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Finite knot surgeries and Heegaard Floer homology

MARGARET I DOIG

It is well known that any 3–manifold can be obtained by Dehn surgery on a link,
but not which ones can be obtained from a knot or which knots can produce them.
We investigate these two questions for elliptic Seifert fibered spaces (other than lens
spaces) using the Heegaard Floer correction terms or d –invariants associated to a
3–manifold Y and its torsion Spinc structures. For �1.Y / finite and jH1.Y /j � 4 ,
we classify the manifolds which are knot surgery and the knot surgeries which give
them; for jH1.Y /j � 32 , we classify the manifolds which are surgery and place
restrictions on the surgeries which may give them.

57M25; 57R65

1 Introduction

In the 1960s, Wallace [44] and Lickorish [22] showed that any oriented 3–manifold
can be constructed by Dehn surgery1 on a link in S3 . Soon after, Moser asked which
manifolds can be constructed by surgery on a knot [25]. One may also ask which knots
give each manifold. We begin to answer these two questions for elliptic (or spherical)
manifolds other than lens spaces, that is, those with finite but noncyclic fundamental
group.

We know that S3 only comes from trivial surgeries (Gordon and Luecke [17]) and
S1 �S2 arises only from 0–surgery on the unknot; see Gabai [13]. On the other hand,
lens spaces can come from torus knots [25] but may also arise from integral surgery on
some hyperbolic knots; see Culler et al [6]. Berge [1] proposed a comprehensive list of
such surgeries using primitive/primitive knots, which is now referred to as the Berge
conjecture and is listed as Problem 1.78 in Kirby [21]. Ozsváth and Szabó [34] gave a
necessary condition on the Alexander polynomial of a knot with a lens space surgery
and verified Berge’s list for p � 1500, and Greene [18] verified that any lens space
which is surgery on a nontrivial knot is achieved by some knot on the list. (He did not

1To perform p=q –[Dehn] surgery on a knot K embedded in S3 , remove an open neighborhood N.K/

homeomorphic to a solid torus and replace it by identifying a meridian of the solid torus with p�C q�

in the knot complement. Here, � and � are oriented curves on @N.K/ where � bounds a disk in N.K/ ,
� is nullhomologous in H1.S

3 �N.K// , and the geometric intersection number of � and � is C1 .
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verify that all knots giving lens spaces are on the list.) Dean [7] proposed an extension
of these results from lens spaces to small Seifert fibered spaces. However, Dean’s list is
not exhaustive: other hyperbolic surgeries also produce small Seifert fibered manifolds,
but all such known manifolds are also given by knots from Dean’s list; see Deruelle,
Miyazaki and Motegi [8] and Mattman, Miyazaki and Motegi [24].

We address a subset of Dean’s case: elliptic (or spherical) manifolds other than lens
spaces, ie Seifert fibered manifolds with finite but noncyclic fundamental group. If a
surgery gives such a group, we will call it a finite and noncyclic surgery.

The finite surgeries on torus knots are easy to identify from Moser’s classification [25,
Propositions 3.1, 3.2 and 4]. Bleiler and Hodgson explicitly listed the finite surgeries
on iterated torus knots [2, Theorem 7] on the basis of Gordon’s classification [16,
Theorem 7.5]; all of the resulting manifolds are also torus knot surgeries. Boyer and
Zhang proved that no other satellite knots have finite surgeries [3, Corollary 1.4].

Boyer and Zhang showed that all finite surgeries on hyperbolic knots are integral or
half-integral, although it is conjectured that they are integral (see eg [21, Problem 177,
Conjecture A]). Additionally, any hyperbolic knot has at most five finite or cyclic
surgeries, with at most one nonintegral. Any two such surgeries on the same knot have
distance2 at most 3, and the distance 3 is realized by at most one pair; see Boyer and
Zhang [4, Theorems 1.1 and 1.2].

There are a variety of examples of finite surgeries on hyperbolic knots. Fintushel and
Stern [11] and Bleiler and Hodgson [2] commented respectively that 17–surgery on
the .�2; 3; 7/ pretzel knot and 22– and 23–surgery on the .�2; 3; 9/ pretzel knot
are finite (although all three resulting manifolds are also torus knot surgeries), and
Mattman et al showed that there are no other finite surgeries on pretzel knots; see [23,
Theorem 1.2] and [12, Theorem 1]. It is an interesting question for which p there are
finite p=q–surgeries on hyperbolic knots. As Zhang stated in [45, Conjecture yI ] and
Kirby formulated in a remark after Problem 3.6(D) in [21], the Poincaré homology
sphere (the only manifold with finite �1Y and jH1.Y /j D 1) has a unique surgery
construction. Ghiggini proved the following theorem:

Theorem 1 [14, Corollary 1.7] The Poincaré homology sphere is .�1/–surgery on
the left-handed trefoil (or, reversing orientation, .C1/–surgery on the right-handed
trefoil)

†.2; 3; 5/D S3
�1.T3;�2/

2A surgery coefficient p=q corresponds to a homology class p�C q� on @N.K/ . The distance
between two surgery coefficients is the minimum geometric intersection number of two curves representing
the corresponding homology classes.
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and no other surgery on any knot.3

Elliptic spaces fall into a group of manifolds called L–spaces whose Heegaard Floer
homology is particularly simple; see [34, Proposition 2.3]. If an L–space is given by
p=q–surgery on a knot K in S3 , then it obeys the inequality p=q� 2g.K/�1 and the
knot is fibered with one of a very small set of Alexander polynomials. The correction
terms or d –invariants d.Y; t/ take a very nice form for L–space surgeries, and they
can be compared to the d.Y; t/ calculated directly from a plumbing graph. We prove:

Theorem 2 Up to orientation, the only finite, noncyclic surgeries with p � 9 are

S3
1 .T3;2/D

�
�1I 1

2
; 1

3
; 1

5

�
;

S3
2 .T3;2/D

�
�1I 1

2
; 1

3
; 1

4

�
;

S3
3 .T3;2/D

�
�1I 1

2
; 1

3
; 1

3

�
;

S3
4 .T3;2/D

�
�1I 1

2
; 1

2
; 1

3

�
;

S3
7=2.T3;2/D S3

7 .T5;2/D
�
�1I 1

2
; 1

3
; 2

5

�
;

�S3
8 .T3;2/D

�
�1I 1

2
; 1

2
; 2

3

�
;

S3
8 .T5;2/D

�
�1I 1

2
; 1

2
; 2

5

�
;

S3
9=2.T3;2/D�S3

9 .T3;2/D
�
�1I 1

2
; 1

3
; 2

3

�
:

With the possible exception of S3
7
.T5;2/ and S3

8
.T5;2/, there are no other surgeries (up

to orientation) giving these manifolds.

