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The Lipschitz metric on deformation spaces of G–trees

SEBASTIAN MEINERT

For a finitely generated group G , we introduce an asymmetric pseudometric on pro-
jectivized deformation spaces of G –trees, using stretching factors of G –equivariant
Lipschitz maps, that generalizes the Lipschitz metric on Outer space and is an
analogue of the Thurston metric on Teichmüller space. We show that in the case
of irreducible G –trees distances are always realized by minimal stretch maps, can
be computed in terms of hyperbolic translation lengths and geodesics exist. We
then study displacement functions on projectivized deformation spaces of G –trees
and classify automorphisms of G . As an application, we prove the existence of
train track representatives for irreducible automorphisms of virtually free groups
and nonelementary generalized Baumslag–Solitar groups that contain no solvable
Baumslag–Solitar group BS.1; n/ with n� 2 .

20F65, 20E08; 20E36

1 Introduction

Let G be a finitely generated group. A G –tree is a metric simplicial tree on which G

acts by simplicial isometries without inversions of edges. A G–tree is minimal if it
does not contain a proper G –invariant subtree. To a nontrivial minimal G –tree T we
associate its deformation space D consisting of G–equivariant isometry classes of
nontrivial minimal G–trees T 0 for which there exist G–equivariant (not necessarily
simplicial) maps T ! T 0 and T 0 ! T . The outer automorphism group Out.G/
contains a subgroup OutD.G/ (see Definition 3.6) that acts on D by precomposing
the G–actions on the trees. Deformation spaces of G–trees are analogues of Te-
ichmüller spaces of surfaces in the context of group splittings. Important examples
include the (unprojectivized) Culler–Vogtmann Outer space of a nonabelian free group
(Example 3.3), deformation spaces of, more generally, virtually nonabelian free groups
(Example 3.4) and deformation spaces of nonelementary generalized Baumslag–Solitar
groups (Example 3.5).

The topology of deformation spaces of G–trees has been extensively studied, eg in
Clay [7] and Guirardel and Levitt [15]. For instance, the projectivized deformation
space PDD D=R>0 , the space of G –equivariant homothety classes of G –trees in D ,
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can be given the structure of a contractible simplicial complex with missing faces. The
geometry of deformation spaces, however, has only been addressed in the special case of
Outer space (see Francaviglia and Martino [14])1 which admits a description as a space
of finite marked metric graphs. Here one studies the asymmetric Lipschitz metric, an
analogue of the asymmetric Thurston metric on Teichmüller space. The purpose of this
paper is to introduce an asymmetric pseudometric on general projectivized deformation
spaces of G –trees that generalizes the asymmetric Lipschitz metric on Outer space. In
order to do so, we think of G–trees in PD as their covolume-1 representatives in D
and for T;T 0 2 PD we define

dLip.T;T
0/D log

�
inf
f
�.f /

�
;

where f ranges over all G –equivariant Lipschitz maps from T to T 0 and �.f / denotes
the Lipschitz constant of f . Although in general we have dLip.T;T

0/¤ dLip.T
0;T /

and dLip.T;T
0/ D 0 does not imply that T and T 0 are G–equivariantly isometric

(Example 4.4), the Lipschitz metric turns out to have useful properties.

If PD consists of G–trees that are irreducible, ie if G contains a free subgroup of
rank 2 acting freely, then the symmetrized Lipschitz metric

d
sym
Lip .T;T

0/D dLip.T;T
0/C dLip.T

0;T /

is an actual metric on PD (Proposition 4.5).

