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Genus-two mutant knots with the same dimension
in knot Floer and Khovanov homologies

ALLISON H MOORE

LAURA STARKSTON

We exhibit an infinite family of knots with isomorphic knot Heegaard Floer homology.
Each knot in this infinite family admits a nontrivial genus-two mutant which shares
the same total dimension in both knot Floer homology and Khovanov homology.
Each knot is distinguished from its genus-two mutant by both knot Floer homology
and Khovanov homology as bigraded groups. Additionally, for both knot Heegaard
Floer homology and Khovanov homology, the genus-two mutation interchanges the
groups in ı–gradings k and �k .

57M25, 57M27; 57R58

1 Introduction

Genus-two mutation is an operation on a three-manifold M in which an embedded,
genus-two surface F is cut from M and reglued via the hyperelliptic involution � .
The resulting manifold is denoted M� . When M is the three-sphere, the genus-two
mutant manifold .S3/� is homeomorphic to S3 (see Section 2). If K � S3 is a knot
disjoint from F , then the knot that results from performing a genus-two mutation
of S3 along F is denoted K� and is called a genus-two mutant of the knot K . The
related operation of Conway mutation in a knot diagram can be realized as a genus-two
mutation or a composition of two genus-two mutations (see Section 2).

In [20], Ozsváth and Szabó demonstrate that as a bigraded object, knot Heegaard
Floer homology can detect Conway mutation. However, it can be observed that in all
known examples (see Baldwin and Gillam [1]), the rank of bHFK.K/ as an ungraded
object remains invariant under Conway mutation. The question of whether the rank
of knot Floer homology is unchanged under Conway mutation, or more generally,
genus-two mutation, remains an interesting open problem. Moreover, while it is
known that Khovanov homology with F2 D Z=2Z–coefficients is invariant under
Conway mutation (see Bloom [4] and Wehrli [28]), the case of Z–coefficients is also
unknown. The invariance of the rank of Khovanov homology under genus-two mutation
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44 A H Moore and L Starkston

constitutes a natural generalization of the question. Recently, Baldwin and Levine [2]
have conjectured that the ı–graded knot Floer homology groups

bHFKı.L/D
M

ıDa�m

bHFKm.L; a/

are unchanged by Conway mutation, which implies that their total ranks are preserved,
amongst other things. A parallel conjecture can be made about ı–graded Khovanov
homology, and the ı–graded Khovanov homology groups are given by

Khı.L/D
M

ıDq�2i

Khi
q.L/:

In this note, we offer an example of an infinite family of knots with isomorphic knot
Floer homology, all of which admit a genus-two mutant of the same dimension in
both bHFK and Kh, though each pair is distinguished by both bHFK and Kh as bigraded
vector spaces.1 Additionally, we show that both the ı–graded bHFK and Kh groups
distinguish the genus-two mutants pairs. Here, knot Floer homology computations
are done with F2 –coefficients, and Khovanov homology computations are done with
Q–coefficients.

Theorem 1.1 There exists an infinite family of genus-two mutant pairs .Kn;K
�
n/,

n 2 ZC , in which:

(1) Each infinite family has isomorphic knot Floer homology groups,

bHFKm.Kn; a/Š bHFKm.K0; a/ for all m; a;

bHFKm.K
�
n; a/Š

bHFKm.K
�
0; a/ for all m; a:

(2) Each genus-two mutant pair shares the same total dimension in bHFK and Kh,M
m;a

dimF2
bHFKm.Kn; a/D

M
m;a

dimF2
bHFKm.K

�
n; a/;M

i;q

dimQ Khi
q.Kn/D

M
i;q

dimQ Khi
q.K

�
n/:

(3) Each genus-two mutant pair is distinguished by bHFK and Kh as bigraded groups,

bHFKm.Kn; a/ 6Š bHFKm.K
�
n; a/ for some m; a;

Khi
q.Kn/ 6Š Khi

q.K
�
n/ for some i; q:

1Because we compute bHFK and Kh as graded vector spaces over Z=2Z or Q , the theorem has been
formulated in terms of dimension rather than rank.

Algebraic & Geometric Topology, Volume 15 (2015)
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(4) Each genus-two mutant pair is distinguished by ı–graded bHFK and ı–graded Kh,
and moreover

bHFKı.Kn/Š bHFK�ı.K
�
n/ for all ı;

Khı.Kn/Š Kh�ı.K
�
n/ for all ı:

This example suggests that having invariant dimension of knot Floer homology or
Khovanov homology is a property shared not only by Conway mutants, but by genus-two
mutant knots as well, offering positive evidence towards all the above open questions
about total rank.

1.1 Organization

In Section 2 we review genus-two mutation and describe the infinite family of genus-two
mutant pairs. In Section 3 we show that within each infinite family fKng and fK�

ng, the
knots have isomorphic knot Heegaard Floer homology and that these families share the
same dimension. In Section 4 we show that each family also shares the same dimension
of Khovanov homology. In Section 5 we mention a few observations.