The following manifolds cannot be realized as any knot surgery:�
�1I 1

2
; 1

2
; 1

n

�
if n¤ 3;�

�1I 1
2
; 1

2
; 2

n

�
if n¤ 3 or 5:

Note that there are no elliptic Seifert fibered spaces with jH1.Y /j D 5 or 6; there are
unique spaces for each of jH1.Y /j D 1; 2; 3; 7 and 9; and there are infinite families
for both jH1.Y /j D 4 and 8. See Theorem 6 below, due to Seifert.

Corollary 3 Any finite, noncyclic surgery on a hyperbolic knot has surgery coefficient
at least 7.

Any Seifert fibered spaces which are not knot surgeries must be found among the
dihedral manifolds, those with jH1.Y /j a multiple of 4 (see Theorem 6). We will prove
the following theorem:

3Throughout this paper, we suppress the choice of orientations; unless otherwise stated, surgery
coefficients are positive and Seifert fibered descriptions are the canonical ones described in Theorem 6.
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Theorem 4 The following manifolds have unique surgery descriptions:

S3
4 .T3;2/D

�
�1I 1

2
; 1

2
; 1

3

�
;

�S3
8 .T3;2/D

�
�1I 1

2
; 1

2
; 2

3

�
S3

16=3.T3;2/D
�
�1I 1

2
; 1

2
; 4

3

�
;

�S3
20=3.T3;2/D

�
�1I 1

2
; 1

2
; 5

3

�
S3

28=5.T3;2/D
�
�1I 1

2
; 1

2
; 7

3

�
;

�S3
32=5.T3;2/D

�
�1I 1

2
; 1

2
; 8

3

�
;

�S3
32=3.T5;2/D

�
�1I 1

2
; 1

2
; 8

5

�
:

The only other dihedral manifolds with p � 32 which may be surgery are

S3
8 .T5;2/D

�
�1I 1

2
; 1

2
; 2

5

�
;

�S3
12.T5;2/D

�
�1I 1

2
; 1

2
; 3

5

�
;

S3
12.T7;2/D

�
�1I 1

2
; 1

2
; 3

7

�
;

�S3
16.T7;2/D

�
�1I 1

2
; 1

2
; 4

7

�
;

S3
16.T9;2/D

�
�1I 1

2
; 1

2
; 4

9

�
;

�S3
20.T9;2/D

�
�1I 1

2
; 1

2
; 5

9

�
;

S3
20.T11;2/D

�
�1I 1

2
; 1

2
; 5

11

�
;

�S3
24.T11;2/D

�
�1I 1

2
; 1

2
; 6

11

�
;

S3
24.T13;2/D

�
�1I 1

2
; 1

2
; 6

13

�
;

S3
28=3.T5;2/D S3

28.K0/D
�
�1I 1

2
; 1

2
; 7

5

�
S3

28.K1/D
�
�1I 1

2
; 1

2
; 7

11

�
�S3

28.T13;2/D
�
�1I 1

2
; 1

2
; 7

13

�
;

S3
28.T15;2/D

�
�1I 1

2
; 1

2
; 7

15

�
;

�S3
32.T15;2/D

�
�1I 1

2
; 1

2
; 8

15

�
;

S3
32.T17;2/D

�
�1I 1

2
; 1

2
; 8

17

�
:

The latter manifolds may also be integral surgery on hyperbolic knots with the same
�K .T / as the knots listed above; see Tables 1 and 4.

Note K1 is the knot constructed by .C1/–surgery on the unknotted component of the
.�2; 3; 10/ pretzel link [2, Proposition 18]. K0 may be some knot with symmetrized
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Alexander polynomial T 8�T 7CT 5�T 4CT 2�T C1 � � � ; the author is not currently
aware of any such K0 with the listed surgery.

Corollary 5 If m� 8, the following manifolds cannot be realized as knot surgeries:�
�1I 1

2
; 1

2
; m

n

�
if n> 2mC 1:

We describe Seifert fibered spaces and their nonhyperbolic surgeries in Section 2,
we list the necessary prerequisites about L–space surgeries and the d –invariants in
Section 3, and we prove Theorems 2 and 4 in Section 4. The first presentation of this
work may be found in the author’s thesis [10].

Acknowledgements Special thanks go to Zoltán Szabó, who suggested and directed
this project with a great deal of kindness and patience, and to Chuck Livingston, Paul
Kirk and Dave Gabai, who listened and contributed many helpful suggestions. Thanks
also to Stephen Maderak for turning my algorithms into functional code and making it
possible to generate gigabytes of examples.

2 Seifert fibered spaces as knot surgeries

Any closed, oriented 3–manifold Y is surgery on some link in S3 ; see Lickorish [22]
and Wallace [44]. A surgery diagram can be manipulated by the methods of Kirby
calculus [20], which alter the diagram but not the diffeomorphism type of the underlying
3–manifold: isotoping by surgery diagrams, stabilizing or destabilizing the manifold
by adding or subtracting a .˙1/–framed unknot which can be separated from the rest
of the link, and handlesliding one link component over another, replacing L2 with the
band sum of L1 and L2 . For the last procedure, if ni is the framing on Li , then n2

becomes n1C n2C 2lk.L1;L2/. For a presentation of Kirby calculus, including its
applications to Dehn surgery, see [15, Chapter 5].

Seifert fibered spaces Seifert fibered spaces were originally defined by Seifert in 1932;
see [42], translated by W Heil in [43]. Scott gives a more modern presentation with a
slightly expanded definition incorporating the fibered solid Klein bottles mentioned
below [41].

A trivial solid torus fz 2C W jzj � 1g�S1 may be given the product fibration with fibers
fzg�S1 . A fibered solid torus (or fibered solid Klein bottle) is a torus (or Klein bottle)
which is finitely covered by the trivial fibered torus, where the covering map preserves
fibers. A fibered torus can alternately be constructed by taking the trivial fibered torus,
cutting it along fz 2C W jzj � 1g � f0g and identifying .z; 0/ with .e2� iq=pz; 1/, and
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a fibered solid Klein bottle can be constructed by taking the same cut fibered torus and
identifying .z; 0/ with .z; 1/. The torus then has one exceptional (not regular) fiber in
the center, and the Klein bottle has a continuous family of exceptional fibers whose
union is an annulus.

