ~ pﬁlx —> pﬁlx — lB.
Proof By Proposition 3.6, fX w dy is the composition

id 3 pup* S pemndinip* S pamnmip*

Ex,, ]\ Ex*!

U!NZ*nfp! A p!n2*8*8*nf‘p! 3 pgp! 5 id,

where the loop is @ acting after p'. By naturality, we can move this loop to the
next-to-last position pyp'. It then remains to prove that the composition pyx p* — py p'
(without the loop) is the canonical isomorphism. The morphisms p, §, 71 and 7, are
all finite étale, so we can replace everywhere upper shrieks by upper stars and lower
stars by lower shrieks. This operation transforms the exchange isomorphisms Exi, and
Ex*' into the connection isomorphisms Exy and Ex**, and we must then prove that
the following composition is the identity:

pip* = prn8i8*aE p* — prrnd p*t = pray pt — pradi8t Al p* =~ pip*.

Using the coherence of the connection isomorphisms, we are reduced to proving that
the composition

§18% ~ 88" S id > §,8% ~ §,6*

is the identity. This is clear since § is an open and closed immersion. |

Fix a base field k. Recall that there is a canonical isomorphism S Al o Pkl /oo in
H. (k) given by the zig-zag

AL/(Ap —0) — PL/ (P} —0) < P /oo.
Lemma 54 Let a: Speck — A}C be a rational point. Then the composition

Pl
S* 2Bl foo > ot = sNe~ gA
k
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is the identity in Hy(k), where the last isomorphism is induced by the trivialization
Or >Ny, 1—>t—a.

Proof Suppose first that @ = 0. We must then show that the composition
1 1
Ay Py

: —> — ~ SN0~ gA!
Ap—0 P -0

is the identity, which follows from [28, Lemma 2.2]. The general case is easily reduced
to the case a = 0 by noting that the map

Pl/oo = Pl/oo, [x:y]—[x+ay:yl]
is A!—homotopic to the identity. m|
Lemma 5.5 Let L be a finite separable extension of k, p: Spec L — Speck the

corresponding morphism of schemes and a: Spec L «— A}( a closed immersion with
minimal polynomial f € k[t]. Then the map

n
1 — pslp >~ pylp

is the A —desuspension of the composition

P} 1
Z]Al(Speck)Jr ~ ]P’kl/oo — P k ; >~ Thgpee 1. (Ng) =4 (Spec L)+ .

1

k
where N is trivialized via f/f’(a).

Proof Denote by {: S Al IP’li / (IP’,i —a) the first part of the given composition. The
immersion a: Spec L — IP’,; and the given trivialization N, ~ O form a Euclidean
embedding of Spec L (Definition 3.8), and the second part of the given composi-
tion is the A!—suspension of the isomorphism (3-9) constructed from this Euclidean
embedding. By Proposition 3.14, it therefore suffices to show that the composition

1 ZAid P} h 1 D 1
(5-6) TA (Spec L)4 — —L 5 oA (Spec L)+ — SA

IP’LI —ay,

is equal to A p+ in Hyi(k), where & is the map described in Proposition 3.11(2).
Explicitly, 4 is the composition

1 1
PL IP)L
]P’i—aL PZ—&

1
= ThSpecL(N&) = EA (Spec L)-'r )
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where:

e ar: Spec(L ®; L) — IP’L1 is the base change of a.
e a=aj o6 is the L—point of IP’LI above a.
e Nj is trivialized via the isomorphism

d
(5-7) ~a (QPI)Ma*(QPI)_

and the given trivialization of N, where 771: P i — ]P’k1 is the base change of p.

With the identifications
Na=(f)®knL and Nz =(t—a)®r L.

the isomorphism (5-7) is induced by the inclusion (f) C (t —a). If f(z) = —a)g(?)
in L[t], we have
FO® =t -a)g)® = —a)® LD — t—a)g1.
/! ( ) /! ( ) f'(a)
Thus, since N is trivialized by f/f'(a), Nj is trivialized by the monomial ¢ —a.
The composition
¢Aid P]i

Spec L)y ——
(p )+ Pi—aL

h
5 oAl (Spec L) +

is therefore the identity in H* (k) by Lemma 5.4 (applied to a: Spec L — Al ), and
hence (5-6) is equal to yA! P+, as was to be shown. O

Let v be a finite place of the field of rational functions k(¢) with residue field x (v).
As a k—vector space, k(v) has a basis {1,¢,...,t""!}, where n = deg(v). We let

5 GW(k (v)) — GW(k)
be the Scharlau transfer associated with the k—linear map « (v) — k defined by

0 if0<i=<n-2,
1 ifi=n—1.

ti|—>

Let also
5" GW(k (v)) — GW (k)

be the geometric transfer defined by Morel in [20, Section 4.2].
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Lemma 5.8 Let v be a finite separable place of k(t) with minimal polynomial f €
k[t]. Then, for any v € GW(k(v)),

Tre(y/k (@) = N f/(1))w).

Proof By [26, III, Section 6, Lemme 2], we have

- O\ _ (0 if0<i<n-2,
IR\ i) T iti=n—1.

