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An exact sequence for Legendrian links

ANAHITA ESLAMI RAD

We obtain an exact sequence of cyclic Legendrian homology for Legendrian links.
We present some examples in 3 dimensions and higher. In higher dimensions we
count holomorphic curves via Morse flow trees developed by Ekholm.

53D42; 57R17

1 Introduction

A result of Bourgeois, Ekholm and Eliashberg [4] describes the linearized contact
homology of the boundary of a symplectic cobordism obtained by Legendrian surgery
in terms of the cyclic homology of the composable part of the Legendrian homology
algebra of the Legendrian attaching spheres. In this work we consider the case when the
attaching locus has multiple components, describe the relevant version of the homology
algebra of the Legendrian attaching spheres remaining after surgery along one sphere,
and we obtain an exact sequence for the original link.

Let us recall some basic concepts from contact topology. Let Y be a .2n � 1/–
dimensional contact manifold equipped with a maximally nonintegrable field of tangent
hyperplanes � . A Legendrian submanifold ƒ � Y is an .n� 1/–submanifold of Y

which is tangent to � everywhere.

Weinstein’s description of contact surgery on Y along a Legendrian sphere ƒ � Y

gives a new contact manifold Yƒ and a symplectic cobordism X from Y to Yƒ ; see
Weinstein [20]. In this construction one performs surgery along the Legendrian sphere
ƒ with trivial conformal symplectic normal bundle in the contact manifold Y . The
resulting manifold Yƒ carries again a contact structure which coincides with the old
one outside the neighborhood where surgery takes place. The symplectic cobordism
between the contact manifolds Y and Yƒ can be written as the union of I �Y (where
I is an interval) and a standard handle which is embedded in R2n and has the standard
symplectic structure; see [20] for an explicit model of the handle and the attaching
procedure. The product I �Y has a symplectic structure as part of the symplectization
of Y . Using a normal form for neighborhoods of Legendrian submanifolds in contact
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manifolds, these two symplectic structures can be glued together on a neighborhood of
the sphere where surgery takes place.

Let � be a 1–form with �D ker.�/. The Reeb vector field R� of � is the unique vector
field which satisfies �.R�/D 1 and iR�d�D 0. For a generic �, periodic Reeb orbits
form a discrete set; see Bourgeois [2]. The algebra A.Y / of Y is the supercommuta-
tive differential graded algebra (DGA) over the group ring RDQŒH2.Y IZ/� freely
generated by the good Reeb orbits (see [2]). The grading of a Reeb orbit is obtained by
its Conley–Zehnder index (see Robbin and Salamon [18]) and the differential is defined
by counting holomorphic curves in the symplectization of Y (see [2]). The latter one
is the manifold R�Y equipped with the exact symplectic form d.et�/, t 2R. The
homology of the differential graded algebra A.Y / is the contact homology HC.Y; �/

of Y .

Using the filtration of the algebra A.Y / by the length of its words, we look at A1

in AD
L1

lD0 Al , ie we consider the submodule A1 of A=R linearly generated by
words of length 1. A DGA–homomorphism "W A!R, where R is equipped with the
trivial differential, is called an augmentation. An augmentation " together with the
differential d on A.Y / induces a differential d" on A.Y / which respects the filtration.
The linearized contact homology HC ".Y; �/ is the homology of A1 with the induced
differential on A1 .

Let ƒ be a Legendrian submanifold. A Reeb chord on ƒ is a flow line of R� which
begins and ends on ƒ. For a generic �, Reeb chords are isolated and the two endpoints
of any Reeb chords are distinct. The algebra A.Y; ƒ/ of ƒ�Y is the noncommutative
differential graded algebra generated by Reeb orbits and Reeb chords over the group
ring QŒH2.Y; ƒIZ/�. A Reeb chord is graded by its Conley–Zehnder index. For more
details see Ekholm, Etnyre and Sullivan [9], where it is shown how one can close the
path of Lagrangian subspaces of the contact planes along ƒ � R2n�1 by a positive
rotation and define the Conley–Zehnder index for Reeb chords. The differential is
defined by counting holomorphic curves in R�Y with Lagrangian boundary condition
R�ƒ (see McDuff and Salamon [16]). The homology of the differential graded algebra
A.Y; ƒ/ is the Legendrian contact homology LHC.ƒ/ of ƒ.

By restricting this Legendrian contact homology on Reeb chords, one corresponds
a Legendrian homology algebra to a Legendrian submanifold. The corresponding
algebra, LHA.ƒ/, carries the differential dLHAW LHA.ƒ/! LHA.ƒ/ which satisfies
the graded Leibniz rule

d.ab/D .da/bC .�1/jaja.db/;

for arbitrary generators a and b .
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From now on we consider ƒ as a union of Legendrian spheres. Then one can associate
the following complexes to the differential graded algebra .LHA.ƒ/; dLHA/:

(1) A composable monomial in LHA.ƒ/ is a monomial c1 � � � cm such that the
origin of the chord ciC1 lies on the same Legendrian sphere as the end of ci for
i D 1; : : : ;m� 1. Let LHO.ƒ/ � LHA.ƒ/ be linearly spanned by cyclically
composable monomials, ie composable monomials c1 � � � cm such that the end
point of cm lies on the same Legendrian sphere as the origin of c1 . Since the
differential dLHA of a cyclically composable monomial is the count of holomor-
phic discs in R�ƒ, its differential is also in terms of cyclically composable
monomials. We denote the restriction of the differential dLHA to LHO.ƒ/ by
dLHOW LHO.ƒ/! LHO.ƒ/.

(2) Let LHOC.ƒ/ be the module generated by nontrivial cyclically composable
monomials of nonempty Reeb chords, ie LHOC.ƒ/D LHO.ƒ/=h1i.

Let P W LHOC.ƒ/ ! LHOC.ƒ/ be the linear map induced by the graded cyclic
permutation

P .c1c2 � � � cl/D .�1/jc1j.jc2jC���Cjcl j/c2 � � � clc1

for any c1 � � � cl 2 LHOC.ƒ/. Then im.Id�P / is a subcomplex of LHOC.ƒ/. So let
us denote the quotient complex LHOC.ƒ/= im.Id�P / by LHcyc.ƒ/. Let dcyc be the
differential on LHcyc.ƒ/ induced by dLHOC . Note that LHcyc.ƒ/ is not an algebra. It
is a module generated by equivalence classes of cyclically composable monomials.

Let w D c1 � � � cm be a monomial in LHOC.ƒ/. We denote its image in LHcyc.ƒ/

by .w/. A monomial w 2 LHOC.ƒ/ is called bad if, after acting a power of P on
it, it is the product of an even number of copies of an odd-graded monomial w0 . If a
monomial is not bad it is called good.

Consider wD a2k where a2LHOC.ƒ/ with the grading jaj D 2lC1. By applying P

on a2k we have
a2k cyc
� .�1/.2lC1/..2k�1/.2lC1//a2k ;

ie a2k
cyc
� �a2k which means that a2k

cyc
� 0, or .a2k/D 0. Hence, for any monomial

w 2 LHOC.ƒ/, we have .w/D 0 if and only if w is bad. In other words, LHcyc.ƒ/

is generated by the elements .w/, where w is a good word in LHOC .

It is shown in [4] that d2
cyc D 0 and the cyclic Legendrian homology, LHcyc.ƒ/ D

H�.LHcyc.ƒ/; dcyc/, is independent of all choices and is a Legendrian isotopy invariant
of ƒ.

This work is motivated by [4], where the following surgery exact sequence is given:
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Theorem 1 (Bourgeois, Ekholm and Eliashberg [4]) There exists an exact sequence

� � � ! LH
cyc
k
.ƒ/!HCˆ�"

k .Yƒ; �ƒ/
x̂
"
��!HC "

k .Y; �/
x‰"
��!LHcyc

k�1
.ƒ/! � � � ;

where ˆ is the chain map induced by the cobordism .
��!
Y Y ƒ; !/ and ‰ is a chain map

induced by the symplectization .R�Y; d.et�// with its Lagrangian submanifold R�ƒ.

The geometric idea of the aforementioned linearization, using an augmentation ", is
to cap the punctures of the punctured holomorphic cylinders by holomorphic planes
living in the symplectic filling (see [4]) of the contact manifold so that the differential
counts the resulting capped holomorphic cylinders in terms of words of length one. In
fact, in Theorem 1 the map x̂ "W HCˆ�"

k
.Yƒ; �ƒ/!HC "

k
.Y; �/ counts rigid capped

holomorphic curves in the symplectic cobordism .
��!
Y Y ƒ; !/. On the other hand, the

map x‰"W HC "
k
.Y; �/! HC

cyc
k�1

.ƒ/ counts rigid capped holomorphic curves in the
symplectization .R�Y; d.et�// with the boundary on R�ƒ, which are asymptotic
to a closed Reeb orbit at the positive end and to Reeb chords of ƒ at the negative end.

Let ƒDƒ1 tƒ2 be a Legendrian link in the contact manifold .Y0; �0/. We would
like to perform a Legendrian surgery along the link ƒ to obtain a new contact manifold
.Y2; �2/. Then using the above surgery exact sequence, we will be able to compute the
linearized contact homology of the new contact manifold Y2 . To this end, we need to
know the cyclic Legendrian homology of ƒ denoted by LHcyc.ƒ/. In general, the
computations to obtain LHcyc.ƒ/ are hard and long. In order to compute this invariant,
we carry out the Legendrian surgery in two steps: first along ƒ1 in Y0 and we call the
obtained manifold Y1 , then along the second component called zƒ2 in Y1 .

The goal of this work is to show that there exists a long exact sequence (Theorem 2)

� � � !LHcyc
k
.zƒ2/!LHcyc

k
.ƒ/!LHcyc

k
.ƒ1/!LHcyc

k�1
.zƒ2/! � � � :

Then computing the cyclic Legendrian homology of ƒ can be simplified by computing
the cyclic Legendrian homologies of ƒ1 and zƒ2 .

Knowing LHcyc
k
.zƒ2/ in fact provides two approaches for computing the linearized

contact homology of the new contact manifold Y2 obtained by the Legendrian surgery.
Firstly, if we have LHcyc

k
.ƒ1/, then by using LHcyc

k
.zƒ2/ in the exact sequence of

Theorem 2 we obtain LHcyc
k
.ƒ/ and we use it in the surgery exact sequence of

Theorem 1 to obtain the linearized contact homology of Y2 . Secondly, after the Legen-
drian surgery along ƒ1 we obtain the new contact manifold Y1 containing zƒ2 . We
write the surgery exact sequence of Theorem 1 to obtain the linearized contact homology
of Y1 . Performing surgery along zƒ2 in Y1 , we obtain the contact manifold Y2 . Using
again the surgery exact sequence of the Theorem 1 the linearized contact homology
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of Y2 is obtained in terms of the cyclic Legendrian homology of zƒ2 and the linearized
contact homology of Y1 .