A Seifert fibered space is a manifold foliated by circles so that any circle has a neigh-
borhood which is fiber-isomorphic to a fibered solid torus or Klein bottle. A Seifert
fibered space itself can be thought of as a fiber bundle over the orbifold obtained
by compressing each fiber to a point (often called the base orbifold). Each isolated
exceptional fiber corresponds to a cone point on the orbifold and a surface of exceptional
fibers corresponds to a reflector line in the orbifold. Each isolated exceptional fiber
can be eliminated by some Dehn surgery, and the class of such surgery coefficients is
referred to as the fiber’s framing.

For our purposes, we will need only Seifert fibered spaces with base orbifold S2 and
some number of cone points. Construct such a space by choosing a circle bundle �
over S2 and surgering over fibers with framings �bi=ai (the negative sign is for
historical reasons). It can be described as surgery on a link in S3 whose components
have framing fb D c1.�/;�b1=a1; : : : ;�br=ar g. Seifert identified such a manifold
with an n–tuple (together with information about the base orbifold which we will
exclude) �

bI
a1

b1

; : : : ;
ar

br

�
:

For example, the Poincaré homology sphere is �.�1I 1
2
; 1

3
; 1

5
/.

The choice of framings is not unique. The bi , sometimes called the multiplicities, are
determined, but b and the ai may be altered by handleslides. For example,�

�bI
a1

b1

;
a2

b2

;
a3

b3

�
Š

�
�b� 1I

a1

b1

C 1;
a2

b2

;
a3

b3

�
;(1) �

�1I 1
2
;
a2

b2

;
a3

b3

�
Š�

�
�2I 1� 1

2
; 1�

a2

b2

; 1�
a3

b3

�
:(2)

By geometrization [37; 38; 39], the manifolds with finite fundamental group are all
Seifert fibered. They fall into five classes depending on whether �1 is cyclic or is
based on one of the four isometries of a sphere. We slightly rephrase Seifert’s result:

Theorem 6 (Seifert [42]) The closed, oriented Seifert fibered spaces with finite but
noncyclic fundamental group are exactly those manifolds with base orbifold S2 and
the following presentations:

(i) Type I, icosahedral .bI 1
2
a1;

1
3
a2;

1
5
a3/ with H1.Y /D Zm and .m; 30/D 1.
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(ii) Type O, octahedral .bI 1
2
a1;

1
3
a2;

1
4
a3/ with H1.Y /D Z2m and .m; 6/D 1.

(iii) Type T, tetrahedral .bI 1
2
a1;

1
3
a2;

1
3
a3/ with H1.Y /D Z3m and .m; 2/D 1.

(iv) Type D, dihedral .bI 1
2
a1;

1
2
a2; a3=b3/ with H1.Y /D Z4m and .m; b3/D 1

(if b3 is even) or H1.Y /D Z2 �Z2m with .m; 2b3/D 1 (if b3 is odd).

Here jH1.Y /jD b1b2b3.bCa1=b1Ca2=b2Ca3=b3/ and .ai ; bi/D 1. Any integer m

meeting the constraints listed for one of the four types I, O, T or D corresponds (up to
orientation) to a unique Seifert fibered space of type I, O or T, or to a unique infinite
family of type D indexed by the integer b3 .

Any choice of b , ai and bi meeting the appropriate relative primality conditions gives
a Seifert fibered space. For each orientation, we choose a canonical presentation where
b D �1, a1 D 1 and a2 D 1 or 2. If we allow change of orientation, we can also
require a2 D 1 and (for type D) a3 > 0.

Proof Seifert calculates explicit descriptions of the fundamental group and first
homology group and then deduces the possible framings; see [42] for the details.

�1.Y /D h�;�;�1; : : : ; �r j ��1 � � ��r D 1; Œ�; �i �D 1; �D �b; �
bi

i D �
ai i;

and so
H1.Y IZ/D

Zm0˚ � � �˚Zmr

.b �m0Cm1C � � �Cmr D 0; ai �m0 D bi �mi/
:

In order to obtain the canonical presentation for a manifold of type D, first turn
.bI 1

2
a1;

1
2
a2; a3=b3/ into .bI 1

2
; 1

2
; a0

3
=b3/ using (1). Then adjust b (perhaps changing

a0
3

but leaving a1 D a2 D 1) to get .�1I 1
2
; 1

2
; a00

3
=b3/. If a00

3
< 0, then reverse

orientation as in (2) to �.�2I 1
2
; 1

2
; .b3� a00

3
/=b3/D�.�1I 1

2
; 1

2
;�a00

3
=b3/. For types

I, O and T, start by obtaining .�1I 1
2
; 1 or 2

3
; a3=b3/. If a2 D 2, reverse orientation to

�.�2I 1
2
; 1

3
; 1� a3=b3/ D �.�1I 1

2
; 1

3
;�a3=b3/.

Given a choice of I, O, T or D and an m that meets the appropriate primality conditions,
the bi are determined, and there are b and ai as follows. Assume b D �1 and
a1 D a2 D 1. For type I with .m; 30/D 1, m .mod 6/��5 or 5. In the former case,
set a3D

1
6
.mC5/, and then jH1.Y /jD j6a3�5jDm; in the latter, set a3D�

1
6
.m�5/,

so jH1.Y /j D m. For type O with .m; 24/ D 1, we have .m; 3/ D 1, so choose
a3D

1
3
.mC2/ or �1

3
.m�2/, whichever is an integer, and then jH1.Y /jD j6a3�4jD

2m. For type T with .m; 18/ D 1, we have .m; 3/ D 1, so choose a3 D
1
2
.mC 1/

or �1
2
.m� 1/, whichever is an integer, and then jH1.Y /j D j6a3� 3j D 3m. Finally,

for type D with .m; b3/D 1, choose a3 Dm, so jH1.Y /j D 4m.

Note that the canonical presentations for the two orientations of an I, O or T manifold
may be distinguished by whether a2 is 1 or 2. The two orientations for a D manifold
may be distinguished by whether a3 Dm is positive or negative.
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Finite surgeries Many of the elliptic manifolds can be realized as torus knot surgeries.

Theorem 7 [25, Propositions 3.1, 3.2 and 4]

S3
p=q.Tr;s/D

8̂̂<̂
:̂

Lr;s # Ls;r if p=q D rs;

Lp;rsq if p=q D rs˙ 1=q;�
bI a1

r
; a2

s
; a3

jrsq�pj

�
otherwise, for some choice of b; a1; a2; a3:

Corollary 8 Every manifold of type I, O or T is surgery on a Tn;2 torus knot. Of each
infinite family of manifolds of type D with the same jH1.Y /j D 4m, only finitely many
are surgeries on torus knots, and they are the ones where b3 divides 2mC1 or 2m�1.

