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The Euler characteristic of the configuration space
of planar spidery linkages

YASUHIKO KAMIYAMA

SHUICHI TSUKUDA

Among planar mechanical linkages, polygonal and spidery linkages are particu-
larly important. We define a planar linkage which contains them. Constructing
a Bott–Morse function on the configuration space of this, we determine the Euler
characteristic. In particular, we give a new calculation of the Euler characteristic of
polygon spaces.

58E05; 57M20

1 Introduction

The topology of configuration spaces of planar mechanical linkages has been studied
by many people. Among these linkages, polygonal and spidery ones are particularly
important. We call the configuration space of a polygonal linkage a polygon space. The
study of polygon spaces was originated by Hausmann [7], Kapovich and Millson [10]
and Walker [15]. Their study has a long history and has begotten many references. For
example, the homology groups of polygon spaces of arbitrary edge lengths have been
determined by Farber and Schütz [6].

A linkage has n arms such that each arm has two legs and each leg has length `. The
linkage also has a rotational joint in the middle, and the endpoints of the arms are fixed
to the vertices of Pn , where Pn denotes the regular n–gon in C . We assume that its
arms and joints can intersect each other. Thus, a spidery linkage is a planar 2–leg
machine. Let Mn.`/ be its configuration space.

The main result of Shvalb, Shoham and Blanc’s [14] states that when ` is small, Mn.`/

is diffeomorphic to a connected closed orientable surface of genus .n� 4/2n�3C 1.
(See Example 2.6(ii) for more details.) To prove this, giving a cellular decomposition,
one computes �.Mn.`//. The argument essentially shows a diffeomorphism between
Mn.`/ and ZPn

.S0/, the moment-angle complex of S0 with respect to Pn .

We recall the history of the study of the moment-angle complex. For a space X and a
convex polytope P , let ZP .X / be the moment-angle complex of X with respect to P .
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The complex was first introduced for X DS0 and S1 in order to study toric manifolds.
(See Davis and Januszkiewicz [5].) In particular, it was shown that ZPn

.S0/ is a
connected closed orientable surface of genus .n� 4/2n�3C 1. It is to be noted that
before [14], we did not expect that moment-angle complexes appeared as configuration
spaces of linkages.

Many homological properties of ZP .X / have been studied; see, for example, Buch-
staber and Panov [4]. Bahri, Bendersky, Cohen and Gitler [1] observed that ZP .X /

has an important property from the viewpoint of the homotopy theory, that is, there is
a natural splitting of †ZP .X /.

Related papers to [14] are given as follows: First, O’Hara [13] proved that if ` is
median, then Mn.`/ is a singular space and if ` is large, then Mn.`/ is diffeomorphic
to a connected closed orientable surface of genus .5n� 4/2n�3C 1. He proved this by
constructing a Morse function on Mn.`/. In particular, when ` is small, the Morse
function induces the cellular decomposition in [14].

Second, in [9], we generalized the planar 2–leg machine to one in Rd . There it
was shown that the configuration space is homeomorphic to ZPn

.Sd�1/ and that
†ZPn

.Sd�1/ is a bouquet of spheres. Namely, a special case of the splitting in [1]
was already given in [9].

In this paper, we generalize the planar 2–leg machine to an m–leg machine. We
denote by M.n;m; `/ its configuration space. The space M.n;m; `/ contains the
above spaces; the case nD 2 is the polygon space and mD 2 is Mn.`/. But the space
M.n;m; `/ is much more complicated than M.n; 2; `/ because the topological type
of polygon spaces with all the edge lengths but one equal varies greatly. The purpose
of this paper is to determine �.M.n;m; `// using Bott–Morse theory.

The key to proving our main result is as follows: Recall that Hausmann [7] and
Walker [15] computed the indices of a Morse function on the space of free robot
arms (see also Theorem 3.3). The result is important and used effectively in [6]. We
generalize their result to polygon spaces (see Theorem 4.2).

This paper is organized as follows. In Section 2 we state our main theorems. In
Section 3 we summarize the previous results. In Section 4 we generalize the results
in [7; 15]. In Section 5 we prove the main theorems. In Section 6, we consider the case
nD 2 and give a new proof of the Euler characteristic formula for polygon spaces.

Because of the nature of the subject, we use many symbols, subscripts and superscripts.
For the reader’s convenience, we present some notational conventions here. In principle,
we use the letters
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� �; � , i; j , k; l;m; n;N for nonnegative or positive integers,

� `; c; d; r; s for real numbers,

and, for some positive integer N � 1, we write

� a; b; z; w for elements of T N ,

� u for elements of CN and

� "; ı for elements of f�1; 1gN .

A superscript k stands for the k th coordinate of an element of f�1; 1gN , T N or CN ,
that is, say, ak

i stands for the k th coordinate of an element ai D .a
1
i ; : : : ; a

N
i / 2 T N .

Before we leave this section, we give a remark: in order to simplify the notation, we
consider the situation that all legs have lengths ` and each arm has m legs in this paper.
But the results and proofs in this paper remain valid under the generalizations that the
anchors vi are arranged at any points in C , the arms have varying number of legs and
the legs have varying length.

Acknowledgements The authors are grateful to the referee for valuable comments,
in particular for catching an error in the proof of Theorem D in the original version.

2 The main theorems

Definition 2.1 (i) We fix an integer n� 2 and define

vi D cos 2.i�1/�

n
C
p
�1 sin 2.i�1/�

n
:

(ii) We fix an integer m � 2 and ` 2 R>0 . We write an element of Cm�1 as
uD .u1; : : : ;um�1/. We define

M.n;m; `/D
˚
.u1; : : : ;un; q/2 .C

m�1/n�C
ˇ̌
ju1

i �vi jDju
kC1
i �uk

i jDjq�um�1
i jD`

for all 1� i � n and 1� k �m� 2
	
:

Thus M.n;m; `/ is the configuration space of a spidery linkage obtained by joining n

arms such that each arm consists of m legs of length `. (See Figure 1.)

For generic `, M.n;m; `/ is a connected closed orientable manifold of dimension
n.m� 2/C 2. (See Definition 2.8 and Theorem A.) It is clear that M.n;m; `/D¿ if
` < 1=m and M.n;m; `/D fone pointg if `D 1=m.

Algebraic & Geometric Topology, Volume 14 (2014)
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Figure 1: A linkage in M.3; 4; `/

By setting ak
i D .u

k
i �uk�1

i /=` (where we set u0
i D vi and um

i D q ), we can identify
M.n;m; `/ with the space�

.a1; : : : ; an/ 2 .T
m/n

ˇ̌̌̌
vi C `

mX
kD1

ak
i D vj C `

mX
kD1

ak
j for all 1� i; j � n

�
:

Hereafter, we identify M.n;m; `/ with this space.

Definition 2.2 (i) Let 1� i � n. We define a map pi W M.n;m; `/! T m by

pi.a1; : : : ; an/D ai :

(ii) We define a map qW M.n;m; `/!C by

q.a1; : : : ; an/D v1C `

mX
kD1

ak
1 :

Definition 2.3 (i) For an integer n� 2, let dn be the maximum distance between
nth roots of unity. More precisely, we set

(2-1) dn D

�
2 n is even,
2 cos �

2n
n is odd.