Performing Legendrian surgery, we will see that the Reeb dynamics inside the attaching
handle are described by generalized Dehn twist. Legendrian surgery along ƒ1 creates
some chords on zƒ2 . We show that there is a one-to-one correspondence between created
chords on zƒ2 and cyclically composable words of chords on ƒ1tƒ2 , which start and
end on ƒ2 . We will denote such words by c21c1

1
� � � c1

k
c12 , k � 0. We decompose the

module generated by the cyclic words of chords on ƒ into two modules LHcyc.ƒ1/

and LHcyc.ƒ2;mixed/. Here LHcyc.ƒ1/ is the module generated by the cyclic words
containing the chords on ƒ1 and LHcyc.ƒ2;mixed/ is the module generated by the
cyclic words containing the chords which have at least one chord starting or ending
on ƒ2 . We show that LHcyc.zƒ2/ and LHcyc.ƒ2;mixed/ are isomorphic modules.
Then we define a chain map between these two modules and we show that this chain
map is an isomorphism and we conclude with the long exact sequence for Legendrian
links.

One can foresee abstract and computational applications for this exact sequence. In this
paper we present some computational examples. We compute the cyclic Legendrian
homology of the Legendrian link of simple Legendrian unknots. Then we compute the
linearized contact homology of several lens spaces. Finally, using Morse flow trees
techniques [8], we present our computations for Hopf link in higher dimensions.

2 Towards the exact sequence

2.1 Cyclic Legendrian complexes

Let ƒ D ƒ1 tƒ2 be a Legendrian link in the contact manifold .Y0; �0/. And Let
LHcyc.ƒ/ be the module generated by good cyclic words in chords of ƒ over the group
ring QŒH2.Y0; ƒIZ/�. There are two types of cyclic words in chords of ƒ:

(1) Cyclic words of chords in ƒ1 : in this case, LHcyc.ƒ1/ � LHcyc.ƒ/ as a sub-
module.

(2) Cyclic words in which at least one chord starts or ends on ƒ2 : we denote the
module generated by this type of cyclic words by LHcyc.ƒ2;mixed/. In this
case, we have LHcyc.ƒ2;mixed/� LHcyc.ƒ/ as a submodule.

Notation We denote the chords that are in ƒ1 (and ƒ2 respectively) by c1 (and c2

respectively). We denote a chord from ƒ1 to ƒ2 by c12 and a chord from ƒ2 to ƒ1

by c21 .
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Remark 1 The module LHcyc.ƒ1/ is not a subcomplex. For an arbitrary word
wD c1

1
� � � c1

k
2 LHcyc.ƒ1/ the differential dcycw is not necessarily in LHcyc.ƒ1/. Us-

ing the Leibniz rule, the differential of w is obtained by the differential of the chords c1
i ,

i D 1; : : : ; k . To compute the differential of c1
i , when we leave the positive corner c1

i

for the negative corners on the holomorphic disc we will meet mixed chords and chords
which are in ƒ2 . For instance, one can find @LHAc1

i D � � � c
12c2

1
� � � c2

l
c21C� � � , l � 0,

which is not in LHcyc.ƒ1/.

Remark 2 The module LHcyc.ƒ1/ is the quotient complex

LHcyc.ƒ/=LHcyc.ƒ2;mixed/;

that is, LHcyc.ƒ2;mixed/ is a subcomplex. An arbitrary word w 2 LHcyc.ƒ2;mixed/
can be of type wD c1 � � � cr c2

1
crC1 � � � ck or wD c1 � � � cr c12

1
crC1 � � � csc21

1
csC1 � � � ck .

Here the general notation for chords without superscript refers to the all possible chords
so that w is cyclically composable. For our purpose we have specified only one chord
which is on ƒ2 or only two chords which end or start on ƒ2 . Using the Leibniz rule,
in the first case we have

dcycw D

rX
iD1

˙c1 � � � .@ci/ � � � cr c2
1crC1 � � � ck ˙ c1 � � � cr .@c

2
1/crC1 � � � ck

C

kX
iDrC1

˙c1 � � � cr c2
1crC1.@ci/ � � � ck ;

which is in LHcyc.ƒ2;mixed/. Again using the Leibniz rule, in the second case we have

dcycwD

rX
iD1

˙c1 � � �.@ci/ � � � cr c12
1 csC1 � � � ck˙c1 � � � cr.@c

12
1 /crC1 � � � cr c21

1 csC1 � � � ck

C

sX
iDrC1

˙c1 � � � cr c12
1 crC1.@ci/ � � � csc21

1 csC1 � � � ck

˙ c1 � � � cr c12
1 crC1 � � � cs.@c

21
1 /csC1 � � � ck

C

kX
iDsC1

˙c1 � � � cr c12
1 crC1 � � � csc21

1 csC1.@ci/ � � � ck ;

which is in LHcyc.ƒ2;mixed/.

By the above remark, we have the short exact sequence of complexes

0! LHcyc.ƒ2;mixed/! LHcyc.ƒ/! LHcyc.ƒ1/! 0;
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which induces a long exact sequence in the level of homology:

(1) !LHcyc
k
.ƒ2;mixed/!LHcyc

k
.ƒ/!LHcyc

k
.ƒ1/!LHcyc

k�1
.ƒ2;mixed/! :

To reach our goal, we would like to know LHcyc
k
.ƒ2;mixed/ more precisely. The

words in the module LHcyc.ƒ2;mixed/ are of two types: cyclic words in chords of
ƒ2 (which we denote by LHcyc.ƒ2/) and the cyclic words that have at least one
mixed chord (which we denote by LHcyc.mixed/). Hence LHcyc.ƒ/D LHcyc.ƒ1/˚

.LHcyc.ƒ2/˚LHcyc.mixed// and the differential is given by

dcyc.ƒ/D

0@dcyc.ƒ1/ 0 0

0 dcyc.ƒ2/ 0

� � �

1A :
2.2 Effect of Legendrian surgery on Reeb dynamics

Let .Y0; �0/ be a contact manifold with dimension 2n� 1. We assume that the Reeb
flow isotopy �t

R0
.ƒ1[ƒ2/, ie the time-t flow of the Reeb vector field R0 , intersects

ƒ1[ƒ2 transversely. Consider the contact manifold .Y1; �1/ which is obtained by
surgery on ƒ1 � Y0 . The Reeb vector field R1 on Y1 satisfies R0 D R1 outside
a tubular neighborhood U of ƒ1 � Y0 . Under surgery, U is replaced by the unit
cotangent bundle of the n–disc which is the Lagrangian core disc of the attached
handle. The Reeb dynamics inside the handle is the geodesic flow of the flat disc; see
Geiges [14, Theorem 1.5.2].

Let J 1.Sn�1/�T �Sn�1�R be the 1–jet space of the .n�1/–sphere with its standard
contact form ˛D dzCpdq , where .q;p/ are canonical coordinates on T �Sn�1 and z

is a coordinate in the R–factor. Let S � J 1.Sn�1/ denote the 0–section and define

U" D fjzj � "; kpk � "g; " > 0;

where S is considered as the unit sphere in Rn in order to define kpk. So U" is
a neighborhood of S of size ". Let V˙ D fz D ˙"g. The form !˙ D d˛jV˙ is
symplectic and we will see in Lemma 1 that .V˙; !˙/ is symplectomorphic to the
cotangent disc bundle of Sn�1 of radius ". By the Legendrian neighborhood theorem,
for " > 0 sufficiently small, there exists an embedding j W U"! Y0 with j ��0 D ˛

and j .S/Dƒ1 , which allows us to identify U" with a neighborhood of ƒ1 � Y0 . We
keep the notation U" and V˙ for the images of U" and V˙ , respectively, under the
contact embedding j . The Reeb flow of �1 defines a symplectomorphism

i W .V�; d�0jV�/! .VC; d�0jVC/:
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The effect of the surgery on Reeb dynamics is as follows. Outside U" we have R1DR0 .
All the trajectories which enter U" through V� exit through VC and thus there is a
symplectomorphism

z� W .V�; d�0jV�/! .VC; d�0jVC/:

In fact z�D �ıi in which � W .VC; d�0jVC/! .VC; d�0jVC/ is a generalized symplectic
Dehn twist where we identify .VC; d�0jVC/ with the cotangent disc bundle of the
sphere Sn�1 of radius ". In the following we recall the definition of the generalized
Dehn twist. Before that let us fix some notation.

Notation We consider R2n � Cn with coordinates .u; v/ D uC iv , u; v 2 Rn . If
u D .u1; : : : ;un/ are coordinates on Rn then we consider du D .du1; : : : ; dun/ 2

..Rn/�/n as a vector of cotangent vectors, and @uD .@u1
; : : : ; @un

/2 .Rn/n as a vector
of tangent vectors. If u; v 2Rn then we write the standard metric gst.u; v/D u � v DPn

jD1ujvj and we use the abbreviation u2 D u �u. Let also kuk D
p

u2 .

Definition 1 (Generalized Dehn twist [19]) Consider the cotangent bundle of Sn�1 ,

T �Sn�1
D f.u; v/ 2Rn

�Rn
j u:v D 0; kuk D 1g

(under the identification TSn�1 Š T �Sn�1 , .u; v/ 7! .u; v�/ where v� is dual to v
under gst ) with the standard symplectic form !T �Sn�1 . Let S be the zero section.
The length function �W T �Sn�1!R given by �.u; v/Dkvk generates a Hamiltonian
circle action on T �Sn�1 nS whose flow is given by

'
�
t .u; v/D

�
cos.t/uC sin.t/ v

kvk
; cos.t/v� sin.t/kvku

�
:

The time-� map '�� extends over the zero section by the antipodal map A.u; 0/D

.�u; 0/. Let RW R! R be a smooth function such that R.t/ D 0 for t � 0 and
R.�t/DR.t/� t for small jt j. We can think of the function R as a bump function
with supp.R/� .�1; jt j/ for small jt j. Let H DRı�. The flow of H is 'H

t .u; v/D

'�tR0.kvk/.u; v/. Since R0.0/ D 1
2

, 'H
2�

extends continuously to T �Sn�1 by the
antipodal map. By [19] this extension is smooth and hence it is a symplectomorphism.
Now let � be the time-2� flow of H DRı� on T �Sn�1nS as above, extended to S

by the antipodal map. The symplectomorphism � is called the generalized Dehn twist.

Remark 3 We recall the definition of the Hamiltonian circle action. A symplectic
circle action on a symplectic manifold .M; !/ is a smooth family of symplectomor-
phisms  t 2 Symp.M; !/; t 2 S1 , such that  tCs D  t ı s for any t; s 2 S1 . One
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can easily check that the corresponding vector fields Xt �
d
dt
 t ı  

�1
t are time-

independent, ie Xt DX is constant in t . We call X the associated vector field of the
given symplectic circle action.

Since  t is a symplectomorphism for all t , LX! D 0, and hence by Cartan’s formula,
d.iX!/D 0. This means that X is a symplectic vector field. When iX! D dH is an
exact 1–form, the corresponding symplectic circle action is called a Hamiltonian circle
action.