Proof A careful application of Kirby calculus shows that

S3
p=q.Ts;2/D

�
�1I

1

2
;
.s� 1/=2

s
;

q

2sq�p

�
D�

�
�1I

1

2
;
.sC 1/=2

s
;

q

p� 2sq

�
;

S3
p=q.T4;3/D

�
�1I

2

3
;
1

4
;

q

12q�p

�
D�

�
�1I

1

3
;
3

4
;

q

p� 12q

�
;

S3
p=q.T5;3/D

�
�1I

1

3
;
3

5
;

q

15q�p

�
D�

�
�1I

2

3
;
2

5
;

q

p� 15q

�
:

These cases cover all the finite torus knot surgeries, since p=q–surgery on Tr;s (if it
is not a lens space or sum of lens spaces) has multiplicities .r; s; jrsq�pj/. A type I
manifold may be surgery on T3;2 , T5;2 or T5;3 ; a type O manifold may be surgery on
T3;2 or T4;3 ; a type T may be surgery on T3;2 ; and a type D may be surgery on Tn;2 .

By Theorem 6, any I, O or T manifold Y may be written ˙.�1I 1
2
; 1

3
; a3=b3/. A

series of blow-ups on the trefoil shows Y is .6a3 � b3/=a3 –surgery on T3;2 (up to
orientation).

A manifold of type D with multiplicities .b1; b2; b3/D .2; 2; n/ can only be surgery
on a knot if H1.Y / is cyclic, meaning n is odd, and it can only be surgery on Tn;2

if 2sq � p D ˙2. (Note that q=.2sq � p/ is a reduced fraction since .p; q/ D 1.)
Then p D jH1.Y /j and q D 1

2n
.jH1.Y /j ˙ 2/, ie n divides either 1

2
jH1.Y /j C 1 or

1
2
jH1.Y /j � 1.

3 The invariant d.Y; t/

Heegaard Floer homology assigns a set of invariants (in our case, a graded abelian group
over Z2 ) to a closed, connected, oriented 3–manifold using a Heegaard decomposition
of the manifold [32; 33]. A Langrangian Floer homology starts with a 2n–dimensional
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symplectic manifold and two n–dimensional Lagrangian submanifolds which meet
transversely. The chain complex is a free R–module (for R D Z2 , Z etc) whose
generators come from intersection points of the Lagrangians and whose boundary map
counts pseudoholomorphic disks associated to pairs of generators. Heegaard Floer
homology is a Floer homology (after the work of Perutz [40]) that defines the symplectic
manifold and the Lagrangians using a Heegaard decomposition of a 3–manifold. The
generators of its chain complex can be thought of as sets of points on the Heegaard
surface and the boundary maps can be analyzed by examining domains in the surface.

Heegaard Floer homology assigns a set of invariants to certain 3–manifolds Y , including
rational homology spheres, indexed by their Spinc structures t. These invariants are
called the correction terms or d –invariants d.Y; t/. The hat version cHF .Y / comes
with a relative Z–grading which lifts to an absolute Q–grading for a rational homology
sphere (see Theorem 7.1 of [35]); it is defined by requiring that cHF .S3/ Š Z is
supported in degree 0 and that the inclusion map cCF .Y; t/ ,! CFC.Y; t/ preserves
degree. Then d.Y; t/ is the minimal grading of any nontorsion class in HFC.Y; t/

coming from HF1.Y; t/ [29]. If Y is elliptic, all classes in HFC.Y / come from
HF1.Y /, and d.Y; t/ is defined for all t.

L–space surgeries An elliptic Seifert fibered space is an example of an L–space, the
Heegaard Floer homology version of a lens space [30]. cHF .Y / splits into ˚t cHF .Y; t/

over Spinc structures (equivalence classes of nonzero vector fields t that form a
torsor over H 2.Y IZ/). Lens spaces have the nice property that each generator ofcHF .L.p; q// falls into a different torsion Spinc structure (t 2 Spinc.Y / is torsion if
PD.c1.t// 2H1.Y / is torsion). We will call any rational homology sphere with this
property an L–space. Equivalently, cHF .Y; t/Š cHF .S3/ for all t.

Using the surgery exact sequences and absolute grading on HFC.Y /, we can place
some restrictions on which knots may have L–space surgeries. Normalize the Alexander
polynomial so that

�K .T /D a0C

nX
iD1

ai.T
i
CT �i/:

Theorem 9 [34, Corollary 1.3] If a knot K � S3 admits an L–space surgery, then
the nonzero coefficients of �K .T / are alternating C1 and �1.

Ozsváth and Szabó [31] showed that the knot Floer homology 1HFK.K; i/ is Z in
the top grading i D g.K/ for any fibered knot, and Ghiggini [14] and Ni [27] and,
independently, Juhász [19] showed the converse; since �K .T / is the graded Euler
characteristic of 1HFK.S3;K/, this means the following:
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Corollary 10 [27, Corollary 1.3] If a knot K � S3 admits an L–space surgery, then
K is fibered.

Finally, we recall the following theorem:

Theorem 11 [36, Corollary 1.4] If a nontrivial knot K admits a positive L–space
surgery, then S3

p=q
.K/ is an L–space if and only if

p

q
� 2g.K/� 1:

These facts lead to another observation which seems to be known among the community
but not frequently written down.

Corollary 12 No nontrivial knot has both positive and negative L–space surgeries. No
amphichiral knots have L–space surgeries. In particular, no knot has both positive and
negative finite surgeries, and no amphichiral knot has any finite surgeries.

Proof If K has a positive L–space surgery, then �.K/D deg.�K .T //D g.K/ [34,
Corollary 1.6]. If K has both positive and negative L–space surgeries, meaning both K

and its mirror mK have positive L–space surgeries, then �.K/D g.K/D g.mK/D

�.mK/, but �.K/D��.mK/.

Calculating d.Y; t/ of a knot surgery If S3
p=q.K/ is an L–space, cHF .S3

p=q.K//

and its gradings can be calculated from �K .T / and p=q :

Theorem 13 If 0 < q < p , there is a particular identification of Spinc structures
with Zp such that:

(a) [29, Proposition 4.8] For 0� i < pC q ,

d.S3
p=q.U /; i/D�

�pq� .2i C 1�p� q/2

4pq

�
� d.S3

q=r .U /; j /;

where r � p mod q and j � i mod q .

(b) [36, Theorem 1.2] For ji j � 1
2
p ,

d.S3
p=q.K/; i/� d.S3

p=q.U /; i/D�2

1X
jD1

jacCj ;

where c D jbi=qcj and the aj are the coefficients of the symmetrized Alexander
polynomial.
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Calculating d.Y; t/ of a Seifert fibered space It is often possible to calculate the
d.Y; t/ algorithmically using plumbing graphs [30].