2 Genus-two mutation

Figure 1: The genus-two surface F and hyperelliptic involution �

Let F be an embedded, genus-two surface in a compact, orientable three-manifold M ,
equipped with the hyperelliptic involution � . A genus-two mutant of M , denoted M� ,
is obtained by cutting M along F and regluing the two copies of F via � . The
involution � has the property that an unoriented simple closed curve  on F is isotopic
to its image �. /. The definition is due to Ruberman [24].

When M D S3 , any closed surface F � S3 is compressible. This implies, by the loop
theorem, that .S3/� is homeomorphic to S3 (see Dunfield et al [8]). Therefore, if S3

contains a knot K disjoint from F , mutation along F is a well-defined homeomorphism
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of S3 taking a knot K to a potentially different knot K� [8]. In this note, we restrict
our attention to surfaces of mutation which bound a handlebody containing K in its
interior. These mutations are called handlebody mutations.

A Conway mutant of a knot K � S3 is similarly obtained by an operation under which
a Conway sphere S interests K in four points and bounds a ball containing a tangle.
The ball containing the tangle is replaced by its image under a rotation by � about a
coordinate axis. In fact, Conway mutation of a knot can be realized as a special case of
genus-two mutation. Since S separates K into two tangles, ie

K D T1[S T2;

a genus-two surface F is formed by taking S and tubing along either T1 or T2 .
The Conway mutation is then achieved by performing at most two such genus-two
mutations [8]. Like Conway mutants, genus-two mutants are difficult to detect and are
indistinguishable by many knot invariants [8].

Theorem 2.1 [5, Corollary 8; 8, Theorem 3.2] The Alexander polynomial and
colored Jones polynomials for all colors of a knot in S3 are invariant under genus-two
mutation. Generalized signature is invariant under genus-two handlebody mutation.

Theorem 2.2 [24, Theorem 1.3] Let K� be a genus-two mutation of the hyperbolic
knot K . Then K� is also hyperbolic, and the volumes of their complements are
the same.

14n
22185

14n
22589

Figure 2: The genus-two mutant pair K0 D 14n
22185

and K�
0
D 14n

22589

Theorem 2.2 is a special case of a more general theorem which shows that the Gromov
norm is preserved under mutation along any of several symmetric surfaces, including
the genus-two surface on which we are focused here. Ruberman also shows that
cyclic branched coverings and Dehn surgeries along a Conway mutant knot pair yield
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Genus-two mutant knots 47

manifolds of the same Gromov norm. Moreover, it is well known that Conway mutation
preserves the homeomorphism type of the branched double covering. In light of this, it
is natural to ask whether †2.K/ is homeomorphic to †2.K

� /; however, this is not the
case. We verify this by investigating the pair of genus-two mutant knots in Figure 2,
which we call K0 and K�

0
and are known as 14n

22185
and 14n

22589
in Knotscape

notation.

Proposition 2.3 The branched double covers of K0 and K�
0

are not homeomorphic.

Proof This is a fact which can be checked by computing the geodesic length spectra
of †2.K0/ and †2.K

�
0
/ in SnapPy [6] with the following code snippet.

>> M1= Mani fo ld ( " 1 4 n22185 . t r i " ) ; M2= Mani fo ld ( " 1 4 n22589 . t r i " )
>> M1. d e h n _ f i l l ( ( 2 , 0 ) , 0 ) ; M2. d e h n _ f i l l ( ( 2 , 0 ) , 0 )
>> M1. c o v e r s ( 2 , c o v e r _ t y p e =" c y c l i c " ) ; M2. c o v e r s ( 2 , c o v e r _ t y p e =" c y c l i c " )

>> M1. l e n g t h _ s p e c t r u m ( c u t o f f = 1 . 5 )
mul t l e n g t h t o p o l o g y p a r i t y
1 (0.618708509882 � 0.915396961493 j ) m i r r o r e d a r c o r i e n t a t i o n �p r e s e r v i n g
1 (1.02046533287 � 2.87373908997 j ) m i r r o r e d a r c o r i e n t a t i o n �p r e s e r v i n g
1 (1.19267652219 � 1.97573028631 j ) c i r c l e o r i e n t a t i o n �p r e s e r v i n g
1 (1.2943687184 � 0.108601853389 j ) m i r r o r e d a r c o r i e n t a t i o n �p r e s e r v i n g
1 (1 .4180061001+1 .77458043688 j ) c i r c l e o r i e n t a t i o n �p r e s e r v i n g

>> M2. l e n g t h _ s p e c t r u m ( c u t o f f = 1 . 5 )
mul t l e n g t h t o p o l o g y p a r i t y
1 (0 .61977975736+1 .04574145952 j ) m i r r o r e d a r c o r i e n t a t i o n �p r e s e r v i n g
1 (0 .946415249278+3 .02707626124 j ) m i r r o r e d a r c o r i e n t a t i o n �p r e s e r v i n g
1 (1 .07345426322+2 .11448221051 j ) c i r c l e o r i e n t a t i o n �p r e s e r v i n g
1 (1.2943687184 � 0.108601853389 j ) m i r r o r e d a r c o r i e n t a t i o n �p r e s e r v i n g

The complex length spectrum of a compact hyperbolic 3–orbifold M is the collection
of all complex lengths of closed geodesics in M counted with their multiplicities
(Maclachlan and Reid [15, Chapter 12]). SnapPy demonstrates that the complex length
spectra of †2.K/ and †2.K

� / bounded above are different, therefore these manifolds
are not isospectral, and therefore not isometric. Mostow rigidity says that the geometry
of a finite-volume hyperbolic three–manifold is unique, therefore †2.K/ and †2.K

� /

are not homeomorphic.