Now consider .R2n; !st D
Pn

jD1 duj ^ dvj / with the symplectic circle action given
by the complex multiplication

.u; v/D .u1C iv1; : : : ;unC ivn/

7!
�
eit .u1C iv1/; : : : ; e

it .unC ivn/
�
D eit .u; v/; t 2 S1:

Note that the circle action is generated by the vector field X D
Pn

jD1.�vj@ujCuj@vj /.
Therefore the Hamiltonian function H defined by dH D�iX!st is given by H.u; v/D

�
1
2
j.u; v/j2 .

Lemma 1 The map � is a generalized Dehn twist.

Proof Consider ST �Dn as the unit cotangent bundle over the unit disc. Let .x;y/2V�
be the point through which we enter to the handle, where x is a point on disc and y is
the direction by which we enter the handle. Also let .x0;y0/ 2 VC be the point through
which we exit the handle, where x0 is a point on the disc and y0 is the direction by
which we exit the handle. Since the Reeb trajectories on the flat disc are straight lines,
the directions y and y0 are the same.

Now consider the tangent plane to the disc at the point .x;y/. We can split y into the
sum of the normal vector and the tangent vector at this point, ie y D yN C yT . As
kyk D 1, we obtain yN in a unique way. So we can consider y in correspondence
to yT . Hence the map

f W V�! T �Sn�1; .x;y/ 7! .x;yT /;

identifies V� with the cotangent disc bundle of the sphere Sn�1 of radius ". In the
same way, using the map

gW VC! T �Sn�1; .x0;y0/ 7! .x0;y0T /;
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y0
T y0

x0y0N

�

��2�

�

yn y

x yT

Figure 1: Dehn twist lemma

we identify VC with the cotangent disc bundle of the sphere Sn�1 of radius ". Moreover
the map g�1 ıf gives the identification map i W V�! VC .

Note that the arc (the red arc in Figure 1) between the points .u; v/ WD .x;yT / 2

T �Sn�1 and .u0; v0/ WD .x0;y0
T
/ 2 T �Sn�1 is a part of the flow trajectory on the

sphere Sn�1 . On the other hand, the Reeb flow on ST �Sn�1 is the same as the
geodesic flow on Sn�1 ; see [14, Theorem 1.5.2]. Therefore, we have .u0; v0/ D
'R�
��2�

.u; v/, where 0 6 � 6 �
2

is the angle between y and yN . In fact the intersection
of the plane y ^ yN with the ball Bn provides the disc D2 , and the flow time
� � 2� is the central angle which corresponds to the third angle of the isosceles
triangle in D2 . We define the map � W VC ! VC (under the identification map i )
by �.u; v/ D 'R�

��2�
.u; v/, with 0 6 � � 2� 6 � . Clearly, � is a generalized Dehn

twist, since the Reeb flow 'R�
t is the same as the Hamiltonian flow of the length

function � on T �Sn�1 (by [14, Theorem 1.5.2]). Moreover � is the time-2� flow of
the Hamiltonian function H DRı� on T �Sn�1 , where R is a suitable function with
the description in Definition 1, such that 2�R0.kvk/D � � 2� . At the time zero, ie
when � D �

2
, we are on the boundary of V� so the entering point and the exiting point

are the same. Hence the map � is the identity. At time � , ie when � D 0, we are on
the center of V� , and the exiting point is the antipode of the entering point. Therefore
the map � is the antipodal map.
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Below we illustrate the map z� in dimension 2n�2D2. Assume that the Reeb trajectory
enters into the handle vertically through V� at the point a1 . Then it will leave the flat
disc at the antipodal point of a1 through VC . In Figure 2, we show this antipodal point
by za1 . Now assume that the Reeb trajectory enters into the handle tangently at the
point a2 . In this case, as the Reeb trajectory enters through V� it exits immediately
at a2 through VC . Similarly, for the Reeb trajectory that enters into the handle at the
point a3 , tangently but in the opposite direction, we show the exiting point by a3 .
Finally, let the Reeb trajectory enter into the handle at a4 through V� with an angle
between the vertical and tangent directions. Then it exits the handle through VC at a
point between a4 and its antipodal point. We show this exiting point by za4 .

 

a2

a4

a1

a3

V_ ƒ1

z�

a2

za4

za1

a3

VC ƒ1

Figure 2: The map z� in dimension 2n� 2D 2

After Legendrian surgery along ƒ1 , there are in fact two types of Reeb chords for zƒ2 .
Given any C > 0 we can find a sufficiently small " > 0 (the size of the surgery region)
such that all chords on ƒ2 (denoted C.ƒ2/) of length less than C survive the surgery.

On the other hand, the mixed chords on ƒ1 t ƒ2 which get close to the surgery
region will create new Reeb chords for zƒ2 by the surgery. In the following we show
that these created chords are in one-to-one correspondence to the words of the type
c21

1
c1

1
� � � c1

k
c12

1
, k � 1. Here c1

k
denotes the empty letter when we have c21c12 or a

chord on ƒ1 .

Proposition 1 By the Legendrian surgery along ƒ1 there exists a one-to-one cor-
respondence between the created chords zck in C.zƒ2/ and the words c21

1
c1

1
� � � c1

k
c12

1

.k � 1/ of chords in C.ƒ1 tƒ2/.
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Proof We start with the case c21c12 . Let c21 be the chord from ƒ2 to ƒ1 which is
entering into the attached handle through V� . For ı > 0, we denote the Reeb flow in
the ı–neighborhood of c21 by �21 . By assumption we know that �21�.Tƒ2/t Tƒ1 ,
ie c21 is nondegenerate. Consider the tangent space Tƒ2 at the starting point of c21 ,
and the Reeb trajectory zc in the ı–neighborhood of c21 . The chord zc starts near the
starting point of c21 and enters into the handle through V� at a point near the entering
point of c21 into the handle. Choosing " > 0 sufficiently small, we shrink V� in
the Dn�1 direction (vertically in Figure 3, when 2n� 2 D 2,) so that this point is
getting very close to ƒ1 . By the transversality assumption, �21�.Tƒ2/ will be in
the Dn�1 direction (vertical to ƒ1 in Figure 3). When we enter into the attached
handle, by Lemma 1, the Reeb flow defines a symplectomorphism z� by a generalized
Dehn twist. The image of �21� under the map z� will be in the Sn�1 direction. Again
by choosing sufficiently small " > 0 we shrink VC so that z�.�21�.Tƒ2// gets close
enough to Sn�1 � f0g (to the horizontal line in Figure 3), that is to ƒ1 . Next we exit
the attached handle through VC and we continue our journey in the ı–neighborhood
of the chord c12 . The chord zc ends at ƒ2 very close to the end point of the chord c12 .
By the transversality assumption we have ��1

12�
.Tƒ2/t Tƒ1 . Again by shrinking VC ,

��1
12�
.Tƒ2/ is in Dn�1 direction (vertical in Figure 3) and hence it is vertical to the

trajectory in the Sn�1 direction which is leaving the attached handle through VC . This
vertical intersection shows that there is a unique end point for the chord zc . In other
words the chord zc is constructed uniquely near the union of chords c21 and c12 .

�21�.Tƒ2/

V_ ƒ1

z�

��1
12�

T .ƒ2/

VC ƒ1

Figure 3: Effect of Legendrian surgery in dimension 2n� 2D 2

Now consider the general case c21c1
1
� � � c1

k
c12 . We repeat the argument in the above

case until the Reeb flow exits the attached handle through VC . The Reeb trajectory is
almost in the Sn�1 direction (the horizontal direction in Figure 3). We continue our
journey in the ı–neighborhood of the chord c1

1
. The chord zc gets to ƒ1 near the end
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point of the chord c1
1

. Since ƒ1 is Legendrian, the Reeb trajectory is transverse to ƒ1 .
So its translation to VC is exactly matched with the Dn�1 direction (by shrinking VC ).
Hence it is vertical to the trajectory which is leaving the attached handle through VC .
This vertical intersection shows that there is a unique end point for the chord zc getting
to ƒ1 . Now again we are entering the attached handle through V� with the Reeb
trajectory which is exactly in the Dn�1 direction. The same as what we explained
above, the symplectomorphism z� twists the trajectories in Dn�1 direction (the vertical
direction in Figure 3) to the trajectories in the Sn�1 direction (the horizontal direction
in Figure 3) which is now matched with ƒ1 . If we continue our journey in the ı–
neighborhood of the chord c1

1
, or c1

2
; : : : ; c1

k
, we repeat the same argument. In fact

whenever we enter the attached handle the symplectomorphism z�i , i D 1; : : : ; k , twists
the flow lines. Therefore the intersection is always vertical and we obtain the unique end
and hence the unique chord. Finally, we continue our journey in the ı–neighborhood
of the chord c12 . The chord zc gets to ƒ2 near the end point of the chord c12 . By
the transversality assumption we have ��1

12�
.Tƒ2/ t Tƒ1 . Again by shrinking VC ,

��1
12�
.Tƒ2/ is the vertical trajectory. Hence it is vertical to the trajectory which leaves

the attached handle through VC . This vertical intersection shows that there is a unique
end point for the chord zc getting to ƒ2 .

From the above explanation we conclude that there is an injective map from the set
fc21c1

1
� � � c1

k
c12 j k � 1g to the set fzck j k � 1g which assigns to each c21c1

1
� � � c1

k
c12

a unique zck . Note that we need to choose ı > 0 small enough so that ı–neighborhoods
of any two elements c21c1

1
� � � c1

k
c12 and c21c1

1
� � � c1

l
c12; k ¤ l , are disjoint. Next we

show that this map is surjective.

Let zc be any Reeb chord of zƒ2 created by the surgery along ƒ1 � Y0 . The chord zc
contains the trajectory c in Y1nU" from VC to V� . We want to show that the portion c

of zc is close to some chords on ƒ1tƒ2 . That is for each ı > 0, there exists "> 0 such
that c is contained in a ı–neighborhood of some chords on ƒ1tƒ2 . By contradiction
assume that there exists ı > 0, such that for each " > 0, the chord c does not stay in
a ı–neighborhood of any chord of ƒ1 tƒ2 . For "D 1

n
, denote the Reeb trajectory

by cn (from VC to V� ). Let an 2 VC be the starting point of cn . Since V� and VC
are compact we extract a subsequence so that when ain

converge to a 2 VC , the Reeb
flows 'Tin

R
.ain

/ 2 V� converge to 'T
R
.a/ 2 V� when in!1 for Tin

Dlength.cin
/.

Therefore there exists a chord of ƒ1tƒ2 starting at a. When an!a, then cn!c for n

large enough. Therefore cn is contained in a ı–neighborhood of a chord of ƒ1 tƒ2 .

As long as the created Reeb chord zc enters into the attached handle, for each portion
of zc outside of the handle we repeat the same argument. Hence there is a union of
chords of ƒ1 tƒ2 so that zc is in a ı–neighborhood of them.
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2.3 Constructing a chain map

Let LHcyc.zƒ2/ be the module generated by cyclic words in chords of zƒ2�Y1 . Chords
of zƒ2 have two types: the chords of ƒ2 which are unaffected by surgery along ƒ1 ,
or the chords created by the surgery which are in a one-to-one correspondence with the
words of the type c21

1
c1

1
� � � c1

k
c12

1
.

