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Gluing equations for
PGL.n; C/–representations of 3–manifolds

STAVROS GAROUFALIDIS

MATTHIAS GOERNER

CHRISTIAN K ZICKERT

Garoufalidis, Thurston and Zickert parametrized boundary-unipotent representations
of a 3–manifold group into SL.n;C/ using Ptolemy coordinates, which were inspired
by A–coordinates on higher Teichmüller space due to Fock and Goncharov. We
parametrize representations into PGL.n;C/ using shape coordinates, which are a
3–dimensional analogue of Fock and Goncharov’s X –coordinates. These coordinates
satisfy equations generalizing Thurston’s gluing equations. These equations are of
Neumann–Zagier type and satisfy symplectic relations with applications in quantum
topology. We also explore a duality between the Ptolemy coordinates and the shape
coordinates.

57M27, 57N10; 53D50

1 Introduction

1.1 Thurston’s gluing equations

Thurston’s gluing equations are a system of polynomial equations defined for a compact
3–manifold M together with a topological ideal triangulation T of the interior of M .
The gluing equations were introduced to concretely construct a complete hyperbolic
structure on M from a (suitable) solution to the gluing equations.

Although Thurston only considered manifolds whose boundary components are tori (a
necessary condition for the existence of a solution yielding a hyperbolic structure), the
gluing equations are defined for manifolds with arbitrary (possibly empty) boundary.
The existence of hyperbolic structures is of no concern to us here.

The gluing equations consist of an edge equation for each 1–cell of T and a cusp
equation for each generator of the fundamental group of each boundary component
of M . The system may be written in the form

(1-1)
Y
j

z
Aij

j

Y
j

.1� zj /
Bij D �i ;
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where A and B are matrices whose columns are parametrized by the simplices of T
and �i is a sign. Each variable zj may be thought of as an assignment of an ideal
simplex shape to a simplex of T . If the shapes zj 2 C n f0; 1g satisfy (1-1), as well
as some extra conditions on the arguments of zi , the ideal simplices glue together
to form a complete hyperbolic structure on M . Ignoring the cusp equations gives
structures that are incomplete. This gives rise to an efficient algorithm for constructing
hyperbolic structures, which has been effectively implemented in software packages
such as SnapPea [24], Snap [18], and SnapPy [3].

Among the numerous important features of the gluing equations we will focus on two:

(a) The symplectic property of the exponent matrix .A j B/ of the gluing equations
due to Neumann and Zagier [21].

(b) The link to PGL.2;C/ representations via a developing map

(1-2) V2.T /! f�W �1.M /! PGL.n;C/g=Conj;

where V2.T / denotes the affine variety of solutions in C n f0; 1g to the edge
equations, and the right-hand side denotes the set of conjugacy classes of repre-
sentations of �1.M / in PGL.2;C/.

We may thus think of V2.T / as a parametrization of representations. Note, however,
that V2.T / depends on the triangulation, and that the developing map need neither
be onto nor finite-to-one. However, if the triangulation is sufficiently fine (a single
barycentric subdivision suffices) the developing map is onto, ie every representation is
detected (including reducible ones). A solution satisfying the cusp equations as well
gives rise to a representation that is boundary-unipotent, ie takes peripheral curves to
unipotent elements. Our goals are:

� To extend Thurston’s gluing equations to PGL.n;C/, preserving the above
features for nD 2, using suitable shape parameters.

� To relate the Ptolemy parameters of Garoufalidis, Thurston and Zickert [16] to
the shape parameters via a monomial map.

The Ptolemy and shape coordinates were inspired by the A–coordinates and X –
coordinates on higher Teichmüller spaces due to Fock and Goncharov [12]. Note,
however, that Fock and Goncharov study surfaces, whereas we study 3–manifolds.
Shape coordinates for nD 3 have been studied independently by Bergeron, Falbel and
Guilloux [1], and were also used by Falbel [8] and Falbel and Wang [11] in connection
with spherical CR–structures.
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There is a very interesting interplay between the shape coordinates and the Ptolemy
coordinates. The groups PGL.n;C/ and SL.n;C/ are Langlands dual, and we believe
that this interplay is a 3–dimensional aspect of the duality discussed for surfaces by
Fock and Goncharov [12, page 33]. The duality is particularly explicit when all the
boundary components of M are tori; see Proposition 12.3.

While the Ptolemy variety naturally parametrizes boundary-unipotent representations,
the gluing equations parametrize the representations that are boundary-Borel, ie those
that take peripheral curves to Borel subgroups. The boundary-unipotent ones can be
determined by adding additional equations, which are generalizations of Thurston’s
cusp equations. This is studied in Section 13.

1.2 Our main results

Given a topological ideal triangulation T , each simplex of T is divided into
�
nC1

3

�
over-

lapping subsimplices (see Definition 4.1) and each edge of each subsimplex is assigned
a shape parameter (see Definition 4.2). These are the variables of the gluing equations.
There is an equation for each nonvertex integral point of T (see Definition 4.4). These
are given in Definition 4.6.

We can write the gluing equations (without the cusp equations) in the form

(1-3)
Y

s

z
Ap;s

s

Y
s

.1� zs/
Bp;s D �p;

where �p is a sign, and A and B are matrices whose rows are parametrized by
the nonvertex integral points p of T and whose columns are parametrized by the
subsimplices s of T .

Theorem 1.1 Let P D .A jB/ be the concatenation of the matrices A and B in (1-3).

(a) The rows of P Poisson commute, ie for any two rows v and w , hv;wi D 0,
where h ; i is the symplectic form given by

�
0
�I

I
0

�
.

(b) If all boundary components of M are tori, P is an r � 2r matrix, where
r D t

�
nC1

3

�
and t is the number of simplices of T .

Remark 1.2 When nD2, further symplectic properties (concerning the cusp equations
and the rank of .A j B/) hold. The generalizations of these properties are addressed in
Garoufalidis and Zickert [17].

Let Vn.T / denote the affine variety of solutions to the PGL.n;C/ gluing equations and
let Pn.T / denote the affine variety of solutions to the Ptolemy equations of Garoufalidis,
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Thurston and Zickert [16] (see Section 5 for a review). The link to representations
is given by the result below, which also gives the relationship between the shape
coordinates and the Ptolemy coordinates.

Theorem 1.3 There is a monomial map �W Pn.T /! Vn.T / which fits in a commuta-
tive diagram

(1-4)

Pn.T /
R //

�

��

�
�W �1.M /! SL.n;C/

boundary-unipotent

�ı
Conj

�

��

Vn.T /
R //

�
�W �1.M /!PGL.n;C/

boundary-Borel

�ı
Conj

where the map � is induced by the canonical map SL.n;C/! PGL.n;C/. Further-
more, the horizontal maps are surjective if the triangulation T is sufficiently fine.

Theorem 1.3 is an immediate consequence of Theorem 1.4 below, which displays some
more of the underlying structure. Briefly, a decoration is an equivariant assignment of
a coset to each vertex of each simplex of T (see Definition 8.1) and a cocycle is an
assignment of matrices to the edges satisfying the standard cocycle condition that the
product around each face is 1 (see Definition 9.3). Generic decorations and natural
cocycles are defined in Definition 8.5 and Definitions 9.12 and 9.13.

Theorem 1.4 There is a commutative diagram

(1-5)

�
Ptolemy

assignments

�
�

��

( Generic
SL.n;C/=N
decorations

)
�

��

Coo
L˛ˇ //

( Natural
.SL.n;C/;N /

cocycles

)
�

���
Shape

assignments

� ( Generic
PGL.n;C/=B

decorations

)
Zoo

L˛ˇ //

( Natural
.PGL.n;C/;B;H /

cocycles

)

in which the horizontal maps are one-to-one correspondences. All maps are explicit
with explicit inverses and respect the symmetries of a simplex.

The fact that the top horizontal maps are one-to-one correspondences was proved in [16].
Explicit formulas for the cocycles are given in Proposition 10.4 and Theorem 10.14.

To see that Theorem 1.4 implies Theorem 1.3, note that a cocycle determines a repre-
sentation by picking a base point and taking products along edge paths. Furthermore, a
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decoration also determines (up to coboundaries) a G –cocycle in the dual triangulation of
T , which has an oriented edge for each face pairing. The last statement of Theorem 1.3
follows from Remark 8.6.

Remark 1.5 A triangulation with interior 0–cells (eg a triangulation of a closed
manifold) can be regarded as an ideal triangulation of the manifold with boundary
obtained by removing disjoint open balls around the interior 0–cells. Our techniques
thus work for such triangulations as well. However, spherical boundary components
make the dimension of the varieties blow up, so explicit computations are not practical.
Furthermore, if some of the boundary components have negative Euler characteristic,
being boundary-unipotent (or boundary-Borel) is a very restrictive condition. Hence,
the most interesting case is the case where all boundary components are tori. This
condition, however, is not necessary.

1.3 Computations and applications

The collection of gluing equations of an ideal triangulation is a standard object of
SnapPy [3], which is used to study invariants of hyperbolic 3–manifolds. From the
gluing equations, one can compute the so-called Neumann–Zagier datum of an ideal
triangulation, which consists of the matrices .AjB/ defining the gluing equations,
together with a shape solution z . There are three recent applications of the Neumann–
Zagier datum in quantum topology: the quantum Riemann surfaces of Dimofte [4],
the loop invariants of Dimofte and Garoufalidis [7] and the 3D index of Dimofte,
Gaiotto and Gukov [5] (see also Garoufalidis [14]). These applications are reviewed in
Section 7.2, and lead to exact computations.

Our generalized gluing equations for PGL.n;C/ have been coded into SnapPy [3] by the
second author and are available since version 1.7. As an application, we can define and
efficiently compute the PGL.n;C/ Neumann–Zagier datum of an ideal triangulation.
Every function of the PGL.2;C/ Neumann–Zagier datum can be evaluated at the
PGL.n;C/ Neumann–Zagier datum.

Even for n D 2, our results provide new data. Pre-existing software such as Snap-
Pea [24], Snap [18] and SnapPy [3] all solve the gluing equations numerically (exact
expressions can then be guessed using the LLL algorithm), but only give the shapes for
the geometric representation. For the Ptolemy varieties exact computations are possible
for nD 2 even when there are many simplices, and there are often several components
of representations besides the geometric one.

Remark 1.6 Gröbner basis computations are feasible for the Ptolemy varieties even for
many simplices, but they appear to be impractical for the gluing equations even when the
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cusp equations are added. According to Fabrice Rouillier (private communication) this
difference, however, is an artifact, which can easily be mitigated by slightly modifying
the gluing equations. For a database of computations, see CURVE [9], and also Falbel,
Koseleff and Rouillier [10].

1.4 Overview of the paper

In Section 2 we define the notion of a concrete triangulation, which is a triangulation
together with a vertex ordering of each simplex. Two types of concrete triangulations are
particularly important: oriented triangulations and ordered triangulations. In Section 3
we review Thurston’s gluing equations, and in Section 4 we define the analogues
for n � 2. The key notion is that of a shape assignment, which is defined first for
a simplex and later for a triangulation. A shape assignment on a triangulation is a
shape assignment on each simplex, such that the shapes satisfy the generalized gluing
equations. In Section 5 we review the theory of Ptolemy coordinates developed in
Garoufalidis, Thurston and Zickert [16], and in Section 6 we define a map � from
Ptolemy assignments to shape assignments. In Section 7 we prove Theorem 1.1 and
discuss some applications in quantum topology. Sections 8–11 are devoted to proving
Theorem 1.4. In Section 8, we briefly review the notion of a decoration, and define the
maps C and Z in (1-5). In Section 9 we define the notion of a natural cocycle, and
define the maps L˛ˇ and L˛ˇ . In Section 10, we show that the natural cocycle of a
decoration is given explicitly in terms of the shapes (or Ptolemy coordinates), and in
Section 11 we show that the bottom maps of (1-5) are bijective, concluding the proof
of Theorem 1.4. In Section 12 we discuss a duality between Ptolemy coordinates and
shape coordinates, and in Section 13 we show how to add cusp equations to ensure that
the representations are boundary-unipotent. Finally, in Section 14 we write down the
gluing equations and cusp equations for the figure-eight knot complement for nD 3

and nD 4.

Remark 1.7 The SL.2;C/–Ptolemy varieties are often empty for the cusped census
manifolds. Even though the geometric representation of a cusped hyperbolic mani-
fold lifts to SL.2;C/, no lift is boundary-unipotent, and often (nontrivial) boundary-
unipotent SL.2;C/–representations don’t exist. In [16], we also considered Ptolemy
varieties for pSL.n;C/ D SL.n;C/=˙ I , defined when n is even via an obstruc-
tion class in H 2.M; @M IZ=2Z/. The primary purpose of this was to ensure that
the image of the geometric representation under the unique irreducible represen-
tation PSL.2;C/ ! pSL.n;C/ is detected for all census manifolds (more gener-
ally, for triangulations where all edges are essential). In this paper we shall only
consider the SL.n;C/–Ptolemy variety. One can develop all the theory using the
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pSL.n;C/–Ptolemy varieties, but since our main interest here is in the shape coordi-
nates (and for clarity of exposition), we shall not do this here.

Remark 1.8 In Garoufalidis, Thurston and Zickert [16] we defined the volume (in
fact, complex volume) of a boundary-unipotent SL.n;C/–representation and gave an
explicit formula using the Ptolemy coordinates. Similarly, one can define the volume
of a decorated PGL.n;C/–representation by adding the volumes of each of the shapes.
The volume is an invariant of a decorated PGL.n;C/–representation (in the sense of
Remark 8.4), but we do not know if the volume is independent of the decoration. This
is nontrivial even for nD 2, where it was first proved by Francaviglia [13]. We shall
not deal with this here.