Corollary 2.4 The genus-two mutant pair K0 and K�
0

are not Conway mutants.

Proof Since Conway mutants have homeomorphic branched double covers, this
follows directly from Proposition 2.3.
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We will continue to explore the pair 14n
22185

and 14n
22589

. As genus-two mutants,
they share all of the properties mentioned in Theorem 2.1 and Theorem 2.2. More-
over, 14n

22185
and 14n

22589
are also shown in [8] to have the same HOMFLY-PT and

Kauffman polynomials, although in general these polynomials are known to distinguish
larger examples of genus-two mutant knots [8]. Just as a subtler hyperbolic invariant
was required to distinguish their branched double covers, we require a subtler quantum
invariant to distinguish the knot pair. The categorified invariants bHFK and Kh do
the trick.

Theorem 2.5 The genus-two mutant knots K0 and K�
0

are distinguished by their
knot Heegaard Floer homology and Khovanov homology, as well as by their ı–graded
versions.

See Table 1. Khovanov homology with Z coefficients was computed in [8] using
KhoHo [25]. Here, we include Khovanov homology with rational coefficients computed
with the Mathematica program JavaKH-v2 [16]. Since bHFK was shown to detect
Conway mutation by Ozsváth and Szabó [20], it is not surprising that knot Floer
homology can distinguish genus-two mutant pairs. Nonetheless, the knot Floer groups
bHFK.K0/ and bHFK.K�

0
/ have been computed using the Python program of Droz [7].

The key observation is that although both knot Floer homology and Khovanov homology
distinguish the genus-two mutants as bigraded vector spaces, in both cases the pairs
are indistinguishable as ungraded objects.

Figure 3: The surface of mutation for all Kn ; note the surface bounds a handlebody

We will derive an infinite family of knots from the pair 14n
22185

and 14n
22589

. Notice
that each of these can be formed as the band sum of a two-component unlink. Let us
call 14n

22185
and 14n

22589
by K0 and K�

0
, respectively. By adding n half-twists with

positive crossings to the bands of K0 and K�
0

, as in Figure 4, we obtain knots Kn

and K�
n . It is visibly clear that K�

n is the genus-two mutant of Kn by the same surface
of mutation relating K0 and K�

0
, illustrated in Figure 3.
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bHFK.K0/

�2 �1 0 1 2
3 F
2 F2 F
1 F2 F2

0 F2 F3

�1 F F2

�2 F
dimD 17

bHFK.K�
0
/

�1 0 1

1 F2

0 F5 F2

�1 F2 F4

�2 F2

dimD 17

ı–graded bHFK.K0/

�2 �1 0 1 2 dim

a�mD�1 F F2 F2 F2 F 8
a�mD 0 F F2 F3 F2 F 9

dimD 17

ı–graded bHFK.K�
0
/

�1 0 1 dim

a�mD 0 F2 F5 F2 9
a�mDC1 F2 F4 F2 8

dimD 17

Kh.K0IQ/ 1
7

13
1

6

9
1

4

7
1

3

7
1

3

3
1

2

5
1

2

3
1

1

3
1

1

1
10

3
20

1
20

1
21

1
11

3
12

1
12

3
12

5
13

3
13

5
13

7
14

7
15

7
16

11

Kh.K�
0
IQ/ 1

7

13
1

6

9
1

5

9
1

4

9
1

4

7
1

4

5
1

3

7
1

3

5
1

3

3
1

2

5
2

2

3
1

1

3
1

1

1
1

1

1
20

1
20

1
11

1
11

3
12

1
12

5
13

5
15

7
16

11

dimD 26

ı–graded Kh.K0/

q� 2i D�3 4
q� 2i D�1 11
q� 2i D 1 9
q� 2i D 3 2

ı–graded Kh.K�
0
/

q� 2i D�3 2
q� 2i D�1 9
q� 2i D 1 11
q� 2i D 3 4

Table 1: Knot Floer groups are displayed with Maslov grading on the vertical
axis and Alexander grading on the horizontal axis. Computation [7] also
confirms bHFK.K0/ŠbHFK.K1/ and bHFK.K�

0
/ŠbHFK.K�

1
/ . For Khovanov

homology, Di
j denotes Khovanov groups in homological grading i and

quantum grading j with dimension D . The underline denotes negative
gradings. This notation originated in Bar-Natan [3].

Note that by resolving a crossing in the twisted band, Kn and Kn�2 fit into an oriented
skein triple .LC;L�;L0/ with L0 equal to the two-component unlink U for all
integers n> 1. Moreover, Kn and Kn�1 fit into an unoriented skein triple, again with
third term the unlink. The knots K�

n;K
�
n�1

;K�
n�2

and U fit into these same oriented
and unoriented skein triples.
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(a) Oriented skein triple of Kn , Kn�2 and U

(b) Unoriented skein triple of Kn , Kn�1 and U

Figure 4: Oriented and unoriented skein triples

Figure 5: A smooth cobordism illustrating that Kn is slice.