Minimal stretch maps and witnesses A key feature of the Lipschitz metric on Outer
space is that the distance between two marked metric graphs is always realized by a
map with minimal Lipschitz constant and that the minimum Lipschitz constant equals
the maximum ratio of lengths of immersed loops in the corresponding quotient graphs;
see [14, Proposition 3.15]. This reflects a theorem of Thurston that the Lipschitz
distance between two hyperbolic surfaces in Teichmüller space is always realized by
a minimal stretch map and that the extremal Lipschitz constant equals the supremum
ratio of lengths of essential simple closed curves [26, Theorem 8.5]. In the same spirit,
we will show the following:

Theorems 4.6 and 4.14 Let PD be a projectivized deformation space of irreducible
G –trees. For all T;T 0 2 PD there exists

(1) a G –equivariant Lipschitz map f W T ! T 0 such that dLip.T;T
0/D log.�.f //;

1And recently also in the case of the Outer space of a free product; see Francaviglia and Martino [13].
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(2) a hyperbolic group element � 2G such that

dLip.T;T
0/D log

�
lT 0.�/

lT .�/

�
D log

�
sup

g

lT 0.g/

lT .g/

�
;

where g ranges over all hyperbolic group elements of G and by lT .g/ we denote
the translation length infx2T d.x;gx/ of g in T ; we will call � a witness for
the minimal stretching factor from T to T 0 .

Geodesics Francaviglia and Martino [14] showed, making use of a folding technique
due to Skora [24], that the asymmetric Lipschitz metric on Outer space is geodesic.
We will apply Skora’s folding technique in the general context to show:

Theorem 4.23 If PD is a projectivized deformation space of irreducible G –trees then
for all T;T 0 2 PD there exists a dLip –geodesic (see Definition 4.21)  W Œ0; 1�! PD
with  .0/D T and  .1/D T 0 .

Train track representatives An automorphism ˆ 2 OutD.G/ is reducible if there
exists a G –tree T 2PD and a G –equivariant map f W T !Tˆ that leaves an essential
proper G–invariant subforest of T invariant, where a subforest S � T is essential
if it contains the hyperbolic axis of some hyperbolic group element. We say that
ˆ2OutD.G/ is represented by a train track map if there exists a G –tree T 2PD and an
extremal G –equivariant Lipschitz map f W T ! Tˆ such that, loosely speaking, every
iterate of f maps certain immersed paths in T to immersed paths (see Section 5.4 for
a precise definition). Bestvina [3] classified free group automorphisms ˆ by studying
associated displacement functions T 7! dLip.T;Tˆ/ on Outer space. By doing so, he
gave an alternative proof of Bestvina–Handel’s train track theorem [5, Theorem 1.7]
that every irreducible automorphism of a free group is represented by a train track
map. Generalizing Bestvina’s approach, we will study displacement functions on
projectivized deformation spaces of G –trees to classify automorphisms of more general
groups and show the following:

Theorem 5.13 Let PD be a projectivized deformation space of irreducible G–trees.
If OutD.G/ acts on PD with finitely many orbits of simplices then every irreducible
automorphism ˆ 2 OutD.G/ is represented by a train track map.

Throughout, we will pay particular attention to deformation spaces of G–trees for
virtually free groups and nonelementary generalized Baumslag–Solitar groups:
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Example 5.14 Let G be a finitely generated virtually nonabelian free group, ie G

contains a finitely generated nonabelian free subgroup of finite index. Let PD be
the projectivized deformation space of minimal G –trees with finite vertex stabilizers
(Example 3.4). Then OutD.G/D Out.G/ and every irreducible automorphism ˆ 2

Out.G/ is represented by a train track map. This generalizes [5, Theorem 1.7] to
virtually free groups.

A generalized Baumslag–Solitar (GBS) group is a finitely generated group that acts
on a simplicial tree with infinite cyclic vertex and edge stabilizers. Among these
groups are the classical Baumslag–Solitar groups BS.p; q/ D hx; t j txpt�1 D xqi

with p; q 2 Z n f0g. A GBS group is nonelementary if it is not isomorphic to Z,
BS.1; 1/Š Z2 or the Klein bottle group BS.1;�1/.