(ii) For integers m; n� 2, we define

b.n;m/D
.�mC 2/.1C cos �

n
/C 2

q
m2 cos4 �

2n
C .m� 1/ sin2 �

n

4.m� 1/

and we set

(2-2) �.n;m/D

�
1=.m� 1/ n is even,
b.n;m/ n is odd.
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Remark 2.4 We will see later that d.vi ; q.M.n;m; `///D `.m� 2/ precisely when
`D �.n;m/. (See Section 5.)

Definition 2.5 For .N; r/ 2N �R>0 with N � 3, we define

P .N; r/D
˚
.u1; : : : ;uN / 2CN

ˇ̌
u1 D�r=2;uN D r=2 and

juiC1�ui j D 1 for all 1� i �N � 1
	
:

Consider the space of N–gons in C with edge lengths .1; : : : ; 1; r/. The orientation-
preserving isometry group naturally acts on it and the orbit space is identified with
P .N; r/. Hence P .N; r/ is the configuration space of polygons as considered in
Hausmann [7] and Kapovich and Millson [10].

Example 2.6 (i) There is a homeomorphism

M.2;m; `/Š P .2mC 1; 2=`/:

Thus our linkage produces P .2mC 1; r/ for all r > 0.

(ii) In Section 1, we denoted by Mn.`/ the configuration space of spidery linkage
which was defined in Shvalb, Shoham and Blanc [14]. In our notation, Mn.`/ is
M.n; 2; `/. Then the main results in O’Hara [13] and [14] are that if ` 6D dn=2,
then M.n; 2; `/ is a connected closed orientable surface such that

�.M.n; 2; `//D

�
.4� n/2n�2 1

2
< ` < dn=2;

.4� 5n/2n�2 dn=2< `:

Definition 2.7 (i) Let ei be the segment through vi and viC1 , where vi is defined
in Definition 2.1(i). When n� 3, let Pn be the regular n–gon Pn in C whose
edges are e1; : : : ; en�1 and en . In the case nD 2, we think of P2 as the 2–gon,
namely, a shape with 2 vertices and 2 edges and positive area, as can be realized
on the surface of a sphere.

(ii) For a based space X , we define a moment-angle complex by

ZPn
.X /D f.x1; : : : ;xn; q/ 2X n

�Png=�;

where the equivalence relation � is generated by the relation

.x1; : : : ;xn; q/� .x1; : : : ;
i
�; : : : ;xn; q/ if q 2 ei :

Definition 2.8 Let m; n� 2 be integers.

(i) We say that the i th arm of a configuration .a1; : : : ; an/ 2M.n;m; `/ is aligned
if ak

i D˙a1
i for all 1� k �m.
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(ii) Let ` 2R be a real number such that `� 1=m. We say ` is good with respect
to m and n if each configuration in M.n;m; `/ has at most two aligned arms
and the aligned two arms are not colinear; otherwise, ` is said to be bad.
In other words, ` is good if and only if:

(a) For each .a1; : : : ; an/ 2M.n;m; `/, jq.a1; : : : ; an/�vi j=`�m is an even
integer for at most two i .

(b) If vi C k`.vi � vj /=jvi � vj j 2 q.M.n;m; `// for some k � m .mod 2/,
then jvi � vj j=` is not an even integer.

Note that there are only finitely many bad ` for fixed m; n.

Now we state our first main result.

Theorem A Fix m; n� 2. Let `0 < `1 < � � �< `max be all the bad ` with respect to
m and n. Then we have the following:

(i) `0 D 1=m, `1 D �.m; n/ and

`max D

�
dn=2 m is even;
1 m is odd.

(ii) If `>1=m is good, then M.n;m; `/ is a closed orientable manifold of dimension
n.m� 2/C 2.

(iii) The diffeomorphism type of M.n;m; `/ is constant for ` 2 .`i ; `iC1/ for all
0� i �max, where `maxC1 is understood to be 1.

(iv) If ` 2 .`0; `1/, that is, if

1
m
< ` < �.n;m/

then M.n;m; `/ is homeomorphic to ZPn
.Sm�2/.

Remark 2.9 (i) Example 2.6(ii) is a special case of Theorem A for mD 2.

(ii) Note that dn=2D 1 if n is even and dn=2< 1 if n is odd.

(iii) Note that �.n;m/ > 1=m. Hence, for any m; n� 2, the moment angle complex
ZPn

.Sm�2/ can be realized as a planar spidery linkage.

Hereafter, we mostly assume that ` satisfies the following conditions.

Algebraic & Geometric Topology, Volume 14 (2014)
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Assumption 2.10 For given m and n, ` is good with respect to m and n. Moreover, `
satisfies the following conditions:

(i) If q.a1; : : : ; an/ D 0, then no arm of .a1; : : : ; an/ is aligned. In other words,
1=`�m is not an even integer.

(ii) If the i th arm of .a1; : : : ; an/ is aligned in the direction of vi , then no other
arms are aligned. In other words, if there exist .a1; : : : ; an/ 2M.n;m; `/ and i

such that ak
i D˙vi for all 1� k �m, then jq.a1; : : : ; an/� v� j=`�m is not

an even integer for all � ¤ i .

Note that for a fixed m and n, Assumption 2.10 excludes finitely many choices of `.
Also note that if `0 < ` < `1 or ` > `max , then ` satisfies this assumption.

Definition 2.11 Let N be an arbitrary positive integer.

(i) For an element u D .u1; : : : ;uN / 2 CN , we denote the complex numberPN
kD1 uk by �.u/.

(ii) For an element u 2CN with �.u/¤ 0, we define an element e.u/ 2 T 1 by

e.u/D �.u/=j�.u/j:

(iii) An element u 2CN is said to be aligned if uk ¤ 0 and uk=juk j D ˙u1=ju1j

for all 1� k �N .

(iv) For an aligned element uD .u1; : : : ;uN / 2CN satisfying �.u/¤ 0, we define
a nonnegative integer �.u/ by

�.u/D ]
˚
k
ˇ̌
uk=juk

j D e.u/
	
D ]

˚
k j uk�.u/ > 0

	
:

Definition 2.12 Let 1� i � n and v D .z1; : : : ; zm/ 2 f�vi ; vig
m .

We denote vi C `�.v/D vi C `
Pm

kD1 zk 2C by qi;v .

We define a (possibly empty) subspace of M.n;m; `/ by

Ri;v D p�1
i .v/D f.a1; : : : ; an/ 2M.n;m; `/ j ai D vg:

If Ri;v is not empty, we set ri;v;� D jqi;v � v� j=`. Then it is clear that

Ri;v Š

Y
1���n; � 6Di

P .mC 1; ri;v;�/:

Algebraic & Geometric Topology, Volume 14 (2014)



3666 Yasuhiko Kamiyama and Shuichi Tsukuda

Definition 2.13 Let 1 � i < j � n and z; w 2 T m be aligned elements, namely,
zk D˙z1 and wk D˙w1 for all 1< k �m, satisfying

(2-3) vi C `�.z/D vj C `�.w/:

We denote vi C `�.z/ D vj C `�.w/ 2 C by qi;j ;z;w . Note that if ` is good and z

and w satisfy the condition (2-3), then �.z/¤ 0, �.w/¤ 0 and e.z/ and e.w/ are
linearly independent over R.