Lemma 2.6 The Ozsváth and Szabó � invariant and Rasmussen s invariant vanish for
all Kn and K�

n .

Proof The knots Kn and K�
n are formed from the band sum of a two-component

unlink. In general, if K is any such knot, then K is smoothly slice. This is a standard
fact (see for example Lickorish [14, page 86]), and the slicing disk is illustrated
in Figure 5. Ozsváth and Szabó define the smooth concordance invariant �.K/ 2 Z
in [18, Corollary 1.3] and Rasmussen defines a smooth concordance invariant s.K/22Z
in [23, Theorem 1]. Both �.K/ and s.K/ provide lower bounds on the four-ball genus:

j�.K/j � g�.K/ and js.K/j � 2g�.K/:

Since all of our knots are slice, we immediately obtain � D s D 0.
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3 Knot Floer homology

Knot Floer homology is a powerful invariant of oriented knots and links in an oriented
three manifold Y , developed independently by Ozsváth and Szabó [19] and Ras-
mussen [22]. We tersely paraphrase Ozsváth and Szabó’s construction of the invariant
for knots, and refer the reader to [19] for details of the construction.

3.1 Background from knot Floer homology

To a knot K � S3 is associated a doubly pointed Heegaard diagram .†;˛;ˇ; z; w/.
The data of the Heegaard diagram gives rise to chain complexes (CFK–.K/; @�/ and
. bCFK.K/; y@/. These complexes come equipped with a bigrading .M;A/, where
M denotes Maslov grading and A denotes Alexander grading. The chain complex
CFK–.K/ is an F2ŒU � module, where the action of U reduces A by one and M by
two. The differentials @� and y@ preserve A and reduce M by one. The homology
groups HFK–.K/ and bHFK.K/ are invariants of K .

We will require the following theorem of Ozsváth and Szabó specialized to the case
where LC and L� are knots, which we state without proof.

Theorem 3.1 (Ozsváth and Szabó [17, Theorem 1.1]) Let LC , L� and L0 be three
oriented links, which differ at a single crossing as indicated by the notation. Then,
if LC and L� are knots, there is a long exact sequence

� � � �! HFK–
m.LC; a/

f �

��! HFK–
m.L�; a/

g�

��!Hm�1

�CFL–.L0/

U1�U2
; a
�

h�

��! HFK–
m�1.LC; a/ �! � � � :

We remark that the skein exact sequence of Theorem 3.1 is derived from a mapping
cone construction. Indeed, Ozsváth and Szabó show in [17, Theorem 3.1] that there is
a chain map f W CFK–.LC/! CFK–.L�/ whose mapping cone is quasi-isomorphic
to the mapping cone of the chain map U1�U2W CFL–.L0/! CFL–.L0/, which is in
turn quasi-isomorphic to the complex CFL–.L0/=U1�U2 . The maps in the diagram
appearing in [17, Section 3.1] which determine the quasi-isomorphism from the cone
of f to the cone of U1�U2 are U –equivariant. The map f � appearing in the sequence
above is the map induced on homology by f . The maps g� and h� are induced by
inclusions and projections of the mapping cone of f along with the quasi-isomorphism.
Therefore the long exact sequence is U –equivariant.
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Lemma 3.2 Let U be the two-component unlink in S3 . Then U corresponds with the
unknot bU � S2 �S1 , whose knot Floer homology is

bHFK.S3;U/Š F2 mD0
aD0
˚F2 mD�1

aD0
;

H�

�CFL–.U/
U1�U2

�
Š bHFK.S3;U/˝F2

F2ŒU �;

where in the module F2ŒU �, the action of U drops the Maslov grading by two and the
Alexander grading by one.

Proof A Heegaard diagram for bU �S2�S1 can be constructed by taking a genus-one
splitting of S2 �S1 with two curves, ˛ and ˇ , intersecting in two points x and y .
Place basepoints z and w inside the annular region such that x is connected to y by
two disks. Since it is a genus-one splitting we count only � corresponding to domains
that are disks. As an application of the Riemann mapping theorem, #�M.�/ D ˙1

for each such � . Therefore the differential is zero in both bCFK.S2 � S1;bU/ and
CFK–.S2 �S1;bU/. The relative grading difference is evident from the diagram and
pinned down by the observation that the U � S3 fits into a skein exact sequence
(Theorem 3.1) with the unknot.

3.2 Knot Floer homology proof

The main objective of this section is to show that each knot in the family fKng has knot
Floer homology isomorphic to bHFK.K0/, and that each knot in the family fK�

ng has
knot Floer homology isomorphic to bHFK.K�

0
/. Similar computations generating knots

with isomorphic knot homologies occur in the work of Starkston [26], Watson [27] and
Greene and Watson [10], to name a few. Theorem 3.3 is a special case of an observation
originally due to Hedden and Watson. It will soon appear in [11, Theorem 1]. We
include a proof for the sake of completeness and the benefit of the reader.