Example 5.15 Let G be a nonelementary GBS group that contains no solvable
Baumslag–Solitar group BS.1; n/ with n�2. Let PD be the projectivized deformation
space of minimal G –trees with infinite cyclic vertex and edge stabilizers (Example 3.5).
We have OutD.G/ D Out.G/ and every irreducible automorphism ˆ 2 Out.G/ is
represented by a train track map.

Remark In an earlier preprint of this paper, the main results were formulated under
the additional hypothesis that the G–trees in PD are not only irreducible but also
locally finite. Recently, Francaviglia and Martino [13] independently proved analogous
statements for irreducible G –trees with trivial edge stabilizers that are possibly locally
infinite (they work in the Outer space of a free product, defined by Guirardel and Levitt
in [16]). Making use of an ultralimit argument of Horbez [17], we are now able to
remove the local finiteness assumption for arbitrary edge stabilizers. As a special case,
this gives an alternative, shorter proof of [13, Theorem 5.12].

Structure of this paper In Sections 2 and 3 we briefly review the notions of G–
trees and deformation spaces of G–trees. In Section 4 we introduce the Lipschitz
metric on projectivized deformation spaces of G–trees. We show that in the case of
irreducible G–trees distances are always realized by minimal stretch maps, can be
computed in terms of hyperbolic translation lengths and geodesics exist. In Section 5
we study displacement functions on projectivized deformation spaces of G–trees,
classify automorphisms of G , and address the existence of train track representatives
for irreducible automorphisms.

Acknowledgements I am indebted to Mladen Bestvina for suggesting this line of
research and for giving me valuable feedback. I would also like to thank Lee Mosher
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and Henry Wilton for their helpful comments on MathOverflow. The discussion on
elliptic automorphisms in Section 5.1 arose out of discussions with Camille Horbez,
whom I would like to thank for his deep interest, and Gilbert Levitt, to whom I am
particularly thankful for his advice and for addressing my many questions. Finally, I
would like to thank the referee for his comments.

2 G–trees

A metric simplicial tree is a contractible 1–dimensional simplicial complex T together
with a positive length assigned to every edge. We denote by V .T / the set of vertices
and by E.T / the set of edges of T . Every metric simplicial tree T carries a natural
path metric d D dT . We equip T with the metric topology, which is generally coarser
than the simplicial topology; the two topologies agree if and only if the simplicial
complex is locally finite; see Chiswell [6, Lemma 2.2.6]. Any two points x;y 2 T are
joined by a unique compact geodesic segment Œx;y�� T and between any two disjoint
closed connected subsets A;B � T there exists a unique compact connecting segment
Œa; b�� T such that A\ Œa; b�D a and B \ Œa; b�D b . In particular, T is a simplicial
R–tree (see [6] for an introduction to R–trees) and, in fact, every simplicial R–tree
arises this way [6, Theorem 2.2.10].

Let G be a finitely generated group. A G –tree is a metric simplicial tree T on which G

acts by simplicial isometries without inversions of edges. Bass–Serre theory gives a
correspondence between G–trees and metric graph of groups decompositions of G

(see Serre [23]). We will always assume that the simplicial structure on T is not a
subdivision of a coarser simplicial structure with respect to which the action of G

on T would still be simplicial and without inversions of edges (ie T has no redundant
vertices). For a vertex or edge x 2 V .T /[E.T /, we denote by Gx �G its stabilizer.
A group element g 2 G is elliptic in T if it fixes a point in T and hyperbolic if
not. The finite-order group elements of G are always elliptic [23, Proposition 19]. A
finitely generated group that acts on a simplicial tree by simplicial automorphisms
without inversions of edges has a global fixed point if and only if every group element
is elliptic [23, Corollary 6.5.3].