(i) We define real numbers ci;j ;z;w and di;j ;z;w so as to satisfy

(2-4) qi;j ;z;w D ci;j ;z;we.z/C di;j ;z;we.w/:

(ii) We define a (possibly empty) subspace of M.n;m; `/ by

Si;j ;z;w D p�1
i .z/\p�1

j .w/

D f.a1; : : : ; an/ 2M.n;m; `/ j ai D z and aj D wg:

If Si;j ;z;w is not empty, we set si;j ;z;w;� D jqi;j ;z;w � v� j=`. Then it is clear
that

Si;j ;z;w Š

Y
1���n
� 6Di;j

P .mC 1; si;j ;z;w;�/:

Now we give our second result. See Remark 2.16 for the structure of P .N; r/ and
Section 3.1 for a short review of Bott–Morse theory.

Theorem B Let m; n� 2 and assume that ` satisfies Assumption 2.10.

(i) We define a function f W M.n;m; `/!R by

f .a1; : : : ; an/D jq.a1; : : : ; an/j
2
D

ˇ̌̌̌
v1C `

mX
kD1

ak
1

ˇ̌̌̌2
:

Then f is a Bott–Morse function.

(ii) The critical manifolds of f are f �1.0/ and the manifolds Ri;v and Si;j ;z;w in
Definitions 2.12 and 2.13. We have

f �1.0/Š .P .mC 1; 1=`//n:

Algebraic & Geometric Topology, Volume 14 (2014)
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(iii) The index � of each critical manifold in (ii) is given as follows:

(a) We have �.f �1.0//D 0.
(b) We have

�.Ri;v/D �.vC/� 1;

where vC D .vi=`; z
1; : : : ; zm/ 2CmC1 .

(c) We have

�.Si;j ;z;w/D

8̂̂̂<̂
ˆ̂:
�.z/C�.w/� 2 ci;j ;z;w > 0 and di;j ;z;w > 0,
m� 1C�.z/��.w/ ci;j ;z;w > 0 and di;j ;z;w < 0,
m� 1��.z/C�.w/ ci;j ;z;w < 0 and di;j ;z;w > 0,
2m��.z/��.w/ ci;j ;z;w < 0 and di;j ;z;w < 0.

Remark 2.14 We write (2-4) by

0D qC ci;j ;z;w

�
�

q� vi

jq� vi j

�
C di;j ;z;w

�
�

q� vj

jq� vj j

�
;

where q D qi;j ;z;w . Then ci;j ;z;w > 0 if and only if O and vi belong to the same
half-plane determined by the line through q and vj . Hence the indices are summarized
by Figure 2.

As an application of Theorem B, we can compute �.M.n;m; `//. In particular, in
Section 6, we give a new proof of the formula of �.P .2mC 1; r//:

Proposition 2.15 If m is a positive integer and r a positive real number such that
r=2 62 Z, then

(2-5) �.P .2mC 1; r//D 2.�1/mCŒr=2�C1

�
2m� 1

mC Œr=2�

�
:

Remark 2.16 It is well known that P .N; r/ has a singular point if N � r is an odd
integer and is a closed manifold of dimension N � 3 otherwise. (See, for example,
Hausmann [7] and Kapovich and Millson [10].) The groups H�.P .N; r/IZ/ are
torsion free and the Poincaré polynomials are known. (See, for example, Farber and
Schütz [6].) This formula (2-5) is given explicitly in Kamiyama [8, Theorem 3.4]. Note
that if r is not an odd integer, then

(2-6) �.P .2m; r//D 0

because P .2m; r/ is an odd-dimensional manifold.
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Figure 2: The indices �.Si;j ;z;w/

For n� 3, we have the following:

Theorem C Let n� 3.

(i) If m is odd and ` satisfies Assumption 2.10, then we have �.M.n;m; `//D 0.

(ii) If m is even, we have the following results.

(a) If ` satisfies the assumption of Theorem A(iv), namely, if 1=m<`<�.n;m/,
then we have

�.M.n;m; `//D .4� n/2n�2:

(b) If ` > dn=2, then

�.M.n;m; `//D 2n�2

�
.4� 2n/cn

m=2C n

m=2X
�D1

.�1/�
�

mC 1

�

�
cn�1
�

�
where we set c� D .�1/��1

�
m�1
��1

�
.
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We give the asymptotic behavior of �.M.n;m; `// in Proposition 5.2.

Remark 2.17 (i) In O’Hara [13], a Morse function on M.n; 2; `/ is constructed. In
our paper [9], a slightly different Morse function on M.n; 2; `/ is constructed and
it is shown that a similar function is a Bott–Morse function on the configuration
space of a 2–leg machine in Rd . The function f in Theorem B is constructed by
a similar idea to [9]. But since our linkage is a m–leg machine, the computations
are much more difficult.

(ii) Theorem C(i) is clear when n is odd because in this case, M.n;m; `/ is an
odd-dimensional manifold.

Combining Theorem A(iv), Theorem C(i) and (ii)(a), and (2-5), we obtain a new proof
of the following formula of �.ZPn

.Sm�2//.

Corollary 2.18 We have

(2-7) �.ZPn
.Sm�2//D

�
.4� n/2n�2 m is even or nD 2,
0 n� 3 and m is odd.

Remark 2.19 The groups H�.ZPn
.S1/IZ/ are known by Buchstaber and Panov [4].

In [9, Theorem B], we gave a splitting of †ZPn
.Sm�2/. (See also Bahri, Bender-

sky, Cohen and Gitler [1].) From this, we have the following result: the groups
H�.ZPn

.Sm�2/IZ/ are torsion free such that the Poincaré polynomial is given as

Pt .ZPn
.Sm�2//D 1C tn.m�2/C2

C

n�2X
iD2

�
n

�
n� 2

i � 1

�
�

�
n

i

��
t i.m�2/C1:

By Example 2.6(ii), M.n; 2; `/ is S2 if and only if nD 2 or 3 and ` < dn=2. The
following theorem asserts that a similar result holds for m� 3.

Theorem D Let n� 2 and assume ` satisfies Assumption 2.10. Then M.n;m; `/ is
homeomorphic to a sphere if and only if nD 2 or 3 and 1=m< ` < �.n;m/.

3 Preliminaries

3.1 A review of Bott–Morse theory

We give a short review of Bott–Morse theory. For more details, see Bott [2] and McDuff
and Salamon [12]. Let M be a compact manifold. A smooth function f W M ! R

Algebraic & Geometric Topology, Volume 14 (2014)
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is called a Bott–Morse function if its critical point set is a finite disjoint union of
connected submanifolds called critical manifolds, and the Hessian of f is fibrewise
nondegenerate on the normal bundle of critical manifolds. An index �.C / of the critical
manifold C is the dimension of the negative eigenspace of the Hessian of f on the
normal bundle of C . A consequence of Bott–Morse theory is

(3-1)
X
C

.�1/�.C /�.C /D �.M /;

where the sum runs over all critical manifolds.