Theorem 3.3 [11, Theorem 1] Let K be a knot in S3 formed from the band sum of
a two-component unlink, and let fKng denote the family of knots obtained by adding n

half-twists with positive crossings to the band. For all m; a 2 Z and n � 2 2 Z,
HFK–

m.Kn; a/Š HFK–
m.Kn�2; a/.

Proof The proof is by induction on n. Just as with the specific families of knots
described above, Kn fits into the skein triple .Kn;Kn�2;U/. Theorem 3.1 applied to
the skein triple gives a long exact sequence

� � � ! HFK–
m.Kn; a/

f �

��! HFK–
m.Kn�2; a/

g�

��!Hm�1

�CFL–.U/
U1�U2

; a
�

h�

��! HFK–
m�1.Kn; a/! � � � :
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We will use this sequence in conjunction with information coming from the � invariant.
By Lemma 2.6, �.Kn/ D 0 for all n. Because we are working with HFK–.K/, we
will use the definition of � appearing in Ozsváth and Szabó [21, Appendix], where
m.K/ denotes the mirror of K :

�.m.K//

Dmaxfa j there exists � 2 HFK–.K; a/ such that U d� ¤ 0 for all integers d � 0g:

Moreover, for a homogeneous element � 2 HFK–.K; �.m.K// such that U d� ¤ 0

for all d � 0, the Maslov grading of � is given by mD 2�.m.K//. This fact can be
verified by following the argument given in [21, Appendix], keeping careful track of
the bigrading shifts at each step. Since �.Kn/D 0, we have the additional fact that
�.Kn/D �.m.Kn//.

The nontorsion summand of HFK–.Kn/ is generated by an element �n with max-
imal bigrading .2�.m.K//; �.m.K//, which in this case is .0; 0/. The third term
H�.CFL–.L0/=.U1�U2/; 0/ of the skein triple corresponds with the two-component
unlink and is freely generated over F2ŒU � by elements z and z0 in bigradings .0; 0/
and .�1; 0/. Since HFK–.U/ is supported entirely in bigradings .�2d;�d/ and
.�2d � 1;�d/ the long exact sequence immediately supplies isomorphisms

HFK–
m.Kn; a/Š HFK–

m.Kn�2; a/

whenever a D �d � 0 and jm� 2aj > 1 or when a > 0. The U –equivariant long
exact sequence for the remaining case is displayed below, parameterized by d � 0:

0 �! HFK–
1�2d .Kn;�d/

f �

��! HFK–
1�2d .Kn�2;�d/

g�

��! � � � �!

F2f�2d;�dg

h�

��! HFK–
�2d .Kn;�d/

i�

�! HFK–
�2d .Kn�2;�d/

j�

��! F2f�1�2d;�dg

k�

��! HFK–
�1�2d .Kn;�d/

`�

��! HFK–
�1�2d .Kn�2;�d/ �! 0

Here:

� � �F2f�2d;�dg
h�
//

2

HFK–
�2d .Kn;�d/

i�
//

2

HFK–
�2d .Kn�2;�d/

j�

//

2

F2f�1�2d;�dg � � �

2

U d � z
� // U d � �nC � U d � �n�2

� // U d � z0

In the diagram above, equivariance of the long exact sequence with respect to the
action of U implies that U d � z cannot be in the image of any F2ŒU �–torsion element.
Since HFK–

1�2d .Kn�2;�d/ is torsion, U d � z is not in the image of g� , and the
map g� is equal to 0. Exactness implies that f � is an isomorphism, and also

Algebraic & Geometric Topology, Volume 15 (2015)



54 A H Moore and L Starkston

that h� is an injection. Since the map h� is degree preserving, U d � z maps to a
nontorsion element U d � �nC � 2 HFK–

�2d .K;�d/, where � is F2ŒU �–torsion. By
exactness, U d ��nC�2Ker i� . Because the nontorsion summand gets mapped to zero
by i� , U d � �n�2 , which is also nontorsion, is not in the image of i� . By exactness,
U d ��n�2 62Ker j� and U d ��n�2 must map to U d �z0 . Exactness implies that k�D 0

and `� is an isomorphism. What remains is an isomorphism of torsion submodules
at i� . Hence, for all .m; a/, HFK–

m.Kn; a/Š HFK–
m.Kn�2; a/.

Corollary 3.4 Let fKng and fK�
ng denote the infinite family of knots derived from

14n
22185

and 14n
22589

. Then

bHFKm.Kn; a/Š bHFKm.K0; a/;

bHFKm.K
�
n; a/Š

bHFKm.K
�
0; a/:

Proof Once a suitable base case has been established, then the result follows from
relating HFK–.Kn/, HFK–.Kn�2/, bHFK.Kn/ and bHFK.Kn�2/ by the Five Lemma.
There are four distinct families in our investigation, with base cases K0;K1;K

�
0

and K�
1

, for even and odd values of n. The hat-version bHFK of each has been verified
computationally with the program of Droz [7]. We have found bHFK.K1/ and bHFK.K�

1
/

to be isomorphic with bHFK.K0/ and bHFK.K�
0
/, respectively (see Table 1).