Proposition 2 We have LHcyc.zƒ2/Š LHcyc.ƒ2;mixed/ as modules.

Proof Let wD zc1 � � � zcm be a cyclic word in LHcyc.zƒ2/, where the zci .i D 1; : : : ;m/

are chords of zƒ2 . By the previous proposition each zci is in one-to-one correspondence
with a chord c2 in LHcyc.ƒ2/ or with c21

1
c1

1
� � � c1

i c12
1

in LHcyc.ƒ2;mixed/. We define
an algebra map

hW LHcyc.zƒ2/! LHcyc.ƒ2;mixed/

by h.zci/D c2 , where zci is a chord of type one, and h.zci/D c21
1

c1
1
� � � c1

i c12
1

, where
zci is a chord of type two. The right-hand sides are not in LHcyc.ƒ1/, so they are in
LHcyc.ƒ2;mixed/. To show this map is an isomorphism we define an inverse map as
follows. In an arbitrary cyclic word w in LHcyc.ƒ2;mixed/ we insert a subdivision
“j” before and after c2 , before c21 , and after c12 . Then we define an algebra map

gW LHcyc.ƒ2;mixed/! LHcyc.zƒ2/

by g.jc2j/D c2 and g.jc21
1

c1
1
� � � c1

i c12
1
j/D zci . Hence we conclude that the map g is

the inverse of the map h.

In order to prove that the modules LHcyc.zƒ2/ and LHcyc.ƒ2;mixed/ have isomorphic
cyclic Legendrian homologies, ie LHcyc.zƒ2/ŠLHcyc.ƒ2;mixed/, we define a chain
map ˆW LHcyc.zƒ2/! LHcyc.ƒ2;mixed/ that counts holomorphic discs in the surgery
cobordism W1 between Y0 and Y1 .

Let L1 be the Lagrangian core disc of the attached handle, .L1; @L1/� .W1; @W1/,
which intersects @�W1 D Y0 along the Legendrian submanifold ƒ1 D L1 \ @�W1

as shown in Figure 4. Also let the vertical cylinder L2 be an exact Lagrangian
submanifold .L2; @L2/� .W1; @W1/ which intersects @CW1 D Y1 and @�W1 D Y0

along the Legendrian submanifolds zƒ2 DL2\ @CW1 and ƒ2 DL2\ @�W1 .

Consider unit disc D with conformal structure j and with the boundary punctures
zC; z1�; : : : ; zk� . A map f W .D; @DnfzC; z1�; : : : ; zk�g/! .W1;L/ is holomorphic
if df ı j D J ı df , where J is almost complex structure on W1 and LD L1 [L2

is the Lagrangian boundary condition satisfied by f . We say that f is asymptotic
to the chord zc in the collection of the chords C.zƒ2/ of length TC at the boundary
puncture zC at C1 if:
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(1) f maps a pointed neighborhood UC of zC into Œ0;C1/�Y1 , so that f .z/D
.a.z/;u.z// for all z 2 UC .

(2) lim
z!zC

a.z/DC1.

(3) In holomorphic polar coordinates .�; �/, � 2 Œ��; 0�, centered at zC (where
� 2 f��; 0g along @†), we have lim

�!0
u.�; �/D zc.�.TC=�/�/.

zƒ2

L2
L1

ƒ1 ƒ2

Y0 D @_W1

W1

Y1 D @CW1

Figure 4: Surgery cobordism W1

Let C.ƒ2;mixed/ be the collection of chords on ƒ2 and mixed words of chords,
so that the mixed words start and end on ƒ2 . We say that f is asymptotic to the
chords c1; : : : ; ck in C.ƒ2;mixed/ of lengths T1�; : : : ;Tk� at the boundary punctures
z1�; : : : ; zk� at �1 if:

(1) f maps pointed neighborhoods U1�; : : : ;Uk� of z1�; : : : ; zk� into .�1; 0��
Y0 , so that f .z/D .a.z/;u.z// for all z 2 U1�; : : : ;Uk� .

(2) lim
z!zi�

a.z/D�1.

(3) In holomorphic polar coordinates .�; �/, � 2 Œ0; ��, centered at z1�; : : : ; zk�

(where � 2 f0; �g along @†), lim
�!0

u.�; �/D ci�

�
Ti�

�
�
�

for i D 1; : : : ; k .

We denote the space of holomorphic discs with asymptotic properties described above
by M.zcI c1; : : : ; ck/. Note that the additive group R acts freely on M.zcI c1; : : : ; ck/

by translations in the t direction, ie t � f .z/ D t � .a.z/;u.z// WD .t C a.z/;u.z// in
the symplectization R�Y0 . After dividing out the vertical translation we denote the
moduli space by �M.zcI c1; : : : ; ck/DM.zcI c1; : : : ; ck/=R.
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Now consider the map ˆW LHA.zƒ2/! LHA.ƒ1[ƒ2/ defined by

ˆ.zc/D
X

jc1jC���Cjck jDjzcj

c1���ck2C.ƒ1[ƒ2/

#�M.zcI c1; : : : ; ck/ � c1 � � � ck :

Here the summation is over the grading of zc when it is equal to the sum of the gradings
of c1; : : : ; ck . For a word zw D zc1 � � � zcl 2 LHA.zƒ2/ we define

ˆ. zw/ WDˆ.zc1/ � � �ˆ.zcl/

which shows that ˆ is an algebra map on LHA.zƒ2/. Recall that LHA.zƒ2/ consists of
composable words on zƒ2 , and LHO.zƒ2/ consists of the composable words zc1 � � � zcm

in which the end point of zcm lies on the same Legendrian sphere as the origin of zc1 .
Here zƒ2 is the only Legendrian component, so LHA.zƒ2/D LHO.zƒ2/.

As the holomorphic discs in �M.zcI c1; : : : ; ck/ satisfy the boundary condition L, the tar-
get of the map ˆ is the subalgebra LHA.ƒ2;mixed/ that consists of composable words
which start and end only on ƒ2 . So the target is LHA.ƒ2;mixed/DLHO.ƒ2;mixed/
with differential d.ƒ2;mixed/ which is the restriction of the differential dLHA.ƒ1[ƒ2/

to LHO.ƒ2;mixed/. Then using the graded cyclic permutation, ˆ induces the map
ˆW LHcyc.zƒ2/! LHcyc.ƒ2;mixed/.

Proposition 3 The map ˆ is a chain map, ie ˆ ı d zƒ2
D d.ƒ2;mixed/ ıˆ.

Proof Consider the 1–dimensional components of the moduli space �M.zcI c1; : : : ; ck/

with jzcj� .jc1jC � � �C jck j/D 1 interpolating the broken trajectories. We consider one
level in the symplectic cobordism and one level in the symplectization of Y0 or Y1 . Its
boundary has the form[
jzcj�1DjzejD
jc1jC���Cjck j

MY1.zcI ze/=R� �M.zeI c1; : : : ; ck/

[

[
jzcjDjc1jC���Cjcj�1jCjejC

jcjClC1jC���Cjck j

jej�1Djcj jC���CjcjCl j

�M.zcI c1; : : : ; cj�1; e; cjClC1; : : : ; ck/

�MY0.eI cj ; : : : ; cjCl/=R:

In the first type of the boundary components, MY1.zcI ze/=R denotes the moduli space
of holomorphic discs in the symplectization of Y1 where ze 2 C.zƒ2/.

In the second type of the boundary components, MY0.eI cj ; : : : ; cjCl/=R denotes
the moduli space of holomorphic discs in the symplectization of Y0 , where e 2

C.ƒ2;mixed/ and 1� j � k , 0� l � k � 1. Moreover, if e represents a chord of the
type e2 , e21 or e12 , then cj ; : : : ; cjCl corresponds to an arrangement of the chords
as c2

1
; : : : ; c2

p , c21 , c1
1 ; : : : ; c

1
r , c12 , c2

1 ; : : : ; c
2
q (for 0� p; q � k and 0� r � k � 2)
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or as c2
1
; : : : ; c2

p ; c
21; c1

1
; : : : ; c1

r or c1
1
; : : : ; c1

r , c12 , c2
1
; : : : ; c2

q (for 0� p; q � k and
0� r � k � 1) respectively.

For the special case �M.zcI¿/ (with jzcj D 1), ie when there is no negative puncture,
the boundary has the form[

jzcj�1D0

jzejD0

MY1.zcI ze/=R� �M.zeI¿/[
[

jzcjDjejD1

�M.zcI e/�MY0.eI¿/=R:

In this case the count of the elements of the boundary components gives constant terms,
however in cyclic complexes the constant terms are zero.

The compactness theorem (see Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder [5])
ensures that the boundary has the form above with all moduli spaces replaced by their
compactifications. In our situation the boundary is 0–dimensional and the above moduli
spaces are already compact. The count of the elements of the first type corresponds
to ˆ ı d zƒ2

whereas the count of the elements of the second type corresponds to
d.ƒ2;mixed/ ıˆ. This shows that ˆ ı d zƒ2

˙ d.ƒ2;mixed/ ıˆ D 0. Then the relation
ˆ ı d zƒ2

D d.ƒ2;mixed/ ıˆ is obtained from the fact that orientations are coherent with
the gluing operation; for more details see Eliashberg, Givental and Hofer [12].

Therefore the induced map ˆW LHcyc.zƒ2/! LHcyc.ƒ2;mixed/ is also a chain map.
This chain map induces the map x̂ W LHcyc.zƒ2/!LHcyc.ƒ2;mixed/ in the level of
homology.

Proposition 4 The map ˆ is an isomorphism.

Sketch of the proof Recall that the symplectic cobordism W1 is a Liouville manifold,
that is LX! D ! or d.iX!/D ! , which means ! is an exact form with the primitive
� D iX! and �jY0

D �0 and �jY1
D �1 . Regarding the solution f of the equation

df ıj D J ıdf , equivalently @xf CJ.f /@yf D 0, zD xC iy 2C , by compatibility
of the almost complex structure J with the symplectic form, we have d�.@xf; @yf /D

d�.@xf;J@xf / � 0. Therefore
R
† f
�d� � 0. This means that ˆ decreases the

contact action zc 7!
R
Œ0;1� zc

��. We arrange the generators of the complex LHcyc.zƒ2/

in decreasing order according to their action. Then the matrix ˆ in this basis is upper
triangular. We claim that the entries on the diagonal are all equal ˙1, which implies
that ˆ is an isomorphism.

If the word zw contains only the letters in correspondence to the chords of ƒ2 which
are unaffected by the surgery then the diagonal value is equal to ˙1. Because the
diagonal value corresponds to the trivial holomorphic disc in which the cyclic words in
the top and bottom of the cobordism W1 have the same length.
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Now consider the chords which are created by the surgery. We consider the simplest
case, ie when zc in Y1 is the created chord in correspondence to c21c12 in Y0 . The
created chord zc is the Reeb chord which contains the Reeb trajectories that are in
a ı–neighborhood of c21 and c12 in ƒ1 t ƒ2 , and the Reeb trajectory which is
passing through the handle. When the size of the attaching handle goes to zero, the
length of this Reeb trajectory will be very short as " > 0. So we have

R
† f
�d� D

A.zc/� .A.c21/CA.c12//D " > 0. Hence
R
† f
�d�� 0 implies that f is an almost

vertical holomorphic disc.