3.2 Free robot arms

Free robot arms are the most simple linkages. We recall some results from Walker [15]
and Hausmann [7].

Theorem 3.1 [7] We fix .m; `/ 2N �R>0 . We define a map ˇW T m!C by

ˇ.a/D `�.a/D `

mX
iD1

ai

and let
 D ˇjV W V D ˇ

�1.R>0/!R

be its restriction. Then the following results hold.

(i) The diagram

V �S1 Š //

�id
��

ˇ�1.C�/

ˇ

��
R>0 �S1

Š
// C�

is commutative, where the horizontal arrows are given by the multiplication of
complex numbers.

(ii) (a) V is a codimension-1 submanifold of T m and the function  is a Morse
function.

(b) The set of the critical points of  is f�1; 1gm\V .
(c) The index of the critical point " 2 f�1; 1gm\V is �."/� 1.

Proof This theorem is well known; it is a special case of [7, Theorems 3.1 and 3.2].
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Since the map  does not have critical value greater than `.m�2/ except the maximum,
we have the following.

Corollary 3.2 Over the annulus AD fz 2 C j `.m� 2/ < jzj � `mg, there exists a
trivialization of the projection ˇ

.Sm�2 �A/=�

pr2 ((

Š // ˇ�1.A/

ˇvv
A

where .x; z/� .x0; z/ if jzj D `m and pr2 is the projection to the second factor.

Theorem 3.3 We fix .m; `/ 2N �R>0 on the condition that 1=`�m is not an even
number. We define a function gW T m!R by

g.z1; : : : ; zm/D

ˇ̌̌̌
1C `

mX
iD1

zi

ˇ̌̌̌2
:

Then the following results hold.

(i) The function g is a Bott–Morse function.

(ii) The critical manifolds of g are given as follows:

(a) g�1.0/Š P .mC 1; 1=`/.
(b) f�1; 1gm .

(iii) The index of each critical manifold in (ii) is given as follows:

(a) �.g�1.0//D 0.
(b) For " 2 f�1; 1gm ,

�."/D �."C/� 1

where "C D .1=`; "1; : : : ; "m/ 2CmC1 .

Proof This theorem is well known, as [15, Proposition 3.3] and also obtained as a
corollary of Theorem 3.1. Note that the condition that 1=`�m is not an even number
ensures that 0 is a regular value of the map .z1; : : : ; zm/ 7! 1C `

P
zi 2C .
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4 A Bott–Morse function on polygon spaces

We consider certain functions on polygon spaces. First, we need the following:

Lemma 4.1 Let m be a positive integer. For 1� i �m, let ˛i and ˇi be elements of
R n f0g. Consider the symmetric matrix defined by

AD diag.˛1; : : : ; ˛m/C .ˇi ǰ /:

We set �D ]fi j ˛i > 0g and

D D 1C

mX
iD1

ˇ2
i

˛i
:

Then the signature of A is 8<:
.�;m��/ D > 0;

.�;m��� 1/ D D 0;

.�C 1;m��� 1/ D < 0:

Proof Without loss of generality, we assume ˛1; : : : ; ˛� > 0 and ˛�C1; : : : ; ˛m < 0.
We set

�i D

iX
jD1

ˇ2
j

j̨
;  i D

iX
jD�C1

ˇ2
j

j̨
and �D�

1C��

 m
:

Note that �i > 0 for 1 � i � �,  i < 0 for � C 1 � i � m and � > 0. Let
U D .u1; : : : ;um/ be an m�m matrix whose i th column vector ui is given by

ui D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�ˇ1

˛1
; : : : ; ˇi

˛i
;� �i

ˇiC1
; 0; : : : ; 0

�t
1� i � �� 1;�ˇ1

˛1
; : : : ;

ˇ�
˛�
; 0; : : : ; 0

�t
i D �;�

0; : : : ; 0;
ˇ�C1

˛�C1
; : : : ; ˇi

˛i
;�  i

ˇiC1
; 0; : : : ; 0

�t
�C 1� i �m� 1;�ˇ1

˛1
; : : : ;

ˇ�
˛�
;
ˇ�C1�

˛�C1
; : : : ; ˇm�

˛m

�t
i Dm (and � <m):

It is easy to see that the matrix U is invertible and a straightforward computation shows
that Ut AU D diag.1; : : : ; m/, where

i D

8̂̂̂<̂
ˆ̂:
�i C .˛iC1=ˇ

2
iC1

/�2
i 1� i � �� 1;

��C�
2
� i D �;

 i C .˛iC1=ˇ
2
iC1

/ 2
i �C 1� i �m� 1;

��.1C��C m/ i Dm:

Since i > 0 for 1 � i � �, i < 0 for �C 1 � i � m� 1, m D ��D and � > 0,
we complete the proof.
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Theorem 4.2 We fix .m; `; �/ 2N �R>0 � .S
1 n f1g/ on the condition that

j.� � 1/=`j;(4-1)

1=`�m;(4-2)

j.� � 1/=`�mC 2kj �m for all 0� k �m(4-3)

are not even numbers. We set

LDL.m; `; �/D

�
.z; w/ 2 T m

�T m

ˇ̌̌̌
1C `

mX
iD1

zi
D �C `

mX
iD1

wi

�
;

where z D .z1; : : : ; zm/ and w D .w1; : : : ; wm/. We define a function hW L!R by

h.z; w/D

ˇ̌̌̌
1C `

mX
iD1

zi

ˇ̌̌̌2
:

Then the following results hold.

(i) The space L is a closed manifold of dimension 2m� 2 and the function h is a
Bott–Morse function.

(ii) The critical manifolds of h are given as follows:

(a) h�1.0/Š P .mC 1; 1=`/2 .
(b) One of the following assertions holds:

(1) zi D˙1 for all 1� i �m.
(2) wi D˙� for all 1� i �m.

In these cases, the critical manifold is of the form

f.z1; : : : ; zm/g �P .mC 1; r/ or P .mC 1; r/� f.w1; : : : ; wm/g;

where r D j.� � 1/=`�mC 2kj for some integer 0� k �m.
(c) Both of the following assertions hold:

� zi D˙z1 for all 1< i �m.
� wi D˙w1 for all 1< i �m.

Note that, under the assumption of this theorem, each point of L satisfies at most
one of these three cases.