This verifies that fKng, n 2 ZC , is an infinite family of knots admitting a distinct
genus-two mutant of the same total dimension in knot Floer homology.

4 Khovanov homology

Khovanov homology is a bigraded homology knot invariant introduced by Kho-
vanov [12]. The chain complex and differential of the homology theory are computed
combinatorially from a knot diagram using the cube of smooth resolutions of the
crossings. See Bar-Natan [3] for an introduction to the theory. Here, we compute the
Khovanov homology of Kn and K�

n over rational coefficients. While our computation
of Heegaard Floer homology was over coefficients in F2 , we need to work over Q to
obtain the corresponding results in Khovanov homology. This is for two reasons. First,
Rasmussen’s invariant and Lee’s spectral sequence are only applicable to Khovanov
homology with rational coefficients, and we require these tools for the computation.
Furthermore, Khovanov homology over F2 coefficients is significantly weaker at
distinguishing mutants in the following sense. Bloom and Wehrli independently proved
that Khovanov homology over F2 is invariant under Conway mutation in [4; 28]. While

Algebraic & Geometric Topology, Volume 15 (2015)



Genus-two mutant knots 55

these pairs are not Conway mutants, we can compute that K0 and K�
0

have the same
F2 –Khovanov homology (though we have not proven this for the infinite family). The
goal of this section is to provide an infinite family of genus 2 mutants where the
bigraded rational Khovanov homology distinguishes between the knot and its mutant,
whereas the total dimension of the Khovanov homology is invariant under the mutation.
Our main result in this section is the following theorem.

Theorem 4.1 The Khovanov homology with rational coefficients for Kn (respec-
tively K�

n ) for n � 8 is described by the following sequences of numbers. Here Di
j

denotes that the Khovanov homology in homological grading i and quantum grading j

has dimension D (this notation originated in Bar-Natan [3]):

Kh.Kn/D 10
�110

1 1n�7
2n�131n�6

2n�91n�4
2n�71n�3

2n�71n�3
2n�31n�2

2n�51n�2
2n�31n�1

2n�31n�1
2n�11n

2n�3

1n
2n�11n

2nC12nC1
2nC1

1nC1
2nC3

1nC2
2nC1

1nC2
2nC3

1nC2
2nC5

1nC3
2nC3

1nC3
2nC5

1nC3
2nC7

1nC4
2nC7

1nC5
2nC7

1nC6
2nC11

;

Kh.K�
n/D 10

�110
1 1n�7

2n�131n�6
2n�91n�5

2n�91n�4
2n�91n�4

2n�71n�4
2n�51n�3

2n�71n�3
2n�51n�3

2n�31n�2
2n�5

2n�2
2n�31n�1

2n�31n�1
2n�11n�1

2nC11n
2n�11n

2nC11nC1
2nC1

1nC1
2nC3

1nC2
2nC1

1nC2
2nC5

1nC3
2nC5

1nC5
2nC7

1nC6
2nC11

:

The key aspect of this computation to note for the proof is that as n increases by 1,
in all but the first two terms the homological grading increases by 1 and the quantum
grading increases by 2. The first part of the proof will justify the computation for all
but the first two terms. The second part of the proof justifies the computation of the
first two terms. Before we give the proof of the computation, the following corollary
highlights the relevant conclusions.

Corollary 4.2 For all n� 0, Kh.Kn/ 6ŠKh.K�
n/ as bigraded groups and Khı.Kn/ 6Š

Khı.K�
n/. However,

dim.Kh.Kn//D dim.Kh.K�
n//D 26:

Proof of Corollary 4.2 For n � 8 it is clear from the theorem that the bigraded
Khovanov homology over Q of Kn and K�

n differ. For example Kn has dimension
zero in homological grading n� 5, quantum grading 2n� 9 while K�

n has dimension
one in that grading.

The ı–graded groups can be computed from the theorem. The ı–gradings are supported
in ıD�3;�1; 1; 3. For any value of n, Khı.Kn/ agrees with Khı.K0/ and Khı.K�

n/

agrees with Khı.K�
0
/, as given in Table 1. In particular Khı distinguishes Kn from K�

n .
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The total dimension of the Khovanov homology in each case is 26, and can be computed
by summing the dimensions over all bidegrees.

For the finitely many cases where 0 � n � 7 this result has been computationally
verified using Morrison’s program JavaKh-v2 [16].

Proof of Theorem 4.1 The method of computing Khovanov homology we use here
was previously used by Starkston [26] to find the Khovanov homology of .p;�p; q/

pretzel knots. The reader may refer to that paper or the above cited sources for further
background and detail.

There is no difference in the proof for Kn versus K�
n . We will write Kn throughout

the proof, but all statements in the proof hold for K�
n as well.