This immediately implies the lemma. O

Lemma 5.9 Let v be a finite separable place of k(t) with minimal polynomial f €
k[t]. Then, for any v € GW(k(v)),

/ ol =T S 0o,

Proof If a: Speck(v) — Pkl is the closed immersion corresponding to v, 5 " is

the transfer along the same composition as in Lemma 5.5, except that the conormal
sheaf N, is trivialized via f (see [20, Section 4.2]). The lemma thus follows from
Lemmas 5.3 and 5.5. O

Sch _ __gcom

Lemma 5.10 For every finite place v of k(t), )" = 1y

Proof For each place v of k(¢), we choose a uniformizer 7, € O, as follows: if v is
finite, let 7, be its minimal polynomial, and let 7o, = —1/¢. By [20, Theorem 3.15],
there is a unique residue homomorphism

By Ky (k1)) — K™ (k(v))

commuting with multiplication by the Hopf element 5 € KY}N and such that, if
Ug,... uy € 05,

dy([mol[ur] - [un]) = [u1]---[un] and 9y ([u1]---[un]) = 0.
On the other hand, there are residue homomorphisms
dy: W(k(1)) > Wk (v))
between Witt groups determined by the formulas

Op{myu) = (u) and 0,{u) =0
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(see Husemoller—Milnor [18, TV, Section 1]). Recalling that nu] = (u) — (1), we see
that the following diagram commutes:

KMV k(1)) —2 KMV (k(v))

l

G-1D KV k() K k()

n

WD) —2 s Wk (v).

By [20, Theorem 3.24], the map

0 = (9)vstoo: KY™ k(D) — EP K™ (k(v))
vF#00

is surjective, where the sum is taken over all finite places v. Given v and b €
KS’WAV(K(U)) = GW(k(v)), choose b € KW (k(t)) such that d(b) = b (in particular,
dy (b) =0 for w ¢ {v, oo}). By the reciprocity formula for Morel’s geometric transfers
[20, (4.8)], we have

(5-12) 5" (b) = —doo ().
‘We must therefore show that
(5-13) 3N (h) = 000 (D).

Since ;""" (b) and t5N(b) are both of rank deg(v) - rk(b), (5-12) shows that both
sides of (5-13) have the same rank. In view of the cartesian square

GW(k) —* 5 7
Wk) — 7./2,

it remains to prove that (5-13) holds in the Witt group W (k). By Scharlau’s reciprocity
theorem for Witt groups [25, Theorem 4.1] and (5-11), we have

3N (b) = 15N, () = —oo () = —oo (b)

in W(k), as was to be shown. There are two points to be made about the statement of
the reciprocity theorem in [25]. First, the minus sign in front of do does not appear
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in [25], but it appears here because we used the uniformizer —1/¢ instead of 1/¢
at oo, and we have (—1/t) = —(1/¢) in W(k(¢)). Second, it is assumed there that
char k # 2, but it was observed in [10, Section 2] that, when the Witt group is defined
using symmetric bilinear forms instead of quadratic forms, the proof works in arbitrary
characteristic. m

Appendix A: On the purity isomorphism

In this appendix we achieve two goals:

¢ We show that the purity isomorphism defined by Ayoub [3, Section 1.6] is the
stabilization of the one defined by Morel and Voevodsky [21, Theorem 2.23].

*

e We prove that the purity isomorphism IT: s' p* ~ E_qu is natural in the

closed immersion s.
The naturality of IT plays a central role in the proof of Theorem 1.3 in Section 4.

We start by recalling the definition of the Morel-Voevodsky purity zig-zag. Let C be
the open subscheme of the blowup of X x Al along Z x {0} whose closed complement
is the blowup of X x {0} along Z x {0}. We then have canonical isomorphisms

Cxa1 {0} ~V(N,) and Cxgi{l}~X

(see Fulton [9, Chapter 5]) and diagrams

AN e ZxAl 2 L 7 <L V)
\lp —— \ lﬁ = \lpo
B B x Al B

where i (resp. ip) is the inclusion of the fiber over 1 (resp. over 0). Note that
»Nsg* p* :s(!)pa" by definition of V5. Denote by r: BxA! — B and r: ZxAl —
Z the projections. Since i is a section of r, there is a transformation r, — i* given
by

noo.. .
(A-1) P — Fadgl S 0%,
Let IT; be the composition

Alag s AD 0 nrag i Ex*! Vok A%k % 1%
(A-2) reS'pr—— i Spr —Ssi pr ~sp,
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and let ITo: r48' p*r* — s(!) p¢ be the analogous composition with i replaced by i,
so that we have a zig-zag

I1 I1
| % 1 Al A% %k 0 1 %
S'p <—r«Spr —)So'po.

Proposition A.3 The transformations I1 and I1y are isomorphisms and the compo-
sition 1'[01'[1_1 coincides with the purity isomorphism II.

Proof We will show that both maps in (A-2) are isomorphisms. Consider the diagram:

(A D

re§' p¥r iP5t ——— s §tp*
E _/\/'A,\* ,\* * (A-1) i —_/\/—A/\* /\*r* D MS p*

The first square commutes by naturality of the transformation (A-1) and the second
square commutes by [3, Corollaire 1.6.23]. Moreover, the transformation at the bottom
left is an isomorphism because N; >~ r*(Ns) and (A-1)r* is an isomorphism. Using
that 7: id — ryr™ is an isomorphism, we see that the lower row does not change if we
replace i by ip. Together with the analogous diagram for 1o, we therefore obtain a
commutative square:

l 1'[01'[_ |
s’ p* —>50P0

Hl ln
[ ! %
S0Po — 7 SoPo

But the right-hand purity isomorphism II: slo Py =~ s(!) pg is the identity by [3, Proposi-
tion 1.6.28], and hence IT = HOHI_I, as claimed. O

Proposition A.4 (Purity is natural) Suppose given a cartesian square
Wwelsy
b
7 <3 o x

in Smp where s and t are closed immersions, and let p: X — B be the structure map.
Then the induced map v: g*(N;) — N} is an epimorphism and the diagrams
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g*s!p* I g*z NYS p & (N;)g*s*p*

e =

k ok %k

t!f*p*%)Z_N’t f*p* —)Z tg¥s*p

g!S*p! 1;1 gzstS!p! _ Zg*(/\/})g!s!p!

