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Structure in the bipolar filtration of topologically slice knots

TIM D COCHRAN

PETER D HORN

Let T be the group of smooth concordance classes of topologically slice knots and
suppose

� � � � TnC1 � Tn � � � � � T2 � T1 � T0 � T

is the bipolar filtration of T . We show that T0=T1 has infinite rank, even modulo
Alexander polynomial one knots. Recall that knots in T0 (a topologically slice 0–
bipolar knot) necessarily have zero � –, s– and �–invariants. Our invariants are
detected using certain d –invariants associated to the 2–fold branched covers.

57M25; 57N70

1 Introduction

Research into 4–dimensional manifolds in the last 30 years has revealed a vast differ-
ence between the topological and smooth categories. There is a purely local paradigm
for this disparity in terms of knot theory. Given a knot K in S3 � @B4 , it can happen
that there is a 2–disk � topologically embedded in the 4–ball so that @�DK but
there exists no smoothly embedded disk with K as boundary. This motivates the study
of which knots in S3 bound embedded 2–disks in B4 in the topological category but
not the smooth category. This paper contributes to the ongoing efforts to quantify and
classify this difference in categories.

To be more precise, the set of oriented knots in S3 comes equipped with a binary
operation called connected sum (denoted by #). Given a knot K let �K denote the
knot obtained by taking the mirror image and reversing the circle’s orientation. Two
knots K and J are smoothly concordant if there is an annulus A properly and smoothly
embedded in S3 � Œ0; 1� with A\S3 � f1g DK and A\S3 � f0g D �J . The set of
equivalence classes is a group, called the smooth knot concordance group, denoted C .
The inverse of ŒK� is Œ�K�, and the identity element is the class of slice knots, ie knots
which bound properly and smoothly embedded disks in the four-ball. There is a weaker
equivalence relation that determines the topological concordance group, wherein one
ignores the differentiable structures and only requires the annulus to be topologically
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locally flatly embedded instead of smoothly embedded. Knots that bound topologically
locally flat discs in a topological manifold homeomorphic to the 4–ball are called
topologically slice knots. Let T < C denote the subgroup of smooth concordance
classes of topologically slice knots. Thus the group T measures the difference between
the smooth and topological categories. Endo established in [6] that T itself is large; it
has infinite rank as an abelian group.

In [4], the authors and Harvey introduced the bipolar filtration of T

� � � � TnC1 � Tn � � � � � T2 � T1 � T0 � T ;

which is obtained as the restriction to T of the bipolar filtration of C , defined as
follows. A knot K is n–positive if it bounds a smoothly embedded 2–disk D in a
smooth 4–manifold V (with @V Š S3 ) that satisfies:

� �1.V /D 0.

� The intersection form on H2.V / is positive definite.

� H2.V / has a basis represented by a collection of surfaces fSig disjointly em-
bedded in the complement of the slice disc and �1.Si/� .�1.V �D//.n/ .

The first two conditions are equivalent to saying that V is a smooth manifold home-
omorphic to a punctured connected sum of copies of CP .2/. An n–negative knot is
defined by replacing the word “positive” with “negative” above. The 4–manifold V is
called an n–positon (respectively, an n–negaton). The set of n–positive (respectively,
n–negative) knots is denoted Pn (respectively, Nn ). A knot is n–bipolar if it is both
n–positive and n–negative. The set of concordance classes of n–bipolar knots forms a
subgroup of C . This induces a filtration of T by defining Tn as the intersection of T
with the subgroup of n–bipolar knots. It was conjectured in [4] that Tn=TnC1 is non-
trivial for every n. As evidence, it was shown there, using a mélange of techniques from
smooth and topological concordance, that T1=T2 has positive rank [4, Theorem 8.1] and
it was observed that Endo’s examples generate an infinite rank subgroup of T =T0 [4,
Theorem 4.7]. The main result of the present paper is the following.

Theorem 1.1 T0=T1 has infinite rank.

Recall that any knot in T0 necessarily has zero � –, s– and �–invariants and vanishing
Fintushel–Stern–Hedden–Kirk invariant [4, Proposition 1.2]. This makes such knots
difficult to detect.