See [26] for a thorough exposition of plumbing graphs.

Let � be a tree with vertices v which have integer weights m.v/. The graph �

describes a 4–manifold X DX.�/: For each vertex, take a disk bundle over the sphere
with Euler number m.v/; for each edge, plumb together the corresponding bundles.
The boundary of X.�/ is a 3–manifold we call Y .�/. For example, the lens space
L.7; 4/ may be given as Y .�/ for either graph below, since Œ�3;�2;�2� and Œ�2; 3�

are both continued fraction expansions for �7
3

:

�3
�

�2
�

�2
� D

�2
�

C3
�

Similarly, we have that the Poincaré homology sphere (with nonstandard orientation)
Y D .�2I 1

2
; 2

3
; 4

5
/ is given by

(3)

�2
�

�2
�

�2
�

�2
�

�2
�

�2
�

�2
�

�2
�

where the central vertex is v1 , the top arm is a single vertex v2 of weight �2
1

, the
next arm consists of vertices v3 , v4 labeled from left to right with weights giving
the continued fraction expansion of �3

2
, and the bottom arm is v5; : : : ; v8 with weights

giving the continued fraction expansion of �5
4

. In general, an elliptic space may be
written Y D .bI a1=b1; a2=b2; a3=b3/ with 0< ai=bi < 1 and (perhaps after reversing
orientation) b � 0. If p=q < 0, it is possible to chose the xi � �2 (choose them
to be negative; if a .�1/ appears, blow it down). Then Y D Y .�/ for a graph �
with a central vertex of degree 3 and weight b , and with three arms with vertices
of degree � 2 and weights given by the continued fraction expansion of �bi=ai ,
chosen so that the weights are � �2. Additionally, if the orientation is chosen so that
e.�/D b�

P3
iD1ai=bi < 0 (ie b � 0), then � is the dual graph of a good resolution

of a singularity and X.�/ is negative definite [26, Corollary 8.3].

An elliptic space Y with the description given above additionally has the property that
m.v/�� deg.v/ for each vertex except possibly the central one, as in (3); we will call
a vertex violating this property bad.
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H2.X IZ/ is a lattice freely spanned by the vertices of � . Define a matrix Q for the
intersection form using � : If v is a vertex and v the corresponding homology class,
v � v Dm.v/; if v and w are distinct vertices, v �w D 1 if there is an edge between v

and w and 0 otherwise. If, as above, e.�/ < 0, then Q is negative definite. For � in
(3), Q is E8 .

The characteristic vectors or Char.�/ are the V 2H 2.X IZ/ such that

hV; wi � w �w mod 2 for all w 2H2.X IZ/:

Char.�/ splits over Spinc.Y .�//. Let Chart.�/ be the characteristic vectors such
that V D c1.s/ for some s 2 Spinc.X.�// with sjY .�/ D t. It is easy to identify
a characteristic vector using Hom duality: For V 2 H 2.X /, note that hV; wi D
PD�1.V / �wD vT Qw for some v 2H2.X /. Then vT is the Poincaré dual of V , and
vT Q is its Hom dual. V is characteristic exactly when PD�1.V / � vi � vi � vi mod 2,
ie the i th coordinate of vT Q has the same parity as m.vi/ for all vertices vi . For
example, Char.�/ of (3) consists of all vectors vT Q with even coordinates.

HFC.�Y; t/ can be expressed in terms of Chart.�/. Let

T C
0
D ZŒU;U�1�=U �ZŒU �

as a ZŒU �–module with grading so that U�d is homogeneous and supported in degree
2d (where d > 0). Then HFC.�Y; t/ is isomorphic to the set of functions

�W Chart.G/! T C
0

which preserve the adjunction relations

U n
��.V CPD.w//D �.V / if n� 0;

�.V CPD.w//D U�n
��.V / if n� 0;

where 2nD hV; wiCw �w .

The grading of HFC.�Y; t/ is induced from the grading on T C
0

by

deg.�/D deg.�.V //�
V 2Cj�j

4

if �.V /2T C
0

is a nontrivial homogeneous element, where j�j is the number of vertices
in � . We could calculate d.Y; t/ by optimizing this grading over Chart.�/, but it
would be very labor-intensive. To better study the grading on characteristic vectors,
define an operation on Chart.�/ by

(4) V 7! V C 2PD.vi/ if hV; vii D �m.vi/:
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That is, find vT Q where vT Q has �m.vi/ as its i th coordinate and has the same
parity as m.vj / in all other coordinates. This operation changes the i th coordinate
to m.vi/ and adds 2 to the j th coordinate if and only if there is an edge between vi

and vj . This operation does not change the class in Chart.�/, and it does not change
the value V 2 D hV;PD�1.V /i. For the graph � in (3), the vector

V D .2; 0; 0; 0; 0; 0; 0; 0/

satisfies hV; vii D �m.vi/ for i D 1, so the operation gives

V C 2PD.v1/D .�2; 2; 2; 0; 2; 0; 0; 0/;

and
V 0 D .�2; 2; 2; 0; 2; 0; 0; 0/

satisfies the equality for i D 2, 3 or 5, which gives

V 0CPD.v2/D .0;�2; 2; 0; 2; 0; 0; 0/;

V 0CPD.v3/D .0; 2;�2; 2; 2; 0; 0; 0/;

V 0CPD.v5/D .0; 2; 2; 0;�2; 2; 0; 0/:

A path of vectors is a sequence fV0;V1; : : : ;Vkg where ViC1 is derived from Vi by
this operation, and a full path is maximal with respect to this operation. For example,
f.0; 0; 0; 0; 0; 0; 0; 0/g is actually a full path for � in (3).

A nice characteristic vector obeys

(5) m.vi/� hV; vii � �m.vi/ for all i;

that is, the i th coordinate of vT Q is between �m.vi/ and m.vi/. There are a finite
number of nice characteristic vectors. By [30, Proposition 3.2], every full path of nice
vectors fV0;V1; : : : ;Vkg obeys the additional property that V0 and Vk satisfy

m.vi/ < hV0; vii � �m.vi/ for all i;(6)

m.vi/� hVk ; vii< �m.vi/ for all i:(7)

For example, for � in (3), .2; 2; 0; 0; 0; 0; 0; 0/ is nice, but .4;�2; 0; 0; 0; 0; 0; 0/ is
not. For a given vector V , if there is any full path of nice vectors containing V , then
all paths containing V have only nice vectors, and all full paths containing V are the
same length and start and end at the same V0 and Vk . For � in (3), there is only one
full path of nice vectors, and it contains only the vector .0; 0; 0; 0; 0; 0; 0; 0/.