Ex*!T ]\Z‘/’

| II ] | |DR
f*f ! — ENtt.fD' — }:Nt g..s‘.p.

Remark A.5 When f is smooth (in which case ¥ is an isomorphism), Proposition A.4
is exactly [3, Proposition 1.6.20], but in Section 4 we need the proposition for f a
closed immersion.

Proof Let Z C Ox be the defining ideal of s and J C Oy that of ¢. The morphism
Y is then the composition

g WNs) 2 g"s™ (D) = 1™ (D) > 17(T) = Ny

Because the square is cartesian, 7 is exactly the image of f*(Z) — Oy, and since t*
is right exact, ¥ is an epimorphism.

We will only prove the commutativity of the first diagram; the commutativity of the
second diagram is checked by a dual argument. Let D be the open subscheme of
the blowup of ¥ x Al along W x {0} whose complement is the proper transform of
Y x {0}. The given cartesian square then induces cartesian squares

2 1
W,y WxAl <5 D W s V(N
I P N T N
Z s X ZxAl <5, ¢ Z s V(NG

LIPS e

where fo = V() and go = g. By Lemma B.6, the transformation =¥ g*s* p* can
be identified with the exchange transformation Ex*': g&si p& — t§ fof pes . By replacing
both occurrences of I1 by Iy H1_1 (Proposition A.3) and completing the resulting
diagram with exchange transformations of the form Ex*', we are reduced to proving
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the commutativity of the rectangle

Al =~ * kAl Ex*!
§ ——ghivy —— g

l' *g*
Ex*! l lEx*!

O Ex*! l.% /% = |,k
i T —— it ——t fTi

!.
*S.l*

and of the analogous rectangle with i replaced by ig. By formal properties of exchange
transformations [3, Définition 1.2.1], both compositions in this rectangle are equal to

8% & (8i)*s' = (ig)*s' T 1 f)* 24t i, o
Appendix B: Coherence lemmas

Lemma B.1 Let
XxgX 25 X

- | lp

XT)B

be a cartesian square of schemes and let §: X — X xp X be the diagonal. Then:
(1) The counit €: p* px — id coincides with the composition

Ex} n )
P¥Dx —> ToxT] = 2848 ) ~id.

(2) If p is separated of finite type, then the unit n: id — p' p1 coincides with the

composition Ex!

. 1 1 € | ! |
id >~ 7116,8'my = myymy — prp°.

Proof The diagram

n c €
* * * * * *
P Px — > P PxTsT|] ———> P PxTxT| ——> T2x7|

| | |

* * %k c * * %k € * %k
D PsT1%6x0" U] ——> P psxm2x8x8 W] —> W240x0 1]

T |

P paidyid® ——=— > id,id*

is clearly commutative. Comparing the two outer compositions proves (1). The proof
of (2) is identical. O
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Lemma B.2 Let

lw

(S
o<—— o
e<— @

]

—_—
f

be a cartesian square of schemes where p is proper and f is smooth. Then the
following diagram commutes:

*

Prf Ex*
PP A fiu f'lg <——— pip* fu f'lp ——— pigwq™ f'1p

‘[J/ Exy, lEx*!
!

Pre'prt Ex;

fef B AP p g —> fuf' pip*lp «—— fuqug' p*1p

Proof Since p is proper and f is smooth, we can eliminate the shrieks to obtain the
equivalent rectangle:

k
Pry

X X Ex};
P*P*IB /\f*EQI f*lB E— P*P*f*zgj f*lB — P*g*zggq*f*lB

T J/ Ex,, J/Ex**

Pri ] ExZ
[V XU A pap*ly —— 2 f*pup*ly — > fiquZRg* p*1p

This is now a special case of the following diagram, for E = p*1p and F = X%/ f*1p:

* * *

Pry Ex} Pry
PREN fuF — pu(EAP* fx F) —> pu(EANgxq™ F) —> psgx(8*EANq*F)
'Cl le
Pr " Ex} " Pry " "
S« FAPprE —> fu(F A fTpxE) —> fu(FAq«g E) —> fuqx(q"F Ng"E)

We will prove that this more general rectangle is commutative. Using the adjunction
(f@)* - (fq)« and the fact that the functors (—)* are symmetric monoidal, it is
equivalent to prove the commutativity of the following rectangle:

*

. E * .
P PENG P F L8 G EAg*p* fu F —> g*EAg*8:q™F 25 g* EAg*F

rO(c/\c)l lr
O S FAG P ELS *FAG f* poE —> ¢*F A G458 E 25 ¢*F A g*E

Algebraic € Geometric Topology, Volume 14 (2014)



A quadratic refinement of the Grothendieck—Lefschetz—Verdier trace formula 3641

The compositions in this rectangle are now of the form t o (¢ Av) and (V' A¢')oT,
and hence we need only check that ¢ = ¢’ and ¥ = ¥/, ie that the squares

* *
Ex* EX*

g fu — g7 8xq" S P —— 47 qxg"
Tf e ———q" g px ——g"
are commutative. This follows from [3, Proposition 1.2.5]. O
Lemma B.3 Let
[ J L [ L [
T
o ——> 0 ——> O
f P

be cartesian squares in which all maps are separated of finite type. Then the following
rectangle commutes:

Exn ,

(pfnri(q9) —— pfirl's'd' —— pirigg'dt —— pirlq’

Ex§ l l Ex;

(PP —— pfif'p'n _ pp'n

Proof We break up this rectangle as follows:

Exn
(pnr(qe) —— pfirl'e'd' —— pir{gg'q’
Ex§ €
Ex pfif'rigt —— pirg’
Ex§ Exg

(PP —— pfif'p'n ——— pip'n

The left rectangle commutes by the compatibility of exchange transformations with the
composition of cartesian squares [3, Définition 1.2.1], the top square commutes by [3,
Proposition 1.2.5], and the bottom square commutes by naturality of €. |
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Lemma B.4 Let y,§: X — Y be a pair of closed immersions with a common retrac-

tion w: Y — X and let
V4 X
l la
X Y

be a cartesian square. Then the composition

i
—_

—_
Y

C B 1o € .
Ixl’ — P 0x 2 TaYxy Ox — T4l ~ id

is equal to the counit €: ii' — id.