Acknowledgements The authors wish to thank Nathan Dunfield, Walter Neumann
and Dylan Thurston for helpful comments. Stavros Garoufalidis was supported in part
by NSF grants number DMS-11-05678 and DMS-14-06419 and Christian Zickert was
supported in part by NSF grants number DMS-13-09088 and DMS 10-07054.

2 Concrete triangulations

In all of the following M denotes a compact, oriented 3–manifold with (possibly
empty) boundary. Let yM be the space obtained from M by collapsing each boundary
component of M to a point. An ordered simplex is a simplex together with an ordering
of its vertices.

Definition 2.1 An abstract triangulation T of M is an identification of yM with a
space obtained from a finite collection of 3–simplices by gluing together pairs of faces
via face-pairings, ie affine homeomorphisms. A concrete triangulation T of M is
an abstract triangulation together with a fixed identification of each 3–simplex with a
standard ordered 3–simplex.

The advantage of a concrete triangulation is that each simplex inherits a vertex ordering
from the standard simplex. This extra datum gives us a concrete indexing scheme for
the vertices and edges and allows us to concretely write down defining equations for
the gluing equation variety and the Ptolemy variety. An abstract triangulation can be
thought of as an equivalence class of concrete triangulations under reordering. As we
shall see, a reordering changes the varieties by canonical isomorphisms. Hence, they
only depend on the abstract triangulation.

Note that the vertex ordering of each simplex induces an orientation, which may or
may not agree with the orientation inherited from M .
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Definition 2.2 A concrete triangulation of M is an oriented triangulation if the
orientation of each simplex agrees with the orientation of M . A concrete triangulation
of M is an ordered triangulation if the face-pairings are order-preserving. An abstract
triangulation is orderable if it supports an ordered triangulation.

As we shall see, the shape coordinates are most conveniently expressed in terms
of oriented triangulations, whereas the Ptolemy coordinates are most conveniently
expressed in terms of ordered triangulations. Note that since M is assumed to be
oriented, one can always order the vertices to make the triangulation oriented.

Remark 2.3 One can always obtain an orderable triangulation by performing a se-
quence of 2–3 moves and 1–4 moves. One can do this systematically in such a way
that the total number of simplices is increased by at worst a factor of 6. Alternatively,
a barycentric subdivision always provides an ordered triangulation by ordering vertices
by codimension.

A

C
B

DA

C

B

D

0 2

31

0 2

31

Figure 1: An ordered, but not oriented, triangulation of the figure-8 knot. No
vertex ordering exists making the triangulation both ordered and oriented.

C

A
B

DA

C

B
D

0 2

31

0 2

31

Figure 2: An oriented, but not ordered triangulation of the figure-8 knot sister.
The underlying abstract triangulation is unorderable.

2.1 Face pairing permutations

We canonically identify the symmetry group of an ordered simplex with S4 .
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Definition 2.4 Let �0 and �1 be ordered simplices and let  from face f0 of �0

to face f1 of �1 be a face pairing. The face pairing permutation corresponding to  
is the unique permutation � 2 S4 such that  takes vertex v of �0 to vertex �.v/
of �1 whenever v is a vertex in f0 .

Note that if we identify �0 and �1 via the unique order-preserving isomorphism, �
is the unique extension of  to a symmetry of �0 . See Figure 6.

3 Thurston’s gluing equations

In this section we briefly review Thurston’s gluing equations. For details we refer to
Thurston [23] or Neumann and Zagier [21].

Let T be an oriented triangulation of M . The gluing equations are given in terms
of a variable z� 2 C n f0; 1g, called a shape coordinate, for each simplex � of M .
To define the equations, assign to each edge of each simplex � of M one of three
shape parameters; see Figure 3. The shape parameters are given in terms of the shape
coordinate z� by

(3-1) z�; z0� D
1

1�z�
; z00� D 1�

1

z�
D�

1�z�
z�

:

0

1

2

3z00

z00

z z

z0
z0

Figure 3: Assigning shape parameters to the edges of a simplex

The gluing equations consist of edge equations and cusp equations. There is an edge
equation for each edge cycle e of T , obtained by setting the product of the shape
parameters assigned to each edge in e equal to 1. Each edge equation thus has the form

(3-2)
Y
�

z
a�
�

Y
�

z
0b�
�

Y
�

z
00c�
�
D 1;

where a� , b� and c� are integers.

The cusp equations consist of an equation for each generator of the fundamental group
of each boundary component. If  is a peripheral (normal) curve, we obtain a cusp
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equation by setting the product of the shape parameters (or their inverses) of edges
passed by  equal to 1 ( passes an edge E of a simplex � if it enters and exits �
through faces intersecting in E ). A shape parameter appears with its inverse if and
only if  passes e in a clockwise direction viewed from the cusp. The cusp equations
have the same form as (3-2).

The following result is well known. We will generalize this to representations in
PGL.n;C/ below.

Theorem 3.1 A solution to the edge equations with all shape coordinates in C n f0; 1g
uniquely (up to conjugation) determines a representation �W �1.M /! PGL.2;C/.
If the solution also satisfies the cusp equations, � is boundary-unipotent, ie takes
peripheral curves to a conjugate of N .

3.1 Symplectic properties of the gluing equations

It is sometimes convenient to express the gluing equations entirely in terms of the z� .
Using (3-1), we can rewrite (3-2) as

(3-3)
Y
�

z
A�
�

Y
�

.1� z�/
B� D˙1:

These equations are said to be of Neumann–Zagier type. Each such equation gives a row
vector consisting of A� and B� . The resulting matrix has some symplectic properties.

4 Generalized gluing equations

In this section we define the higher-dimensional analog of Thurston’s edge equations.
The generalized cusp equations will be studied in Section 13.

The idea is to subdivide each simplex of M into overlapping subsimplices, and assign
a shape coordinate to each edge of each subsimplex. When the edge midpoints of
different subsimplices intersect, we obtain a gluing equation by setting the product of
the respective shape parameters equal to 1.

4.1 Simplex coordinates

We identify each simplex of a concrete triangulation T with the ordered simplex

(4-1) �3
n D

˚
.x0;x1;x2;x3/ 2R4

j 0� xi � n;x0Cx1Cx2Cx3 D n
	
:
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0

1

3

2

s=0600  

s=3300

s=2220

s=1113

s=0303 s=0204

t=0314

z2220
 0011 

z0600
 1010 

Figure 4: Subsimplices and shape parameters for nD 8

By removing the four vertices, we obtain the ideal standard simplex P�3
n . Consider

the sets

�3
n.Z/D�

3
n\Z4; P�3

n.Z/D P�
3
n\Z4 and �3

n.ZC/D�
3
n\Z4

C

of integral points, nonvertex integral points, and integral points lying entirely inside
the simplex. A simple counting argument shows that

(4-2) j�3
n.Z/j D

� nC3

3

�
; j P�3

n.Z/j D
� nC3

3

�
�4 and j�3

n.ZC/j D
� n�1

3

�
:

Note that P�3
2
.Z/ consists of the edge midpoints of �3

2
and thus naturally parametrizes

the undirected edges.

When convenient, we abbreviate tuples by dropping the parentheses and the commas,
eg we write 1010 instead of .1; 0; 1; 0/. Note that the indices of an edge and its opposite
edge add up to 1111.

4.2 Symmetries of a simplex

The natural vertex ordering of �3
n induces an identification of the symmetry group

of �3
n with S4 , such that � 2 S4 is the restriction to �3

n of the unique linear map
taking the standard basis vector ei to e�.i/ , i 2 f0; 1; 2; 3g. Note that � extends to
� W�3

n!�3
n; .x0;x1;x2;x3/ 7! .x��1.0/;x��1.1/;x��1.2/;x��1.3//.

4.3 Shape assignments

We now introduce the generalized shape parameters. We will need to replace the
traditional labeling of the shape parameters z0 and z00 by a notation which better exhibits
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the symmetry and naturally allows for a unified treatment of the gluing equations for
all n� 2.

Definition 4.1 A subsimplex of �3
n is a subset S of �3

n obtained by translating
�3

2
�R4 by an element s in �3

n�2
.Z/� Z4 , ie S D sC�3

2
.

Fix n� 2. We wish to assign shape parameters to each edge of each subsimplex. Note
that the set of all these edges is naturally parametrized by the set �3

n�2
.Z/� P�3

2
.Z/,

the first coordinate being the subsimplex and the second coordinate the edge.

Definition 4.2 A shape assignment on �3
n is an assignment

(4-3) zW �3
n�2.Z/�

P�3
2.Z/!C n f0; 1g; .s; e/ 7! ze

s ;

satisfying the shape parameter relations

z0011
s D z1100

s D
1

1� z0101
s

;(4-4a)

z0110
s D z1001

s D
1

1� z0011
s

;(4-4b)

z0101
s D z1010

s D
1

1� z0110
s

:(4-4c)

Remark 4.3 When n D 2, there is only a single subsimplex indexed by s D 0000,
so �3

n�2
.Z/� P�3

2
.Z/Š P�3

2
.Z/ parametrizes the edges of a simplex. Since the shape

parameters in (3-1) satisfy

z D
1

1�z00
; z0 D

1

1�z
; z00 D

1

1�z0
;

Definition 4.2 generalizes Thurston’s shape assignments. The new notation relates to
that of Thurston as follows:

z D z0011
s D z1100

s ; z0 D z0110
s D z1001

s ; z00 D z0101
s D z1010

s :

4.4 Gluing equations for oriented triangulations

Let T be an oriented triangulation. The gluing equations are indexed by (nonvertex)
integral points of T defined below and come in three flavors: edge equations, face
equations and interior equations. In Section 4.6 we generalize the gluing equations to
all concrete triangulations.
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Recall that T is an identification of yM with a quotient of a disjoint union of standard
simplices. Hence, T comes naturally equipped with a map

(4-5) qW
a

�3
n!

yM :

Definition 4.4 An integral point of T is a point p in

q
�a

�3
n.Z/

�
� yM :

We view p as an equivalence class of pairs .t; �/ with t 2 �3
n.Z/ and � 2 T , and

write .t; �/ 2 p if .t; �/ is a representative of p . The set of all integral points of T is
denoted by T .Z/.

Definition 4.5 Let p be an integral point of T represented by .t; �/.

(i) We call p a vertex point if t is a vertex of �3
n.Z/.

(ii) We call p an edge point if t is on an edge of �3
n.Z/.

(iii) We call p a face point if t is on a face �3
n.Z/.

(iv) We call p an interior point if t is in the interior of �3
n.Z/, ie if t 2�3

n.ZC/.

We denote the set of nonvertex integral points by PTn.Z/.

Definition 4.6 A shape assignment on an ordered triangulation T is a shape assign-
ment ze

s;�
for each simplex �2T such that for each nonvertex integral point p2 PTn.Z/,

the generalized gluing equation

(4-6)
Y

.t;�/2p

Y
tDsCe

ze
s;� D 1

is satisfied. The variety of shape assignments on T is denoted by Vn.T /.

Note that the gluing equation for an integral point p sets equal to 1 the product of the
shape parameters of all edges of subsimplices such that the edge midpoint intersects p .
The generalized gluing equations come in three different flavors depending on the type
of the integral point p .
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z00
1

z0

z0
2

2

0 3
1

3

2

0

3

2

0

1

z0101
0102;1

z0110
0120;2

z1100
1200;0

0

2

3

2

0

1

3

1
3

2

0

(a) z0z00
1
z0

2
D 1 (b) z1100

1200;0
z0101

0102;1
z0110

0120;2
D 1

Figure 5: Edge equations for nD 2 (traditional notation) and nD 5

1
2

3
0

�0

3
0

�1

2
1

z0011
2011;0z1001

1021;0z1010
1012;0„ ƒ‚ …

t0D2022

z0011
0211;1z0101

0121;1z0110
0112;1„ ƒ‚ …

t1D0222

D 1

Figure 6: A face equation for nD 6 . The indicated face-pairing is encoded
by the permutation � D .0231/ 2 S4 .

� Edge equations If p is an edge point, the equation is similar to the usual gluing
equation in that the number of terms equals the length of the edge cycle. There are
n� 1 edge gluing equations per edge of T involving shape parameters at different
levels. See Figure 5.

� Face equations If p is a face point, the product consists of six terms with three
terms from each of the two simplices sharing the face. There are

�
n�1

2

�
equations per

face. See Figure 6.

� Internal equations If p is an interior point, the equation consists of six terms
involving subsimplices of the same simplex, ie this equation is independent of the
triangulation. There are

�
n�1

3

�
equations per simplex. See Figure 7.
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0

1
3

2
z0011

2210
z0101

2120
z0110

2111

z1100
1121

z1010
1211

z1001
1220

z0011
2210z0101

2120z0110
2111z1001

1220z1010
1211z1100

1121„ ƒ‚ …
tD2221

D 1

Figure 7: An internal equation for nD 7

Remark 4.7 There are no vertex equations. If p is a vertex point, (4-6) is tautologically
satisfied since the product is empty.

4.5 The pullback of a shape assignment under a symmetry

Recall that we identify the symmetry group of �n with S4 .

Definition 4.8 Let � 2 S4 and let zW �3
n�2

.Z/� P�3
2
.Z/!C n f0; 1g be a map. The

pullback of z under � is the map given by

(4-7) ��zW �3
n�2.Z/�

P�3
2.Z/!C n f0; 1g; .s; e/ 7!

�
z
�.e/

�.s/

�sgn�
:

The pullback obviously satisfies the standard properties ���� D .��/� and id� D id.

Lemma 4.9 The pullback preserves shape assignments.