A G–tree is minimal if it does not contain a proper G–invariant subtree. Minimal
G–trees are cocompact, ie their quotient graphs by the action of G are finite (see
Bass [2, Proposition 7.9]) and G–equivariant maps between minimal G–trees are
always surjective; both properties will be used frequently and without further notice.
The covolume of a minimal G–tree T is the volume of the finite metric quotient
graph GnT . There are five types of minimal G –trees (we adopt the naming convention
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from [15]; see also Culler and Morgan [9]): a minimal G–tree T is trivial if it is a
point. It is dihedral if it is a line and the action of G does not preserve the orientation.
The G –tree T is linear abelian if it is a line and G acts by translations. It is genuine
abelian if G fixes an end of T and T is not a line. Lastly, T is irreducible if G

contains a free subgroup of rank 2 acting freely on T . In the following, we will
almost exclusively be concerned with irreducible minimal G–trees, for reasons that
will become apparent.

Translation lengths We briefly review well-known facts about translation lengths in
G –trees. For further details, see [9] or Paulin [21].

Definition 2.1 Let .T; d/ be a G–tree. For a group element g 2 G , define the
translation length of g in T by

l.g/D lT .g/ WD inf
x2T

d.x;gx/ 2R�0

and its characteristic set in T by Cg D CT .g/ WD fx 2 T j d.x;gx/D lT .g/g � T .

Conjugate group elements have the same translation length, and Cg is always nonempty
(ie G acts on T by semisimple isometries) and g–invariant. The translation length
function lT W G!R defines a point in RC.G/ , where C.G/ denotes the set of conjugacy
classes of G . Clearly, G–equivariantly isometric G–trees have the same translation
length function. If T has finitely many G –orbits of edges, its translation length function
has discrete image in R.

A group element g 2G is elliptic in T if and only if l.g/D 0. Its characteristic set
is then its fixed point set and for all x 2 T the midpoint of the segment Œx;gx� is
fixed by g . A group element g 2 G is hyperbolic in T if and only if l.g/ > 0. Its
characteristic set is then isometric to R, the group element g acts on Cg by translations
of length l.g/, and for all k 2Zn f0g we have l.gk/D jkj � l.g/ and Cgk D Cg . The
characteristic set of a hyperbolic group element g is the unique g–invariant line in T .
We will instead denote it by Ag and call it the hyperbolic axis of g . Every G–tree
without a global fixed point contains a unique minimal G –invariant subtree, given by
the union of all hyperbolic axes [9, Proposition 3.1].

Proposition 2.2 Let T be a G –tree and g; h 2G .

(1) For all x 2 T we have d.x;gx/D l.g/C 2d.x;Cg/.

(2) Suppose that g and h are elliptic. Then l.gh/D 2d.Cg;Ch/. In particular, if
the fixed point sets of g and h are disjoint then gh and hg are hyperbolic.

Algebraic & Geometric Topology, Volume 15 (2015)



The Lipschitz metric on deformation spaces of G–trees 993

(3) Suppose that g and h are hyperbolic. If Ag \Ah D∅ then

l.gh/D l.hg/D l.g/C l.h/C 2d.Ag;Ah/

and, in particular, gh and hg are hyperbolic. The hyperbolic axes of gh and hg

then both intersect each Ag and Ah .

Proof See for example [9, 1.3; 21, Propositions 1.6 and 1.8].

3 Deformation spaces of G–trees

In this section, we will review definitions, facts, and examples from the theory of
deformation spaces of G –trees, mainly from [7; 15].

Let T D T .G/ be the set of G–equivariant isometry classes of nontrivial minimal
G –trees. We will always speak of “G –trees” in T and not of “G –equivariant isometry
classes of G –trees”.

Definition 3.1 Given a G–tree T 2 T , a subgroup H � G is an elliptic subgroup
of T if it fixes a point in T . We associate to T its deformation space DDD.T /� T
consisting of all G –trees that have the same elliptic subgroups as T .