We would like to show that such a holomorphic disc, denoted by L, is unique. For
this aim we show that the holomorphic strip D asymptotic to c21 in the bottom of
cobordism and asymptotic to c21 and 

2
in the top of the cobordism is unique. Here 

2

is the half of the Reeb chord  of the cocore sphere of the attaching handle.



c21


2

c21

Y0 � f1g

Y0

Figure 5: Holomorphic strip in surgery cobordism

In fact we monitor the Reeb trajectory inside the attaching handle by the Reeb chord
of the cocore sphere which has a very small length as " > 0. In [4] it is explained
that whenever we perform surgery by attaching handle, we obtain Reeb chords for
the Legendrian cocore sphere which are in correspondence to the Reeb chords of the
Legendrian sphere along which we performed surgery.

As the difference of actions is "=2, in fact we can consider many holomorphic strips
(in a flat complex line) with the above description.

We note that any other disc with the given properties lies in a small neighborhood of D .
Since if the disc is not contained in a small neighborhood of D then its area is bigger
than "=2.
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c21

2

c21

� � �

c21

2

c21

Figure 6: Possible holomorphic strips

According to [4], in a suitable model for the handle the disc D lies in a flat complex line,
and the linearization of the x@–operator at disc D is surjective and the parameterized
moduli space is a 1–manifold (for the definition of the operator x@ and the relevant
analysis setup see [16]). Therefore by [4] the holomorphic strip D is unique in its
small neighborhood.

Similarly, the holomorphic strip D0 , asymptotic to c12 in the bottom of the cobordism
and asymptotic to 

2
and c12 in top of the cobordism, is unique.

In fact to create disc D0 using the standard model we must move the Reeb chords of
the previously constructed disc D . Because of action there can be no splittings so the
moduli space undergoes cobordism.

Next we glue two holomorphic strips D and D0 , and because of action there is only
one splitting which gives the desired disc L.

Finally using above inductively, because of action argument in each step there is no
splitting and we obtain the uniqueness of holomorphic discs in correspondence to the
cyclic words zck � c21c1

1
� � � c1

k
c12 .

All above argument leads to the following theorem.

Theorem 2 We have that LHcyc.zƒ2/ Š LHcyc.ƒ2;mixed/ as cyclic Legendrian
homologies. Therefore the long exact sequence in (1) turns to the following long exact
sequence:

� � � !LHcyc
k
.zƒ2/!LHcyc

k
.ƒ/!LHcyc

k
.ƒ1/!LHcyc

k�1
.zƒ2/! � � �

Remark 4 When the Legendrian link has more components, we can repeat all above
construction. For instance, consider a Legendrian link with three components, ie
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ƒDƒ1tƒ2tƒ3 . After performing Legendrian surgery along ƒ1 in the contact man-
ifold Y0 we perform a Legendrian surgery along zƒ2 in the contact manifold Y1 . The
chords in LHcyc.zƒ3/ have two types: the chords of ƒ3 unaffected by the surgery and the
created chords zc3 in correspondence to the words c31c1

1
� � � c1

k
c13 and c32zc 2

1
� � � zc 2

k
c23 .

3 Examples

Consider ƒ1 t ƒ2 as a Legendrian link of the Legendrian spheres in the contact
manifold Y0 . After performing Legendrian surgery along ƒ1 and following the
instruction given in the previous section, here we would like to describe the cyclic
Legendrian homology of zƒ2 . Recall that the module LHcyc.zƒ2/ is generated by the
cyclic words in chords of zƒ2 in which the chords have two types: the chords of ƒ2

unaffected by the surgery and the chords created by the surgery which are in one-to-one
correspondence with the words of the type c21

1
c1

1
� � � c1

k
c12

1
.

3.1 Cyclic Legendrian homology of the Hopf link in S 3

Let ƒDƒ1tƒ2�S3 be the Legendrian link with two components which are both the
simple Legendrian unknots. We can concentrate only on the Darboux ball containing ƒ,
so that our computations will be the same as if ƒ is a Legendrian link in R3 with the
standard contact structure. We illustrate this link in front projection in the following
diagram.

c12
c21

c1

c2

Figure 7: ƒ in front projection

The Reeb chords are in correspondence to c1; c2; c21; c12 which denote respectively a
Reeb chord on ƒ1 , a Reeb chord on ƒ2 , a Reeb chord from ƒ2 to ƒ1 , and a Reeb
chord from ƒ1 to ƒ2 . In fact by Ng’s description (see [17]) of the Chekanov DGA
(see [6]) in the front projection, the generators are double points and right cusp points
in the front projection. Using the index formula in front projection given by Ekholm,
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Etnyre and Sullivan in [10, Lemma 3.4] (also see Section 3.3), the gradings for these
Reeb chords are

jc1
j D jc2

j D 1 and jc21c12
j D 0:

Moreover the differential is

@c1
D 1� 1C c12c21; @c2

D 1� 1C c21c12; @c21
D @c12

D 0:

Remark 5 As it is shown by Ekholm, Etnyre and Sullivan in [11], the differential @
depends on the particular spin structure on ƒ. Any component of ƒ has two spin
structures: the Lie group spin structure on S1 , and the nullcobordant spin structure
on S1 . Here we use the nullcobordant spin structure on any component of ƒ.

In zƒ2 the chords are c2 and zcl WD c21.c1/lc12 , l � 0, where jc2j D 1 and jzcl j D l .
Then we have

@c2
D c21c12

D zc0;

and using the Leibniz rule we have

@zcl D @.c
21.c1/lc12/D

lX
jD1

.�1/j�1c21.c1/j�1c12c21.c1/l�j c12

D

lX
jD1

.�1/j zcj�1zcl�j :

Hence we observe that @zc1 D�zc0zc0 and @zc2 D�zc0zc1C zc1zc0

cyc
� 0. More generally,

@zc2l

cyc
�0 for each l � 1. The cyclic complex is as follows:

:::

LHcyc
�1
.zƒ2/D0

LHcyc
0
.zƒ2/D

˝
.zc k

0 / j k � 1
˛

LHcyc
1
.zƒ2/D

˝
.zc1zc

k
0 /; .c

2
zc k
0 / j k � 0

˛
LHcyc

2
.zƒ2/D

˝
.zc 2
zc

p
0
/; .c2

zc m
0 c2
zc n
0 /; .c

2
zc

p
0
zc1zc

q
0
/; .zc1zc

m
0 zc1zc

n
0 / j p; q;m; n� 0;m¤n

˛
LHcyc

3
.zƒ2/D

˝
.zc3zc

p
0
/; .c2

zc
p
0

c2
zc

q
0

c2
zc r
0 /; .zc2zc

p
0

c2
zc

q
0
/; .zc2zc

p
0
zc1zc

q
0
/; .zc1zc

p
0
zc1zc

q
0
zc1zc

r
0 /;

.c2
zc

p
0

c2
zc

q
0
zc1zc

r
0 /; .zc1zc

p
0
zc1zc

q
0

c2
zc r
0 / j p; q; r � 0

˛
:::
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The cyclic contact homology in degree zero is equal to

LHcyc
0
.zƒ2/D

ker @cyc
0

im @
cyc
1

D
LHcyc

0
.zƒ2/

LHcyc
0
.zƒ2/

D 0:

Since @cyc
0
.zc0/D 0 and im @

cyc
1
D LHcyc

0
.zƒ2/. We know this because by the Leibniz

rule we have

@
cyc
1
.zc1zc

k
0 /D�zc

kC2
0

; @
cyc
1
.c2
zc k
0 /D zc

kC1
0

; k � 0:

From the above computation, we immediately conclude that

ker @cyc
1
D
˝
.zc1zc

k
0 C c2

zc kC1
0

/ j k � 0
˛
:

Moreover, im @
cyc
2

is obtained by the following:

@
cyc
2
.zc2zc

p
0
/D 0; @

cyc
2
.c2
zc m
0 c2
zc n
0 /D 0;

@
cyc
2
.c2
zc

p
0
zc1zc

q
0
/D zc1zc

pCqC1
0

C c2
zc

pCqC2
0

; @
cyc
2
.zc1zc

m
0 zc1zc

n/D 0:

In other words, we have

im @
cyc
2
D
˝
.zc1zc

k
0 C c2

zc kC1
0

/ j k � 1
˛
:

Therefore the cyclic Legendrian homology in degree one is equal to

LHcyc
1
.zƒ2/D

ker @cyc
1

im @
cyc
2

D h.zc1C c2
zc0/i:

From above we also conclude that

ker @cyc
2
D
˝
.zc2zc

p
0
/; .c2

zc m
0 c2
zc n
0 /; .zc1zc

m
0 zc1zc

n
0 / j p;m; n� 0;m¤ n

˛
:

On the other hand the image im @
cyc
3

is obtained by the following:

@
cyc
3
.zc3zc

p
0
/D�2zc2zc

pC1
0
Czc 2

1 zc
p
0
;

@
cyc
3
.c2
zc

p
0

c2
zc

q
0

c2
zc r
0 /D c2

zc
q
0

c2
zc

pCrC1
0

C c2
zc r
0 c2
zc

pCqC1
0

C c2
zc

p
0

c2
zc

qCrC1
0

;

@
cyc
3
.zc2zc

p
0

c2
zc

q
0
/D�zc1zc

p
0

c2
zc

qC1
0
Czc1zc

pC1
0

c2
zc

q
0
Czc2zc

pCqC1
0

;

@
cyc
3
.zc2zc

p
0
zc1zc

q
0
/D�zc1zc

p
0
zc1zc

qC1
0
Czc1zc

pC1
0
zc1zc

q
0
� zc2zc

pCqC2
0

;

@
cyc
3
.zc1zc

p
0
zc1zc

q
0
zc1zc

r
0 /D�zc1zc

q
0
zc1zc

pCrC2
0

� zc1zc
r
0 zc1zc

pCqC2
0

� zc1zc
p
0
zc1zc

qCrC2
0

;

@
cyc
3
.c2
zc

p
0

c2
zc

q
0
zc1zc

r
0 /D c2

zc
q
0
zc1zc

pCrC1
0

� c2
zc

pCqC1
0

zc1zc
r
0 � c2

zc
p
0

c2
zc

qCrC2
0

;

@
cyc
3
.zc1zc

p
0
zc1zc

q
0

c2
zc r
0 /D�zc1zc

q
0

c2
zc

pCrC2
0

Czc1zc
pCqC2
0

c2
zc r
0 Czc1zc

p
0
zc1zc

qCrC1
0

:
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Therefore the cyclic Legendrian homology in degree two is equal to

LHcyc
2
.zƒ2/D

ker @cyc
2

im @
cyc
3

D h.zc2/i:

In general we see that .zc2k/ (when k ¤ 0) is the generator in even degrees, and
.zc1 C c2zc0/

2kC1 is the generator in odd degrees. Therefore the cyclic Legendrian
homology of zƒ2 is as follows:

(2) LHcyc
k
.zƒ2/D

8̂<̂
:

0 k D 0;

h.zck/i k > 0 even,

h.zc1C c2zc0/
ki k � 1 odd.