There is a long exact sequence whose terms are given by the unnormalized Khovanov
homology of a knot diagram and its 0– and 1–resolutions at a particular crossing.
The unnormalized Khovanov homology is an invariant of a specific diagram, not of
a particular knot. It is given by taking the homology of the appropriate direct sum in
the cube of resolutions before making the overall grading shifts. Let nC denote the
number of positive crossings in a diagram and n� the number of negative crossings.
Let Œ � � denote a shift in the homological grading and f � g denote a shift in the quantum
grading such that Q.q/fkg DQ.qCk/ and such that Kh.K/Œk� has an isomorphic copy
of Khi.K/ in homological grading i C k for each i .2

Let cKh.D/ denote the unnormalized Khovanov homology of a knot diagram D . Then

Kh.D/D cKh.D/Œ�n��fnC� 2n�g:

If D is a diagram of a knot, D0 is the diagram where one crossing is replaced by
its 0–resolution and D1 is the diagram where that crossing is replaced by its 1–
resolution. Then we have the following long exact sequence (maps of which preserve
the q–grading):

(1) � � � ! cKh
i�1
.D1/f1g ! cKh

i
.D/! cKh

i
.D0/! cKh

i
.D1/f1g ! � � � :

Let D;D0 and D1 be the diagrams for Kn and its resolutions U and Kn�1 as
shown in Figure 4(b). Observe that D0 is a diagram for the two-component unlink U
with 6C n positive crossings and 7 negative crossings. The diagram D1 is a diagram
for Kn�1 with 6C n positive crossings and 7 negative crossings and D is a diagram

2There is some discrepancy in the literature regarding the notation for grading shifts. The notation
in this paper agrees with that of Bar-Natan’s introduction [3], though it is the opposite of that used in
Khovanov’s original paper [12]. Negating all signs relating to grading shifts will give Khovanov’s original
notation.
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for Kn with 7C n positive crossings and 7 negative crossings. Therefore we have the
identifications cKh.D1/Œ�7�fn� 8g D Kh.Kn�1/;cKh.D0/Œ�7�fn� 8g D Kh.U/;cKh.D/Œ�7�fn� 7g D Kh.Kn/:

Note that the Khovanov homology of the two-component unlink is

Kh0.U/DQ.�2/˚Q2
.0/˚Q.2/;

Khi.U/D 0 for i ¤ 0:

After applying appropriate shifts, we obtain cKh.D0/. We will inductively assume the
computation in the theorem holds for Kn�1 . The base case is established by computing
Kh.K8/ using the JavaKh-v2 program [16]. Applying the appropriate shifts from above
we thus get the value for cKh.D1/. Plugging this into the long exact sequence of (1)
gives the exact sequences

(2) 0! Khi�8.Kn�1/f8� ngf1g ! Khi�7.Kn/f7� ng ! 0

for i ¤ 7; 8, and

0! Kh�1.Kn�1/f9� ng ! Kh0.Kn/f7� ng !Q.6�n/˚Q2
.8�n/˚Q.10�n/

! Kh0.Kn�1/f9� ng ! Kh1.Kn/f7� ng ! 0

which by the inductive hypothesis is the same as

(3) 0! 0! Kh0.Kn/f7� ng !Q.6�n/˚Q2
.8�n/˚Q.10�n/

!Q.8�n/˚Q.10�n/! Kh1.Kn/f7� ng ! 0:

Exactness of (2) yields isomorphisms

Khj�1.Kn�1/f2g Š Khj .Kn/

for all j ¤ 0; 1. Inspecting the way the formula for Kh.Kn/ in the theorem depends
on n, one can see that the inductive hypothesis verifies the computation for Khj .Kn/

for j ¤ 0; 1.

Exactness of (3) gives a few possibilities. Analyzing the sequence we must have

Kh0.Kn/DQ.�1/˚Q1Ca
.1/
˚Qb

.3/;

Kh1.Kn/DQa
.1/˚Qb

.3/;
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where a; b 2 f0; 1g. Now we use the fact that s.Kn/ vanishes by Lemma 2.6. Since
s.Kn/D 0, the spectral sequence given by Lee in [13] converges to two copies of Q,
each in homological grading 0, with one in quantum grading �1 and the other in
quantum grading 1, as proven by Rasmussen in [23]. Note that the r th differential goes
up 1 and over r , because of an indexing that differs from the standard indexing for a
spectral sequence induced by a filtration. (See the note in Starkston [26, Section 3.1]
for further explanation.) Let d

p;q
r denote the differential on the r th page from E

p;q
r to

E
pC1;qCr
r in Lee’s spectral sequence. Here p is the coordinate for the homological

grading shown on the vertical axis and q is the coordinate for the quantum grading
shown on the horizontal axis.

nC 6 1
nC 5 1
nC 4 1
nC 3 1 1 1
nC 2 1 1 1
nC 1 2 1

n 1 1 1
n� 1 1 1
n� 2 1 1
n� 3 1 1
n� 4 1
n� 5

n� 6 1
n� 7 1

:::

1 a b

0 1 1C a b

�1 1 3 � � � m
�

1
3

m
�

1
1

m
�

9

m
�

7

m
�

5

m
�

3

m
�

1

m
C

1

m
C

3

m
C

5

m
C

7

m
C

9

m
C

1
1

Table 2: Here mD�2n: when aD bD 0 this table gives the Q–dimensions
of the Khovanov homology of Kn with homological grading on the vertical
axis and quantum grading on the horizontal axis. This is the E1 page of Lee’s
spectral sequence.