Proof Consider the commutative diagram

.o n [ c lo .« ! € 1
Ixl” ———> Y Vxlxl —>y5*l*l —)yS*

Cl c c c

N n [ c lo - .l € 1
T Yulsl ——> TaVxV Vilxl ———> TaYx) Oxlsl ———> TxVsxy Ox

€ € €
id

| c | € .
T Yulnl ——————> MaOuxlnl —————> x5 > id

in which the upper composition is the given one. By coherence of the connection
isomorphisms, the lower composition is the counit e: ixi' — id, which proves the
lemma. |

Lemma B.5 Leti be a closed immersion. Then the triangle

1S commutative.

Proof This is simply a matter of unwinding the definitions. Recall that ¢ is

| B . .40,
Ex*:id*i" —id'i*.
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By definition of Ex*', this is the composition

Cl Tt e B ey

id*i! S id it <5 id*idyid'i* S idli*,
By construction, Exik: id4id' — i'i, is the mate of Ex%: i*iy — id«id*. Finally, by
definition of Ex}, the latter is the counit €: i *i, — id, whose mate is 7: id — i'is. O

Lemma B.6 Let

WL)V
ql l”
Y X

be a commutative diagram, where p and q are vector bundles with zero sections s and
t and where g induces a monomorphism of vector bundles ¢: W — f*V . Then the
following diagrams commute (the second assuming that f is separated of finite type):

_
S

~ * —¢ ~ * ]
f*E_V = Z—f Vf*):‘_) E_Wf* f!EV = Ef Vf! )2 EWf‘
f*s!p* — t!g*p* - t!q*f* f!s*p! — t*g!p! - t*q!f!
x* = X -

Proof Let r: f*V — Y be the pullback of p and let u be the zero section of r.
Recall that X~ is the composition
u!r* é t!¢!r* i) t!¢*r* é t!q*,

and that o: ¢' — ¢* is the exchange transformation Ex*': id*¢' — id'¢*. The
commutativity of the first rectangle then follows from the compatibility of the exchange
transformation Ex*' with the composition of the following three cartesian squares:

Y W ——=W
I I
Y - w 5 v
/| |
X > Vv
The commutativity of the second square is checked in the same way. |
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Appendix C: Elimination of noetherian hypotheses

In the foundational paper [21], Morel and Voevodsky define unstable motivic homotopy
theory only for noetherian schemes of finite Krull dimension. In this appendix we
indicate how to properly extend the theory to arbitrary schemes. For simplicity, we
will give our definitions using the language of co—categories (see Lurie [16]). We
say that a scheme or a morphism of schemes is coherent if it is quasi-compact and
quasi-separated.

There are two issues that arise when dropping the assumption that schemes are noe-
therian and finite-dimensional. The first concerns the definition of the Nisnevich
topology. This topology was originally defined by Nisnevich [22] using the following
pretopology: a family {U; — X};es is a cover if each U; — X is étale and every
morphism Speck — X with k a field lifts to U; for some i € I. For noetherian
schemes, it was shown in [21, Proposition 3.1.4] that this topology is generated by a cd-
structure in the sense of [29, Section 2]. For coherent schemes that are not noetherian,
the pretopology and the cd-structure define different topologies, both finer than the
Zariski topology and coarser than the étale topology. We will define the Nisnevich
topology in general by combining the cd-structure and the Zariski topology. This choice
ensures that the “small” Nisnevich co—topos Xyjs of a scheme X (ie the co—category
of Nisnevich sheaves of spaces on étale X —schemes) has good formal properties. For
instance:

(1) If X is coherent, then Xyjs is coherent and compactly generated by finitely
presented étale X —schemes.

(2) If X is the limit of a cofiltered diagram of coherent schemes X, with affine
transition maps, then Xyjs is the limit of the co—topoi (X )nis-

Another point in favor of our definition is that algebraic K—theory, considered as a
presheaf of spaces on coherent schemes, is only known to be a sheaf for our version
of the Nisnevich topology. Note that property (2) determines the co—topos Xnjs for
X coherent once it has been defined for X noetherian, since any coherent scheme
is a cofiltered limit of schemes of finite type over Z (see Thomason—Trobaugh [27,
Appendix C]). The second issue is that the Nisnevich co—topos of a coherent scheme
which is not noetherian and finite-dimensional need not be hypercomplete, ie Nisnevich
descent for a presheaf of spaces does not imply Nisnevich hyperdescent. We do not
want to restrict ourselves to hypercomplete sheaves, since by doing so we might lose
properties (1) and (2) as well as the representability of algebraic K-theory.

In this appendix, a presheaf is by default a presheaf of spaces. If C is a (possibly
large) oo—category, we denote by PSh(C) the co—category of presheaves on C. It will
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be convenient to work with a weakening of the notion of topology: a quasi-topology
7 on an co—category C assigns to every X € C a collection 7(X) of sieves on X,
called t—sieves, such that, for every f:Y — X, f*t(X) C 7(Y). A presheaf F
on C is a t—sheaf if, for every X € C and every R € t(X), the restriction map
Map(X, F) — Map(R, F) is an equivalence. We denote by Shv;(C) C PSh(C) the
full subcategory of t—sheaves. A family of morphisms {U; — X} in C is called a
T—cover if it generates a T—sieve.