This theorem is proved by considering the infinite family of knots fKpg below and
analyzing certain d –invariants associated to their 2–fold branched covers. These
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Figure 1.1: The knots Kp and Rp

invariants have been shown to obstruct membership in T1 [4, Corollary 6.9]. Our
calculation relies on Ozsváth and Szabó’s d –invariant formula for rational surgeries
on L–space knots. Let D denote the positively clasped, untwisted Whitehead double
of the right-handed trefoil and let U denote the trivial knot. Let Rp denote the ribbon
knot on the right side of Figure 1.1 (there is an unknotted, untwisted curve going
once over each band on the obvious genus-one Seifert surface for Rp ). If we tie
the .pC 1/–twisted band of Rp into D , we obtain the topologically slice knot Kp ,
pictured on the left side of Figure 1.1.

Furthermore we strengthen Theorem 1.1 by showing that T0=T1 has infinite rank, even
modulo knots of Alexander polynomial one. Recall that any knot with Alexander
polynomial one is a topologically slice knot; see Freedman and Quinn [7]. Let �
denote the subgroup of T consisting of knots that are smoothly concordant to Alexander
polynomial one knots. Most early examples of topologically slice knots that are not
smoothly slice were knots of Alexander polynomial one knots. Indeed recall that all
of Endo’s examples [6] giving an infinite rank subgroup of T =T0 have Alexander
polynomial one. This suggested the question “Does � D T ?”, that is to say, can
Alexander polynomial one knots account for all the subtlety of T ? Recently, Hedden,
Livingston, and Ruberman [9, Theorem A] answered this question in the negative
by exhibiting an infinite rank subgroup of T =�. In this direction we strengthen
Theorem 1.1 as follows.

Theorem 1.2 The family fKpg
1
pD1

generates an infinite rank subgroup of T0=hT1; �i.
Thus in particular:

� The family fKpg
1
pD1

generates an infinite rank subgroup of T0=T1 .

� The family fKpg
1
pD1

generates an infinite rank subgroup of T =�.
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Aside from strengthening Theorem 1.1, the second point of Theorem 1.2 gives another
(shorter) proof of the above result of Hedden, Livingston, and Ruberman [9, Theorem A].
Moreover the Kp lie in T0 whereas the examples of [9] do not.

Added in press: the examples in this paper have now been used by Cha and Powell to
construct, for each n� 0 and m� 2, examples of topologically slice m–component
links which are n–bipolar but not .nC 1/–bipolar [3, Theorem 1.1].

Acknowledgements Tim D Cochran is partially supported by the National Science
Foundation grant number DMS-1006908. Peter D Horn is partially supported by the
NSF grant number DMS-1258630 and the NSF Postdoctoral Fellowship DMS-0902786.

2 Kp lies in T0

In this section we show that if p � 3 then the knot Kp lies in T0 .

The right-handed trefoil knot can be unknotted by changing one positive crossing, and
so it lies in P0 [5, Lemma 3.4]. Hence the Whitehead double D of the right-handed
trefoil knot lies in P1 by [4, Example 3.5]. Since Kp is a winding number zero satellite
of D with pattern the ribbon knot Rp , Kp lies in P2 [4, Corollary 3.4], and so in
particular lies in P0 . Furthermore, Kp is topologically slice since D and Rp are
topologically slice. Hence Kp 2 T . It remains only to show that Kp 2 N0 , which
requires more work.

Proposition 2.1 If p � 3, then Kp 2N0 .

Proof Consider the right-hand band in the Seifert surface for the knot Kp from
Figure 1.1, which is an annulus A whose core ˛ has the knot type of D . The annulus A

is twisted in the sense that the self linking of ˛ is sl.˛/D pC 1.

One can change D to the unknot by changing a single positive crossing. Typically one
achieves this operation by blowing down a �1–framed 2–handle since this does not
change framings, but we will instead blow down a C1–framed handle. This operation
is pictured in Figure 2.1. Let BD.˛/ and BD.A/ denote the results of ˛ and A after
the blow down. As a knot, BD.˛/ is simply the unknot, but the blow down procedure
changes the framing of the annulus. In fact, sl.BD.˛// D sl.˛/� 4 D p � 3. This
change in framing follows directly from the local computation pictured in Figure 2.1;
the positive crossing turns negative (decreasing writhe by 2), and two left-handed twists
appear in the annulus.