Proof Let z be a shape assignment. One easily checks that (4-4) is preserved under
the A4 action on the indices, so the result follows for � 2A4 . Hence, all that remains
is to prove the result for the permutation �01 switching 0 and 1. The equation

(4-8) .��01z/0011
s D .��01z/1100

s D
1

1� .��
01

z/0101
s

is equivalent to

(4-9) .z0011
�01.s/

/�1
D .z1100

�01.s/
/�1
D

1

1� .z1001
�01.s/

/�1
;

which follows from (4-4a) and (4-4b). The other equations are similarly verified.
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Note that if � 2A4 is a rotation, the pullback ��z is the shape assignment obtained
from z by rotating the simplex by � . If � is orientation-reversing, one must also
replace all the shape parameters by their inverses.

Remark 4.10 We view the pullback of a shape assignment on an ordered simplex � as
the natural induced shape assignment on the simplex �0 obtained from � by reordering
the vertices such that the i th vertex of �0 is the �.i/th vertex of �.

0 1

3 2

.��z/0101
0210

0

1
3

2

z0110
0021

Figure 8: Reordering by � D .123/

0 2

1
3

.��z/0101
0210

0

1 3

2

z0110
0021

Figure 9: Pullback by � D .123/

4.6 Gluing equations for general concrete triangulations

Since every concrete triangulation can be obtained from an oriented one by reordering
some of the vertices, Lemma 4.9 motivates the following.

Definition 4.11 A shape assignment on a concrete triangulation T is a shape assign-
ment on each simplex such that

(4-10)
Y

.t;�/2p

Y
tDsCe

.ze
s;�/

�� D 1;

where �� is a sign indicating whether or not the orientation of � given by the vertex
ordering agrees with the orientation inherited from M . The variety of shape assignments
is denoted by Vn.T /.
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The following is an immediate corollary of Lemma 4.9; see Remark 4.10.

Lemma 4.12 Let fz�i
g be a shape assignment on .M; T / and let T 0 be the triangula-

tion obtained from T by reordering each simplex �i by a permutation �i 2 S4 . The
shape assignments f��i z�i

g form a shape assignment on .M; T 0/.

Corollary 4.13 Up to canonical isomorphism, the gluing equation variety only de-
pends on the abstract triangulation.

Remark 4.14 The gluing equations can also be defined if M is nonorientable: pick
an oriented neighborhood U of the integer point p . The sign �� now indicates whether
or not the orientation of � agrees with the orientation of U . We will not explore
this further.

5 Review of Ptolemy coordinates

Ptolemy coordinates were introduced in [16] inspired by A–coordinates on higher
Teichmüller spaces due to Fock and Goncharov [12]. They are indexed by nonvertex
integral points of T satisfying Ptolemy relations, each involving the six Ptolemy
coordinates assigned to the edges of a subsimplex. They are most naturally defined for
ordered triangulations. General concrete triangulations are studied in Section 5.3.

5.1 Ptolemy assignments for ordered triangulations

Definition 5.1 A Ptolemy assignment on �3
n is an assignment

(5-1) P�3
n.Z/!C n f0g; t 7! ct

of a nonzero complex number ct to each nonvertex integral point t of �3
n such that

the Ptolemy relation

(5-2) csC1001csC0110C csC1100csC0011 D csC1010csC0101

is satisfied for each subsimplex s 2�3
n�2

.Z/.

Definition 5.2 A Ptolemy assignment on an ordered triangulation T is an assignment

(5-3) PTn.Z/!C n f0g; p 7! cp

of a nonzero complex number to each nonvertex integral point p of T such that for
each simplex in T the identification with �3

n induces a Ptolemy assignment on �3
n . If

.t; �/ 2 p is a representative of p , we write ct;� for the Ptolemy coordinate cp . The
variety of Ptolemy assignments is denoted by Pn.T /.
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Remark 5.3 Whenever convenient, we extend a Ptolemy assignment, so that it takes
vertex points to 1.

0

1

3

2

c0231

c0141c1230

c1140

c0240

c1131

c1131c0240C c1230c0141 D c1140c0231

Figure 10: Ptolemy relation for the subsimplex s D 0130

Remark 5.4 Note that the Ptolemy relation (5-2) is local, ie independent of the
triangulation T . The triangulation determines whether .t; �/ and .t 0; �0/ represent
the same integral point p , and, hence, whether the Ptolemy coordinates ct;� and ct 0;�0

are identified.

5.2 The pullback of a Ptolemy assignment under a symmetry

The Ptolemy coordinates are not as well-behaved under symmetries as the shapes. The
pullback naively defined by .��ct /D c�.t/ does not preserve Ptolemy assignments.
To fix this, we must modify by signs depending on both � 2 S4 and t .

Let I denote the identity matrix in GL.n;C/. For each t 2�3
n.Z/, we can write I

as a concatenation of n� ti matrices I t
i , ie we have I D

�
I t

0
jI t

1
jI t

2
jI t

3

�
. For � 2 S4

define

(5-4) I�;t D
�
I t
�.0/jI

t
�.1/jI

t
�.2/jI

t
�.3/

�
:

Note that

(5-5) I��;��.t/ D I�;��.t/I�;�.t/; det I�ij ;t D det I�ij ;�ij .t/ D .�1/ti tj ;

where �ij is the permutation switching i and j .
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Definition 5.5 Let � 2 S4 and let cW P�3
n.Z/! C� be a map. The pullback of c

under � is the map

(5-6) .��c/t D det.I�;�.t//c�.t/:

Using (5-5), one checks that the pullback satisfies the properties ���� D .��/� and
id� D id.

Remark 5.6 The formula is motivated by Lemma 8.9 below.

Remark 5.7 Note that det I�;�.t/ only depends on the parity of the entries of t (and
on � ). It equals the sign of the permutation shuffling the odd entries of t ; eg if � takes
t0 D .0; 0; 3; 1/ to t1 D .0; 1; 0; 3/, det I�;�.t0/ D �1 since the permutation taking
.3; 1/ to .1; 3/ is odd. See eg Figure 11.

Lemma 5.8 The pullback preserves Ptolemy assignments.

Proof Let cW P�3
n ! C� be a Ptolemy assignment. Since S4 is generated by the

transpositions �01 , �12 and �23 , it is enough to prove the result for these. We prove it
for �01 , the others being similar. We wish to prove that

(5-7) .��01c/sC1001.�
�
01c/sC0110C .�

�
01c/sC1100.�

�
01c/sC0011

� .��01c/sC1010.�
�
01c/sC0101 D 0:

Using (5-6) and (5-5) and letting s0 D �01s , the left side of (5-7) becomes

(5-8) .�1/.s0C1/s1.�1/s0.s1C1/cs0C0101cs0C1010

C .�1/.s0C1/.s1C1/.�1/s0s1cs0C1100cs0C0011

� .�1/s0.s1C1/.�1/s1.s0C1/cs0C1001cs0C0110

D .�1/s0Cs1.cs0C0101cs0C1010� cs0C1100cs0C0011� cs0C1001cs0C0110/:

By the Ptolemy relation for s0 this equals 0, proving the result.

As in Remark 4.10, we shall view the pullback as a natural induced Ptolemy assignment
on a reordered simplex.

5.3 Ptolemy assignments for general concrete triangulations

For general concrete triangulations the Ptolemy coordinates on faces of different
simplices must be identified by signs given by the face pairing permutations.
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Definition 5.9 A Ptolemy assignment on .M; T / is a Ptolemy assignment for each
simplex of T such that Ptolemy coordinates on identified faces are identified via the
pullback of the permutation matrix. More precisely, if f0��0 is paired with f1��1

via the permutation � , we require that

(5-9) .��c�1
/t0
D .c�0

/t0

for each t0 2�
3
n on face f0 . Equivalently, we require that

(5-10) .c�0
/t0
D det.I�;�.t0//.c�1

/�.t0/:

The variety of Ptolemy assignments is denoted by Pn.T /.

�
�

�

�
�

�

�

�

�

�

� �

0

1
2

3

0

1
2

3
t0 D 0031

t1 D 0103

�0
�1

Figure 11: Identification of Ptolemy coordinates

Note that if T is an ordered triangulation, all face pairings are order-preserving, so all
signs are positive, and the definition agrees with Definition 5.1.

Lemma 5.10 Let T 0 be the triangulation obtained from T by reordering the vertices
of �i by a permutation �i . Then f��i c�i

g is a Ptolemy cochain on T 0 .

Proof We must prove that the coordinates on identified faces are identified via the
pullback. Let c�0

i
D ��i c�i

. Suppose fi ��i is glued to fj ��j by a permutation � .
The corresponding face pairing involving �0i and �0j is then � 0 D ��1

j ��i . Since
��c�j agrees with c�i

on face f0 , it follows from the standard pullback properties
that � 0�c�0

j
and c�0

i
also agree on f0 . This proves the result.

Corollary 5.11 Up to canonical isomorphism, the Ptolemy variety only depends on
the abstract triangulation.
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6 From Ptolemy coordinates to shapes

We now define a monomial map � from Ptolemy assignments to shape assignments.
Given a Ptolemy assignment c on a simplex �3

n , define zW �3
n�2

.Z/ � P�3
2
.Z/ !

C n f0; 1g by

(6-1)

z1100
s D z0011

s D
csC1001 csC0110

csC1010 csC0101

;

z0110
s D z1001

s D
csC0101 csC1010

csC1100 csC0011

;

z1010
s D z0101

s D�
csC1100 csC0011

csC1001 csC0110

:

Lemma 6.1 The assignment (6-1) is a shape assignment, ie we have a well-defined map

(6-2) �W fPtolemy assignments on �3
ng ! fshape assignments on �3

ng:

Proof Using the Ptolemy relation, we obtain

1

1� z0101
s

D
1

1C
csC1100 csC0011

csC1001 csC0110

D
csC1001 csC0110

csC1100 csC0011C csC1001 csC0110

D
csC1001 csC0110

csC1010 csC0101

D z1100
s :

The other two equations in (4-4) follow similarly.

Lemma 6.2 The map � respects pullbacks.

Proof It is enough to prove this for the permutations �01 , �12 and �23 . We prove it
for �01 , the other cases being similar. Since sgn �01 D�1, we must prove that

(6-3) .�.��01c//es D .�.c/
�01.e/

�01.s/
/�1:

We prove this for the edge e D 1100, the other cases being similar. Using (5-8),
we obtain

(6-4) .�.��01c//1100
s D

.��
01

c/sC1001.�
�
01

c/sC0110

.��
01

c/sC1010/.�
�
01

c/sC0101

D
cs0C0101cs0C1010

cs0C0110cs0C1001

D .�.c/1100
s0 /�1;

where s0 D �01.s/. This proves (6-3), hence the result.
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Theorem 6.3 Let T be a concrete triangulation of M and let ct;� be a Ptolemy
assignment on .M; T /. The induced shape assignment on each simplex satisfies the
generalized gluing equations and thus induces a shape assignment on .M; T /.

Corollary 6.4 The map � induces a map �W Pn.T /! Vn.T /.

We divide the proof of Theorem 6.3 into three parts, one for each type of equation.
The idea is to prove the result for the local model near an integral point of each type.
Although the local model is not a manifold, Ptolemy assignments are defined in the
obvious way, ie by identifying Ptolemy coordinates of identified faces via the pullback
of the face pairing permutations.

6.1 Proof for edge equations

Let K be the space defined by cyclically gluing together k simplices �0; : : : ; �k�1

along the common edge 01, pairing all faces via the permutation .23/; see left image
in Figure 12.

0

1

3
2 3

2 3
2

3

0

1
2

3

3

Figure 12: Left: local model near an edge point. Right: local model near a
face point.

Lemma 6.5 If fc�i
g is a Ptolemy assignment on K , the assignments f�.c�i

/g

satisfy the edge equations for all integral points on the edge 01. The same holds for the
complex K0 obtained by reordering the vertices of the simplices of K .

Proof An integral point p on 01 has representatives .t; �i/ with t D .t0; t1; 0; 0/

being fixed. The left-hand side of the edge equation for p is given by

(6-5) z1100
s;0 z1100

s;1 � � � z1100
s;k�1; with s D .t0� 1; t1� 1; 0; 0/;
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which expands to
csC1001;0 csC0110;0

csC1010;0 csC0101;0

csC1001;1 csC0110;1

csC1010;1 csC0101;1

� � �
csC1001;k�1 csC0110;k�1

csC1010;k�1 csC0101;k�1

:

Since the Ptolemy coordinates c1001;i D c1010;iC1 and c0101;i D c0110;iC1 on two
adjacent simplices are identified, all terms cancel. Hence, (6-5) equals 1 as desired. The
corresponding result for K0 follows from compatibility under reordering (Lemmas 6.2,
4.12 and 5.10).

Corollary 6.6 Theorem 6.3 holds for the edge equations.

Proof The complex K models a neighborhood around an edge e of T in the sense
that there is a simplicial map � W K! yM mapping 01 to e , which is unique up to
changing the orientation of K and cyclically relabeling the simplices. By compatibility
under reordering, we may assume that � is order-preserving. A Ptolemy assignment
on T pulls back to a Ptolemy assignment on K , such that edge equations on 01 descend
to the corresponding edge equations on e . The result now follows from Lemma 6.5.

6.2 Proof for face equations

A local model for a neighborhood of a face point p is the complex K obtained by
gluing two simplices �0 and �1 by identifying the faces 012 of each simplex in the
order-preserving way; see the right image in Figure 12. As for the edge equations, it is
enough to verify the face equations on K .

Lemma 6.7 A Ptolemy assignment on K gives shape assignments satisfying the face
equations. The same holds after reordering.