See Tables 2 and 3 for the E1 page on which the following analysis is carried out. To
preserve one copy of Q.�1/ and one copy of Q.1/ in the 0th homological grading we
must have d

0;�1
r D 0 and d

0;1
r acting trivially on one copy of Q for every r .
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nC 6 1
nC 5 1
nC 4

nC 3 1
nC 2 1 1
nC 1 1 1

n 1 1
n� 1 1 1 1
n� 2 1 2
n� 3 1 1 1
n� 4 1 1 1
n� 5 1
n� 6 1
n� 7 1

:::

1 a b

0 1 1C a b

�1 1 3 � � � m
�

1
3

m
�

1
1

m
�

9

m
�

7

m
�

5

m
�

3

m
�

1

m
C

1

m
C

3

m
C

5

m
C

7

m
C

9

m
C

1
1

Table 3: Here mD�2n: when aD bD 0 this table gives the Q–dimensions
of the Khovanov homology of K�

n with homological grading on the vertical
axis and quantum grading on the horizontal axis. This is the E1 page of Lee’s
spectral sequence.

We may computationally verify another base case where nD 9 and then assume n� 10.
By the above inductive results, we know that Kh2.Kn/D 0 when n� 10. Therefore,
d

1;1
r D 0 for all r � 1. Thus, if a¤ 0, an additional copy of Q will survive in E

1;1
1

since it cannot be in the image of any dr for r > 0. This contradicts Lee’s result that
there can only be two copies of Q on the E1 page. Therefore aD 0 and d

0;1
r D 0 for

all r � 1. Because the row corresponding to the first homological grading has zeros in
quantum gradings greater than three, d0;3

r D 0 for all r � 1. So, if b¤ 0 an additional
copy of Q will survive in E

0;3
1 , again contradicting Lee’s result. Therefore aD bD 0,

and the Khovanov homology of Kn and K�
n is as stated in the theorem.

5 Observation and speculation

The families of knots which we have employed in this paper are all nonalternating slice
knots, and in particular, are formed from the band sum of a two-component unlink.
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There are other infinite families of slice knots for which these computational techniques
using skein exact sequences and concordance invariants work. For example, Hedden
and Watson [11] prove that there are infinitely many knots with isomorphic Floer groups
in any given concordance class, whereas Greene and Watson [10] have worked with
the Kanenobu knots. Certain pretzel knots (see Starkston [26]) also share this property.
Nor is the nonalternating status of these knots a coincidence; in fact there can only be
finitely many alternating knots of a given knot Heegaard Floer homology type.

Proposition 5.1 Let K be an alternating knot. There are only finitely many other
alternating knots with knot Floer homology isomorphic to bHFK.K/ as bigraded groups.

Proof Seeking a contradiction, suppose that K belongs to an infinite family fKngn2Z

of alternating knots sharing the same knot Floer groups. Since we have that bHFK.Kn/Š
bHFK.K/ and knot Floer homology categorizes the Alexander polynomial,

det.Kn/D j�Kn
.�1/j D j�K .�1/j D det.K/

for all n. Each knot Kn admits a reduced alternating diagram Dn with crossing
number c.Dn/. The Bankwitz theorem implies that c.Kn/� det.Kn/. However, there
are only finitely many knots of a given crossing number, and in particular c.Kn/ grows
arbitrarily large with n, which contradicts that c.Kn/� det.K/.

This fact leads to the interesting open question of whether there are infinitely many
quasialternating knots of a given knot Floer type. Greene formulates an even stronger
conjecture in [9], and proves the cases where det.L/D 1; 2 or 3.

Conjecture 5.2 [9, Conjecture 3.1] There exist only finitely many quasialternating
links with a given determinant.

In Section 4, we mentioned that K0 and K�
0

have the same Khovanov homology
with F2 coefficients. In fact, .K0;K

�
0
/ is one of five pairs of genus-two mutants

appearing in Dunfield et al [8], none of which can be distinguished by Khovanov
homology over F2 . Bloom [4] and Wehrli [28] have shown that Khovanov homology
with F2 coefficients is invariant under component-preserving Conway mutation. This
leads to an unanswered question.

Question 5.3 Is Khovanov homology with F2 coefficients invariant under genus-two
mutation?

Because there is a spectral sequence relating the reduced Khovanov homology of L

over F2 to the Heegaard Floer homology of the branched double cover of �L, this
raises another natural question.
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Question 5.4 If K and K� are genus-two mutant knots, is rankbHF.†2.K// D

rankbHF.†2.K
� //?

Genus-two mutation provides a method for producing closely related knots and links,
but more generally it is an operation on three manifolds.

Conjecture 5.5 Let M be a closed, oriented 3–manifold with an embedded genus-two
surface F . If M� is the genus-two mutant of M , then

rankbHF.M /D rankbHF.M� /:

The question of whether the total rank is preserved under Conway mutation remains
an interesting problem. The evidence that we offer above suggests that the total ranks
of knot Floer homology and Khovanov homology are also preserved by genus-two
mutations. Because genus-two mutation along a surface which does not bound a
handlebody does not correspond in an obvious way to an operation on a knot diagram,
a combinatorial proof of this general statement may be difficult to obtain.
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