Let Jp denote the knot resulting after doing this single blow down on Kp . Each of
the left-hand and right-hand bands of Jp is unknotted with framing �p and p � 3,
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Figure 2.1: Changing a positive crossing by blowing down a C1

respectively. If p � 3, then Jp can be unknotted by changing only negative crossings.
Hence Jp 2N0 [5, Lemma 3.4].

The cobordism W from S3 to S3 , induced by the C1–framed 2–handle attachment has
intersection form hC1i. As in [5, Lemma 3.4], we have that Kp (in the �S3 boundary
component) is concordant to Jp (in the S3 boundary component) via a concordance
which is disjoint from a generator of H2.W /. By reversing the orientation on W

and gluing on a 0–negaton for Jp , we obtain a 0–negaton for Kp , which finishes the
proof.

3 Heegaard Floer correction terms

In this section we introduce the d –invariants we will use to prove our main theorems
and calculate them on our examples. These calculations are then called in the proofs in
the next section.

Given a rational homology sphere Y and a spinc structure s on Y , Ozsváth and Szabó
defined the correction term (or d –invariant) d.Y; s/ 2Q [13, Definition 4.1]. If K is
a knot in S3 and Y is a prime-power cyclic cover of S3 branched along K , then Y

is a rational homology sphere [2]. The correction terms obstruct a knot’s lying in the
first term of the bipolar filtration:

Theorem 3.1 [4, Theorem 6.5] If K 2N1 and Y is any prime-power cover of S3

branched along K , then there exists a metabolizer� G <H1.Y / for the Q=Z–valued
linking form on H1.Y /, and there is a spinc structure s0 on Y such that for each z 2G

d.Y; s0Cyz /� 0;

where yz denotes the Poincaré dual of z . For instance, we may take s0 to be the spinc

structure corresponding to any spin structure on Y .

�A metabolizer is a square-root order subgroup of H1.Y / on which the form lkW H1.Y /�H1.Y /!

Q=Z vanishes.
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Figure 3.1: The double branched cover †p of Kp

There is an analogous result if K 2 P1 [4, Theorem 6.2]. This motivates the following
calculation of the correction terms for †p , the 2–fold cover of S3 branched along Kp .

According to the Akbulut–Kirby method [1], the 2–fold branched cover over our
knot Kp has a surgery diagram as in Figure 3.1 (we have used the fact that D is
reversible). One may eliminate the unknotted component by the slam-dunk move [8,
Figure 5.30] to see that †p D S3

r .D # D/, where r D .2pC 1/2=2p .

By Appendix A, the correction terms of any positive rational surgery on D # D agree
with those of the same surgery on the torus knot T2;5 . Moreover every positive torus
knot admits lens space surgery [12], so we may apply [16, Theorem 1.2] to calculate
the correction terms of p=q surgery on T2;5 as long as p=q � 2g.T2;5/� 1D 3:

(3-1) d
�
S3

p=q.T2;5/; i
�
� d

�
S3

p=q.U /; i
�
D�2tjbi=qcj.T2;5/

for each ji j � p=2, where ti.T2;5/ is the torsion coefficient, determined by the sym-
metrized Alexander polynomial �.T2;5/D a0C

P
i>0 ai.t

iC t�i/D 1� .tC t�1/C

.t2C t�2/ according to
ti.T2;5/D

X
j>0

jajijCj :

The torsion coefficients of T2;5 are t0 D 1, t1 D 1, and ti D 0 for i � 2. We remark
that the i in Equation (3-1) is not a spinc structure but rather is an integer that labels a
certain spinc structure. This subtle point is discussed further in Appendix B.