Now, using LHcyc
k
.zƒ2/ in the exact sequence found in Theorem 2, we can compute

LHcyc.ƒ1 tƒ2/.

First note that LHcyc
2k
.ƒ1/ is zero because there is no generator in even degrees,

since .c1/2k is not a good word. In odd degrees we have

LHcyc
2kC1

.ƒ1/D
˝
..c1/2kC1/

˛
;

because @.c1/D c12c21
cyc
� c21c12 2 LHcyc

0 .zƒ2/, where LHcyc
0 .zƒ2/ is the zero of the

quotient complex LHcyc
0 .ƒ1/. Also one can see that

@..c1/2kC1/
cyc
� .2kC 1/.zc2k/ 2 LHcyc

2k
.zƒ2/

which is the zero of the quotient complex LHcyc
2k
.ƒ1/.

Consider the exact sequence

!LHcyc
2kC1

.zƒ2/!LHcyc
2kC1

.ƒ1 tƒ2/!LHcyc
2kC1

.ƒ1/
d2kC1

����!LHcyc
2k
.zƒ2/! :

For the element Œ.c1/2kC1CLHcyc
2kC1

.zƒ2/� of the homology LHcyc
2kC1

.ƒ1/ we have

d2kC1.Œ.c
1/2kC1

CLHcyc
2kC1

.zƒ2/�/D i�1
2k @p

�1.Œ.c1/2kC1
CLHcyc

2kC1
.zƒ2�/

D i�1
2k @.Œ.c

1/2kC1�/D i�1
2k .Œzc2k �/D i�1

2k .0/D 0;

where i and p are respectively the injective and surjective maps in the short exact
sequence of the complexes. Here we have used the fact that the homology class
of zc2k in LHcyc

2k
.ƒ1 tƒ2/ is zero, because @.c1/2kC1 D zc2k . Since d2kC1 is a zero

map, the exactness of the above sequence and (2) imply that LHcyc
2kC1

.ƒ1 tƒ2/D

h.zc1C c2zc0/
2kC1; ..c1/2kC1/i.
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Let x be a cycle in LHcyc
2k
.ƒ1 tƒ2/, ie @.x/ D 0. Then xC LHcyc

2k
.zƒ2/ is a cycle

in LHcyc
2k
.ƒ1/. The equation LHcyc

2k
.ƒ1/D 0 means that all cycles in LHcyc

2k
.ƒ1/ are

trivial. Hence xCLHcyc
2k
.zƒ2/ is a trivial cycle, ie

xCLHcyc
2k
.zƒ2/D @zCLHcyc

2k
.zƒ2/

for a z 2 LHcyc
2kC1

.ƒ1 tƒ2/. So x� @z 2 LHcyc
2k
.zƒ2/. We set x� @z WD y , so y is a

cycle. By
LHcyc

2k
.zƒ2/D h.zc2k/i

we see that all the cycles in LHcyc
2k
.zƒ2/ are trivial except zc2k D @..c

1/2kC1/. So x is
a trivial cycle, hence LHcyc

2k
.ƒ1 tƒ2/D 0.

In summary the cyclic Legendrian homology of the link ƒ1 tƒ2 is as follows:

(3) LHcyc
k
.ƒ1 tƒ2/D

(
0 k � 0 even,

h.zc1C c2zc0/
k ; ..c1/k/i k � 1 odd.

3.2 Examples of lens spaces

For several lens spaces we compute their linearized contact homology using the clas-
sification theorem of tight contact structures of lens spaces (which will be stated in
Theorem 3), the surgery exact sequence in Theorem 1, and the exact sequence in
Theorem 2. The linearized contact homologies of the unique tight contact structures on
the lens spaces L.2; 1/ and L.3; 2/ are already known via the Morse–Bott techniques
developed by Bourgeois [1], here using our method we compute them. The interesting
cases are the lens spaces admitting several tight contact structures (see Honda [15]),
and correspond to those contact structures that are not S1 –invariant and transverse to
the S1 –orbits [1], since their linearized contact homologies are not known. Here we
compute the linearized contact homologies of L.2r C 1; 2/, r � 2, with its different
tight contact structures.

3.2.1 Linearized contact homology of .RP 3; �st/ Let ƒ1 be the simple Legen-
drian unknot in the contact manifold .S3; �st/ with the following diagram in R3 .

a

Figure 8: ƒ1 in front projection
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We perform the Legendrian surgery along ƒ1 . In fact the new contact manifold
obtaining by the Legendrian surgery along ƒ1 in S3 is the lens space L.2; 1/DRP3

with its standard contact structure. This is a result of the classification of tight contact
structures given by Honda which we rephrase it in the following.

Consider the lens space L.p; q/ where p > q > 0 and .p; q/D 1. Assume �p=q has
the continued fraction expansion

�
p

q
D r0�

1

r1�
1

r2����
1

rk

with all ri < �1.

Theorem 3 (Honda [15]) There exist exactly j.r0 C 1/.r1 C 1/ � � � .rl C 1/j tight
contact structures on the lens space L.p; q/ up to isotopy, where r0; : : : ; rl are the
coefficients of the continued fraction expansion of �p=q . Moreover, all the tight
contact structures on L.p; q/ can be obtained from Legendrian surgery on links in S3 .

In fact in this theorem it is shown that we have a linked chain of unknots in S3

with framings r0; r1; : : : ; rk (in order along the chain), along which we can perform
Legendrian surgery to obtain L.p; q/. Denoting the unknots by 0; : : : ; k , to perform
Legendrian surgery, i must have Thurston–Bennequin invariant tb.i/D ri C 1.

For the lens space L.2; 1/, in the continued fractions expression of �p=q D �2=1,
we have r0 D �2. So by the theorem there exists only j.r0C 1/j D 1 tight contact
structures on L.2; 1/ up to isotopy which can be obtained from Legendrian surgery
along the Legendrian unknot with Thurston–Bennequin number tbD�1 in S3 .

Now we compute the cyclic Legendrian homology for ƒ1 : the grading of the only
generator a is jaj D 1 and its differential is @aD 1� 1D 0.

The even powers of a are bad. So there is no module in even degrees. Therefore the
cyclic Legendrian homology of ƒ1 is

LHcyc
k
.ƒ1/D

(
h.ak/i k � 1 odd,

0 k even.

On the other hand the Linearized contact homology of S3 is given by the following
theorem.

Theorem 4 (Bourgeois, Cieliebak and Ekholm [3]) Let � be a dynamically convex
form for the tight contact structure on S3 . Let .C.S3; �/; @�/ be the linearized contact
complex for .S3; �/. Then the Reeb filed R� has exactly 2 closed orbits if and only if
@� D 0.
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Here a contact form � is called dynamically convex if all closed Reeb orbits are
nondegenerate and have Conley–Zehnder index at least 3.

In fact in this theorem it is shown that there is a unique (not necessarily simple) closed
Reeb orbit of every positive even degree (or positive odd Conley–Zehnder index) and
no other Reeb orbits. Therefore @� D 0 implies that HC �.S3; �st/ D C.S3; �/ has
one generator in each positive even degree (or positive odd Conley–Zehnder index).
In [4] the gradings are considered as Conley–Zehnder indices. So in order to apply the
surgery exact sequence, we consider the gradings as Conley–Zehnder indices.

In degree one there is only the generator .a/ for LHcyc.ƒ1/. In the other positive
odd degrees we have the generator  k for HC ".S3/, and the generator .ak/ for
LHcyc.ƒ1/, where k > 1 is odd. Using the surgery exact sequence of Theorem 1, the
linearized contact homology of RP3 is as follows:

(4) HC lin
k .RP3/D

8̂<̂
:
h.a/i for k D 1;

h k ; .ak/i for k > 1 odd,

0 otherwise.

3.2.2 Linearized contact homology of the Lens space L.3; 2/ By Honda’s the-
orem (Theorem 3) the Lens space L.3; 2/ with the continued fractions expression
�

p
q
D�

3
2
D�2C 1

2
has up to isotopy j.�2C 1/.�2C 1/j D 1 tight contact structure.

This is obtained by Legendrian surgery along Hopf link ƒ in S3 .

After surgery along the component ƒ1 , we obtain the new contact manifold RP3

containing zƒ2 . Using the cyclic Legendrian homology LHcyc.zƒ2/ in (2) and the
linearized contact homology of RP3 in (4) in the surgery exact sequence Theorem 1
for the second surgery along zƒ2 in RP3 , we obtain the linearized contact homology
of L.3; 2/ as

HC lin
k .L.3; 2//D

8̂<̂
:
h.a/; .zc1C c2zc0/i for k D 1;

h k ; .ak/; .zc1C c2zc0/
ki for k > 1 odd,

0 otherwise.

One can use directly the cyclic Legendrian homology LHcyc.ƒ1 tƒ2/ in (3) and the
linearized contact homology of S3 in the surgery exact sequence Theorem 1 for the
surgery along ƒ1 tƒ2 in S3 to obtain the linearized contact homology of L.3; 2/.

3.2.3 Linearized contact homology of the lens space L.2rC1; 2/ .r � 2/ with its
different tight contact structures Let ƒDƒ1tƒ2 be a Legendrian link, where ƒ1

is the simple Legendrian unknot and ƒ2 is the Legendrian unknot with several right
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cusps and/or several left cusps in front projection. The Legendrian link under our
consideration belongs to the following diagram. The lens space L.2r C 1; 2/, r � 2,
with its different tight contact structures is obtained by the Legendrian surgery in S3

along different Legendrian links that are shown in the r th row of this diagram (see
Honda’s Theorem 3).

r D 2

r D 3

Figure 9: Various Legendrian links in front projection

(1) Let us consider the case when the second component has several right cusps. We
illustrate such a Legendrain link in the following figure in front projection.

ƒ1

ƒ2

c12 c21

c1

c2

c3

c4

cr

Figure 10: ƒ2 with several right cusps in front projection

The generators for the corresponding DGA are c1; : : : ; cr and c21; c12 with the grad-
ings

jc1
j D � � � D jcr

j D 1; jc21c12
j D 0;

and the differential

@c1
D 1� 1C c12c21; @c2

D � � � D @cr
D 1; @c21

D @c12
D 0:
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We perform Legendrian surgery along ƒ1 . Hence, chords on zƒ2 are c2; : : : ; cr

and zcl WD c21.c1/lc12 , l � 0 with the grading jzcl j D l . The differentials of these
generators are

@c2
D � � � D @cr

D 1
cyc
� 0; @zcl D

lX
jD1

.�1/j zcj�1zcl�j :

It is easy to see that LHcyc.zƒ2/ has one generator .zck/ when k ¤ 0 is even and has
one generator ..c2/k/ when k � 1 is odd. Using the surgery exact sequence for the
surgery along zƒ2 in RP3 and linearized contact homology of RP3 in (4) we obtain

HC lin
k .L.2r C 1; 2/; �1/D

8̂<̂
:
h.a/; .c2/i for k D 1;

h k ; .ak/; ..c2/k/i for k > 1 odd,

0 otherwise.