Proof Let t D .t0; t1; t2; 0/ D ˛ C 1110, where ˛ is a face point of �3
n�3

. The
representatives of the corresponding face point p of K are .t; �0/ and .t; �1/. Since
�0 and �1 have opposite orientations in K , the face equation for p involves the terms

(6-6) z0110
˛C1000;0z1010

˛C0100;0z1100
˛C0010;0

�
z0110
˛C1000;1z1010

˛C0100;1z1100
˛C0010;1

��1
:

Using (6-1), the product of the first three terms equals

(6-7)
c˛C2010;0 c˛C1101;0

c˛C2100;0 c˛C1011;0

�
�

c˛C1200;0 c˛C0111;0

c˛C1101;0 c˛C0210;0

�
c˛C1011;0 c˛C0120;0

c˛C1020;0 c˛C0111;0

;

which simplifies to

(6-8) �
c˛C2010;0 c˛C1200;0 c˛C0120;0

c˛C2100;0 c˛C0210;0 c˛C1020;0

:
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Note that the ratio (6-8) only involves Ptolemy coordinates on the face 012 of �0 and
that these are identified with the corresponding Ptolemy coordinates on �1 . Hence,
(6-8) equals the corresponding expression for

(6-9) z0110
˛C1000;1z1010

˛C0100;1z1100
˛C0010;1;

so (6-6) equals 1 as desired. The second statement follows from compatibility under
reordering.

Corollary 6.8 Theorem 6.3 holds for the face equations.

Remark 6.9 The ratios (6-8) will reappear in later sections as X –coordinates. They
agree with the X –coordinates considered by Fock and Goncharov [12].

6.3 Proof for internal equations

A local model near an interior point is a single simplex.

Lemma 6.10 A Ptolemy assignment on �3
n gives rise to a shape assignment satisfying

the internal gluing equations.

Proof Let t be of the form t D ˛C 1111 with ˛ 2�3
n�4

.Z/. The gluing equation
for t involves

(6-10) z0011
˛C1100z0101

˛C1010z0110
˛C1001z1001

˛C0110z1010
˛C0101z1100

˛C0011:

When expanding this using (6-1), the two signs cancel and the numerator and de-
nominator both consist of all Ptolemy coordinates c˛Cˇ where ˇ is a permutation of
.0; 1; 1; 2/. Hence, the product is 1.

Corollary 6.11 Theorem 6.3 holds for the internal gluing equations.

7 Symplectic properties and quantum topology

7.1 Poisson commutation relations

In this section we prove Theorem 1.1. This is done by generalizing some of the
combinatorial properties of triangulations studied by Neumann [20]. The first part is a
consequence of Proposition 7.4 below, and the second part is an elementary counting
argument. In a subsequent publication [17] we will study the full symplectic properties
of the PGL.n;C/–gluing equations, generalizing Neumann’s work [20] for nD 2.
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In this section we assume for simplicity that the triangulation T is oriented.

Letting

(7-1) zs D z1100
s D z0011

s ; z0s D z0110
s D z1001

s ; z00s D z1010
s D z0101

s ;

it follows immediately from Definition 4.6 that the gluing equations can be written as

(7-2)
Y

z
A0p;s
s

Y
.z0s/

B0p;s
Y
.z00s /

C 0p;s D 1

for integral matrices A0 , B0 and C 0 , whose rows are parametrized by the integral
points of T and whose columns are parametrized by the subsimplices of T .

Since z0s D 1=.1� zs/ and z00s D�.1� z/=z , we can write the gluing equations as

(7-3)
Y

z
Ap;s

s

Y
.1� zs/

Bp;s D �p;

where ADA0�C 0 , B D C 0�B0 and �p is a sign. We wish to prove that the rows of
.A j B/ Poisson commute.

Remark 7.1 One easily checks that �p is 1 if p is a face point or an interior point.
If p is an edge point, �p is not 1 in general, but one can show that �p is 1 if the
triangulation is ordered. We shall not need this here.

Recall that P�3
2

parametrizes the edges of �3
2

. Let J�3
2

be the abelian group generated
by P�3

2
subject to the relations

1100� 0011D 1010� 0101D 1001� 0110D 0;(7-4a)

1100C 0110C 1010D 0:(7-4b)

Relation (7-4a) states that opposite edges are equal, and (7-4b) states that the sum of
the three edges meeting at a vertex is 0.

We endow J�3
2

with the skew-symmetric bilinear form given by

(7-5)
h1100; 0110i D h0110; 1010i D h1010; 1100i D 1;

h0110; 1100i D h1010; 0110i D h1100; 1010i D �1:

Note that h ; i is nonsingular. Let

(7-6) Jn.T /D
M
�2T

M
s2�3

n�2

J�3
2

be a direct sum of copies of J�3
2

, one for each subsimplex of each simplex of T . Note
that Jn.T / is generated by the set of all edges of all subsimplices of the simplices
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of T . We represent a generator as a tuple .�; s; e/. We extend the bilinear form h ; i
in the natural way, making the direct sum orthogonal.

Remark 7.2 When nD 2, Jn.T / equals the space J considered by Neumann [20,
Section 4].

Let Ln.T / denote the free abelian group on the nonvertex integral points of T . Consider
the map

(7-7) ˇW Ln.T /! Jn.T /; p D f.t; �/g 7!
X

.t;�/2p

X
eCsDt

.�; s; e/:

Using (7-4a), we can write ˇ.p/ as

(7-8)
X
�2T

s2�3
n�2

A0p;s.�; s; 1100/C
X
�2T

s2�3
n�2

B0p;s.�; s; 0110/C
X
�2T

s2�3
n�2

C 0p;s.�; s; 1010/;

where the entries of A0 , B0 and C 0 are all either 0, 1, or 2. Using (7-4b), this further
simplifies to

(7-9) ˇ.p/D
X
�2T

s2�3
n�2

Ap;s.�; s; 1100/C
X
�2T

s2�3
n�2

Bp;s.�; s; 0110/:

Note that the matrices A0 , B0 , C 0 , A and B are exactly those given by (7-2) and (7-3).

We identify Ln.T / with its dual via the natural basis, and Jn.T / with its dual via h ; i.

Lemma 7.3 The dual ˇ�W Jn.T /!Ln.T / of ˇ is given by

(7-10)

.�; s; 1100/ 7! Œ.sC 1001; �/�C Œ.sC 0110; �/�

� Œ.sC 1010; �/�� Œ.sC 0101; �/�;

.�; s; 0110/ 7! Œ.sC 1010; �/�C Œ.sC 0101; �/�

� Œ.sC 1100; �/�� Œ.sC 0011; �/�;

.�; s; 1010/ 7! Œ.sC 1100; �/�C Œ.sC 0011; �/�

� Œ.sC 1001; �/�� Œ.sC 0110; �/�;

where Œ.t; �/� denotes the integral point determined by .t; �/.

Proof This is an immediate consequence of (7-9) and (7-5).
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Figure 13: Left: the signs of the terms in ˇ�.�; s; e/ . Right: the signs of the
terms in ˇ� ıˇ.Œ.�0; t0�/ coming from �0 .

One can view the map geometrically as in the left image in Figure 13. The orientation
of � determines which signs are positive.

The elements .�; s; 1100/ and .�; s; 0110/ provide a basis for Jn.T /. We fix an
ordering such that .�; s; 1100/ > .�0; s0; 0110/. In this basis, the form h ; i becomes
the standard symplectic form on Z2r given by

�
0
�I

I
0

�
.

Proposition 7.4 We have a chain complex

(7-11) Ln.T /
ˇ // Jn.T /

ˇ� // Ln.T /;

ie the map ˇ� ıˇ is zero. The matrix representation of ˇ is the transpose of .A j B/,
and the matrix representation of ˇ� is the transpose of the coefficient matrix of the
monomial map � relating the Ptolemy coordinates and the shapes.

Proof The proof is similar (in some sense dual) to the proof of Theorem 6.3. Let
p D f.�0; t0/; : : : ; .�k ; tk/g be an edge point. Let si be the unique subsimplex of �i

having ti as an edge point. The triangulation induces a gluing of the simplices si

along a common edge, as in the left image in Figure 12. Viewed from the top, this
configuration looks like Figure 14. The signs indicated are the signs of the integral
points involved in ˇ� ıˇ.p/. It follows that all signs cancel out.

Let p D f.�0; t0/; .�1; t1/g be a face point. For simplicity we assume that t0 D

˛C 1110 is on the face opposite vertex 3 of �0 (the other cases are similar). Then t0
is an edge point of exactly three subsimplices: s1 D ˛C 0010, s2 D ˛C 1000 and
s3 D ˛C 0100. The terms of ˇ.p/ coming from .�0; t0/ are then

(7-12) .�0; s1; 1100/C .�0; s2; 0110/C .�0; s3; 1010/:
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Figure 14: Cancellation of terms in ˇ� ıˇ.p/ for an edge point p

For the next two displays we shall write Œt � instead of Œ.t; �0/�, the simplex �0 being
fixed. Applying ˇ� to (7-12), we obtain

(7-13)

Œs1C 1001�C Œs1C 0110�� Œs1C 1010�� Œs1C 0101�

C Œs2C 1010�C Œs2C 0101�� Œs2C 1100�� Œs2C 0011�

C Œs3C 1100�C Œs3C 0011�� Œs3C 1001�� Œs3C 0110�;

which equals

(7-14) Œ˛C2010�C Œ˛C1200�C Œ˛C0120�� Œ˛C2100�� Œ˛C0210�� Œ˛C1020�:

Note that all terms are integral points lying on the same face as t0 . The signs are
indicated in the right image in Figure 13. Since T is oriented, the terms arising from
.�1; t1/ are the same, but appear with opposite signs. Hence, they cancel out. Let
p D f.t; �/g be an interior point, where t D ˛C 1111. We have

(7-15) ˇ.p/D .�; ˛C 1100; 0011/C .�; ˛C 0110; 1001/C .�; ˛C 1010; 0101/

C .�; ˛C 0011; 1100/C .�; ˛C 1001; 0110/C .�; ˛C 1100; 0011/:

As in the proof of Lemma 6.10, the positive and negative terms of ˇ� ı ˇ.p/ both
consist of all terms Œ.˛Cˇ;�/�, where ˇ is a permutation of .0; 1; 1; 2/. Hence, all
terms cancel out.

The last statement follows from (7-9), and by comparing (7-10) and (6-1).

Corollary 7.5 The rows of .A j B/ Poisson commute.

Lemma 7.6 If all the boundary components of M are tori, the number of nonvertex
integral points of T equals t

�
nC1

3

�
.
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Proof Let e , f , and t denote the number of edges, faces and simplices of T . Since
all boundary components are tori, a simple Euler characteristic argument shows that
e D 1

2
f D t . Using this, we have

(7-16) j PTn.Z/j D .n� 1/eC
.n�1/.n�2/

2
f C

.n�1/.n�2/.n�3/

6
t D t

� nC1

3

�
;

as desired.

Corollary 7.7 If all the boundary components of M are tori, the matrix .A j B/ is
r � 2r , where r D t

�
nC1

3

�
and t is the number of simplices of T .

Proof By Lemma 7.6, the number of rows equals r . The number of columns equals
2t j�3

n�2
.Z/j, which by (4-2) equals 2t

�
nC1

3

�
D 2r .

This concludes the proof of Theorem 1.1.

7.2 Applications in quantum topology

Recently, ideal triangulations T of 3–manifolds and their gluing equations have been
used to construct interesting quantum invariants of 3–manifolds, and the extension of
these invariants to the setting of PGL.n;C/–representations has been a main motivation
for our work. We will list three types of invariants here, and refer to the literature for
more details:

(a) The quantum Riemann surfaces of Dimofte [4].

(b) The loop invariants of Dimofte and Garoufalidis [7].

(c) The 3D index of Dimofte, Gaiotto and Gukov [6; 5], Garoufalidis [14] and
Garoufalidis, Hodgson, Rubinstein and Segerman [15].

The input of [4] is an ideal triangulation T of a 3–manifold with torus boundary compo-
nents, and the output is a polynomial in q–commuting variables (one per meridian and
longitude of each torus boundary component). The operators generate a q–holonomic
ideal which depends on T and ought to map to the gluing equation variety V2.T /
when q D 1.

The input of [7] is a Neumann–Zagier datum which consists of an ideal triangulation
together with a solution of the gluing equations whose image under the map (1-2) is
the discrete faithful representation of M . The output is a formal power series in a
variable „ with coefficients rational functions on the image of the map (1-2). The
coefficient of „ in this series ought to agree with the nonabelian torsion of Porti [22]

Algebraic & Geometric Topology, Volume 15 (2015)



594 Stavros Garoufalidis, Matthias Goerner and Christian K Zickert

and the evaluation of the series at the discrete faithful representation when „D 2� i=N ,
ought to agree to all orders in 1=N with the asymptotics of the Kashaev invariant
[19] of a hyperbolic knot complement. It was shown in [7, Proposition 1.7] that the
coefficient of „ (the so-called 1–loop invariant) is a topological invariant of cusped
hyperbolic 3–manifolds. It is conjectured that the above formal power series is a
topological invariant of cusped hyperbolic 3–manifolds.

The input of the 3D index of [6; 5] is an ideal triangulation T which supports a strict
angle structure. The output is a q–holonomic function IT W Z2r �!Z..q1=2//, where r

is the number of torus boundary components of M and Z..q1=2// is the ring of Laurent
series in q with integer coefficients. Convergence of this q–series holds exactly for
those ideal triangulations T that support an index structure [14], or, equivalently [15,
Theorem 1.2], for those ideal triangulations which are 1–efficient. In addition, the 3D
index IT is an invariant of cusped hyperbolic 3–manifolds [15, Theorems 1.8 and 1.9].

Theorems 1.1 and 1.3, and the upcoming work [17], allow us to extend the loop invariants
and the 3D index to the setting of PGL.n;C/–representations. This extension will be
discussed in a future publication.