We return to the calculation of the correction terms for †p . We require the technical as-
sumption that 2pC1 is prime, so that H1.†p/ŠZ=.2pC1/2Z has a unique subgroup
of order 2pC 1 (this subgroup is a metabolizer for the linking form). Let G <H1.Y /

denote this subgroup. Following the notation of Theorem 3.1, we will calculate the
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correction terms d.†p; s0Cyz / for each z 2G . By Lemma B.1 and the discussion in
Appendix B, the spinc structures s0Cyz have labels .2p2C2pC1/.2p�1/C.2pC1/k

for k D 0; 1; : : : ; 2p . In order to use Equation (3-1), we need each label i to satisfy
ji j � .2pC 1/2=2. These labels range from 4p3C 2p2 � 1 to 4p3C 6p2C 2p � 1

and must therefore be shifted down by a suitable multiple of .2p C 1/2 . Subtract
p.2pC 1/2 from each label to arrive at the new labels

ik WD �2p2
�p� 1C k.2pC 1/; k D 0; 1; : : : ; 2p:

One easily checks that each of these new labels is less than .2pC 1/2=2 in absolute
value. Note that i0 is the label of the spinc structure s0 which corresponds to the
unique spin structure on †p .

Lemma 3.2 Let ik denote the label �2p2�p� 1Ck.2pC 1/ for k D 0; 1; : : : ; 2p .
The correction terms d.†p; ik/ are

d.†p; ik/D

�
�2 if k D p;pC 1;

0 otherwise.

Note that it follows immediately from Theorem 3.1 that Kp is not in N1 , if 2pC 1 is
prime, hence not in T1 .

Proof The correction terms d.S3
.2pC1/2=2p.U /; ik/ must vanish, for

S3
.2pC1/2=2p.U /

is the double branched cover of the ribbon knot Rp , and the correction terms of
the double branched cover of a ribbon knot (with spinc structures corresponding to a
metabolizing subgroup of H1 ) must vanish [11, Theorem 2.3]. Thus, by Equation (3-1),
d.S3

.2pC1/2=2p.T2;5/; ik/D�2tjbik=2pcj.T2;5/. Now�
ik

2p

�
D

�
�2p2�p� 1C .2pC 1/k

2p

�
D

�
�pC kC

k �p� 1

2p

�
D�pC kC

�
k �p� 1

2p

�
D

�
k �p� 1 if 0� k � p;

k �p if p < k � 2p:

Recall that tj .T2;5/ is nonzero if and only if j D 0 or j D 1, so it suffices to find the
j D jbik=2pcj equal to 0 or 1. By the above calculation, this happens only if k D p

or pC 1, in which case jbip=2pcj D jbipC1=2pcj D 1.

The lemma follows. (Note that the spinc structures ip and ipC1 are conjugate spinc

structures; reflected by the fact that �p.2pC1/� .pC1/.2pC1/ mod .2pC1/2 .)
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4 Proof of Theorems 1.1 and 1.2

Let P be the subset of natural numbers p� 3 such that 2pC1 is prime. We showed in
Section 2 that each Kp 2T0 . We will show that the set fKpgp2P is linearly independent
in T0=T1 . Consider a linear combination

K WD #
p2P

npKp:

Suppose K 2 T1 . Without loss of generality, we may assume that some nq > 0. We
saw in Section 2 that Kq 2P2�P1 , so �Kq 2N1 . Thus J WDK #�.nq�1/Kq 2N1 ,
which we will endeavor to contradict. Note that

J DKq # #
p2P0

npKp;

where P 0 D P �fqg.

If † denotes the double branched cover of J , then

†D†q # #
p2P0

np†p

as an oriented manifold. It is known that a metabolizer M for H1.†/ splits as
M DMq˚

L
p2P0 Mp , where Mp is a metabolizer for np†p , since the primes 2pC1

are distinct. Recall that spinc structures on a connected sum split into sums of spinc

structures on each summand, and the d –invariants respect this decomposition [13,
Theorem 4.3]. Since H1.†q/ has order the square of the prime 2q C 1, Mq is
necessarily the subgroup generated by 2qC 1. In particular, for each k D 0; : : : ; 2q

the element

.k.2qC 1/; E0/ 2H1.†/Š Z=.2qC 1/2Z˚
M

p2P0

�
Z=.2pC 1/2Z

�jnp j

lies in the metabolizer M . We are interested in the spinc structure

sD s0CPD..kq.2qC 1/; E0//D .s0CPD.kq.2qC 1/// # s0

on †q # #p2P0 np†p for which the label of s0C PD.kq.2qC 1// 2 spinc.†q/ is the
integer iq as in Lemma 3.2. We can now calculate

d.†; s/D d
�
†q # #

p2P0

np†p; .s0CPD.kq.2qC 1/// # s0

�
D d

�
†q; s0CPD.kq.2qC 1//

�
C d

�
#

p2P0

np†p; s0

�
D d.†q; iq/C

X
p2P0

npd.†p; i0/

D�2;
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where the last two lines follow (notationally and logically) from Lemma 3.2.