The finite subgroups of G are elliptic in every G–tree [23, Proposition 19]. If two
G–trees T;T 0 2 T lie in the same deformation space then for all g 2 G we have
lT .g/D 0 if and only if lT 0.g/D 0. The converse, however, is not true, as an infinitely
generated subgroup of G all of whose elements fix a point in T need not be elliptic; it
then fixes a unique end of T (see Tits [27, Proposition 3.4]).

An edge e2E.T / of a G –tree T 2T is collapsible if its initial and terminal vertex �.e/
and �.e/ lie in distinct G –orbits and either Ge DG�.e/ or Ge DG�.e/ . Collapsing all
edges in the G–orbit of a collapsible edge is an elementary collapse. An elementary
expansion is the reverse of an elementary collapse. A finite sequence of elementary
collapses and expansions is an elementary deformation. Two G –trees T;T 0 2 T have
the same elliptic subgroups if and only if their underlying nonmetric G–trees are
related by an elementary deformation (see Forester [11, Theorem 4.2]) and if and only
if there exist G–equivariant (not necessarily simplicial) maps T ! T 0 and T 0! T

(see [15, Theorem 3.8]).
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3.1 Topologies

Let D be a deformation space of G–trees. We consider three topologies on D : The
equivariant Gromov–Hausdorff topology (see [21]), the axes topology, which is the
coarsest topology that makes the assignment of translation length functions

l W D!RC.G/; T 7! lT ;

continuous and the weak topology, which describes D as a union of open cones
(see [15]). Here, the open cone spanned by a G–tree T 2 D is the set of G–trees
obtained by varying the lengths of the finitely many G –orbits of edges of T , while keep-
ing them positive. Equivalently, it is the set of G –trees in D that are G –equivariantly
homeomorphic to T . For a detailed discussion of the three topologies, including
contractibility results, see [7; 15].

Definition 3.2 The multiplicative group of positive real numbers R>0 acts on D by
scaling the metrics on the G–trees. The projectivized deformation space PD is the
quotient of D by this action, endowed with the quotient topology.

As a set, we will think of PD as the covolume–1–section in D . In fact, if we
endow D with the weak topology then the covolume function D ! .0;1/, T 7!

covol.T / is continuous and the natural projection of the covolume–1–section in D to
the projectivized deformation space PD is a homeomorphism.

When we equip D with the weak topology, the quotient PD inherits the structure of a
simplicial complex with missing faces.

Further facts All G–trees in a given deformation space D have the same type (di-
hedral, linear abelian, genuine abelian or irreducible; see Section 2). If D consists
of linear abelian or dihedral G–trees then the projectivized deformation space PD
is a point [15, Proposition 3.10]. We say that D is genuine abelian or irreducible if
the G–trees in D are genuine abelian or irreducible respectively, which are the only
interesting cases.

The weak topology is finer than the equivariant Gromov–Hausdorff topology, which
is finer than the axes topology. A weakly converging sequence also converges in the
equivariant Gromov–Hausdorff topology and a fortiori in the axes topology. The weak
topology and the equivariant Gromov–Hausdorff topology agree on any finite union of
open cones of D [15, Proposition 5.2]. The equivariant Gromov–Hausdorff topology
and the axes topology agree if D is irreducible [21].

Two irreducible minimal G–trees T and T 0 are G–equivariantly isometric if and
only if for all g 2 G we have lT .g/ D lT 0.g/ [9, Theorem 3.7]. Therefore, if D is
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irreducible, the assignment of translation length functions l W D! RC.G/ , T 7! lT ,
is injective and the axes topology agrees with the subspace topology defined by this
inclusion. In contrast, if D is a genuine abelian deformation space then all G–trees
in D have the same translation length function up to scaling [15, Proposition 3.10].

If some G –tree in D is locally finite then all G –trees in D are locally finite and we say
that D is locally finite. All vertex and edge stabilizers of any two G –trees in D are then
commensurable as subgroups of G and PD is a locally finite complex. If D consists of
locally finite G –trees with finitely generated vertex stabilizers then the weak topology
and the equivariant Gromov–Hausdorff topology agree on all of D [15, Proposition 5.4].