If t is a quasi-topology on C, we denote by T the coarsest topology containing t.
Our first goal is to show that Shv;(C) = Shvz(C). The following proposition is a
generalization of [1, II, Proposition 2.2] to sheaves of spaces; the proof is exactly the
same.

Proposition C.1 Let C be an co—category and let £ be a collection of presheaves
on C. Let t be the finest quasi-topology on C such that £ C Shv(C). Then t is a

topology.

Proof To begin with, note that 7 exists: for X € C, t(X) is the collection of sieves
R — X such that, for every f: Y — X in C and every F € &£, the map

Map(Y, F) — Map(f*R, F)

is an equivalence. To prove that t is a topology, we must verify that, if S € t(X) and
R asieve on X such that g*R € t(X’) forevery g: X’ — X in S, then R € t(X).
Let f: Y — X be a morphism in C and let F € £. We must show that the left vertical
arrow in the square

Map(Y, F) ——— Map(f*S, F)

l l

Map(f*R, F) — Map(f*S xy f*R, F)

is an equivalence. We will show that the other three arrows are equivalences. The top
horizontal arrow is an equivalence because S € 7(X). For the right vertical arrow,
write f*S ~ colimzec/r+s Z as a (possibly large) colimit of representables. Since
colimits in PSh(C) are universal, f*R xy f*S ~ colimzec/rxs f*R Xy Z. For
every Z — f*S, f*Rxy Z belongs to 7(Z) by assumption, and hence

Map(f*S,F):liénMap(Z,F):liénMap(f*RxYZ,F):Map(f*Rfo*S,F).

The proof that the bottom horizontal arrow is an equivalence is similar: write f*R ~
colimzec/r+g Z and use that f*S € 7(Y). O
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Corollary C.2 Let C be an co—category and t a quasi-topology on C. Then
Shv;(C) = Shvz(C).

Proof Note that Shvz(C) C Shv;(C). Let p be the finest quasi-topology on C such
that Shv¢(C) C Shv,(C). Tautologically, p contains 7. By Proposition C.1, p contains
7. Hence, Shv,(C) C Shvz(C). m]

We also need an easy-to-use version of the “comparison lemma” [1, III, Théoréeme 4.1]
for sheaves of spaces:

Lemma C.3 Let D be an co—category, C a small co—category and u: C — D a fully
faithful functor. Let T and p be quasi-topologies on C and D, respectively. Suppose
that:
(a) Every t-sieve is generated by a cover {U; — X} such that:
(al) The fiber products U;, xx --- xx U;, exist and are preserved by u.
(@2) {u(U;) — u(X)} isa p—cover D.
(b) Forevery X € C and every p-sieve R ~— u(X), u*(R) < X isa T-sieve in C.

(c) Every X €D admits a p—cover {U; — X} such that the fiber products U;, xx
---xx U;, exist and belong to the essential image of u.

Then the adjunction u™ - uy restricts to an equivalence of co—categories Shv,(D) ~
Shv.(C).

We can rephrase the conclusion of the lemma as follows: a presheaf on D is a p—sheaf if
and only if it is the right Kan extension of a t—sheaf on C. An immediate consequence
of the lemma is that the inclusion Shv,(D) C PSh(D) admits a left exact left adjoint
a,, namely the composition usa-u*.

Proof We tacitly use Corollary C.2 throughout the proof. We first show that u* and
Uy preserve sheaves. Let 4 be a T—cover as in (a) and let
C (4f) € Fun(A°, PSh(C))

be its Cech nerve (note that colim C (40) is the sieve generated by 41). By (al), u) C () ~
C(u(Ll)), and by (a2), u(Ll) is a p—cover. If F is a p—sheaf, we deduce that

Map(u1 X, F') — Map(u colim é(ﬂ), F)

is an equivalence. By adjunction, u™ preserves sheaves. Let X € D andlet R<> X be a
p-sieve. We claim that u™*(R) < u™(X) becomes an equivalence after t—sheafification.
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By the universality of colimits in PSh(C), it suffices to show that, for every Y € C and
every morphism u(Y) — X, u*(R xy u(Y)) < Y is a T—sieve. This follows from
(b) since R xy u(Y) is a p—sieve. By adjunction, u4 preserves sheaves. Thus, the
adjunction u™* — u restricts to an adjunction

*: Shv,,(D) == Shv{(C) ‘ux .

where 1 is fully faithful. It remains to show that u* is conservative on Shv,(D), but
this follows at once from (c). O

A cartesian square of schemes

We——17V
U SN X

will be called a Nisnevich square over X if j is an open immersion, p is étale and

there exists a closed immersion Z < X complement to U such that p induces an

isomorphism V xy Z ~ Z. We say that such a square is finitely presented if j and p
are finitely presented.

Let B be a scheme. We denote by Smp the category of smooth B-schemes and
by Sm’% C Smp the full subcategory spanned by compositions of open immersions
and finitely presented smooth morphisms. If B is coherent, we also consider the
subcategory Smg) C Smp of finitely presented smooth B—schemes. We will define the
following quasi-topologies on Smp:

Nis g

|
Zar Nisgc

NS

Nis

The quasi-topology Zar will also be defined on Sm’y, and Nisflc and Nis will also be
defined on Sm p and Sm; The Zar sieves are the sieves generated by open covers.
The quasi-topology Nisy. (resp. Nlch) consists of:

¢ The empty sieve on &.

¢ For every Nisnevich square (resp. finitely presented Nisnevich square) as above,
the sieve generated by {j, p}.
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The Nisnevich quasi-topology Nis is then defined as follows on each category: Nis =
Zar U Nisge on Smp, Nis = Zar U Nisg% on Sm}; , and Nis = NisgpC on Smg.