(iii) The index of each critical manifold in (ii) is given as follows:

(a) �.h�1.0//D 0.
(b) (1) �D �.zC/� 1, where zC D .1=`; z

1; : : : ; zm/ 2CmC1 .
(2) �D �.wC/� 1, where wC D .�=`; w1; : : : ; wm/ 2CmC1 .
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(c) Let .z; w/ be a critical point. Define real numbers c and d so as to satisfy

1C `

mX
iD1

zi
D ce.z/C de.w/:

Then the index of the critical point is given as

�.z; w/D

8̂̂̂<̂
ˆ̂:
�.z/C�.w/� 2 c > 0 and d > 0,
m� 1C�.z/��.w/ c > 0 and d < 0,
m� 1��.z/C�.w/ c < 0 and d > 0,
2m��.z/C�.w/ c < 0 and d < 0:

Proof We construct an atlas of L. We set

j̨ .z/D 1C `
X
k 6Dj

zk and ǰ .w/D �C `
X
k 6Dj

wk :

For 1� j ; k �m, we set

Uj ;k D f.z; w/ 2L j zj
6D ˙wk

g;

UC
j ;k
D f.z; w/ 2L j =.. j̨ �ˇk/xz

j / > 0g;

U�j ;k D f.z; w/ 2L j =.. j̨ �ˇk/xz
j / < 0g:

We easily see that, under the condition (4-1),

LD
[
j ;k

Uj ;k and Uj ;k D UC
j ;k
[U�j ;k ;

whence U˙
j ;k

is an atlas of L. For example, a local coordinate on U˙
1;1

is given by
.�2; : : : ; �m; �2; : : : ; �m/, where we set

zj
D e
p
�1�j and wj

D e
p
�1�j :

We define qW L!C by

q.z; w/D 1C `

mX
iD1

zi
D �C `

mX
iD1

wi :

On U˙
1;1

, we differentiate the equations

(4-4) jq�˛1j
2
D `2 and jq�ˇ1j

2
D `2:

Then we have

(4-5) hq�j ; z
1
i D `h

p
�1zj ; z1

i and hq�j ; w
1
i D 0;
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where h � ; � i is the Euclidean inner product in C DR2 .

Now we prove that the manifolds given in (ii) exhaust all critical manifolds of h.

(1) One can see that the condition (4-2) ensures that 0 2C is a regular value of the
map q . Then it is clear that h�1.0/D q�1.0/ is a critical manifold. This is the case of
(ii)(a).

Let .z; w/ be a critical point such that h.z; w/ 6D 0. By symmetry, we may assume
that .z; w/ 2 U1;1 .

(2) If q�j D q�j D 0 for all 2� j �m, then the first equation of (4-5) and a similar
equation for q�j tell us that zj D˙z1 and wj D˙w1 . This is the case of (ii)(c).

(3) Assume that q�j 6D 0 for some j . Since .z; w/ is a critical point, we have q�j ? q .
This and the second equation of (4-5) tells us that q k w1 . It follows that q�k

D 0

hence wk D˙w1 for all k . (Otherwise, we have q k z1 and contradicts the fact that
.z; w/ 2 U1;1 .) What is more, the fact that q D �C `

P
wk implies that w1 D ˙� .

One can easily show that, under the condition (4-3), for a fixed w0 2 f��; �g
m , the

subspace f.z; w/ 2 L j w D w0g is a submanifold of codimension m. This is the
second case of (ii)(b).

(4) The case that q�j 6D 0 for some j can be treated in the same way as in 3.

Next we prove (iii). Part (iii)(a) is clear and (iii)(b) is an immediate consequence
of Theorem 3.3(iii)(b). We prove (iii)(c). Note that .z; w/ 2 U1;1 . We define "; ı 2
f�1; 1gm by

zj
D "j e.z/ and wj

D ıj e.w/:

Note that �.z/D �."/ and �.w/D �.ı/. We claim that

(4-6)
�hst

2

�
D�c

�
diag.`"2; : : : ; `"m/C

1

`"1
.`"j`"k/

�
˚�d

�
diag.`ı2; : : : ; `ım/C

1

`ı1
.`ıj`ık/

�
:

In order to prove this, note that

hst D 2.chqst ; e.z/iC dhqst ; e.w/i/:

We compute hqst ; e.z/i for s D t D �j . By differentiating the first equation of (4-4)
twice, we have

hqst �˛1st ; `z
1
iC hqs �˛1s; qt �˛1t i D 0:

Since ˛1s D
p
�1`zj , ˛1st D�`z

j , qs D 0 and zj D "j e.z/, we have

`"1
hqst ; e.z/i D �`

2
� `2"j"1:
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By similar computations, we have (4-6).

Combining Lemma 4.1 and the facts that `
mP

jD1

"j Djq�1j>0 and `
mP

jD1

ıj Djq��j>0,
we see that

sgn
�
�

�
diag.`"2; : : : ; `"m/C

1

`"1
.`"j`"k/

��
D
�
m��."/; �."/� 1

�
;

sgn
�
�

�
diag.`ı2; : : : ; `ım/C

1

`ı1
.`ıj`ık/

��
D
�
m��.ı/; �.ı/� 1

�
:

Thus we obtain (iii)(c).

Finally, (i) is a consequence of (ii) and (iii).

Remark 4.3 The space L is homeomorphic to P .2mC 1; j� � 1j=`/, where we
consider the segment through 1 and � as the fixed edge. In reference to this, a Bott–
Morse function zhW L!R defined by

zh.z1; : : : ; z2m/D jz1
C z2
j
2

is studied in Klyachko [11]. The computations of the indices are easier for zh, but we
cannot use this for the study of M.n;m; `/.

5 Proofs of main theorems

Proof of Theorem A It is straightforward to show (i).

Recall that a mechanical linkage is described as the pullback of endpoints maps from
free arms. (See [15; 9].) In our case of spidery linkages, we have the following
description. We define a map �i W T

m!C for each 1� i � n by

�i.a/D vi C `

mX
kD1

ak

and we set

Di D �i.T
m/D fq 2C j jq� vi j � `mg �C; D D

n\
iD1

Di ;

Ei DD\ @Di ; Ai D �
�1
i .D/� T m:

Note that D D q.M.n;m; `// and D ¤¿ if and only if `� 1=m.
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Then we clearly have a pullback diagram:

(5-1)

M.n;m; `/ //

q

��

.T m/n

�1������n

��
C

�
// Cn

If ` is good, then it is easy to see that the maps �1 � � � � ��n and � in the diagram
are transversal, which implies (ii).

To see (iii), consider a similar pullback diagram:

(5-2)

M.n;m/ //

q

��

.T m/n �R n f`j g
max
jD0

��

pr // R

C
�

// Cn

It is also straightforward to see the transversality of the pullback and that the horizontal
composite M.n;m/!R is a smooth proper function with no critical point.

With the aid of Corollary 3.2, the proof of (iv) is the same as that of [9, Theorem A].
We identify D with the regular n–gon Pn with edges E1; : : : ;En . By Corollary 3.2,
if d.vi ;D/ > `.m� 2/, then we have a trivialization of the projection �i ,

.Sm�2 �D/=�

pr2 ((

Š // Ai

�i

vv
D

where .x; q/� .x0; q/ if q 2Ei . Therefore,

M.n;m; `/DA1 �D A2 �D � � � �D An

Š .Sm�2/n �D=�;

where the equivalence relation � is generated by the relation

.x1; : : : ;xn; q/� .x1; : : : ;
i
�; : : : ;xn; q/ if q 2Ei ;

whence M.n;m; `/Š ZPn
.Sm�2/.