Using full nice paths, we may now calculate d.Y .�/; s/ in a reasonably efficient
fashion.
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Theorem 14 [30, Corollaries 1.5 and 3.2] Let � be a connected tree with at most
one bad vertex and t 2 Spinc.Y .�//. Then

d.Y .�/; t/D� max
V 2Chart.�/

V 2Cj�j

4
:

In fact, this maximum is obtained over the vectors that are part of nice full paths and
obey (6) or, equivalently, (7).

Recall that V is actually an element in HFC.�Y .�/; t/, hence the negative sign and
the fact that we must calculate the maximum instead of the minimum.

Given a characteristic vector V written as vT Q, it is easy to calculate d.Y .�/; t/

since V 2DVQV T D .vT Q/Q�1.vT Q/T . In the case of � in (3), the vector vT QD

.0; 0; 0; 0; 0; 0; 0; 0/ has V 2 D 0 and so d.�Y .�/; t0/ D 2, where t0 is the single
Spinc structure.

Example 15 Calculate the correction terms for the first family of dihedral manifolds
from Theorem 6, Y D .�1I 1

2
; 1

2
; 1

n
/. Reversing orientation so that e.�Y / < 0, �Y D

�.�2I 1
2
; 1

2
; .n� 1/=n/ and � is

�2
�

�2
�

�2
�

�2
�

�2
�

�2
�

�2
�

where v1 is the degree-3 vertex on the left, v2 is on the top arm, v3 is on the middle
arm, and v4; : : : ; vnC2 are on the bottom arm.

Equivalently, the 4–manifold has intersection form

QD

26666666666664

�2 1 1 1 0 � � � 0 0

1 �2 0 0 0 � � � 0 0

1 0 �2 0 0 � � � 0 0

1 0 0 �2 1 � � � 0 0

0 0 0 1 �2 � � � 0 0
:::

:::
:::

:::
:::
: : :

:::
:::

0 0 0 0 0 � � � �2 1

0 0 0 0 0 � � � 1 �2

37777777777775
:
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There are four full nice paths for � ; they start at the four vectors V (written in the
form vT Q)

.0; 0; 0; 0; : : : ; 0/;

.0; 2; 0; 0; : : : ; 0/;

.0; 0; 2; 0; : : : ; 0/;

.0; 0; 0; 0; : : : ; 2/:

These vectors have squares

0; �.nC 2/; �.nC 2/; �4;

respectively, and so the correction terms of Y .�/ are

�
nC2

4
; 0; 0; �

n�2

4
:

We list the correction terms for all the dihedral manifolds with jH1.Y /j � 32 in Table 3.

4 d.Y; t/ as a knot surgery obstruction

To demonstrate some of the techniques that will be used to prove Theorems 2 and 4,
we summarize the proof of Theorem 1, due to Ghiggini:

Proof of Theorem 1 [14, Corollary 1.7] By Theorem 6, the Poincaré homology
sphere is (up to orientation)

Y D�
�
�1I 1

2
; 1

3
; 1

5

�
:

Assume that Y or �Y DS3
p=q.K/ with p=q>0. Recall S3

p=q.K/D�S3
�p=q.mK/ and

d.Y; t/D�d.�Y;�t/. Then jH1.Y /jDpD1. Since Y is not a lens space, g.K/>0;
since it is an L–space, Theorem 11 says that

1

q
� 2g.K/� 1:

Therefore, p=q D 1 and g.K/D 1.

By Theorem 9,
�K .T /D T � 1CT �1:

By Corollary 10, K is fibered. Therefore, K is the right-handed trefoil T3;2 or the
left-handed one, T3;�2 ; see eg Burde and Zieschang [5]. By the calculations in the
proof of Corollary 8, S3

1
.T3;2/ D �S3

�1
.T3;�2/ D .�1I 1

2
; 1

3
; 1

5
/, and S3

1
.T3;�2/ D

�S3
�1
.T3;2/D�.�1I 1

2
; 1

3
; 1

8
/, which is not elliptic by Theorem 6.
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Proof of Theorem 2 Assume Y is Seifert fibered but not a lens space, and Y D

S3
p=q

.K/, where p=q>0. In general, if S3
p=q.K/ is an elliptic space, then S3

�p=q.mK/

(where mK is the mirror) is elliptic too, but S3
p=q.mK/ and S3

�p=q.K/ are not; see
Corollary 12.

jH1.Y /j D 2 Then Y D ˙.�1I 1
2
; 1

3
; 1

4
/ and 2=q � 2g.K/� 1, so p=q D 2 with

g.K/D 1 and �K .T /D T � 1CT �1 , and K must be a trefoil. By Corollary 8,

S3
2 .T3;2/D .�1I 1

2
; 1

3
; 1

4
/:

jH1.Y /j D 3 Then Y D ˙.�1I 1
2
; 1

3
; 1

3
/. Either p=q D 3

2
with g.K/ D 1 and

�K .T /D T �1CT �1 and K the trefoil, or else p=qD 3 with 0< g.K/� 2. In the
latter case, Theorem 9 shows that the symmetrized Alexander polynomial of K may
be �1.T /, �2.T / or �20.T / (see Table 1 for a number of the Alexander polynomials
we will use).

i �i.T /

1 T � 1 � � �

2 T 2�T C 1 � � �

20 T 2� 1 � � �

3 T 3�T 2CT � 1 � � �

4 T 4�T 3CT 2�T C 1 � � �

5 T 5�T 4CT 3�T 2CT � 1 � � �

6 T 6�T 5CT 4�T 3CT 2�T C 1 � � �

7 T 7�T 6CT 5�T 4CT 3�T 2CT � 1 � � �

8 T 8�T 7CT 6�T 5CT 4�T 3CT 2�T C 1 � � �

80 T 8�T 7CT 5�T 4CT 2�T C 1 � � �

90 T 9�T 8CT 5�T 4CT 3�T 2C 1 � � �

Table 1: The Alexander polynomials �i.T / .