Lemma C.4 For every Nisqc—sieve R < X in Smp, there exists an open cover
{fi: Xi = X} such that f;*R contains a Nisg% —sieve.

Proof Let j : U < X < V : p be a Nisnevich square generating R and let Z be
a closed complement of j such that V xy Z ~ Z. Taking an open cover of X if
necessary, we may assume that X is coherent. Let {V;} be an open cover of V' by
coherent schemes and let X; = p(V;). Then V; — X; is finitely presented and is an
isomorphism over Z N X;. Since {U, X;} is an open cover of X, we may assume that
p is finitely presented. As X is coherent, we can write Z = lim,, Z, where each Z,
is a finitely presented closed subscheme of X . Since p is finitely presented and is
an isomorphism over Z, there exists o such that p is an isomorphism over Z, . If
Ja 1s the open immersion complement to Z,, then {jy, p} is a Nisgz —cover refining

1, p} o

We say that a presheaf F' on Smgp) satisfies Nisnevich excision if:

o F(9)~x.

e For every Nisnevich square Q in Smggfp ), F(Q) is cartesian.

Proposition C.5 Let B be a scheme.

(1) A presheaf on Smp is a Nisnevich sheaf if and only if it is the right Kan extension
of a Nisnevich sheaf on Sm}z. In particular, Shvyis(Smp) is an co—topos and
the inclusion Shvy;s(Smp) C PSh(Smp) admits a left exact left adjoint.

(2) A presheaf on Smp is a Nisnevich sheaf if and only if it satisfies Zariski descent
and Nisnevich excision.

If B is coherent, then:

(3) A presheaf on Smp is a Nisnevich sheaf if and only if it is the right Kan extension
of a Nisnevich sheaf on Sm?;. In particular, Shvyis(Smp) >~ ShVNis(SmeP).

(4) A presheaf on Smfg is a Nisnevich sheaf if and only if it satisfies Nisnevich
excision.

Algebraic € Geometric Topology, Volume 14 (2014)



A quadratic refinement of the Grothendieck—Lefschetz—Verdier trace formula 3649

Proof (1) It suffices to verify the assumptions of Lemma C.3 for the inclusion
Smp C Smp. The only nontrivial point is (b), which follows from Lemma C.4.

(3) By (1), it suffices to verify the assumptions of Lemma C.3 for the inclusion
Smfg C Sml. For (c), note that every scheme in Sm/, is quasi-separated.

(2,4) For Q a Nisnevich square
Ji U= X<«<Vip

in Smgp), denote by Cg € PSh(Smgp )) the colimit of the Cech nerve C (Jj, p}) Ge
the sieve generated by {j, p}) and by

Ko €PSh(SmP)

the pushout of Q. Let C (resp. K) be the class of morphisms of the form Cop —
X (resp. Kg — X) in PSh(Smgp)), where Q is any Nisnevich square, together with
the empty sieve on the empty scheme. By definition, a presheaf is a Nis((lip) —sheaf if and
only if it is C —local and it satisfies Nisnevich excision if and only if it is K-local. The
arguments of [29, Section 5] show that C and K generate the same class of morphisms

under 2-out-of-3, pushouts and colimits, whence the result. O

These technical preliminaries aside, we can now define the unstable motivic homotopy
category H(B) of an arbitrary scheme B. We say that a presheaf F on Smp is A!—
invariant if, for every X € Smp, the projection A! x X — X induces an equivalence
F(X) ~ F(A! x X). Note that if F is Nisnevich sheaf on Smp, the A!—-invariance
condition can be checked on Smjg, and even on Sm?; if B is coherent.

We let H(B) C Shvyis(Smp) be the full subcategory of A ! —invariant Nisnevich sheaves.
This definition is of course equivalent to the standard one when B is noetherian and of
finite Krull dimension. By Proposition C.5(1), H(B) is a presentable co—category and
the inclusion H(B) C PSh(Smp) admits a left adjoint

M: PSh(Smp) — H(B).
Proposition C.6 The functor M preserves finite products.
Proof As M factors through PSh(SmY), it suffices to show that M’: PSh(Sm’;) —

H(B) preserves finite products. The functor

La1: F > colim F(A" x —)

neA°p

is left adjoint to the inclusion of A!—invariant presheaves into all presheaves, and it
preserves finite products since A°P is sifted. Let anis be the Nisnevich sheafification
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functor. A standard argument shows that there exists an ordinal ¢« such that the ath
iteration of L 41 o anjs, viewed as a pointed endofunctor of PSh(Smﬁg), is equivalent
to M'. Since L1, anis and transfinite composition preserve finite products, so does
M. ]

As is usual, if X € Smp, we will commit an abuse of notation and denote by X the
image of X by the functor Smp — H(B), composition of the Yoneda embedding and
the localization functor M .

If f: B’ — B is a morphism of schemes, the base change functor Smp — Smp/
preserves trivial line bundles and Cech nerves of Nisnevich covers. It follows that the
functor

PSh(Smp’) — PSh(Smpg), F + F(—xpg B’)

preserves A!—invariant Nisnevich sheaves and hence restricts to a limit-preserving
functor fx: H(B’) — H(B). We denote by f* its left adjoint; it preserves finite
products by Proposition C.6. If f is smooth, the base change functor Smp — Smp/
has a left adjoint, namely the forgetful functor Smp — Smp, which also preserves
trivial line bundles and Cech nerves of Nisnevich covers. It follows that in this case
/* has aleft adjoint fy: H(B’) — H(B). We immediately verify that the exchange
transformation Exa‘ and the projector Pr;" are equivalences.