8 Decorations

We refer to Garoufalidis, Thurston and Zickert [16] or Zickert [25] for more details on
decorations. Let G be a group and H a subgroup of G .

Definition 8.1 Let � be an ordered k –simplex. A G=H –decoration of � is an
assignment of a left H –coset to each vertex of �. We only consider decorations up to
G –action, ie we consider two decorations to be equal if they differ by left multiplication
by an element in G . We represent a decoration by a tuple .g0H; : : : ;gkH /.

If G and H are clear from the context, we refer to a G=H –decoration as a decoration.

Definition 8.2 A decoration on T is an assignment of G=H –cosets to the vertices
of beM which is equivariant with respect to some representation �W �1.M /!G . If �
is given, we shall refer to the decoration as a decoration of � .

Note that left multiplication of all the cosets of a decoration of � by an element g 2G

yields a decoration of g�g�1 . Hence, we shall only consider decorations up to left
multiplication.

Remark 8.3 Every .G;H /–representation �W �1.M /!G has a decoration.
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Remark 8.4 A representation determines a flat bundle E over M . One can show [16,
Proposition 4.6] that a decoration corresponds to a reduction of the restriction of E

to @M to a flat H –bundle. Two decorations determine the same reduction if and only
if they are equivalent in the sense of [16, Definition 4.4]. We shall not need this here.

8.1 Generic decorations, Ptolemy coordinates and shapes

For an element g 2 GL.n;C/, let fggi denote the ordered set consisting of the first i

column vectors of g .

Definition 8.5 A GL.n;C/=N –decoration .g0N;g1N;g2N;g3N / on �3
n is generic

if, for each .t0; t1; t2; t3/ 2�3
n.Z/,

(8-1) det
�
fg0gt0

[fg1gt1
[fg2gt2

[fg3gt3

�
¤ 0:

Genericity of PGL.n;C/=B –decorations is defined similarly.

The definition is obviously independent of the choice of coset representatives, and of
the ordering of the tuple.

Remark 8.6 Although all boundary-Borel representations can be decorated, some
representations may only have nongeneric decorations. However, after a single barycen-
tric subdivision, every representation has a generic decoration. For SL.n;C/=N –
decorations this is proved in [16, Proposition 5.4], and the proof for PGL.n;C/=B–
decorations is similar. This proves the last statement of Theorem 1.3.

Lemma 8.7 (Fock and Goncharov [12, Lemma 10.3]; see also [16]) A generic
GL.n;C/=N –decoration .g0N;g1N;g2N;g3N / of �3

n induces a Ptolemy assign-
ment

(8-2) cW P�3
n.Z/!C�; t 7! det

�
fg0gt0

[fg1gt1
[fg2gt2

[fg3gt3

�
:

Corollary 8.8 We have a map

(8-3) CW fGeneric GL.n;C/=N –decorations on �3
ng

! fPtolemy assignments on �3
ng:

Note that C is invariant under the left action by SL.N;C/.

Lemma 8.9 The map C is compatible with pullbacks, ie

(8-4) ��.C.g0N;g1N;g2N;g3N /D C.g�.0/N;g�.1/N;g�.2/N;g�.3/N /:
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Proof Let

(8-5) cD C.g0N;g1N;g2N;g3N / and c0D C.g�.0/N;g�.1/N;g�.2/N;g�.3/N /:

Then

(8-6) c�.t/ D det
� 3[

iD0

fgigt
��1.i/

�
; c0t D det

� 3[
iD0

fg�.i/gti

�
:

One easily checks that

(8-7)
� 3[

iD0

fgigt
��1.i/

�
I�;�.t/ D

3[
iD0

fg�.i/gti
;

from which it follows that .��c/t D c�.t/ det I�;�.t/ D c0t . This proves the result.

Corollary 8.10 A generic SL.n;C/=N –decoration on .M; T / induces a Ptolemy
assignment on .M; T /.

Proof We only need to show that Ptolemy coordinates are identified via the pullback.
This follows from Lemma 8.9.

Remark 8.11 A GL.N;C/=N –decoration does not induce a Ptolemy assignment
on .M; T /.

For g 2 GL.N;C/, let g denote the image of g in PGL.N;C/.

Proposition 8.12 We have a well-defined map

(8-8)
ZW fPGL.n;C/=B–decorations on �3

ng ! fshape assignments on �3
ng

.g0B;g1B;g2B;g3B/ 7! � ı C.g0N;g1N;g2N;g3N /

which is invariant under the left PGL.n;C/–action and compatible with pullbacks.

Proof Let c D C.g0N;g1N;g2N;g3N /. To prove that Z is well defined, we must
prove that

(8-9) �.c/D �.c0/; with c0 D C.g0d0N; : : : ;g3d3N /;

where di D d.�i
1
; : : : ; �i

n/ are diagonal matrices. We prove that �.c/1100
s D�.c0/1100

s ,
the other cases being similar. Using (8-1), we have

(8-10) �.c0/1100
s D

c0
sC1001

c0
sC0110

c0
sC1010

c0
sC0101

; c0t D det
�[
fgidigti

�
D

� 3Y
jD0

tiY
iD1

�
j
i

�
ct :
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Expanding each term, we obtain

(8-11)

c0sC1001 D

� 3Y
jD0

siY
iD1

�
j
i

�
�0

s0C1�
3
s3C1csC1001;

c0sC0110 D

� 3Y
jD0

siY
iD1

�
j
i

�
�1

s1C1�
2
s2C1csC0110;

c0sC1010 D

� 3Y
jD0

siY
iD1

�
j
i

�
�0

s0C1�
2
s2C1csC1010;

c0sC0101 D

� 3Y
jD0

siY
iD1

�
j
i

�
�1

s1C1�
3
s3C1csC0101:

It now easily follows that

(8-12) �.c0/1100
s D

c0
sC1001

c0
sC0110

c0
sC1010

c0
sC0101

D
csC1001 csC0110

csC1010 csC0101

D �.c/1100
s ;

as desired. Invariance under left multiplication follows from the fact that

(8-13) det
�[
fggigti

�
D det.g/ det

�[
fgigti

�
;

and compatibility with pullbacks follows from the fact that both � and C enjoy this
property.

Corollary 8.13 A generic PGL.n;C/=B–decoration on .M; T / induces a shape
assignment on .M; T /.

Proof By Proposition 8.12, we have a shape assignment on each simplex, and we must
prove that these satisfy the generalized gluing equations. We proceed as in the proof of
Theorem 6.3. Let K be the local model of an edge point, as defined in Section 6.1. We
can pull back the decoration on T to a decoration on K using the simplicial map � .
Since K is simply connected, we can change the decoration of each simplex by left
multiplication by an element in PGL.n;C/ such that vertices of simplices that get
identified in K carry the same coset. This does not affect the shapes. For each vertex
in K decorated by gB we pick a lift QgN and apply C to get a Ptolemy assignment
on K . By Lemma 6.5 the shapes satisfy the edge equations. The result for the face
and interior gluing equations is similar.

Algebraic & Geometric Topology, Volume 15 (2015)



598 Stavros Garoufalidis, Matthias Goerner and Christian K Zickert

9 The natural cocycle of a generic decoration

In this section, we introduce natural cocycles on M arising from decorations. To
define these we need two types of polyhedral decompositions of M , one by truncated
simplices and one by doubly truncated simplices. We show that an SL.n;C/=N –
decoration induces a natural cocycle on the truncated decomposition of M , and that a
PGL.n;C/=B –decoration induces a natural cocycle on the doubly truncated decompo-
sition of M . Later, we give explicit formulas in terms of the Ptolemy coordinates and
shape coordinates, respectively.

9.1 Truncated and doubly truncated simplices

As explained in Remark 1.5 we may assume that T has no interior 0–cells.

Definition 9.1 A truncated simplex is a polyhedron obtained from a simplex by
truncating its vertices. A doubly truncated simplex is a polyhedron obtained from a
simplex by first truncating the vertices and then truncating the edges.

We refer to the edges of a truncated simplex as long and short edges, and the edges of
a doubly truncated simplex as long, middle, and short edges.

Note that a triangulation of M induces a decomposition of M into truncated simplices,
as well as a decomposition of M into doubly truncated simplices and prisms. An
ordering of a simplex induces an orientation of the edges of the corresponding truncated
simplex. Similarly, an orientation of a simplex induces orientations of the edges of the
corresponding doubly truncated simplex. Note that an ordering is required to obtain
natural edge orientations on a truncated simplex.

Remark 9.2 We can view a doubly truncated simplex as the permutohedron of S4 .
We can embed it in a standard simplex �3

1
as the convex hull of 1

11
�3

11
.f0; 1; 3; 7g/,

the set 1
11
�3

11
.f0; 1; 3; 7g/ being the vertex set. With this embedding, the long edges

are twice as long as the middle edges, which are again twice as long as the short edges
(which have length

p
2=11). Similarly, we may view a truncated simplex as the convex

hull of 1
5
�3

5
.f0; 1; 4g/.

9.2 Cocycles

Let G be a group and let X be any space with a polyhedral decomposition.

Definition 9.3 A G –cocycle on X is an assignment of elements in G to the oriented
edges of X such that the product around each face is 1 2G and such that reversing
the orientation of an edge replaces the labeling by its inverse.
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Figure 15: Left: a truncated simplex; edge orientations induced by the vertex
ordering. Center: a doubly truncated simplex; edge orientations induced by
the orientation. Right: a prism.

Definition 9.4 Let � be a G –valued 0–cochain on X , ie a function from the vertices
to G . The coboundary of � is the G –cocycle

(9-1) ı�.hv0; v1i/D .�
v0/�1�v1 ;

where hv0; v1i is the edge from v0 to v1 and �vi is the value of � at vi . The coboundary
action of � on G –cocycles is given by taking � to the cocycle

(9-2) �� W hv0; v1i 7! .�v0/�1�.hv0; v1i/�
v1 :

Given a simplex �, let � and � denote the corresponding truncated, and doubly
truncated simplices.

Definition 9.5 Let H �G be groups. A .G;H /–cocycle on � is a G –cocycle where
short edges are labeled by elements in H .

Definition 9.6 Let K � H � G be groups. A .G;H;K/–cocycle on � is a G–
cocycle where short edges are labeled by elements in K , and middle edges by elements
in H .

Remark 9.7 Note that every .G;H /–cocycle on � can be obtained from a unique
.G;H; feg/–cocycle on � by collapsing the short edges. We shall thus always regard
a cocycle on � as a cocycle on �.
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9.2.1 Labeling conventions We index the vertices of � by ordered pairs of distinct
vertices of �, v0v1 being the vertex near v0 on the edge to v1 . We index the vertices
of � by ordered triples of distinct vertices of �, v0v1v2 being the vertex whose closest
vertex in � is v0 , closest edge v0v1 , and closest face v0v1v2 . Given a cocycle on
�, we use ˛s to denote the labeling of long edges, ˇs for the middle edges, and
 s for the short edges. Note that an edge of each type is uniquely determined by its
initial vertex. This gives a unique labeling scheme, eg the long edge from v0v1v2 to
v1v0v2 is labeled by ˇv0v1v2 . Similarly, if � is a 0–cochain, the value at v0v1v2 is
denoted by �v0v1v2 . We shall not need a labeling scheme for cocycles on truncated
simplices. By Remark 9.7 we can regard these as cocycles on the corresponding doubly
truncated simplices.

9.3 The natural cocycle of a generic decoration

We now show that sufficiently generic decorations naturally give rise to cocycles on M .

Definition 9.8 A pair .g0N;g1N / of N –cosets in SL.n;C/ is sufficiently generic if
there exists a (necessarily unique) g 2 SL.n;C/ such that

(9-3) .g0N;g1N /D g.N; qN / with q counter-diagonal:

A tuple is sufficiently generic if it is pairwise sufficiently generic.

Let N� denote the lower-triangular matrices in SL.n;C/ with 1 on the diagonal.

Definition 9.9 An element n 2 B is normalized if the last column vector consists of
1s. An element n� 2N� in normalized if the first column vector consists of 1s.

Definition 9.10 A triple .g0B;g1B;g2B/ of B –cosets in PGL.n;C/ is sufficiently
generic if there exists a (necessarily unique) g 2 PGL.n;C/ such that

(9-4) .g0B;g1B;g2B/D g.B; q1B; n�B/ with n� 2N� normalized:

A tuple is sufficiently generic if each triple is sufficiently generic.

Remark 9.11 A simple exercise in linear algebra shows that a generic decoration (as
in Definition 8.5) is sufficiently generic.

Definition 9.12 Let .g0N;g1N;g2N;g3N / be a generic SL.n;C/=N –decoration
on �3

n . The natural .SL.n;C/;N /–cocycle on �3
n is the coboundary of the unique

0–cochain � satisfying

(9-5) .gv0
N;gv1

N /D �v0v1.N; qN / with q counter-diagonal:
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This defines the map L˛ˇ in (1-5). It follows immediately from the definition that the
natural cocycle labels short edges by elements in N and long edges by counter-diagonal
elements. Let q1 denote the counter-diagonal matrix whose nonzero entries are all 1.
Note that q1 D q�1

1
.

Definition 9.13 Let .g0B;g1B;g2B;g3B/ be a generic decoration on a simplex.
The natural .PGL.n;C/;B;H /–cocycle on �3

n is the coboundary of the unique 0–
cochain � satisfying

(9-6) .gv0
B;gv1

B;gv2
B/D �v0v1v2.B; q1B; n�B/; with n� 2N� normalized:

This defines the map L˛ˇ in (1-5).