Here �1 denotes the tight contact structure on the Lens space L.2r C 1; 2/ obtained
by Legendrian surgery along the above link.

(2) Consider the Legendrian link with the first component as the simple Legendrian
unknot and the second component with several right cusps and several left cusps. In this
case, the corresponding DGA is the same as the previous case. Therefore all computa-
tions and hence the linearized contact homology of the lens space .L.2r C 1; 2/; �2/

obtained by surgery along such a link is the same as the previous case. That is,

HC lin
k .L.2r C 1; 2/; �2/DHC lin

k .L.2r C 1; 2/; �1/:

(3) Let the Legendrian link be with the first component as the simple Legendrian unknot
and the second component with several left cusps. We illustrate such a Legendrain link
in the following figure in front projection.

The generators of the DGA correspondence to this figure are right cusps c1; : : : ; cr ,
and c21; c12 with the gradings

jc1
j D � � � D jcr

j D 1; jc21c12
j D 0:

Moreover, their differentials are

@c1
D 1� 1C c12c21;

@c2
D 1C .�1/r�3tc21c12.c3/2 � � � .cr /2C .�1/r�2t.c3/2 � � � .cr /2;

@c3
D � � � D cr

D 1;

@c21
D @c12

D 0:
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ƒ1

ƒ2

c12 c21

c1

c2

c3

c4

cr

Figure 11: ƒ2 with several left cusps in front projection

Here we consider the DGA over QŒt; t�1� where the indeterminate t has degree
jt j D �2.r � 2/. We perform Legendrian surgery along ƒ1 . Hence, chords on zƒ2

are c2; : : : ; cr and zcl WD c21.c1/lc12 , l � 0 with jzcl j D l . The differentials of these
generators are

@c2 cyc
� .�1/r�3tc21c12.c3/2 � � � .cr /2C .�1/r�2t.c3/2 � � � .cr /2;

@c3
D � � � D @cr

D 1
cyc
� 0;

@zcl D

lX
jD1

.�1/j zcj�1zcl�j

We see that LHcyc
k
.zƒ2/ has one generator ..c3/k/ for any odd degree k � 1, and

has one generator .zck/ for any even degree k > 0. Then we use the surgery exact
sequence for the surgery along zƒ2 in RP3 . The linearized contact homology of
.L.2r C 1; 2/; �3/ obtained by the Legendrian surgery along the above link is (as a
module over Q)

HC lin
k .L.2r C 1; 2/; �3/D

8̂<̂
:
h.a/; .c3/i for k D 1;

h k ; .ak/; ..c3/k/i for k > 1 odd,

0 otherwise.

Note that in these three cases one can compute the cyclic Legendrian homology
LHcyc.ƒ1tƒ2/ using the exact sequence of Theorem 2. Then one can use the surgery
exact sequence of Theorem 1 for the surgery along ƒ1 t ƒ2 in S3 to obtain the
linearized contact homologies of L.2r C 1; 2/.
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These computations show that the linearized contact homologies of the lens space
L.2r C1; 2/, r � 2, with its all tight contact structures are the same and the linearized
contact homology is not a complete invariant to distinguish them.

3.3 Standard Legendrian Hopf link in S 2n�1

Let ƒ D ƒ1 t ƒ2 be the standard Legendrian Hopf link, shown in Figure 12, in
the contact manifold Y0 D S2n�1 equipped with the standard contact structure. We
equip Y0 with a contact form corresponding to an ellipsoid S2n�1�R2n with rationally
independent axis lengths, so that the Reeb field has only finitely many closed orbits.
After a Legendrian isotopy, we can always assume that ƒ is contained in a small
Darboux ball disjoint from the closed Reeb orbits. By shrinking the size of this ball,
we can always arrange so that the return time of the Reeb flow to this ball is as large
as desired. In particular, all Reeb chords of ƒ that are not contained in the Darboux
ball will be arbitrarily long. In view of the action filtration process described in [4],
we can ignore these chords. Therefore, we can concentrate only on the Darboux ball
containing ƒ, so that our computations will be the same as if ƒ was a Legendrian link
in R2n�1 with the standard contact structure. This link is represented on Figure 12.

ƒ2

ƒ1

Figure 12: Standard Legendrian Hopf link

This Legendrian link contains degenerate Reeb chords, since every point of the bottom
component ƒ1 is the origin of a chord ending on the top component ƒ2 after a
short flow time. In order to make all chords generic, we choose to slightly tilt one
of the components by adding a small linear function, say of the x1 –coordinate, to its
front projection. There are 6 chords for this Legendrian link: one between the two
branches of ƒ1 , denoted by c1 , one between the two branches of ƒ2 , denoted by c2 ,
two between the top branch of ƒ2 and the bottom branch of ƒ1 , and two between
the bottom branch of ƒ2 and the top branch of ƒ1 . We denote by c12 and by c21

the long chords from ƒ1 to ƒ2 and from ƒ2 to ƒ1 respectively. The short chords
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from ƒ2 to ƒ1 will be denoted by cm and cM , corresponding to the smallest and to
the largest value of the action respectively. These 6 chords are the edges of a quiver in
Figure 13 whose vertices are ƒ1 and ƒ2 . The orientation of the edges corresponds to
the direction of the Reeb field.

ƒ1 ƒ2

c1
c12 c2

c21

cm

cM

Figure 13: Reeb chords of ƒ

Using the index formula in front projection given in [10, Lemma 3.4], the grading of c1

and c2 can be computed easily with each component separately, since it corresponds
to a maximum of the height function and going down a cusp: jc1j D jc2j D n� 1.
The grading of the mixed chords is defined only modulo an additive constant. For
convenience, we set this constant (denoted by k ) to be the grading of the chord cm .
The grading of cM can be obtained by adding to jcmj the Morse index of the maximum
on Sn�1 . The grading of c21 differs from the grading of cM by the contribution of
going up a cusp. Finally, the grading of c12 is obtained by reversing the sign of the
constant and going down a cusp instead of going up a cusp. We therefore obtain

jc1
j D n� 1;

jc2
j D n� 1;

jc21
j D nC k;

jc12
j D n� 2� k;

jcM j D n� 1C k;

jcmj D k:

3.3.1 Holomorphic curves via Morse flow trees In order to find the rigid holomor-
phic curves that appear in the differential for Legendrian contact homology of ƒ, it
will be necessary to use the bijective correspondence between those holomorphic discs
with the Morse flow trees developed by Ekholm [8].
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Given a metric g on Rn�1 , a flow tree on ƒ� J 1.Rn�1/ is a finite tree � immersed
by f W �!Rn�1 , together with extra data, such that:

(a) On the interior of an edge ei , f is an injective parametrization of a flow line of
�r.h˛i � h

ˇ
i /, where h˛i and h

ˇ
i are two locally defined real-valued functions,

each defining the z–coordinate of a sheet of ƒ. To the flow line corresponding
to ei we associate its two 1–jet lifts �˛i , �ˇi , parameterized by

�˛i .t/D .dh˛i .ei.t//; h
˛
i .ei.t/// 2ƒ� J 1.Rn�1/DR2n�1;

�
ˇ
i .t/D .dh

ˇ
i .ei.t//; h

ˇ
i .ei.t/// 2ƒ� J 1.Rn�1/DR2n�1;

and oriented by �r.h˛i � h
ˇ
i / and �r.hˇi � h˛i /, respectively.

(b) For every vertex v we fix a cyclic ordering of the edges feig. We denote the
unique 1–jet lift of the i th edge which is oriented towards (away from) the vertex
v by �in;v

i (�out;v
i ).

(c) Consider the curves on ƒ� J 1.Rn�1/ given by the oriented 1–jet lifts of the
flow lines. Give the curves a cyclic order by declaring that for every vertex v and
edge i , the curve �in;v

i is succeeded by �out;v
iC1

. We require that the Lagrangian
projections of the oriented 1–jet lifts in this order form a closed curve on the
projection of ƒ in T �Rn�1 .

If the 1–jet lifts �in;v
i and �out;v

iC1
have different values at the vertex v , we call this a

puncture at the vertex. The puncture is called positive if the oriented curve jumps from
a lower to a higher sheet relative the z–coordinate, and is otherwise called negative.

The various types of vertices that can appear in a flow tree are listed in Figure 14,
borrowed from Dimitroglou Rizell [7]. In that figure, (P1) and (P2) depict the punctures
in the generic case, (E) and (S) depict the vertices corresponding to an end and a switch,
respectively, while (Y0) and (Y1) describes the generic 3–valent vertices.

Because of the following result, we may use rigid flow trees to compute the Legendrian
contact homology.

Theorem 5 [8, Theorem 1.1] For a generic perturbation of ƒ and the metric g

on Rn�1 , there is a regular almost complex structure J on T �Rn�1 such that there
is a bijective correspondence between rigid J–holomorphic discs with one positive
puncture having boundary on a perturbation of ƒ, and rigid flow trees on ƒ with one
positive puncture.

Algebraic & Geometric Topology, Volume 15 (2015)



An exact sequence for Legendrian links 223

vertex Lagrangian
projection

front
projection flow tree

.P1/

.P2/

.E/

.S/

.Y0/

.Y1/

Figure 14: Possible vertices in a flow tree

Algebraic & Geometric Topology, Volume 15 (2015)



224 Anahita Eslami Rad

In order to apply the above theorem, we have to perturb ƒ by translating the compo-
nent ƒ1 along a horizontal direction (in its front projection), say the x1 –axis. After
this perturbation, the 6 chords of ƒ have different x1 –coordinates.

Let us first compute the differential of the shortest chords cm and cM . Since the
differential decreases the action, the differential of cm has to vanish and the differential
of cM has to be a multiple of cm . Since jcM j D jcmjC n� 1, the differential of cM

has to vanish when n> 2. If nD 2, Theorem 5 shows that the latter differential counts
flow trees from cM to cm . Each such flow tree consists of a segment with 2 vertices
of type (E) at its endpoints and two internal vertices of type (P2), corresponding to cM

and to cm respectively, as illustrated on Figure 15. This figure shows the Legendrian
link after perturbation in the y direction in Lagrangian projection. The 2 vertices of
type (E) has to correspond to a cusp of ƒ1 and to a cusp of ƒ2 , but can be interchanged.
Therefore there are exactly two such flow trees that are counted with opposite signs (we
are using the combinatorial signs from Etnyre, Ng and Sabloff [13] for two holomorphic
discs which are, by Theorem 5, in correspondence with these two flow trees), so that
they cancel each other. This coincides with the fact that the Morse differential for a
perfect Morse function on S1 vanishes.

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

y

x

c2

c12

c21

c1

cm cM

E
P2 P2

E

Figure 15: Rigid flow trees from cM to cm when nD 2

Then the differential of c12 has to consist of a linear combination of words of chords
that constitute a path from ƒ1 to ƒ2 on the quiver of Figure 13. Since any such word
has to contain the letter c12 , it follows that the action of such a word is at least equal to
the action of c12 . Since the differential decreases the action, it follows that @c12 D 0.