Note that if d.vi ;D/ > 0, then

d.vi ;D/D

(
2� `m; n is even,

1C cos.�=n/�

q
m2`2� sin2.�=n/; n is odd.
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(The equal sign in the case when iD1 is attained by z2R�C such that jz�vn=2C1jD

`m when n is even and jz�v.nC1/=2jD jz�v.nC3/=2jD`m when n is odd.) Therefore,
if 1=m< `< �.n;m/, then d.vi ;D/ > `.m�2/ and we complete the proof of (iv).

Remark 5.1 In fact, in the diagram (5-2), the maps .T m/n �R! Cn and � are
transversal at a slightly wider class of ` and if ` 2Lbad , then ` is a critical value of
the horizontal composite function.

Proof of Theorem B (ii) Recall that the function f is defined by f .a1; : : : ; an/D

jq.a1; : : : ; an/j
2 . In view of Theorem 3.1 and (5-1), we see .a1; : : : ; an/ 2M.n;m; `/

is a critical point of q if and only if at least one arm is aligned. Therefore, by
Assumption 2.10, .a1; : : : ; an/ 2 M.n;m; `/ is a critical point of f if and only if
one of the following holds: f .a1; : : : ; an/D 0, one arm is aligned in the direction of
some vi or two arms are aligned. Hence (ii) follows.

(iii)(a) By Assumption 2.10(i), 02C is a regular value of q , hence f �1.0/D q�1.0/

is a submanifold of codimension 2 whose index is 0.

(c) For 1� i < j � n, we set

Lij D f.z; w/ 2 T m
�T m

j vi C `�.z/D vj C �.w/g

Mij D f.b1; : : : ; ybi ; : : : ; ybj ; : : : ; bn/ 2 .T
m/n�2

j vk C `�.bk/D vl C `�.bl/

for all k; lg:

Then we have a pullback diagram

M.n;m; `/ //

�ij

��

Mij

q0

��
Lij qij

// C

where the maps are the obvious ones. Note that q D qij ı�ij . Assume that two arms
ai and aj of .a1; : : : ; an/ 2M.n;m; `/ are aligned. Since ` is good, qij .ai ; aj / is a
regular value of q0 . Therefore, locally q0 can be identified with a projection of the form
U �V !U for some neighborhood U �C of qij .ai ; aj / and V � q0�1.qij .ai ; aj //

of .a1; : : : ; yai ; : : : ; yaj ; : : : ; an/ (or one may appeal to Ehresmann’s fibration theorem
to see that it is of the form U � Si;j ;z;w ! U ), whence so does �ij of the form
q�1

ij .U /�V ! q�1
ij .U /. Therefore the function f can be identified locally with the

composite

q�1
ij .U /�V �! q�1

ij .U /
qij

�!C
j � j2

�!R:
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Clearly, Lij is diffeomorphic to the manifold L in Theorem 4.2 and the function jqij j
2

is identified with h in Theorem 4.2. Hence (c) follows from Theorem 4.2(c). One can
show (b) similarly.

Part (i) is a consequence of (ii) and (iii).

Proof of Theorem C We use (2-5), (2-6), (3-1) and Theorem B. A proof of (2-5) is
given in Section 6.

(i) Let C be one of f �1.0/, Ri;v or Si;j ;z;w . Since n � 3, C has at least one
P .mC 1; r/ as a direct product factor. Since m is odd, we have from (2-6) that
�.P .mC 1; r//D 0. Hence �.C /D 0. Using (3-1), we have �.M.n;m; `//D 0.

(ii) Both (a) and (b) can be treated similarly. Since (a) is much easier, we consider (b).

We study the indices of critical manifolds in Theorem B when ` > dn=2 and m is even.

We set c� D .�1/��1
�
m�1
��1

�
. Note that c� D .�1/mC1cmC1�� D �cmC1�� since m

is even and, by (2-5), we have

�.P .mC 1; r//D�2cm=2CŒr=2�C1 D 2cm=2�Œr=2�:

First, we have f �1.0/Š .P .mC 1; 1=`//n with the index 0. Since 0< 1=` < 2, the
contribution of f �1.0/ to the Euler characteristic is

(5-3) �.P .mC 1; 1=`//n D .2cm=2/
n
D 2ncn

m=2:

Second, a short computation using Definition 2.12, 0 < dn=` < 2 and the triangle
inequality for qi;v; vi ; v� and qi;v;�vi ; v� tells us that

0� 2�.vC/�m� 2< ri;v;� < 2�.vC/�m;

whence m=2C Œri;v;�=2�C 1D �.vC/ for all � 6D i . Hence

�.Ri;v/D
Y
�¤i

�.P .mC 1; ri;v;�//D .�2c�.vC//
n�1:

Note that Ri;vD¿ if �.vC/DmC1. By Theorem B, �.Ri;v/D�.vC/�1. Therefore
the contribution of the Ri;v is

(5-4) n

mX
�Dm=2C1

��
m

�� 1

�
C

�
m

�

��
.�1/��1.�2c�/

n�1

D 2n�1n

m=2X
�D1

�
mC 1

�

�
.�1/�cn�1

� :

Third, the triangle inequality tells us that Si;j ;z;w 6D¿ only when �.z/D �.w/DW �.
Moreover, if j ¤ i C 1 .mod n/, then Si;j ;z;w D¿ if �Dm. If j D i C 1 .mod n/
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and �Dm, then one of Si;j ;z;w (whose z and w point “outside”) is empty. Again by
the triangle inequality, for all � ¤ i; j , we have�

2��m� 2< si;j ;z;w;� < 2��m if jqi;j ;z;w � v� j< jqi;j ;z;w � vi j;

2��m< si;j ;z;w;� < 2��mC 2 if jqi;j ;z;w � v� j> jqi;j ;z;w � vi j;

m=2C Œsi;j ;z;w;�=2�C 1D

�
� if jqi;j ;z;w � v� j< jqi;j ;z;w � vi j;

�C 1 if jqi;j ;z;w � v� j> jqi;j ;z;w � vi j:

Hence

�.Si;j ;z;w/D
Y
�¤i;j

�.P .mC 1; si;j ;z;w;�//D .�2/n�2ck
�cn�2�k
�C1

for k D j � i � 1 or k D n� 2� .j � i � 1/ and the index is given by �.Si;j ;z;w/D

�.z/C�.w/� 2D 2�� 2 by Theorem B. The contribution of the Si;j ;z;w is

(5-5) n

b.n�3/=2cX
kD0

m�1X
�Dm=2C1

�
m

�

�2

.�2/n�2.ck
�cn�2�k
�C1 C cn�2�k

� ck
�C1/

C �.n/

m�1X
�Dm=2C1

�
m

�

�2

.�2/n�2cn=2�1
� c

n=2�1
�C1

C n.�2/n�2cn�2
m

D 2n�2n

�m=2X
�D2

�
m

� � 1

�2 n�2X
kD0

ck
� cn�2�k
��1 C cn�2

1

�

D 2n�2n

�m=2X
�D2

�
m

� � 1

�
.�1/��1.c� � c��1/

n�2X
kD0

ck
� cn�2�k
��1 C cn�2

1

�

D 2n�2n

�m=2X
�D2

�
m

� � 1

�
.�1/��1.cn�1

� � cn�1
��1/C cn�2

1

�

D 2n�2n

m=2X
�D1

�
m

� � 1

�
.�1/��1.cn�1

� � cn�1
��1/

D 2n�2n

��
m

m=2� 1

�
.�1/m=2�1cn�1

m=2 �

m=2�1X
�D1

�
mC 1

�

�
.�1/�cn�1

�

�
;

where �.n/D n if n is even and 0 if n is odd. Combining (5-3), (5-4) and (5-5), using
the equality�

mC 1

m=2

�
�

�
m

m=2� 1

�
D 2

�
m� 1

m=2� 1

�
D .�1/m=2�12cm=2;

we obtain the desired result.
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We study the asymptotic behavior of �.M.n;m; `// of Theorem C(b).