Remark 9.14 Note that a .G;H /–cocycle � on � determines a G=H –decoration D

on �. We say that D is compatible with � . To see this, note that � is the coboundary
of a 0–cochain � on �, which is unique up to left multiplication by an element
in G . The value of � at the vertices near a vertex of � are all in the same H –coset.
Hence, we have a decoration on �. Similarly, a .G;B;H /–cocycle on � determines
a G=B–decoration on �. It follows that the maps L˛ˇ and L˛ˇ are bijective with
explicit inverses.

Lemma 9.15 Let D D .g0B;g1B;g2B;g3B/ be a generic decoration on a simplex.
The natural .PGL.n;C/;B;H /–cocycle is the unique cocycle which is compatible
with the decoration and satisfies the following properties:

(i) Short edges are labeled by elements in H .

(ii) Middle edges are labeled by normalized elements in B .

(iii) Long edges are labeled by q1 .

Proof We first show that the natural cocycle satisfies the three conditions. It is
enough to prove this for a single edge of each type. We may assume that D D

.B; q1;B; n�B;m�B/, where n�;m� 2N� and n� is normalized. Then �012 D 1,
so, for each edge starting at 012, we only need to compute the value of � at the
endpoint. Since .q1B;B; n�B/ D q1.B; q1B; q1n�B/, and the first column vector
of q1n� consists of 1s, it follows that �102 D q1 , proving the result for the long
edges. Since the stabilizer of B is B , it follows that �021 2 B , proving the result
for the middle edges. Finally, �013 is the unique element in H such that hm�h�1 is
normalized, proving the result for the short edges.

Let �1 and �2 be two cocycles satisfying the required conditions. Since any two
cocycles differ by the coboundary action, �2 D ��1 for some coboundary �. Since
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long edges are labeled by q1 and since the cocycles determine the same decoration,
we may assume that � takes values in H . It is now elementary to check that if � is
not the identity, either (ii) or (iii) fails.

Remark 9.16 Note that for a generic decoration on a triangulation of M , the natural
cocycles on each simplex fit together to form a natural cocycle on M .

10 Explicit formulas for the natural cocycles

We now show that the cocycle associated to a PGL.n;C/=B–decoration D is de-
termined by the shape assignment Z.D/. The reader should keep in mind the dia-
gram (1-5).

Define

(10-1)

q.a1; : : : ; an/D

0B@ an

: :
:

a1

1CA; d.a1; : : : ; an/D

0B@a1

: : :

a1

1CA;
q1 D q.1; : : : ; 1/; d˙1 D d

�
f.�1/n�k

g
n
kD1

�
;

Hi.x/D d
� i‚ …„ ƒ
x; : : : ;x; 1; : : : ; 1

�
:

Letting Ei;iC1 be the matrix with a 1 as the .i; i C 1/ entry and zeros elsewhere,
we define

(10-2) xi.t/D I C tEi;iC1:

10.1 Diamond and ratio coordinates

It is shown in [16] that the short edges of the natural cocycle of a generic SL.n;C/=N –
decoration are given by diamond coordinates, and that the long edges are given by
ratios of two Ptolemy coordinates. We review these results below.

Definition 10.1 Let c be a Ptolemy assignment on �3
n . For each vertex v0v1v2 of

�3
n and each ˛ 2 �3

n�2
.Z/ on the face containing v0v1v2 , we associate a diamond

coordinate

(10-3) dv0v1v2
˛ .c/D�"

v0v1v2
<

c˛C2v0
c˛Cv1Cv2

c˛Cv0Cv1
c˛Cv0Cv2

:

Here "v0v1v2
< is the sign of the S3 permutation required to bring the sequence v0; v1; v2

into lexicographic order.
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Definition 10.2 Let c be a Ptolemy assignment on �3
n . For each vertex v0v1v2

of �3
n and each point kv0C lv1 on the long edge containing v0v1v2 , we associate a

ratio coordinate

(10-4) e
v0v1

kv0Clv1
.c/D "n�1.�1/l

ckv0C.lC1/v1

c.kC1/v0Clv1

;

where kC l D n� 1, and "D 1 if v0 < v1 and "D�1 otherwise.

0

1

2

3

c2220

c1320

c2130

c1230

c0222
c0123

c0132c0231

d312
0121
D�

c0123c0231
c0222c0132

d102
1120
D

c1320c2130
c2220c1230 0

1

e
1000;0100
k;l;0;0

D .�1/l
ck;l�1;0;0

ck�1;l;0;0

ck�1;l;0;0

ck;l�1;0;0

Figure 16: Left: diamond coordinates. Right: ratio coordinates.

Notation 10.3 When c is clear from the context, we suppress it from the notation,
ie we write d

v0v1v2
˛ and e

v0v1

kv0Clv1
instead of d

v0v1v2
˛ .c/ and e

v0v1

kv0Clv1
.c/.

As explained in Remark 9.7, we can view the natural cocycle of an SL.n;C/=N –
decoration as a cocycle on �3

n . We thus employ the labeling conventions of Section 9.2.1.

Proposition 10.4 [16] The natural cocycle L˛ˇ.D/ of a generic SL.n;C/=N –deco-
ration D on �3

n is given in terms of the Ptolemy assignment C.D/ by

(10-5)

 v0v1v2 D id; ˇv0v1v2 D

Y
.˛0;˛1;˛2/2�

2
n�2

.Z/

x˛1C1

�
d
v0v1v2

˛1v0C˛2v1C˛0v2

�
;

˛v0v1v2 D q
�
e
v0v1

.n�1/v0
; e
v0v1

.n�2/v0Cv1
; : : : ; e

v0v1

.n�1/v1

�
:

The factors in the product are ordered by the lexicographic order on �2
n�2

.Z/.

Remark 10.5 It is convenient to introduce the notation

(10-6) dk;i D d
v0v1v2

.i�1/v0C.n�i�k/v1C.k�1/v2
:
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With this notation, the formula for the middle edge becomes

(10-7) ˇv0v1v2 D

n�1Y
kD1

n�kY
iD1

xi.dk;i/:

This agrees with the notation in [16]. Although this notation is convenient, it does not
behave properly under reordering.

v0

v1

v2

d1;1

d1;2

d1;3

d1;4

d2;1

d2;2

d2;3

d3;1

d3;2 d4;1

ˇv0v1v2 D x1.d1;1/x2.d1;2/x3.d1;3/x4.d1;4/

x1.d2;1/x2.d2;2/x3.d2;3/

x1.d3;1/x2.d3;2/

x1.d4;1/

Figure 17: Factorization of a middle edge ˇv0v1v2 in terms of diamond coordinates

10.1.1 Behavior under reordering

Lemma 10.6 The diamond coordinates of c and ��.c/ are related by

(10-8) d.��.c//v0v1v2
˛ D d.c/

�.v0/�.v1/�.v2/

�.˛/
:

Proof It is enough to prove this for vi D i and � D �01 , � D �12 and � D �23 .
We prove it for � D �01 , the other cases being similar. Letting t D ˛C e0C e1 and
˛0 D �01.˛/, and using that "012

< D 1 and "102
< D�1, we have

(10-9) d.��01.c//
012
˛

D�
��

01
.c/˛C2e0

��
01
.c/˛Ce1Ce2

��
01
.c/˛Ce0Ce1

��
01
.c/˛Ce0Ce2

D�
det I�01;�01.tCe0�e1/ det I�01;�01.tCe2�e0/

det I�01;�01.t/ det I�01;�01.tCe2�e1/

c˛0C2e1
c˛0Ce0Ce2

c˛0Ce1Ce0
c˛0Ce1Ce2

D�
.�1/.t0C1/.t1�1/.�1/.t0�1/t1

.�1/t0t1.�1/t0.t1�1/

c˛0C2e1
c˛0Ce0Ce2

c˛0Ce1Ce0
c˛0Ce1Ce2

D�.�1/
c˛0C2e1

c˛0Ce0Ce2

c˛0Ce1Ce0
c˛0Ce1Ce2

D d.c/102
˛0 :

This proves the result.
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Lemma 10.7 The ratio coordinates of c and ��c are related by

(10-10) ��.e/v0v1
˛ D e

�.v0/�.v1/

�.˛/
:

Proof We shall not need this, so we leave the proof to the reader.

10.2 X –coordinates

We define X –coordinates for Ptolemy assignments and shape assignments. These
are defined for face points, and they agree with the X –coordinates of Fock and
Goncharov [12, page 133].

The natural A4 action on vertices of � has two orbits. Let "v0v1v2

	
be a sign which is

positive if and only if v0v1v2 is in the orbit of 012.

Definition 10.8 Let c be a Ptolemy assignment and let t 2 �3
n.Z/ be a face point.

The X –coordinate at t is given by

(10-11) Xt D

Y
t2face.v0v1v2/

c
"
v0v1v2
	

tCv0�v1
;

where the product is taken over the six ordered triples of vertices v0; v1; v2 spanning
the face containing t .

As an example, the X –coordinate of t D .t0; t1; t2; 0/ is given by

(10-12) X.t0;t1;t2;0/ D
ctCe0�e1

ctCe1�e2
ctCe2�e0

ctCe0�e2
ctCe1�e0

ctCe2�e1

:

Definition 10.9 Let z be a shape assignment on �3
n and let t be a face point spanned

by v0 , v1 and v2 . The X –coordinate at t is given by

(10-13) Xt D�

Y
sCeDt

ze
s :

Remark 10.10 Note that the product (10-13) consists of half of the terms involved in
a face equation. More precisely, if v0v1v2 2�0 is glued to w0w1w2 2�1 , the face
equations are given by

(10-14) X
"
v0v1v2
	

t0v0Ct1v1Ct2v2
DX

"
w0w1w2
	

t0w0Ct1w1Ct2w2
:

Note that "v0v1v2

	
and "w0w1w2

	
are equal if and only if the face pairing preserves

orientation. For oriented triangulations the signs are always opposite.
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Lemma 10.11 The X –coordinates transform as the shapes under reordering, ie we
have

(10-15) X.��.c//t DX.c/
sgn�
�.t/

; X.��.z//t DX.z/
sgn�
�.t/

:

Proof Unwinding the definitions, we have

(10-16) X.��c/t D
Y

t2face.v0v1v2/

.��c/
"
v0v1v2
	

tCv0�v1

D

Y
t2face.v0v1v2/

det.I�;�.tCv0�v1//c
"
v0v1v2
	
�.t/C�.v0/��.v1/

D

� Y
t2face.v0v1v2/

det I�;�.tCv0�v1/

�
X.c/

sgn�
�.t/

DX.c/
sgn�
�.t/

:

The fact that the product of determinants equals 1 follows from Remark 5.7, which
implies that det I�;�.tCv0�v1/ D det I�;�.tCv1�v0/ . Since both are ˙1, their product
is 1. The second equation is obvious.

Lemma 10.12 The X –coordinates of a Ptolemy assignment c agree with the X –
coordinates of the corresponding shape assignment �.c/.

Proof We must prove that

(10-17) �

Y
sCeDt

�.c/es D
Y

t2face.v0v1v2/

c
"
v0v1v2
	

tCv0�v1
:

By compatibility under reordering, it is enough to prove this for t D .t0; t1; t2; 0/D

t0e0C t1e1C t2e2 . Let t D ˛C .1110/. By (6-8),

(10-18) �

Y
sCeDt

�.c/es D z1100
˛C0010z0110

˛C1000z1010
˛C0010

D
c˛C2010;0c˛C1200;0c˛C0120;0

c˛C2100;0c˛C0210;0c˛C1020;0

D
ctCe0�e1

ctCe1�e2
ctCe2�e0

ctCe0�e2
ctCe1�e0

ctCe2�e1

D

Y
t2face.v0v1v2/

c
"
v0v1v2
	

tCv0�v1
;

where the last equality follows from (10-12).
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Lemma 10.13 One can express the X –coordinates in terms of diamond coordinates:

(10-19) Xt D

�
d
v0v1v2

t�v0�v1

d
v0v1v2

t�v0�v2

�"v0v1v2
	

Here t is a face point spanned by v0 , v1 and v2 .

Proof It is enough to prove this for t D .t0; t1; t2; 0/. Since

(10-20) d012
t�e0�e1

D�
ctCe0�e1

ctCe2�e0

ctctCe2�e1

and d012
t�e0�e2

D�
ctCe0�e2

ctCe1�e0

ctCe1�e2
ct

;

the result follows from (10-12).

�

�

��

�

�

0

1

2

�
�

�
�

��

�

�

0

1

2

Figure 18: Left: exponents of the Ptolemy coordinates involved in the X –
coordinate at t . Right: an X –coordinate as a quotient of two diamond
coordinates.

10.3 From natural .SL.n;C/;N /–cocycles to natural .PGL.n;C/;B;H/–
cocycles

The natural map � W SL.n;C/! PGL.n;C/ induces a map from decorations by N –
cosets to decorations by B –cosets. Given a generic SL.n;C/=N –decoration D on �3

n ,
we show how the natural .PGL.n;C/;B;H /–cocycle L˛ˇ .�.D// can be obtained
from the natural cocycle L˛ˇ.D/ by the coboundary action (9-2) of an explicit cobound-
ary given in terms of the diamond coordinates. This defines the map � in diagram (1-5)
and gives rise to an explicit formula for L˛ˇ .�.D// in terms of the shapes.