By Theorem 3.1, we have contradicted that J 2N1 , and we conclude that the Kp are
linearly independent in T0=T1 , finishing the proof of Theorem 1.1.

More generally, to see that fKpg is linearly independent in T =hT1; �i, suppose that
T # #p2P npKp 2 T1 for some T with �T .t/D 1. Again we may assume nq > 0 for
some q . Since ˙Kp 2 T0 it follows that T 2 T0 . Since �T .t/D 1, †T is a homology
sphere. Hence, by [4, Corollary 6.11], d.†T ; s0/D 0. Now, as above, we may add
enough mirror images of Kq to arrive at the conclusion

J WD T # Kq # #
p2P0

npKp 2N1:

Using the same d –invariant argument as for the T0=T1 case, together with the facts
that H1.†T / D 0 and d.†T ; s0/ D 0, we can, given any metabolizer for H1.†J /,
find a spinc structure s for †J which corresponds to some element in that metabolizer
and which satisfies d.†J ; s/ D �2. By Theorem 3.1, this contradicts that J 2 N1 .
This finishes the proof of Theorem 1.2.

Appendix A: CFK1.D # D/

Recall that D denotes the untwisted, positively clasped Whitehead double of T2;3 . In
this appendix, we establish the following lemma.

Lemma A.1 For any p=q 2Q�f0g and 0� i � p� 1,

d
�
S3

p=q.D # D/; i
�
D d

�
S3

p=q.T2;5/; i
�
:

To any knot K in S3 , one can associate the Z˚Z–filtered knot Floer chain complex
CFK1.K/ introduced by Rasmussen [17] and Ozsváth and Szabó [14]. It is known
that the complex CFK1.D/ splits as

CFK1.D/D CFK1.T2;3/˚A;

where A is an acyclic complex [4, Appendix 9.1] (see [10, Lemma 6.12]). The
complex of the connected sum of knots is the tensor product of the individual knots’
complexes [14, Theorem 7.1], so we see that

CFK1.D # D/D
�
CFK1.T2;3/˝CFK1.T2;3/

�
˚A;

where A is acyclic. The tensor product of the T2;3 complexes is (up to an acyclic
summand) CFK1.T2;5/. This is most easily seen by a direct computation. The
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(a) A basis for CFK1.T2;3/ (b) A basis for CFK1.T2;5/

Figure A.1: The knot Floer complexes of T2;3 and T2;5

complexes are pictured in Figure A.1 (for simplicity, we have collapsed all U and
U�1 translates in the figure).

Ozsváth and Szabó proved [14, Theorem 4.4] that given a sufficiently large, integral
surgery coefficient r , HFC.Kr ; s/ is isomorphic to the homology of a quotient complex
of CFK1.K/. (In fact, the same is true for a sufficiently negative, integral coefficient;
one must use a different quotient complex. The argument below works for either case.)
Recall that

d.Kr ; s/ WD min
0¤˛2HFC.Kr ;s/

fgr.˛/ W ˛ 2 im U k for all k � 0g:

If A is an acyclic summand of CFK1.K/ (as a Z=2Z ŒU;U�1�–module), we claim that
A does not affect the d –invariants. Let Q denote the quotient complex of CFK1.K/
whose homology is isomorphic to HFC.Kr ; s/. By definition [14, Theorem 4.4], Q is
the quotient of CFK1.K/ by a subcomplex that is U –invariant. Suppose a 2A with
0 ¤ Œa� 2 H�.Q/. Let @ denote the differential in CFK1.K/ and @Q the induced
differential in Q. If Œa� 2 im U k for all k � 0, then there is a B 2 CFK1.K/ and a
k � 0 with U k ŒB�D Œa� 2H�.Q/ and @B D @QB D 0. On the chain level, we have
U kB D aC@Qx for some x 2Q, and so U kB D aC@xCy 2 CFK1.K/ for some
y 2 ker.projection/. Thus 0 D @B D U�k.@aC @2xC @y/ D U�k.@aC @y/, from
which it follows that @aD @y . Since a lies in the summand A, so does y . Then aCy

is a cycle in CFK1.K/ and must be a boundary since A is acyclic. If @� D aC y ,
then @Q� D a, and so 0D Œa�D2H�.Q/, a contradiction.

Thus acyclic summands in CFK1 do not contribute to d –invariants of sufficiently
large or sufficiently negative integer surgeries. In fact, acyclic summands do not affect
the d –invariants of any nonzero rational surgery (see the discussion surrounding [18,
Proposition 2.2] and in particular the proof of [18, Corollary 2.3(1)]).
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Figure B.1: The labeling of intersection points on the Heegaard diagram for �L.5; 3/

Appendix B: spinc structures of lens spaces

Recall that S3
p=q.U / D �L.p; q/. Ozsváth and Szabó give a recursive formula for

the d –invariants of lens spaces [13, Equation 12]. Preceding their proof, they give an
ordering (or labeling) of the spinc structures of �L.p; q/ in terms of its standard genus-
one Heegaard diagram .T2; ˛; ; z/ (in the notation of [13, Figure 2] or Figure B.1).
Recall that for such a pointed Heegaard diagram, a point in ˛\  determines a spinc

structure on �L.p; q/. Ozsváth and Szabó label the p intersection points of ˛ and 
circularly about ˛ (using the basepoint z to determine which point is labeled by 0),
and hence give a labeling of the spinc structures ` W Z=pZ D f0; 1; : : : ;p � 1g !

spinc.�L.p; q//. This construction extends (by using a Heegaard triple diagram
adapted to the surgery on a knot) to give an identification of spinc.S3

p=q.K//$Z=pZ
for any K . Let � denote the closed curve comprising the left edge of the picture of the
torus in Figure B.1; an orientation on � determines a generator of H1.�L.p; q//Š

Z=pZ.

The set spinc.�L.p; q// is an affine set over H 2.�L.p; q// (see [15, Section 2.6]),
which allows one to take the difference of spinc structures. If s.x/ and s.y/ are the
spinc structures corresponding to x and y 2 ˛\  , then

(B-1) s.y/� s.x/D PD.�.a� c//;

where a (respectively, c ) is a 1–chain corresponding to a path from x to y in ˛
(respectively,  ) and � is the map H1.T

2/�H1.L.p; q// induced by attaching the
˛ and  handles [15, Lemma 2.19].

Since q is relatively prime to p , there exists k D q�1 .mod p/. One may check easily
that the homology class �.i; iC1/D k ��, where � is the generator of H1.�L.p; q//

discussed above (after picking the appropriate orientation). See Figure B.1 for an
example. One may generalize this fact to see �.i; j /D .j �i/k �� for any i; j 2Z=pZ.
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By Equation (B-1),
`.j /� `.i/D .j � i/k �PD.�/:

In this sense, the circular ordering of (the labels of the) spinc structures affinely respects
the group structure of H 2.�L.p; q//. In other words, if we fix the affine identification
�0 W spinc.�L.p; q// ! H 2.�L.p; q// with �0.`.0// D 0, then the composition
�0 ı ` W Z=pZ!H 2.�L.p; q// is the group isomorphism given by 1 7! k �PD.�/.

If p is odd, there is a unique spin structure on �L.p; q/, which in turn determines a
spinc structure s0 , called the central spinc structure. The central spinc structure is the
only spinc structure with trivial c1 . In this case c1 is a one-to-one correspondence

Z=pZ
`
�! spinc.�L.p; q//

c1
�!H 2.�L.p; q//:

In order to use Equation (3-1) for those spinc structures corresponding to a metabolizer
for H1.�L.p; q//, we must determine the Ozsváth–Szabó labels of these spinc struc-
tures. Since p D t2 for some odd prime t , there is only one subgroup of H 2 which
has order t . Thus, the labels of the spinc structures corresponding to this subgroup
are i 0Cmt (m D 0; : : : ; t � 1), where i 0 D `�1.s0/ is the label of the central spinc

structure s0 .