To narrow this down, calculate the corresponding correction terms that would result
from .C3/–surgery on knots with these Alexander polynomials. By Theorem 13,

d.S3
3 .K/; i/D d.S3

3 .U /; i/� 2

1X
jD1

jajCc D

(
1
2

�
1
6

C

�1 �2 �20

�2 �2 �4 i D 0;

0 �2 �2 i D˙1;

D

( �1 �2 �20

�
3
2
�

3
2
�

7
2

i D 0;

�
1
6
�

13
6
�

13
6

i D˙1:
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On the other hand, d.Y; t/ may be calculated as in Example 15; �Y D .�2I 1
2
; 2

3
; 2

3
/

has e.�Y / < 0, and � is
�2
�

�2
�

�2
�

�2
�

�2
�

�2
�

where v1 is the degree-3 vertex on the left, v2 is on the top arm, v3; v4 are on the
middle arm, and v5; v6 are on the bottom arm.

There are three nice full paths, starting with the vectors (written in the form vT Q)

.0; 0; 0; 0; 0; 0/;

.0; 0; 0; 2; 0; 0/;

.0; 0; 0; 0; 0; 2/;

with squares
0; 16

3
; 16

3
;

so the correction terms d.Y .�/; t/ are, in some order,

�
3
2
; �1

6
; �1

6
:

These terms do not match the correction terms coming from surgery on a knot with
Alexander polynomial �2.T / or �20.T /, so the Alexander polynomial can only be
�1.T /, and K is a trefoil. Note S3

3
.T3;2/D .�1I 1

2
; 1

3
; 1

3
/.

jH1.Y /j D 4 Then Y D˙.�1I 1
2
; 1

2
; 1

n
/ with n odd. Either p=qD 4

3
with g.K/D1

and K the trefoil (but this Y is not elliptic),4 or p=q D 4 with g.K/D 1 or 2 and
Alexander polynomial �1.T /, �2.T / or �20.T /. In the latter case,

d.S3
4 .K/; i/D

8̂<̂
:
�1 �2 �20

�
5
4
�

5
4
�

13
4

i D 0;

0 �2 �2 i D˙1;

�
1
4
�

1
4
�

1
4

i D 2:

These terms match the d.Y; t/ calculated in Example 15 only for �1.T / and nD 3,
which corresponds to S3

4
.T3;2/D .�1I 1

2
; 1

2
; 1

3
/.

4It was previously known that there is no finite 4
3

–surgery: finite surgery on a hyperbolic knot must be
integral or half-integral [4, Theorems 1.1 and 1.2], and no .˙4

3
/–surgery on a torus or satellite knot gives

this Y [2, Theorem 7].
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jH1.Y /j D 5 or 6 All elliptic Y with these first homologies are lens spaces.

jH1.Y /j D 7 Then Y D˙.�1I 1
2
; 1

3
; 2

5
/ with d.Y; t/ as in Table 2. By Boyer and

Zhang [4, Theorem 1.2], elliptic hyperbolic surgeries must be integral or half-integral,
so it may be p=q D 7

2
with g.K/ � 2 and Alexander polynomial �1.T /, �2.T /

or �20.T /, or p=q D 7 with g.K/ � 4 and appropriate Alexander polynomial. Of
the 18 possible sets of d.S3

7=q.K/; t/, the only ones that match d.Y; t/ are 7
2

–surgery
and �1.T / (which must be the trefoil) and 7

1
–surgery and �2.T / (which could be

T5;2 ). Finally,

S3
7 .T5;2/D S3

7=2.T3;2/D .�1I 1
2
; 1

3
; 2

5
/:

p

d

1

–2

2

–7
4

–1
4

3

–1
6

–3
2

–1
6

7

1
14

– 3
14

–19
14

–1
2

–19
14

– 3
14

1
14

9

0

–10
9

–4
9

2
9

0

2
9

–4
9

–10
9

0

Table 2: The correction terms for Y for p D jH1.Y /j< 10 . (See Table 3 for
p D 4 and 8 .) Y is given the canonical orientation as in Theorem 6.

jH1.Y /j D 8 Then Y D˙.�1I 1
2
; 1

2
; 2

n
/ with n odd. The d.Y; t/ are listed in Table 3.

If p=q D˙8, then g.K/� 4. There are only two possible choices of �K .T / and n

that give the same correction terms; for these cases, d.S3
8
.K/; t/, �i.T / and n are

listed in Table 4.

jH1.Y /j D 9 Then Y D .�1I 1
2
; 1

3
; 2

3
/ and the correction terms are given in Table 2. If

p=qD 9, then g.K/� 5; if p=qD 9
2

, then g.K/� 2. Comparing the correction terms
shows that the Alexander polynomial must be �1.T / when qD1, so K is the trefoil.

Proof of Theorem 4 The calculations were performed by computer and are similar
to the calculations for p D 8. We summarize the results:

Algebraic & Geometric Topology, Volume 15 (2015)



Finite knot surgeries and Heegaard Floer homology 685

p

k

d

4

1

0

2�n
4

�

�2�n
4

�

8

1

1
4

– 1
4

4�n
8

�4�n
8

12

1

1
2

– 1
6

– 1
6

8�n
12

�4�n
12

4�n
12

�

�8�n
12

�

16

1

0

0

3
4

– 1
4

14�n
16

�2�n
16

6�n
16

�10�n
16

20

1

1

– 1
5

– 1
5

1
5

1
5

2�n
20

22�n
20

10�n
20

�10�n
20

6�n
20

�

�14�n
20

�

20

2

0

– 2
5

– 2
5

2
5

2
5

10�n
20

�10�n
20

14�n
20

�6�n
20

2�n
20

�

�18�n
20

�

24

1

5
4

– 1
4

– 1
12

– 1
12

5
12

5
12

16�n
24

�16�n
24

8�n
24

�8�n
24

8�n
24

32�n
24

28

1

3
2

– 3
14

– 3
14

1
14

1
14

9
14

9
14

44�n
28

24�n
28

16�n
28

�16�n
28

12�n
28

�4�n
28

8�n
28

�

�20�n
28

�

28

2

– 1
2

– 3
14

– 3
14

1
14

1
14

9
14

9
14

4�n
28

�4�n
28

20�n
28

�8�n
28

24�n
28

�24�n
28

�12�n
28

�

16�n
28

�

28

3

1
2

3
14

3
14

– 1
14

– 1
14

– 9
14

– 9
14

8�n
28

�8�n
28

20�n
28

�20�n
28

16�n
28

�12�n
28

�4�n
28

�

�32�n
28

�

32

1

– 7
4

1
4

– 1
4

– 1
4

7
8

7
8

– 1
8

– 1
8

26�n
32

58�n
32

2�n
32

34�n
32

18�n
32

�14�n
32

�22�n
32

10�n
32

32

3

1
4

1
4

– 1
4

– 1
4

5
8

5
8

– 3
8

– 3
8

22�n
32

�10�n
32

30�n
32

�2�n
32

6�n
32

�26�n
32

�18�n
32

14�n
32

Table 3: The correction terms of Y D .�1I 1
2
; 1

2
; m

n
/ with n> 0 and jH1.Y /jD

p � 32 where p D 4m and k D n mod m . For n< 0 , use jnj and reverse the
sign on each formula. Note that d.Ym;�n; t/ D �d.Ym;n;�t/ D �d.Ym;n; t/

since .�1I 1
2
; 1

2
;�m

n
/ D �.�1I 1

2
; 1

2
; m

n
/ . The correction terms come in two

flavors, those constant for the entire family, which are of the form . � /=4m

(not necessarily reduced), and those dependent on n , which are of the form
.nC � /=4m . The correction terms marked by � correspond to t which occur
once each; in fact, they are in Spin.Y / . The other values occur for two t 2

Spinc.Y / each.