Proposition C.7

(1) If B is a coherent scheme, every X € Smfg is compact in H(B).
(2) If f: B’ — B is coherent, fi: H(B') — H(B) preserves filtered colimits.

(3) If B is the limit of a cofiltered diagram of coherent schemes B, with affine
transition maps, then H(B) ~ limy H(By,) in the co—category of co—categories.

Proof (1) Itsuffices to show that H(B) is closed under filtered colimits in PSh(Smflg).
In fact, it is obvious that the subcategories of A ! —invariant presheaves and of presheaves
satisfying Nisnevich excision are both closed under filtered colimits.

(2) By Zariski descent, we can assume that B is coherent. The co—category H(B) is
then generated under colimits by X € Sm%,’. By (1), these generators are compact and
are carried by f™* to compact objects in H(B’). The result follows by adjunction.

(3) In this situation, the category SmB is the colimit of the categories SmB and
hence PSh(Sml?) is the limit of the co—categories PSh(SmB ). It remains to show
that
f
F € PSh(Smp)
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is an A!—invariant Nisnevich sheaf if, for all «, its image in PSh(SmB ) is. This
follows from the fact that any trivial line bundle (resp. any Nisnevich square) in Sm B
is the pullback of a trivial line bundle (resp. a Nisnevich square) in Sm 1133 for some o .

O

Our next goal is to generalize the gluing theorem of Morel-Voevodsky [21, Theo-
rem 3.2.21] to our setting. The proof in [21] uses the fact that henselian local schemes
form a conservative family of points of the co—topos Shvyis(Smp), which is not
true anymore when B is not noetherian of finite Krull dimension. While it is not
difficult to give a proof of the gluing theorem that avoids the use of points and works
in general, we will give instead a shorter argument that reduces the general case to the
Morel-Voevodsky case.

Suppose that B is a cofiltered limit of coherent schemes B, so that H(B) ~1limgH(By,).
Let fgo: Bg — By be the transition maps and fo: B — By the canonical projections.
Then, by [16, Lemma 6.3.3.6],

(C-8) idug) = colim £, fox.

Moreover, since functors of the form f; preserve filtered colimits, the left adjoint
functors f,* can be computed as

(C9 fﬂ*f COhm fyﬂ*fya

Proposition C.10 Let B be a scheme and let i: Z — B be a closed immersion with
open complement j: U — B. Then:

(1) Forevery F € H(B), the square
Ji*F —~— F
L
Jgj*B —— ixi*F
is cocartesian.

() ix: H(Z) — H(B) is fully faithful.

Proof (1) By Zariski descent, we can assume that B is coherent. Let {iy: Zo — B}
be the cofiltered poset of finitely presented closed subschemes of B containing Z and
let jo: Uy < B be the open immersion complement to i, . Then Z ~ limy Z, and
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{Uy} is an open cover of U which is closed under binary intersections. By Zariski
descent, the canonical transformation

co(lximjaﬂj; — jyj*
is an equivalence. On the other hand, by (C-9) and a cofinality argument, the canonical
transformation
colimigxiy —> ixi™
o
is an equivalence. It therefore suffices to prove the result when B is coherent and
i is finitely presented. In that case, we can write i and j as cofiltered limits of

complementary immersions iy: Zy <> By and jy: Uy — By, such that By is of finite
type over Z and such that the squares

i J

VAR B > U
e
Zo —> Bo <—— Uy

la Ja

are cartesian. Let Fyy = fo« F be the component of F in H(By), so that, by (C-8),
F >~ colimy f Fy. Since By is noetherian of finite Krull dimension, we have a
cocartesian square

Jotjd Fo ——> Fy

L]

JatUa —— iaxiy Fo

in H(By). Applying f, and taking the colimit over «, we obtain a cocartesian square
in H(B) which maps canonically to the given square. Moreover, the maps on the top
left, bottom left and top right corners are equivalences since [ jqoy =~ jy f, and since
Jg and j* preserve colimits. It remains to prove that the map

colim f igxiy Foy — ixi* F
o

on the bottom right corner is an equivalence. Since iy preserves filtered colimits, it
suffices to show that the exchange transformation Ex}: ffiq« — ix f, is an equiva-
lence. Using (C-9) and the fact that the exchange transformation fy*a lgx —> Iyx f;:x is
an equivalence (which is a consequence of the gluing theorem for finite-dimensional

Algebraic € Geometric Topology, Volume 14 (2014)



A quadratic refinement of the Grothendieck—Lefschetz—Verdier trace formula 3653

noetherian schemes), we compute
fﬂ*fa*ia* ~ cojl/im fyﬂ*fy*aia* o~ cojl/im fyﬂ*iy*fy*a
o~ CO}/imiB*fyﬂ*fy*a gy co}/im fyﬂ*fy*a o~ iﬁ*fﬂ*fa* o~ fﬂ*i*fa*.

One verifies easily that this composition coincides with fg,Ex}, which completes the
proof.

(2) Applying (1) to ix F, we deduce that the unit id — i,/ * is an equivalence on i F.
It follows from a triangle identity that the counit i *i, — id becomes an equivalence
after applying i.. By [12, Proposition 18.1.1], H(Z) is generated under colimits by
pullbacks of smooth B-—schemes. It follows that i, is conservative and hence fully
faithful. |

Denote by Hx(B) the undercategory H(B)p,. All the features of H(B) discussed
so far have obvious analogs for H«(B). The smash product A on H.(B) is the
unique symmetric monoidal product which is compatible with colimits and for which
the functor (—)+: H(B) — H«(B) is symmetric monoidal. One can then define the
oo—category SH(B) as a symmetric monoidal presentable co—category as in [24,
Definition 4.8], by formally inverting S A" for the smash product on Hi(B). We thus
have a symmetric monoidal colimit-preserving functor

¥: H,(B) — SH(B),

and we let ¥3° = ¥° o (—)+. Note that SH(B) is stable since § Al s the suspension
of the pointed motivic space (A! —0, 1). Because the cyclic permutation of S Al A
SATASA i homotopic to the identity, SH(B) can also be described as the following
limit of co—categories:

(C-11) SH(B) = lim(- LT Y P H*(B)>,

where QA" is right adjoint to yA! [24, Corollary 4.24].