It remains to determine i 0 .

Lemma B.1 For p odd, the label i 0 of the central spinc structure s0 is given by the
mod p reduction of .pC 1/.q� 1/=2.

Proof Throughout the proof we will ignore orientations of the boundary 3–manifolds
since we are only concerned with the zero element of H 2 .

Let p > q > t > 0 where t is the mod q reduction of p . Then p D nq C t for
some n > 0. L.q; t/ has a Dehn surgery description as q=t surgery on the unknot.
Add a 4–dimensional 2–handle along the meridian with framing �n. This determines
a cobordism W to L.p; q/ (to see this, perform the slam-dunk move [8]). Note that
H1.W /D 0 and H2.W /Š Z. It follows from duality and the universal coefficient
theorem that both H 2.W / and H 2.W; @.W // are infinite cyclic; and so the exact
sequence on relative homology is

0!H 2.W; @W /
�pq
�!H 2.W /�H1.L.p; q//˚H1.L.q; t//! 0:

In the proof of [13, Proposition 4.8], Ozsváth and Szabó discuss a spinc structure sz. i/

on W that restricts to `.i/ on L.p; q/ that satisfies

hc1.sz. i//;H.P/i D 2i C 1�p� q;

where H.P/ is the generator of H2.W /.
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Let � denote a generator of H 2.W /. Since the Kronecker evaluation map is, in this case,
an isomorphism, we can choose, � , a generator of H 2.W / such that h�;H.P/i D 1.
It follows that c1.sz. i//D .2i C 1�p� q/� .

To see which sz. i/ restricts to the central spinc structure on L.p; q/, we need to
find the i such that j1.c1.sz. i///D 0 in H 2.L.p; q//, where j1 is the restriction
to L.p; q/. Note that if we take i to be the mod p reduction of .pC 1/.q � 1/=2

then hc1.sz. i//;H.P/i is a multiple of p and so c1.sz. i// is necessarily a multiple
of p� . It follows that j1.c1.sz. i///D 0 in H 2.L.p; q//. Therefore the restriction
of sz. i/ to �L.p; q/ has c1 D 0, which identifies this spinc structure as s0 .

References
[1] S Akbulut, R Kirby, Branched covers of surfaces in 4–manifolds, Math. Ann. 252

(1979/80) 111–131 MR593626

[2] A J Casson, C M Gordon, On slice knots in dimension three, from: “Algebraic and
geometric topology, Part 2”, (R J Milgram, editor), Proc. Sympos. Pure Math. 32, Amer.
Math. Soc., Providence, RI (1978) 39–53 MR520521

[3] J C Cha, M Powell, Covering link calculus and the bipolar filtration of topologically
slice links, Geom. Topol. 18 (2014) 1539–1579 MR3228458

[4] T D Cochran, S Harvey, P Horn, Filtering smooth concordance classes of topologi-
cally slice knots, Geom. Topol. 17 (2013) 2103–2162 MR3109864

[5] T D Cochran, W B R Lickorish, Unknotting information from 4–manifolds, Trans.
Amer. Math. Soc. 297 (1986) 125–142 MR849471

[6] H Endo, Linear independence of topologically slice knots in the smooth cobordism
group, Topology Appl. 63 (1995) 257–262 MR1334309

[7] M H Freedman, F Quinn, Topology of 4–manifolds, Princeton Mathematical Series
39, Princeton Univ. Press, Princeton, NJ (1990) MR1201584

[8] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathe-
matics 20, Amer. Math. Soc., Providence, RI (1999) MR1707327

[9] M Hedden, C Livingston, D Ruberman, Topologically slice knots with nontrivial
Alexander polynomial, Adv. Math. 231 (2012) 913–939 MR2955197

[10] J Hom, The knot Floer complex and the smooth concordance group, Comment. Math.
Helv. 89 (2014) 537–570 arXiv:1111.6635