Given an SL.n;C/=N –decoration D with diamond coordinates d
v0;v1;v2

1;i
, consider

the 0–cochain �.D/ on �3
n given by

(10-21) �v0v1v2.D/D d

�n�1Y
iD1

d
v0v1v2

1;i
;

n�1Y
iD2

d
v0v1v2

1;i
; : : : ; d

v0v1v2

1;n�i
; 1

�

D

n�1Y
iD1

Hi.d
v0v1v2

1;i
/:
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We shall make use of the abbreviations

(10-22) Xk;i DX
v0v1v2

kv2Civ0C.n�k�i/v1
; zi D z

v0Cv1

.i�1/v0C.n�1�i/v1
:

Theorem 10.14 Let D be a generic PGL.n;C/=B–decoration of �3
n . The natural

cocycle L˛ˇ .D/ is given by

(10-23)

˛v0v1v2 D q1; ˇv0v1v2 D

n�1Y
kD1

�n�kY
iD1

xi.1/

n�k�1Y
iD1

Hi

�
X
"
v0v1v2
	

k;i

��
d˙1;

 v0v1v2 D

n�1Y
iD1

Hi

�
z
�"
v0v1v2
	

i

�
:

Moreover, if zD is any SL.n;C/=N –decoration lifting D , L˛ˇ .D/D �L˛ˇ. zD/.

Before embarking on the proof, we give some examples.

Example 10.15 For nD 2,

(10-24) ˇ012
D x1.1/d˙1 D

�
�1 1

1

�
;  012

DH1.z
�1
1 /D

�
z�1

1

1

�
:

For nD 3, we have

(10-25)

ˇ012
D x1.1/x2.1/H1.X1;1/x1.1/d˙1 D

0@X1;1 �X1;1 1

�1 1

1

1A ;
 012

DH1.z
�1
1 /H2.z

�1
2 /D

0@z�1
1

z�1
2

z�1
2

1

1A :
For nD 4,

(10-26)

ˇ012
D x1.1/x2.1/x3.1/H1.X1;1/H2.X1;2/

�x1.1/x2.1/H1.X2;1/x1.1/d˙1;

 012
D d.z�1

1 z�1
2 z�1

3 ; z�1
2 z�1

3 ; z�1
3 ; 1/:

Remark 10.16 The formula for ˇv0v1v2 is inspired by [12, (9.14)].

Remark 10.17 Note that the diagonal entries of ˇv0v1v2 and  v0v1v2 are given by

(10-27) ˇ
v0v1v2

l l
D .�1/n�l

n�2Y
iDl

n�1�iY
kD1

X
"
v0v1v2
	

k;i
; 

v0v1v2

l l
D

n�1Y
iDl

z
�"
v0v1v2
	

i :
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Proof of Theorem 10.14 We prove that �. zD/L˛ˇ. zD/ is given by (10-23). Since the
last column of

Qn�1
iD1 xi.1/ consists of 1s and since none of the other terms affect the

last column, the middle edges are thus normalized, so by Lemma 9.15, the cocycle is
indeed the natural cocycle of D .

Let z̨ , ž (and z D id) be the labelings of long, middle and short edges given by
L˛ˇ. zD/. By Proposition 10.4 these are given by (10-5). Let � D �. zD/.

Long edges We must prove that .�v0v1v2/�1 z̨v0v1v2�v1v0v2 D q1 . Letting

(10-28) lk D

n�1Y
iDk

d
v0v1v2

1;i
; mk D .�1/k�1e

v0v1

.n�k/v0C.k�1/v1
; rk D

n�1Y
iDk

d
v1v0v2

1;i
;

this is equivalent to proving that

(10-29) d.l1; : : : ; ln/
�1q.m1; : : : ;mn/d.r1; : : : ; rn/D q1 2 PGL.n;C/:

Hence, we must prove that l�1
n�kC1

mkrk is independent of k . From Figure 19 it follows
that

(10-30)

n�1Y
iDk

d
v0v1v2

1;i
D "n�k cnv0

c.k�1/v0C.n�k/v1Cv2

c.n�1/v0Cv2
ckv0C.n�k/v1

;

n�1Y
iDk

d
v1v0v2

1;i
D .�"/n�k cnv1

c.k�1/v1C.n�k/v0Cv2

c.n�1/v1Cv2
ckv1C.n�k/v1

;

where "D�"v0v1v2
< . Hence, we have

(10-31)

ln�kC1 D "
k�1 c.n�k/v0C.k�1/v1Cv2

c.n�kC1/v0C.k�1/v1
c.n�1/v0Cv2

;

mk D .�1/k�1 c.n�k/v0Ckv1

c.n�kC1/v0C.k�1/v1

;

rk D .�"/
n�k c.k�1/v1C.n�k/v0Cv2

c.n�1/v1Cv2
ckv1C.n�k/v0

;

from which it follows that

(10-32) l�1
n�kC1mkrk D .�"/

n�1 c.n�1/v0Cv2

c.n�1/v1Cv2

;

which is independent of k . This proves the result.

Middle edges We must prove that ��1
v0v1v2

ž
v0v1v2

�v0v2v1
D ˇv0v1v2

. Using the basic
commutator relations

(10-33) Hi.x/xj .y/D xj .y/Hi.x/ if i ¤ j ; xi.y/DHi.y/xi.1/Hi.y/
�1;
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v0

v1

v2

d1;k

d1;kC1

d1;n�1

Figure 19: Cancellations

the expression

(10-34) žv0v1v2 D

n�1Y
kD1

n�kY
iD1

xi.dk;i/D

n�1Y
kD1

n�kY
iD1

Hi.dk;i/xi.1/Hi.dk;i/
�1

expands to

(10-35) žv0v1v2 D

n�1Y
kD1

�n�kY
iD1

Hi.dk;i/

n�kY
iD1

xi.1/

�

�n�k�1Y
iD1

Hi.dk;i/
�1

�
Hn�k.dk;n�k/

�1

�
:

We have for brevity omitted the superscript v0v1v2 of the diamond coordinates. Letting

(10-36) Hk D

n�kY
iD1

Hi.dk;i/ and H0k D
n�k�1Y

iD1

Hi.dk;i/;

and moving the terms Hn�k.dk;n�k/
�1 to the right, we have

(10-37) žv0v1v2 D

n�1Y
kD1

�
Hk

�n�kY
iD1

xi.1/

�
H0�1

k

� n�1Y
kD1

Hn�k.dk;n�k/
�1:

Since Hn D 1, the products

(10-38) .H1 � � �H0�1
1 /.H2 � � �H0�1

2 / � � � and H1.� � �H0�1
1 H2/.� � �H0�1

2 H3/ � � �

are equal, and we obtain

(10-39) ž
v0v1v2

DH1

n�1Y
kD1

��n�kY
iD1

xi.1/

�
H0�1

k HkC1

� n�1Y
kD1

Hn�k.dk;n�k/
�1:
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Using (10-3), we have

(10-40) d
v0v2v1

1;i
D d

v0v2v1

.i�1/v0C.n�1�i/v2
D�d

v0v1v2

.i�1/v0C.n�1�i/v2
D�d

v0v1v2

n�i;i ;

and since (last equality follows from (10-40))

(10-41)

�v0v1v2 D

n�1Y
iD1

Hi.d
v0v1v2

1;i
/DH1;

�v0v2v1 D

n�1Y
iD1

Hi.d
v0v2v1

1;i
/D

n�1Y
kD1

Hn�k.�dk;n�k/;

we have

(10-42) ˇv0v1v2
D ��1

v0v1v2

ž
v0v1v2

�v0v2v1
D

n�1Y
kD1

��n�kY
iD1

xi.1/

�
H0�1

k HkC1

�
d˙1:

By Lemma 10.13, dkC1;i=dk;i DX
"	.v0v1v2/

k;i
, so that

(10-43) H0�1
k HkC1 D

n�kY
iD1

Hi.dk;i/
�1Hi.dkC1;i/D

n�kY
iD1

Hi.X
"	.v0v1v2/

k;i
/:

This proves the result.

Short edges We must prove that .�v0v1v2/�1�v0v1v3 D  v0v1v2 . We have

(10-44) .�v0v1v2/�1�v0v1v3 D

�n�1Y
iD1

Hi.d
v0v1v2

1;i
/

��1 n�1Y
iD1

Hi.d
v0v1v3

1;i
/

D

n�1Y
iD1

Hi

�
d
v0v1v3

1;i

d
v0v1v2

1;i

�
:

The result now follows from Lemma 10.18 below.

Lemma 10.18 The shape parameters in (10-23) are given in terms of diamond coordi-
nates by

(10-45) z
�"
v0v1v2
	

i D
d
v0v1v3

1;i

d
v0v1v2

1;i

:

Proof Let ˛D .i�1/v0C.n�1� i/v1 , so that zi D z
v0Cv1
˛ and d

v0v1vk

1;i
D d

v0v1vk
˛ ,

k D 2; 3. By compatibility under reordering, it is enough to prove the result for vi D i .
We have

(10-46) z1100
˛ D

c˛Ce0Ce3
c˛Ce1Ce2

c˛Ce0Ce2
c˛Ce1Ce3

; d01k
˛ D�

c˛C2e0
c˛Ce1Cek

c˛Ce0Ce1
c˛Ce0Cek

:
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Hence z�1
i D d013

1;i
=d012

1;i
, proving the result.

This concludes the proof of Theorem 10.14.

Remark 10.19 Theorem 10.14 implies that, for a generic PGL.n;C/=B –decoration
on .M; T /, the restriction of the natural cocycle to @M has a canonical lift to a cocycle
with values in B � GL.n;C/ (not just in PGL.n;C/).

11 From shape assignments to cocycles

We now prove that the bottom row of diagram (1-5) consists of one-one correspondences.
The idea is to first prove that a shape assignment determines a natural cocycle on each
doubly truncated simplex. This is a consequence of the internal gluing equations. The
face and edge equations imply that the cocycles glue together to a cocycle on M ; the
middle edges glue together because of the face equations, and the edge equations imply
that we can fill in the prisms.

Lemma 11.1 If two shape assignments z and w agree on two faces i and j , then
z D w , ie if ze

s D we
s when ei D si D 0 or ej D sj D 0, then ze

s D we
s for all

.s; e/ 2�3
n�2

.Z/� P�3
2
.Z/.

Proof We may assume that z and w agree on faces 2 and 3. It is enough to prove
that z1100

s D w1100
s for all s D .s0; s1; s2; s3/ 2�

3
n�2

.Z/. By assumption, this holds
if either s2 or s3 is 0. Suppose by induction that z1100

s D w1100
s for all s with

s2C s3 < k , and let s 2�3
n�2

.Z/ be a subsimplex with s2C s3 D k . Since the result
holds when either s2 or s3 is 0, we may assume that sD ˛C0011, with ˛ 2�3

n�4
.Z/.

Let t D s C 1100. By Lemma 6.10, z and w satisfy the internal gluing equations,
ie we have

(11-1) z0011
˛C1100z0101

˛C1010z0110
˛C1001z1001

˛C0110z1010
˛C0101z1100

s

D w0011
˛C1100w

0101
˛C1010w

0110
˛C1001w

1001
˛C0110w

1010
˛C0101w

1100
s ;

which equals 1. Note that for all terms except z1100
s and w1100

s , the lower index
satisfies s2 C s3 < k . By induction, each term z1111�I

˛CI
equals w1111�I

˛CI
. Hence

z1100
s D w1100

s , completing the induction.

Lemma 11.2 The factorization of the middle edges is unique, ie if

(11-2)
n�1Y
kD1

�n�kY
iD1

xi.1/

n�k�1Y
iD1

Hi.ak;i/

�
D

n�1Y
kD1

�n�kY
iD1

xi.1/

n�k�1Y
iD1

Hi.bk;i/

�
;

then ak;i D bk;i for all k; i .
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Proof Suppose (11-2) holds. In particular, all diagonal entries are equal. Hence, as
in Remark 10.17, the equality

Qn�2
iDl

Qn�1�i
kD1 ak;i D

Qn�2
iDl

Qn�1�i
kD1 bk;i holds for all

l D 1; : : : ; n. The result now follows by induction.

Proposition 11.3 The map Z from generic decorations on �3
n to shape assignments

on �3
n is surjective.

Proof Let z be a shape assignment. We wish to construct a decoration D with
Z.D/ D z . Let D D .B; q1B; ˇ012q1B; 012ˇ013q1B/ and let z0 D Z.D/. By
Lemma 11.1, it is enough to prove that z0 agrees with z on faces 2 and 3. We prove
this for face 3 (s3 D 0), face 2 being similar. We use induction on s2 . Let ˇ0 and  0

denote the labelings of the natural cocycle of D . Let Xt and X 0t denote the X –
coordinates of z and z0 . Note that ˇ0

012
D ˇ012 and  0

012
D 012 . Since  0

012
D 012 ,

the equality z1100
s Dw1100

s holds for s2D0, proving the base case. Since ˇ0
012
Dˇ012 ,

it follows from Lemma 11.2 that Xt DX 0t for all t on faces 2 and 3. Now suppose by
induction that z1100

s D w1100
s holds for s2 < k . Let t D sC 1100. We have

(11-3) �z1100
s z1010

t�1010z0110
t�0110 DXt DX 0t D�z01100

s z01010
t�1010z00110

t�0110:

By induction, z1010
t�1010

D z01010
t�1010

and z0110
t�0110

D z00110
t�0110

, so we must also have
z1100

s D z01100
s . This proves the result.

Theorem 11.4 The bottom row of diagram (1-5) consists of one-one correspondences.

Proof We first prove this for a simplex. The map L˛ˇ is bijective by Remark 9.14.
The injectivity of Z follows from Theorem 10.14, and surjectivity was proved in
Proposition 11.3. Now suppose z is a shape assignment on .M; T /. We must
prove that z determines a generic decoration, or equivalently a natural cocycle. By
Proposition 11.3, z determines a natural cocycle on each doubly truncated simplex. We
must prove that these fit together to form a cocycle on M . The labelings of long edges
obviously match up, and by (10-23) and Remark 10.10, the middle edges match up if and
only if the face equations are satisfied. Now all that is left to prove is that the induced la-
beling on the prisms are cocycles. This is a direct consequence of the edge equations.