If f/: B — B is a morphism of schemes, then f*SZAl ~ QAlf* and hence fx
induces a limit-preserving functor fi: SH(B’) — SH(B). Its left adjoint f™* is the
unique colimit-preserving symmetric monoidal functor f*: SH(B) — SH(B’) such
that f*XPX = XP(X xp B’) for X € Smp.

Proposition C.12

(1) SH(B) is generated under colimits by objects of the form A X for
X €Smpg andn > 0.
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(2) If B is a coherent scheme and X € Sm , XX € SH(B) is compact.
(3) If f: B’ — B is coherent, fy: SH(B') — SH(B) preserves colimits (and hence
admits a right adjoint).

(4) If B is the limit of a cofiltered diagram of coherent schemes B, with affine tran-
sition maps, then SH(B) ~ limy SH(B,,) in the oo—category of oo—categories.

Proof (1) Let E € SH(B) have components £, € Hi(B). By [16, Lemma 6.3.3.6],
E ~colimS™A" £%E,

n>0
and each T~A"S®F, is clearly an iterated colimit of objects of the desired form.

(2) By Pr0p0s1t10n C.7(1), Hx(B) is compactly generated by X4, X € SmB The
object S Al ¢ H.«(B) is compact, being a finite colimit of compact objects, and so the
functor QA" H.(B) — H«(B) preserves filtered colimits. The assertion now follows
immediately from (C-11).

(3) We can assume that B is coherent. By (1) and (2), f* sends a family of compact
generators of SH(B) to compact objects in SH(B’). By adjunction, fix preserves
filtered colimits. Since fx preserves limits and both SH(B') and SH(B) are stable, it
also preserves finite colimits.

(4) This follows from Proposition C.7(3) and (C-11). O

Finally, we prove that SH(—) satisfies the proper base change theorem and related
properties:

Proposition C.13 Let

y — £ .y

A

X — s X

be a cartesian square of schemes where p is proper.

(1) Forevery E € SH(Y), the exchange transformation Ex}: f*p«E — pLg*E is
an equivalence.

(2) Forevery E € SH(Y) and F € SH(X), the projector Pry: p«EANF — p«(E A
p* F) is an equivalence.

(3) Suppose that f is smooth. For every E € SH(Y'), the exchange transformation
Exyy: fypi E — p+gyE is an equivalence.
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Proof If p is a closed immersion, all three statements follow easily from the gluing
theorem. The argument of [3, Section 1.7.2] shows that the map py — pxmiyd«
induced by Exy, is an equivalence when p is a projection Py — X . The proof of
[5, Lemma 2.4.23] then shows that (1-3) hold for such p. By Zariski descent, one
immediately deduces (1-3) for p projective. It remains to extend the results to p
proper.

(1) By Zariski descent, we can assume that X and X’ are coherent. Let C: SH(Y) —
SH(X") be the cofiber of the transformation Ex};. Since SH(X") is stable and compactly
generated, it will suffice to show that [K, C(E)] = 0 for every £ € SH(Y) and
every K € SH(X') compact. Fix x: K — C(E) and consider the poset ® of closed
subschemes i: Z < Y such that the image of x in [K, C(i«i*E)] is not zero. If
{ig: Zy — Y} is a cofiltered diagram of closed subschemes of Y with limiti: Z — Y,
it follows from (C-9) that colimg igxiy = ixi*. Since the source and target of Exj
preserve filtered colimits, the canonical map

colim C(igxiy E) — C(ixi*E)
o

is an equivalence. By compactness of K, we deduce that ® is closed under cofiltered
intersections. On the other hand, using Chow’s lemma [2, XII,§7], the gluing theorem,
and (1,3) for p projective, we easily verify that ® does not have a minimal element.
Hence, @ is empty.

(2) Same proof as (1).

(3) Arguing as in (1) proves the result when f* is coherent. It also proves that Exy,g*
is an equivalence, whence the result when f is an open immersion. Without loss of
generality, assume now that X is coherent. Then SH(Y"’) is generated under colimits
by the images of iy where A is the pullback of the inclusion of an open subscheme of
X’ which is coherent over X, so the general case follows. |

By Nagata’s compactification theorem [6] and Proposition C.13(3), we can apply
Deligne’s gluing theory and define the exceptional adjunction
fir SH(X) 2 SH(Y) : f*

at the level of triangulated categories, for f: X — Y a separated morphism of finite
type between coherent schemes. Following Cisinski—Déglise [5, Section 2], we then
obtain the complete formalism of six operations for coherent schemes as described in
Section 2.

Remark C.14 1t is possible to define SH(—) as a contravariant functor from the cate-
gory of schemes to the co—category of symmetric monoidal presentable co—categories.
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Using the oco—categorical generalization of Deligne’s gluing theory developed by
Liu and Zheng [15], one can define the exceptional adjunction f; - f', the natural
transformation f; — f and all the exchange transformations and projectors involving
exceptional functors, at the level of co—categories (for f a separated morphism of
finite type between coherent schemes). Since SH(—) is a Zariski sheaf, one can further
define all this data for any morphism f which is locally of finite type. Once this is done,
the conventions set at the end of Section 1 can be ignored altogether and “separated of
finite type” can be replaced everywhere by “locally of finite type”.
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