Next the differential of c1 has to consist of a linear combination of words of chords that
constitute a loop based at ƒ1 . Since c1 and its iterates are forbidden for action reasons,
this loop has to contain c12 . It therefore cannot contain c2 , c21 or another copy of
c12 as well, again for action reasons. Therefore, the possible words are c12cm and
c12cM . Since the latter has grading 2n� 3� n� 1D jc1j, this word is forbidden as
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well, so that the differential of c1 is a multiple of c12cm . By Theorem 5, this multiple
counts the flow trees starting at c1 and going along the x1 –axis towards c12 . The tree
then continues along the x1 –axis to cm , and then ends at a cusp. The corresponding
tree consists of a segment with a vertex of type (P1) at one endpoint, corresponding
to c1 , two internal vertices of type (P2), corresponding to c12 and to cm , and a vertex
of type (E) at the other endpoint. Since there is a unique such flow tree, we obtain
@c1 D˙c12cm . Similarly, we have @c2 D˙cmc12 .

Note that when n D 2 we have additional terms in the differential of c1 and of c2 .
These terms correspond to the flow trees which start and end at c1 (at c2 ) going along
x1 –axis without any vertex. Therefore we have @c1D˙1�1˙c12cmD˙c12cm and
@c2 D˙1� 1˙ cmc12 D˙cmc12 . Here we used the combinatorial signs from [13]
for the two additional terms with opposite signs in @c1 and similarly in @c2 .

Finally, the differential of c21 has to consist of a linear combination of words of
chords that constitute a path from ƒ2 to ƒ1 on the quiver of Figure 13. It can either
consist of cm or of cM , multiplied with copies of c1 on the right and c2 on the
left, or contain at least a copy of c12 . In the former case, for action reasons, there
can be at most a copy of c1 or c2 , so the possibilities are cp , cpc1 and c2cp with
p D m;M . Note that jcmj D k < jc21j � 1 so that cm is forbidden. Note that
jcM c1j D jc2cM j D 2n� 2C k � jc21j so that cM c1 and c2cM are forbidden. In
the latter case, for action reasons, this word cannot contain c1 , c2 , c21 or another
copy of c12 . It could therefore be cpc12cq with p; qDm;M . Note that jcmc12cmj D

n�2Ck< jc21j�1, that jcmc12cM jD jcmc12cM jD2n�3CkDjc21jCn�3 and that
jcM c12cM j D 3n� 4C k � jc21j, so that cmc12cm , cM c12cM are always forbidden
and cmc12cM , cM c12cm are forbidden when n> 2. Therefore, when n> 2, @c21 is
a linear combination of cM , cmc1 and c2cm . By Theorem 5, the coefficients count
the flow trees starting at c21 and going along the x1 –axis towards cM , c1 and c2

respectively. In the first case, the tree consists of a segment along the x1 –axis with
vertices of type (P1) at its endpoints, corresponding to c21 and to cM . In the last
two cases, the tree is a segment along the x1 –axis with a vertex of type (P1) at one
endpoints, corresponding to c21 , two intermediate vertices of type (P2), corresponding
to cm and c1 , or to c2 and cm , and a vertex of type (E) at the other endpoint. There is
always one such flow tree, so that @c21D˙cM ˙ cmc1˙ c2cm when n> 2. If nD 2,
enumerating immersed polygons in the Lagrangian projection of ƒ as in [6] shows
that these are all the terms in the differential.

In summary, the differential for the Legendrian contact homology of ƒ has the form

@cM D 0; @cm D 0; @c12
D 0;

@c21
D˙cM ˙ cmc1

˙ c2cm; @c1
D˙c12cm; @c2

D˙cmc12:

Algebraic & Geometric Topology, Volume 15 (2015)



226 Anahita Eslami Rad

Note that the first four undetermined signs in the above equations can be absorbed in
the definition of c21 , c1 , c2 and c12 respectively. On the other hand, since @2c21D 0,
using the Leibniz rule we must have

0D @cM C .@cm/c
1
C .�1/jcmjcm@c

1
C .@c2/cmC .�1/jc

2jc2@cm

D .�1/kcmc12cm˙ cmc12cm

so that the last sign is necessarily .�1/kC1 . Therefore, the differential for the Legen-
drian contact homology of ƒ is given by

@cM D 0; @cm D 0; @c12
D 0;

@c21
D cM C cmc1

C c2cm; @c1
D c12cm; @c2

D .�1/kC1cmc12:

3.3.2 Legendrian homology after surgery After performing Legendrian surgery
along ƒ1 , we obtain the contact manifold Y1 containing a copy zƒ2 of the other
component of ƒ. Here we would like to describe the cyclic Legendrian homology
of zƒ2 . We recall that the module LHcyc.zƒ2/ is generated by the cyclic words in chords
of zƒ2 in which the chords have two types: the chords of ƒ2 unaffected by the surgery
along ƒ1 and the chords created by this surgery. A simple inspection of the quiver on
Figure 13 shows that the created chords are presented (by Proposition 1) in the words
of the form c21.c1/lc12 , cm.c

1/lc12 or cM .c1/lc12 , for any integer l � 0. We will
denote the corresponding chords of zƒ2 by zcl , zml and zMl respectively. Their gradings
are given by

jzcl j D 2n� 2C l.n� 1/; j zml j D n� 2C l.n� 1/; j zMl j D 2n� 3C l.n� 1/:

The differential for the Legendrian contact homology of zƒ2 is induced by the differential
computed in the previous section:

@zcl � @.c
21.c1/lc12/

D .cM C cmc1
C c2cm/.c

1/lc12
C

lX
iD1

c21.c1/i�1c12cm.c
1/l�ic12

D cM .c1/lc12
C cm.c

1/lC1c12
C c2.cm.c

1/lc12/

C

lX
iD1

.c21.c1/i�1c12/.cm.c
1/l�ic12/

� zMl C zmlC1C c2
zml C

lX
iD1

zci�1 zml�i ;
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@ zml � @.cm.c
1/lc12/D

lX
iD1

cm.c
1/i�1c12cm.c

1/l�ic12

D

lX
iD1

.cm.c
1/i�1c12/.cm.c

1/l�ic12/�

lX
iD1

zmi�1 zml�i ;

@ zMl � @.cM .c1/lc12/D

lX
iD1

cM .c1/i�1c12cm.c
1/l�ic12

D

lX
iD1

.cM .c1/i�1c12/.cm.c
1/l�ic12/�

lX
iD1

zMi�1 zml�i ;

and

@c2
� .�1/kC1cmc12

� .�1/kC1
zm0:

The differential for the Legendrian contact homology of zƒ2 is therefore given by

@zcl D
zMl C zmlC1C c2

zml C

lX
iD1

zci�1 zml�i ; @ zml D

lX
iD1

zmi�1 zml�i ;

@ zMl D

lX
iD1

zMi�1 zml�i ; @c2
D .�1/kC1

zm0:

The module LHcyc.zƒ2/ is generated by cyclic words in the letters zcl , zml , zMl (l � 0)
and c2 , with the induced differential.

As a comparison, the module LHcyc.ƒ/ is generated by composable words up to cyclic
permutations in the letters c1 , c2 , c12 , c21 , cm and cM . Such composable words
up to cyclic permutation correspond to unbased loops in the quiver of Figure 13. The
direct computation of LHcyc.ƒ/ via these words seems to be quite untractible. On
the other hand, the computation of LHcyc.zƒ2/ using the above chain complex seems
possible. Combining this computation with the exact sequence of Theorem 2, we obtain
a realistic way of computing the invariant LHcyc.ƒ/.

Remark 6 When nD 2 we can use the first Legendrian Reidemeister move to cancel
two generators cM and c21 in Figure 15. Then we are in the situation of Section 3.1
with four generators c1; c2; c12; cm (here cm corresponds to c21 with the notation
of the Section 3.1). The gradings are jc1j D jc2j D 1 and jcmc12j D 0. The module
LHcyc.zƒ2/ is generated by zml for l � 0 and c2 .
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Remark 7 Now consider n D 3. Here we are going to compute LHcyc.zƒ2/ and
LHcyc.ƒ1tƒ2/ for some low degrees. The Reeb chords on zƒ2 are c2 and zcl ; zml ; zMl

for l � 0. Their gradings are given by

jc2
j D 2; jzcl j D 4C 2l; j zml j D 1C 2l; j zMl j D 3C 2l:

Then we have the following cyclic complex:

LHcyc
0
.zƒ2/D 0

LHcyc
1
.zƒ2/D h. zm0/i

LHcyc
2
.zƒ2/D h.c

2/i

LHcyc
3
.zƒ2/D h. zm0c2/; . zm1/; . zm

3
0/; .
zM0/i

LHcyc
4
.zƒ2/D h.zc0/; ..c

2/2/; .c2
zm2

0/; .
zM0 zm0/i

:::

Since there is no generator in degree zero, we have LHcyc
0
.zƒ2/ D 0. In degree

one, @. zm0/ D @.cmc12/ D 0. On the other hand @.c2/ D .�1/kC1 zm0 . Therefore,
LHcyc

1
.zƒ2/D 0. In degree two, LHcyc

2
.zƒ2/D 0 because @.c2/ is nonzero. In degree

three, the differential is zero. We have

@. zm0c2/D .�1/k zm2
0

cyc
� 0; @. zm1/D @.cmc1c12/D .�1/k zm2

0

cyc
� 0;

( zm2
0

is bad), and also

@. zm3
0/D 0; @. zM0/D @.cM c12/D 0:

On the other hand we have

@.zc0/D @.c
21c12/D zM0C zm1C c2

zm0;

@..c2/2/
cyc
� 2.�1/kC1c2

zm0;

@.c2
zm2

0/D .�1/kC1
zm3

0;

@. zM0 zm0/D 0:

Therefore LHcyc
3
.zƒ2/ D h. zm1/i. In degree four LHcyc

4
.zƒ2/ D 0, since @. zM1/ D

.�1/kC2 zM0 zm0 .

Now consider ƒ1 with its only Reeb chord a of grading jaj D 1 with @aD 0 (see [4]).
LHcyc.ƒ1/ is zero in even degrees, and is equal to h.a2lC1/ j l � 0i in odd degrees.
Using the exact sequence of Theorem 2 we obtain that LHcyc.ƒ1 tƒ2/ is zero in
degrees 0, 2, 4 and is equal to h.a/i, h. zm1/i˚ h.a

3/i in degrees 1,3 respectively.
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Remark 8 When n> 3 the cyclic complex is as follows:

LHcyc
n�2

.zƒ2/D h. zm0/i

LHcyc
n�1

.zƒ2/D h.c
2/i

LHcyc
2n�3

.zƒ2/D h. zM0/; . zm1/; .c
2
zm0/i

:::

We obtain
LHcyc

n�3
.zƒ2/D 0;

LHcyc
n�1

.zƒ2/D 0;

LHcyc
2n�3

.zƒ2/D h. zm1/i when n is odd,

LHcyc
2n�3

.zƒ2/D h. zm1/; .c
2
zm0/i when n is even.
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