[11] S Jabuka, S Naik, Order in the concordance group and Heegaard Floer homology,
Geom. Topol. 11 (2007) 979–994 MR2326940

[12] L Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737–745
MR0383406

Algebraic & Geometric Topology, Volume 15 (2015)

http://dx.doi.org/10.1007/BF01420118
http://www.ams.org/mathscinet-getitem?mr=593626
http://www.ams.org/mathscinet-getitem?mr=520521
http://dx.doi.org/10.2140/gt.2014.18.1539
http://dx.doi.org/10.2140/gt.2014.18.1539
http://www.ams.org/mathscinet-getitem?mr=3228458
http://dx.doi.org/10.2140/gt.2013.17.2103
http://dx.doi.org/10.2140/gt.2013.17.2103
http://www.ams.org/mathscinet-getitem?mr=3109864
http://dx.doi.org/10.2307/2000460
http://www.ams.org/mathscinet-getitem?mr=849471
http://dx.doi.org/10.1016/0166-8641(94)00062-8
http://dx.doi.org/10.1016/0166-8641(94)00062-8
http://www.ams.org/mathscinet-getitem?mr=1334309
http://www.ams.org/mathscinet-getitem?mr=1201584
http://www.ams.org/mathscinet-getitem?mr=1707327
http://dx.doi.org/10.1016/j.aim.2012.05.019
http://dx.doi.org/10.1016/j.aim.2012.05.019
http://www.ams.org/mathscinet-getitem?mr=2955197
http://dx.doi.org/10.4171
http://arxiv.org/abs/1111.6635
http://dx.doi.org/10.2140/gt.2007.11.979
http://www.ams.org/mathscinet-getitem?mr=2326940
http://projecteuclid.org/euclid.pjm/1102969920
http://www.ams.org/mathscinet-getitem?mr=0383406


428 Tim D Cochran and Peter D Horn

[13] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for
four-manifolds with boundary, Adv. Math. 173 (2003) 179–261 MR1957829

[14] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004)
58–116 MR2065507

[15] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-
manifolds, Ann. of Math. 159 (2004) 1027–1158 MR2113019

[16] P S Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, Algebr. Geom.
Topol. 11 (2011) 1–68 MR2764036

[17] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard, Ann
Arbor, MI (2003) MR2704683 Available at http://search.proquest.com/
docview/305332635

[18] D Ruberman, S Strle, Concordance properties of parallel links, Indiana Univ. Math. J.
62 (2013) 799–814 MR3164845

Department of Mathematics MS-136, Rice University
PO Box 1892, Houston, TX 77251-1892, USA

Department of Mathematics, Syracuse University
215 Carnegie Building, Syracuse, NY 13244-1150, USA

cochran@rice.edu, pdhorn@syr.edu

http://math.rice.edu/~cochran, http://pdhorn.expressions.syr.edu/

Received: 3 March 2014 Revised: 4 August 2014

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://dx.doi.org/10.1016/S0001-8708(02)00030-0
http://www.ams.org/mathscinet-getitem?mr=1957829
http://dx.doi.org/10.1016/j.aim.2003.05.001
http://www.ams.org/mathscinet-getitem?mr=2065507
http://dx.doi.org/10.4007/annals.2004.159.1027
http://dx.doi.org/10.4007/annals.2004.159.1027
http://www.ams.org/mathscinet-getitem?mr=2113019
http://dx.doi.org/10.2140/agt.2011.11.1
http://www.ams.org/mathscinet-getitem?mr=2764036
http://www.ams.org/mathscinet-getitem?mr=2704683
http://search.proquest.com/docview/305332635
http://search.proquest.com/docview/305332635
http://dx.doi.org/10.1512/iumj.2013.62.4982
http://www.ams.org/mathscinet-getitem?mr=3164845
mailto:cochran@rice.edu
mailto:pdhorn@syr.edu
http://math.rice.edu/~cochran
http://pdhorn.expressions.syr.edu/
http://msp.org
http://msp.org

	1. Introduction
	2. K_p lies in T_0
	3. Heegaard Floer correction terms
	4. Proof of Theorems 1.1 and 1.2
	Appendix A. CFK(D#D)
	Appendix B. spinc structures of lens spaces
	References