Proposition 5.2 (i) For each fixed even m and ` > dn=2, we have

�.M.n;m; `//� .�1/..mn/=2/CnC1 n.3mC 4/

2mC 4

�
m
m
2

�n

.n!1/:

(ii) For a fixed n, we have

.�1/..mn/=2/CnC1 n.3mC4/

2mC4

�
m
m
2

�n

� .�1/..mn/=2/CnC1 3n

2

�
2mp
.�m/=2

�n

.m!1/:

Proof Recall that c� D .�1/��1
�
m�1
��1

�
. Since

.�1/�
�

mC 1

�

�
D�.�1/��1 m.mC1/

�.mC1��/

�
m� 1

� � 1

�
D�

m.mC1/

�.mC1��/
c�

we see that

�.M.n;m; `//D 2n�1

��
2�

.3mC4/n

mC2

�
cn

m=2�
m.mC1/n

2

m=2�1X
�D1

cn
�

�.mC1��/

�
:

Clearly, the asymptotic behavior with respect to n is determined by the first term. Using

2cm=2 D .�1/.m=2/�12

�
m� 1

m=2� 1

�
D .�1/.m=2/�1

�
m

m=2

�
;

(i) follows. Part (ii) follows from Stirling’s formula.

Proof of Theorem D If ` satisfies 1=m < ` < �.n;m/, then by Theorem A(iv),
M.n;m; `/ Š ZPn

.Sm�2/. If n D 2 or 3, this is a sphere since, by definition,
ZP2

.Sm�2/Š†Sm�2 �Sm�2 and ZP3
.Sm�2/D Sm�2 �Sm�2 �Sm�2 .

Conversely, assume M.n;m; `/ is a sphere. We consider by case of the parity of n.

If n is even, then M.n;m; `/ is an even sphere hence �.M.n;m; `//D 2. It is easy to
prove from Theorem B and Proposition 2.15 that �.M.n;m; `// is divisible by 2n�2 ,
whence nD 2. Since M.2;m; `/Š P .2mC 1; 2=`/, again by Proposition 2.15, we
see that 1

m
< ` < �.n;m/.

Next we consider the case of odd n. By Smith’s theorem (see, for example, Bre-
don [3, page 129]), the fixed-point set of an involution acting on a sphere is a mod-2
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homology sphere. Hence, in order to complete the proof, it will suffice to construct an
involution of M.n;m; `/ such that the fixed-point set is not a mod-2 homology sphere.

We define an involution of M.n;m; `/ by

�.a1; : : : ; an/D .b1; : : : ; bn/;

where bi D xanC2�i for 1� i � n with the convention nC1D 1. If .a1; : : : ; an/ is an
element of the fixed point set, then we have ak

1
D˙1 .1� k �m/ and ai D xanC2�i .

Hence, similarly to R1;" in Definition 2.12, each connected component of the fixed
point set is of the form

F".`/ WD

.nC1/=2Y
�D2

P .mC 1; r1;";�/

for some " 2 f�1; 1gm .

If n � 5, we take " to be .�1;�1; : : : ;�1/. By the triangle inequality, we see that
r1;";� < m and by Assumption 2.10(ii), mC 1� r1;";� is not an odd integer. Hence
each factor P .mC1; r1;";�/ is a closed orientable manifold of dimension m�2, which
is S0 in the case mD 2. Therefore F".`/ is a product of at least two such manifolds,
hence is not a mod-2 homology sphere.

If ` > �.n;m/, then d.vi ;D/ < `.m� 2/ hence we see that F".`/ is not empty for
"D .1;�1; : : : ;�1/; .�1; 1;�1; : : : ;�1/ and .�1;�1; : : : ;�1/. Therefore the fixed
point set has at least three connected components, hence is not a mod-2 homology
sphere.

6 The case n D 2

We compute �.P .2mC1; r// using Theorem 4.2 and give a proof of Proposition 2.15.

It is easy to see that when N is even and r is not an odd integer, then P .N; r/ is an
odd-dimensional closed orientable manifold, hence �.P .N; r//D 0 in this case and
(2-6) holds. Clearly the formula holds when N D 3. In order to prove by induction,
we fix m and assume that (2-5) holds for all odd N � 2m� 1.

We identify P .2mC 1; r/ with LDL.m; 2=r;�1/ of Theorem 4.2. When r is not
an even integer, then it is straightforward to see that `D 2=r and � D�1 satisfy the
assumption of Theorem 4.2.

Recall that, by comparing coefficients of

.1�x/m�1
D .1�x/m.1�x/�1 and .1�x/2m�1

D .1�x/m.1�x/m�1;
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we have identities

.�1/n
�

m� 1

n

�
D

X
��n

.�1/�
�

m

�

�
D�

X
�>n

.�1/�
�

m

�

�
;

�
m� 1

n

�2

D�

X
�>n
��n

.�1/�C�
�

m

�

��
m

�

�
;

.�1/n
�

2m� 1

n

�
D

X
�C��n

.�1/�C�
�

m

�

��
m

�

�
D�

X
�C�>n

.�1/�C�
�

m

�

��
m

�

�
:

For an even integer m and a subset X � Z�Z, we set

†X D

X
.i;j/2X

.�1/iCj

�
m

i Cm=2

��
m

j Cm=2

�
and define subsets of Z�Z by

S D f.i; j / j j < �r=4< ig;

T1 D f.i; j / j i � j > r=2 and j < �r=2g;

T2 D f.i; j / j i � j > r=2 and � r=2< j < �r=4g;

T3 D f.i; j / j i � j > r=2 and � r=4< j g;

U D f.i; j / j i C j > r=2 and � r=2< i � j < r=2g:

In our situation, the critical manifolds and indices of Theorem 4.2 are given as follows:

(a) h�1.0/Š P .mC 1; 1=`/2 D P .mC 1; r=2/2;

�.P .mC 1; r=2//D

�
2.�1/m=2CŒr=4�C1

�
m�1

m=2CŒr=4�

�
m is even,

0 m is odd.