Remark 11.5 It follows from Theorem 11.4 that (10-23) gives an explicit map from
shape assignments to cocycles. Combined with Remark 9.14 this gives explicit inverses
of Z and L˛ˇ . Similarly, we have explicit inverses of C and L˛ˇ via (10-5).
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12 Duality

In this section we make some observations about the relationship between the shape
coordinates and the Ptolemy coordinates. Our observations suggest that there is a
fundamental duality between the two sets of coordinates, which is interesting in its own
right. We believe that this duality is a 3–dimensional aspect of the duality (see [12,
page 33]) between A–coordinates and X –coordinates on higher Teichmüller space of
a simply connected Lie group (eg SL.n;C/), respectively, its Langlands dual group
(eg PGL.n;C/).

Note that for each subsimplex, one shape parameter determines the other two. We
single out one:

Definition 12.1 We call the parameters z1100
s shape coordinates.

As is customary for nD 2, we can write the gluing equations entirely in terms of the
shape coordinates. Let subn.T / denote the set of all subsimplices of the simplices
of T .

Observation 12.2 (Duality) The coordinates and their relations are parametrized by
the following sets:

Ptolemy coordinates shape coordinates
PTn.Z/ subn.T /

Ptolemy relations gluing equations
subn.T ) PTn.Z/

In particular, we have

(12-1)
#{Ptolemy coordinates}D #{Gluing equations};

#{Ptolemy relations}D #{Shape coordinates}:

Proposition 12.3 If all boundary components of M are tori, we have

(12-2) #
�

Ptolemy
coords

�
D #

�
Ptolemy
relations

�
D #

�
Shape
coords

�
D #

�
Gluing

equations

�
D

�nC1

3

�
t;

where t is the number of simplices of T .

Proof This follows immediately from Lemma 7.6.
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13 The cusp equations

The decomposition of M into doubly truncated simplices and prisms induces a poly-
hedral decomposition of @M . Note that every closed curve in @M is homotopic to an
edge path in this decomposition.

Let � be a natural .PGL.n;C/;B;H /–cocycle on M . By Remark 10.19, the restriction
of � to @M has a canonical lift (also denoted by � ) to a cocycle with values in
B � GL.n;C/.

Definition 13.1 Let � be a closed edge path in @M and let ˇ1; : : : ; ˇr and 1; : : : ; s

be the labelings induced by � of the middle, respectively, short edges traversed by �.
For l D 1; : : : ; n� 1, the level l cusp equation of � is the equation

(13-1)
rY

jD1

. ǰ /l l

sY
jD1

.j /l l D 1;

where the subscript l l denotes the l th diagonal entry.

1 ˇ1

2

3
4

ˇ2

5

6

7

ˇ3 8

Figure 20: A curve in the polyhedral decomposition of @M

Lemma 13.2 The representation � determined (up to conjugation) by � is boundary-
unipotent if and only if the cusp equation at each level is satisfied for each edge path
representing a generator of the fundamental group of a boundary component of @M .

Proof By definition, � is boundary-unipotent if and only if for each closed edge
path � in @M , the product of the labelings of edges traversed by � is in N . This
proves the result.

Remark 13.3 Note that for nD 2 we recover the traditional cusp equations.
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13.1 Simplifying the cusp equations

Lemma 13.4 The cusp equations are equivalent to the equations

(13-2)
rY

jD1

. ǰ /l l

. ǰ /lC1;lC1

sY
jD1

.j /l l

.i/lC1;lC1

D 1:

Moreover, each factor is given by an expression of the form

(13-3)
. ǰ /l l

. ǰ /lC1;lC1

D�

n�1�lY
kD1

X
"
v0v1v2
	

k;l;�
;

.j /l l

.j /lC1;lC1

D z
�"
v0v1v2
	

l;�
;

where v0v1v2 is the starting vertex of ǰ , respectively, j and � is the correspond-
ing simplex.

Proof Equation (13-2) follows from the fact that the nth diagonal entry is 1 for both
short and middle edges. By Remark 10.17, the diagonal entries are expressions of
the form

(13-4) . ǰ /l l D .�1/n�l
n�2Y
iDl

n�1�iY
kD1

X
"
v0v1v2
	

k;i
; .j /l l D

n�1Y
iDl

z
�"
v0v1v2
	

i :

Taking quotients, this proves the result.

Level l

v0

v1

v2

v3

Xl�1;l � � �X1;l

v0

v1

v2

v3

zl

ˇv1v2v0

 v2v2v3

Figure 21: The terms in the simplified cusp equations at level l

Remark 13.5 Note that the contribution from a middle edge is (minus) the product
of the X –coordinates at level l . The contribution from a short edge is the shape
coordinate at level l . See Figure 21.

Remark 13.6 Note that the cusp equations can be written in the form (1-3).
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14 Example: The figure-eight knot

Consider the triangulation of the figure-eight knot complement given in Figure 1.
Figure 22 shows the induced triangulation of the link of the ideal vertex and indicates
two peripheral curves � and � generating the peripheral fundamental group. These
are not the standard meridian and longitude of the knot. The shape, respectively, X –
coordinates of the left simplex are denoted by ze

s and Xt , whereas those for the right
simplex are denoted by we

s and Yt .

0 3 3 3 2 3 3 0 0 0 1

1 0 2 1 2 1 2 3 1 2 1 2

�

w0110
0110

Y0121 z0101
0101

X0211
w1100

1100

Y2110

w1010
1010

Y2011

z1010
1010

X2011

z1001
1001

X2101
w0110

0110

Y1210 z1010
1010

X1120
w0011

0011

Y0112 z1001
1001

X1012

�

2

1

0

0

1

2

3

3

Figure 22: Generators of the peripheral fundamental group of the figure-eight
knot complement. The indicated coordinates are those involved in the cusp
equations at level l D 2 for nD 4 .

We first consider the gluing equations for nD 3. By examining Figure 1, we see that
there are four edge points, giving rise to the gluing equations

(14-1)

z0101
0100z0110

0100z1010
1000.w

1100
1000/

�1.w1001
1000/

�1.w0011
0010/

�1
D 1;

z0101
0001z0110

0010z1010
0010.w

1100
0100/

�1.w1001
0001/

�1.w0011
0001/

�1
D 1;

z1100
1000z1001

1000z0011
0010.w

0101
0100/

�1.w0110
0100/

�1.w1010
1000/

�1
D 1;

z1100
0100z1001

0001z0011
0001.w

0101
0001/

�1.w0110
0010/

�1.w1010
0010/

�1
D 1;

and four face points, giving rise to the equations

(14-2)

z1100
0010z0110

1000z1010
0100.w

0011
1000/

�1.w1001
0010/

�1.w1010
0001/

�1
D 1;

z0101
1000z1001

0100z1100
0001.w

0011
0100/

�1.w0101
0010/

�1.w0110
0001/

�1
D 1;

z0011
0100z0101

0010z0110
0001.w

0101
1000/

�1.w1001
0100/

�1.w1100
0001/

�1
D 1;

z0011
1000z1001

0010z1010
0001.w

0110
1000/

�1.w1010
0100/

�1.w1100
0010/

�1
D 1:
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The cusp equations for � are

(14-3)

w0110
0100Y0111z0101

0001X0111w
1100
0100Y1110z1001

0001X1101

�w0110
0010Y1110z1010

1000X1110w
0011
0010Y0111z1001

1000X1011 D 1;

w0110
0010z0101

0100w
1100
1000z1001

1000w
0110
0100z1010

0010w
0011
0001z1001

0001 D 1;

and the cusp equations for � are

(14-4)
z1010

0010X1011w
1010
0010Y1011 D 1;

z1010
1000w

1010
1000 D 1:

Using Magma [2] to compute the primary decomposition of the ideal generated by the
above equations (together with the shape parameter relations (4-4), the formula (10-13)
for the X –coordinates in terms of the shapes, and an extra equation making sure that
none of the shapes are 0 and 1) we obtain four zero-dimensional algebraic components
displayed below. For notational convenience, we write zi D z1100

ei
(similarly for w ).�

z0Dw3C
3
2
; z1D

1
2
w3C

1
2
; z2D�

1
2
w3C

1
4
; z3D�w3C1;

w0D�w3�
1
2
; w1D2w3C2; w2D�2w3C1; w2

3C
1
2
w3C

1
2
D0:

(14-5)

�
z0D�w3C1; z1Dw3; z2Dw3; z3D�w3C1;

w0Dw3; w1D�w3C1; w2D�w3C1; w2
3�w3C1D0:

(14-6)

�
z0Dw3�

3
2
; z1D�2w3C4; z2D2w3�1; z3D�w3C1;

w0D�w3C
5
2
; w1D�

1
2
w3C1; w2D

1
2
w3�

1
4
; w2

3�
5
2
w3C2D0:

(14-7)

˚
z0Dz1Dz2Dz3D�w3C1; w0Dw1Dw2Dw3; w2

3�w3C1D0:(14-8)

Remark 14.1 Note that the first and third components are defined over Q.
p
�7/,

whereas the second and fourth are defined over Q.
p
�3/. The fourth component

corresponds to the representation arising from the geometric representation via the
canonical irreducible map PSL.2;C/! SL.3;C/. The fact that for this component the
shapes of all subsimplices are equal for both of the simplices is a general phenomenon;
see [16, Theorem 11.3].

Remark 14.2 All representations except for the second component lift uniquely to
boundary-unipotent representations in SL.3;C/, so these are also detected by the
Ptolemy variety. Components of boundary-unipotent PGL.n;C/–representations that
don’t lift to SL.n;C/–representations seem to be quite common.
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The gluing equations for nD 4 are shown below.

Face A

8̂̂<̂
:̂

z0110
2000z1010

1100z1100
1010.w

0011
2000/

�1.w1001
1010/

�1.w1010
1001/

�1
D 1

z0110
1100z1010

0200z1100
0110.w

0011
1010/

�1.w1001
0020/

�1.w1010
0011/

�1
D 1

z0110
1010z1010

0110z1100
0020.w

0011
1001/

�1.w1001
0011/

�1.w1010
0002/

�1
D 1

Face B

8̂̂<̂
:̂

z0101
2000z1001

1100z1100
1001.w

0011
0200/

�1.w0101
0110/

�1.w0110
0101/

�1
D 1

z0101
1100z1001

0200z1100
0101.w

0011
0110/

�1.w0101
0020/

�1.w0110
0011/

�1
D 1

z0101
1001z1001

0101z1100
0002.w

0011
0101/

�1.w0101
0011/

�1.w0110
0002/

�1
D 1

Face C

8̂̂<̂
:̂

z0011
0200z0101

0110z0110
0101.w

0101
2000/

�1.w1001
1100/

�1.w1100
1001/

�1
D 1

z0011
0110z0101

0020z0110
0011.w

0101
1100/

�1.w1001
0200/

�1.w1100
0101/

�1
D 1

z0011
0101z0101

0011z0110
0002.w

0101
1001/

�1.w1001
0101/

�1.w1100
0002/

�1
D 1

Face D

8̂̂<̂
:̂

z0011
2000z1001

1010z1010
1001.w

0110
2000/

�1.w1010
1100/

�1.w1100
1010/

�1
D 1

z0011
1010z1001

0020z1010
0011.w

0110
1100/

�1.w1010
0020/

�1.w1100
0110/

�1
D 1

z0011
1001z1001

0011z1010
0002.w

0110
1010/

�1.w1010
0002/

�1.w1100
0020/

�1
D 1

Edge!

8̂̂<̂
:̂

z1010
2000z0110

0200z0101
0200.w

1100
2000/

�1.w1001
2000/

�1.w0011
0020/

�1
D 1

z1010
1010z0110

0110z0101
0101.w

1100
1100/

�1.w1001
1001/

�1.w0011
0011/

�1
D 1

z1010
0020z0110

0020z0101
0002.w

1100
0200/

�1.w1001
0002/

�1.w0011
0002/

�1
D 1

Edge �

8̂̂<̂
:̂

z1100
2000z1001

2000z0011
0020.w

1010
2000/

�1.w0110
0200/

�1.w0101
0200/

�1
D 1

z1100
1100z1001

1001z0011
0011.w

1010
1010/

�1.w0110
0110/

�1.w0101
0101/

�1
D 1

z1100
0200z1001

0002z0011
0002.w

1010
0020/

�1.w0110
0020/

�1.w0101
0002/

�1
D 1

Interior equation for z : z0011
1100

z0101
1010

z0110
1001

z1001
0110

z1010
0101

z1100
0011
D 1

Interior equation for w : w0011
1100

w0101
1010

w0110
1001

w1001
0110

w1010
0101

w1100
0011
D 1

Cusp equations for �:

Level l D 1 z1010
0020X1021X1012 w

1010
0020Y1021Y1012 D 1

Level l D 2 z1010
1010X2011 w

1010
1010Y2011 D 1

Level l D 3 z1010
2000 w

1010
2000 D 1
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Cusp equations for �:

Level l D 1

w0110
0200Y0112Y0211 z0101

0002X0112X0121 w
1100
0200Y1120Y1210 z1001

0002X1102X1201

�w0110
0020Y1120Y2110 z1010

2000X1210X2110 w
0011
0020Y0121Y0211 z1001

2000X1021X2011 D 1

Level l D 2

w0110
0110Y0121 z0101

0101X0211 w
1100
1100Y2110 z1001

1001X2101

�w0110
0110Y1210 z1010

1010X1120 w
0011
0011Y0112 z1001

1001X1012 D 1

Level l D 3

w0110
0020 z0101

0200 w
1100
2000 z1001

2000 w
0110
0200 z1010

0020 w
0011
0002 z1001

0002 D 1
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