For each choice of jH1.Y /jD4m, Theorem 6 gives a description like .�1I 1
2
; 1

2
; m

n
/ for

all possible Y . The correction terms for each such manifold are listed in Table 3. On the
other hand, assuming Y is a knot surgery, Theorem 11 restricts the surgery coefficients

Algebraic & Geometric Topology, Volume 15 (2015)



686 Margaret Doig

p

n

�i

d

4

–3

�1

– 5
4

�

0

– 1
4

�

8

3

�1

– 1
4

7
8

1
4

– 1
8

8

–5

�2

– 1
4

– 9
8

1
4

– 1
8

12

5

�2

3
4

�

– 1
6

13
12

1
2

1
12

– 1
6

– 1
4

�

12

–7

�3

– 5
4

�

– 1
6

– 11
12

1
2

1
12

– 1
6

– 1
4

�

16

7

�3

– 1
4

13
16

0

21
16

3
4

5
16

0

– 3
16

16

–9

�4

– 1
4

– 19
16

0

– 11
16

3
4

5
16

0

– 3
16

20

9

�4

3
4

�

– 1
5

19
20

1
5

31
20

1

11
20

1
5

– 1
20

– 1
5

– 1
4

�

20

–11

�5

– 5
4

�

– 1
5

– 21
20

1
5

– 9
20

1

11
20

1
5

– 1
20

– 1
5

– 1
4

�

24

11

�5

– 1
4

19
24

– 1
12

9
8

5
12

43
24

5
4

19
24

5
12

1
8

– 1
12

– 5
24

24

–13

�6

– 1
4

– 29
24

– 1
12

– 7
8

5
12

– 5
24

5
4

19
24

5
12

1
8

– 1
12

– 5
24

28

5

�80

3
4

�

– 3
14

25
28

1
14

– 19
28

9
14

1
28

– 1
2

29
28

9
14

9
28

1
14

– 3
28

– 3
14

– 1
4

�

28

–11

�90

3
4

�

– 3
14

– 31
28

1
14

– 19
28

9
14

1
28

– 1
2

– 27
28

9
14

9
28

1
14

– 3
28

– 3
14

– 1
4

�

28

13

�6

3
4

�

– 3
14

25
28

1
14

37
28

9
14

57
28

3
2

29
28

9
14

9
28

1
14

– 3
28

– 3
14

– 1
4

�

28

–15

�7

– 5
4

�

– 3
14

– 31
28

1
14

– 19
28

9
14

1
28

3
2

29
28

9
14

9
28

1
14

– 3
28

– 3
14

– 1
4

�

32

15

�7

– 1
4

25
32

– 1
8

33
32

1
4

49
32

7
8

73
32

7
4

41
32

7
8

17
32

1
4

1
32

– 1
8

– 7
32

32

–17

�8

– 1
4

– 39
32

– 1
8

– 31
32

1
4

– 15
32

7
8

9
32

7
4

41
32

7
8

17
32

1
4

1
32

– 1
8

– 7
32

Table 4: All possible cases for p � 32 where Y D .�1I 1
2
; 1

2
; m

n
/ has the same

correction terms as some S3
p .K/ , if the latter exists. Also listed are n and the

Alexander polynomial �i.T / from Table 1. Note that p D 4m D jH1.Y /j .
The correction terms marked by � correspond to t which occur once each; in
fact, they are in Spin.Y / . The other values occur for two t 2 Spinc.Y / each.

that can give Y , and Theorems 9 and 10 restrict the possible Alexander polynomials of
the knot, of which there are slightly fewer than 2x for xDp=.2q/. Using Theorem 13,
it is possible to calculate the correction terms of the resulting surgeries for each knot
(assuming they are indeed L–spaces). Table 4 lists the cases where the correction terms
for surgeries on the knots with the given Alexander polynomials from Table 1 match
the correction terms for the appropriate elliptic manifolds.

Algebraic & Geometric Topology, Volume 15 (2015)



Finite knot surgeries and Heegaard Floer homology 687

For uniqueness of the first set of cases in Theorem 4, note that these manifolds do not
appear in the list obtainable by p=1 surgery and so are not surgery on hyperbolic K .
They are also not on the list of finite satellite surgeries from [2] and are not obtainable
from surgery on any other torus knots by Theorem 7.

5 Conjectures

We have applied the correction terms to obstruct a manifold being surgery on a knot,
and it was a sufficient obstruction in all but one of the cases studied, where it was
inconclusive; that manifold is realized by a nonintegral surgery on a torus knot. On the
basis of this evidence, we feel compelled to state the following conjecture, although
we do not have any deeper intuition about why it would be true.

Conjecture 16 The Heegaard Floer correction terms d.Y; t/ are sufficient to distin-
guish which finite manifolds are surgeries on knots in S3 .

A careful examination of Theorem 4 also suggests a more specific conjecture: all known
examples of .�1I 1

2
; 1

2
; m

n
/ which are knot surgeries obey n� 2mC 1 (and the cases

nD 2m˙ 1 are realized by torus knots). Since this paper appeared on the arXiv, the
author has proven that each family of dihedral manifolds with a fixed jH1.Y /j D 4m

includes finitely many knot surgeries [9], but the bounds given there appear to be
capable of improvement:

Conjecture 17 If n> 2mC 1, then .�1I 1
2
; 1

2
; m

n
/ is never a knot surgery.

Finally, work of Ni and Zhang [28] indicates that 7 and 8 may be characterizing slopes
for T5;2 (p=q is a characterizing slope for T5;2 if S3

p=q.K/Š S3
p=q.T5;2/ means

K D T5;2 ).

Conjecture 18 The phrase “With the possible exception of S3
7
.T5;2/ and S3

8
.T5;2/” in

Theorem 2 may be removed. The bound in Corollary 3 may be increased from 7 to 10.
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