Note that�
m� 1

m=2C Œr=4�

�2

D

�
m� 1

m=2� Œr=4�� 1

�2

D�

X
�>m=2�Œr=4��1
��m=2�Œr=4��1

.�1/�C�
�

m

�

��
m

�

�

D�

X
��m=2>�r=4
��m=2<�r=4

.�1/�C�
�

m

�

��
m

�

�
D�†S :

Hence, the contribution of h�1.0/ is

(6-1)
�
�4†S m is even,
0 m is odd.
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(b) Critical manifolds of Theorem 4.2(ii)(b)(1) are indexed by elements of f�1; 1gm

and are of the form P .mC 1; s/ for some positive real number s .

If m is odd, then �.P .mC 1; s//D 0.

Consider the case when m is even. For z 2 f�1; 1gm , we set � D ]fj j zj D 1g. Then
the length s is given by s D j2� �mC r j. Since

Œs=2�D

�
��Cm=2� Œr=2�� 1 if � �m=2< �r=2;

� �m=2C Œr=2� if � �m=2> �r=2;

we have

�.P .mC 1; s//D

(
2.�1/m���Œr=2�

�
m�1

m���Œr=2��1

�
if � �m=2< �r=2;

2.�1/�CŒr=2�C1
�

m�1
�CŒr=2�

�
if � �m=2> �r=2:

Since q=`D 2� �mC r=2, we have

�.zC/D

�
m� � if � �m=2< �r=4;

�C 1 if � �m=2> �r=4;

therefore

.�1/��1�.P .mC 1; s//D

8̂̂<̂
:̂

2.�1/Œr=2�C1
�

m�1
�CŒr=2�

�
if � �m=2< �r=2;

2.�1/Œr=2�
�

m�1
�CŒr=2�

�
if � r=2< � �m=2< �r=4;

2.�1/Œr=2�C1
�

m�1
�CŒr=2�

�
if � r=4< � �m=2:

Since�
m� 1

�C Œr=2�

�
D .�1/�CŒr=2�C1

X
�>�CŒr=2�

.�1/�
�

m

�

�
D .�1/Œr=2�C1

X
�>�Cr=2

.�1/�C�
�

m

�

�
the contribution of critical manifolds of Theorem 4.2(ii)(b)(1) is

2

� X
��m=2<�r=2

�

X
�r=2<��m=2<�r=4

C

X
�r=4<��m=2

�
.�1/Œr=2�C1

�
m

�

��
m� 1

�C Œr=2�

�

D 2

� X
��m=2<�r=2

�

X
�r=2<��m=2<�r=4

C

X
�r=4<��m=2

� X
�>�Cr=2

.�1/�C�
�

m

�

��
m

�

�
D 2.†T1

�†T2
C†T3

/:

By symmetry, the contribution of critical manifolds of Theorem 4.2(ii)(b)(2) is the
same as that of (b)(i). Hence the contribution of (b) is

(6-2)
�

4.†T1
�†T2

C†T3
/ m is even,

0 m is odd.
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(c) Let .z; w/ be critical points of Theorem 4.2(ii)(c) and we set �.z/D�, �.w/D � .
Since there is a triangle of edge lengths .4��2m/=r; .4��2m/=r and 2, .�; �/ must
belong to the set

U 0 Df.�; �/ 2N �N jm=2< �; � �m and j�� �j< r=2< �C � �mg

Df.�; �/ 2N �N j �; � �m, �r=2< �� � < r=2 and mC r=2< �C �g:

Hence, the contribution is

(6-3)
�

2†U m is even,
2
P
.�;�/2U 0.�1/�C�

�
m
�

��
m
�

�
m is odd.

If m is odd, via the symmetry .�1/i
�
m
i

�
D�.�1/m�i

�
m

m�i

�
, one easily sees that the

sum of (6-1), (6-2) and (6-3) is

2
X

.�;�/2U 0

.�1/�C�
�

m

�

��
m

�

�
D 2

X
�C�>mCŒr=2�

.�1/�C�
�

m

�

��
m

�

�

D 2.�1/mCŒr=2�C1

�
2m� 1

mC Œr=2�

�
as desired.

Consider the case when m is even. The sum of (6-1), (6-2) and (6-3) is

�4†S C 4.†T1
�†T2

C†T3
/C 2†U :

Note: .�1/iCj
�

m
iCm=2

��
m

jCm=2

�
is invariant under transformations .i; j /! .˙i;˙j /

and .i; j /! .j ; i/, hence so is †X .

Decompose the sets S;T1 and T3 into the following sets:

S D S1[S2[S3

S1 D S \T1

S2 D f.i; j / j i C j > �r=2 and � r=2< j < �r=4g

S3 D f.i; j / 2 S j i C j < �r=2 and i � j < r=2g

D f.i; j / j �r=4< i < �jj C r=2jg

T 2
1 D T1 nS1 D f.i; j / j i � j > r=2 and i < �r=4g

T3 D T 1
3 [T 2

3
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T 1
3 D f.i; j / 2 T3 j i C j < r=2g

D f.i; j / j �r=4< j < �ji � r=2jg

T 2
3 D f.i; j / 2 T3 j i C j > r=2g

D f.i; j / j i C j > r=2; i � j > r=2 and � r=4< j g

(see Figure 3).

i D�r=4

j D�r=4

i C j D r=2

i C j D�r=2

i � j D�r=2

i � j D r=2

U

T2

T 2
3

T 1
3

S1

S2

S3

T 2
1

Figure 3: mD 14 and r D 7

Let

xT2 D f.i; j / j .�i; j / 2 T2g

D f.i; j / j i C j < �r=2 and � r=2< j < �r=4gI

then we have

S2[
xT2 D f.i; j / j �r=2< j < �r=4g; S2\

xT2 D∅;

hence
†S2
C†T2

D†S2
C† xT2

D†�r=2<j<�r=4 D 0:
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Note that .i; j / 2 S3 if and only if .�j ; i/ 2 T 1
3

, hence

†S3
D†T 1

3
:

Let
xT 2

1 D f.i; j / j .j ;�i/ 2 T 2
1 gI

then
†T 2

1
D† xT 2

1

and we see that xT 2
1
; t xT 2

1
;T 2

3
; tT 2

3
and U are pairwise disjoint and

xT 2
1 [

t xT 2
1 [T 2

3 [
tT 2

3 [U D f.i; j / j i C j > Œr=2�g

whence

�4†S C 4.†T1
�†T2

C†T3
/C 2†U

D 4.�†S1
�†S2

�†S3
C†S1

C†T 2
1
�†T2

C†T 1
3
C†T 2

3
/C2†U

D 4.† xT 2
1
C†T 2

3
/C 2†U

D 2.† xT 2
1
C†t xT 2

1
C†T 2

3
C†t T 2

3
C†U /

D 2†iCj>Œr=2�

D 2
X

iCj>Œr=2�

.�1/iCj

�
m

i Cm=2

��
m

j Cm=2

�

D 2
X

�C�>mCŒr=2�

.�1/�C�
�

m

�

��
m

�

�

D 2.�1/mCŒr=2�C1

�
2m� 1

mC Œr=2�

�
as desired.

Remark 6.1 A certain variation of the function h would give a simple proof of this
formula, which will be treated elsewhere.
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