Example 3.3 Let Fn be the free group of rank n� 2. The deformation space Xn of
minimal Fn –trees that are acted on freely is locally finite and irreducible, and all three
topologies agree on Xn . The projectivized deformation space PX n is better known as
Culler–Vogtmann Outer space [10].

Example 3.4 More generally, let G be a finitely generated virtually nonabelian free
group, ie G contains a finitely generated nonabelian free subgroup of finite index. It is a
standard result that G admits a minimal action on a simplicial tree T with finite vertex
(and edge) stabilizers; see Scott and Wall [22, Theorem 7.3]. Since the finite subgroups
of G are elliptic in every G–tree, all minimal G–trees with finite vertex stabilizers
lie in the same deformation space D . The finite-index nonabelian free subgroup of G

must act freely on T , whence D is irreducible. The deformation space is locally finite
and all three topologies agree on D .

Example 3.5 If G is a nonelementary GBS group (as defined in Section 1), all minimal
G –trees with infinite cyclic vertex and edge stabilizers belong to the same deformation
space D [11, Corollary 6.10] which is always locally finite. It is genuine abelian if G

is a solvable Baumslag–Solitar group BS.1; q/ with q ¤˙1. In all other cases, it is
irreducible and the three topologies agree on D .

3.2 Action of the automorphism group

The automorphism group Aut.G/ acts on T from the right by precomposing the G –
actions on the trees. More precisely, given T 2 T with isometric G–action �W G!
Isom.T / and ˆ2Aut.G/, we let Tˆ be the G –tree with underlying metric simplicial
tree T and G–action � ı ˆ. One easily sees that the normal subgroup of inner
automorphisms Inn.G/� Aut.G/ acts trivially on T and we obtain an induced action
of the outer automorphism group Out.G/D Aut.G/= Inn.G/ on T .
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If � 2 Out.G/ leaves the set of elliptic subgroups of T 2 T invariant then T� lies in
the same deformation space as T . In general, however, the twisted G–tree T� 2 T
might lie in a different deformation space.

Definition 3.6 For a G –tree T 2 T with associated deformation space D , denote by
OutD.G/ � Out.G/ the subgroup of all automorphisms that leave the set of elliptic
subgroups of T invariant. The action of Out.G/ on T restricts to an action of OutD.G/
on D .

Proposition 3.7 The group OutD.G/ acts on D by mapping open cones to open cones
of the same dimension. For every G–tree T 2 D only finitely many G–trees in the
OutD.G/–orbit of T lie in the open cone spanned by T . The action of OutD.G/ on D
commutes with the action of R>0 and thus descends to an action on PD .

Proof Let T;T 0 2 D and � 2 OutD.G/. If T and T 0 are G–equivariantly homeo-
morphic then T� and T 0� are G –equivariantly homeomorphic as well, and OutD.G/
acts on D by mapping open cones to open cones. Since T and T� have the same
underlying metric simplicial tree, their open cones have the same dimension and
the action of OutD.G/ on D commutes with the action of R>0 . In order to prove
the second statement, suppose that T and T� are G–equivariantly homeomorphic.
Then T� is G –equivariantly isometric to .T; d 0/, where d 0 is a metric on T obtained
by permuting the lengths of the G –orbits of edges of T , of which there are only finitely
many.

The modular homomorphism If D is a deformation space of locally finite G –trees,
all vertex and edge stabilizers of all G–trees in D are commensurable as subgroups
of G . We then define the modular homomorphism �D �.D/W G! .Q>0;�/ by

�.g/D
ŒH W .H\gHg�1/�

ŒgHg�1 W .H\gHg�1/�
;

where H is any subgroup of G commensurable with a vertex or edge stabilizer of
some G–tree in D . Indeed, � does not depend on the choice of H . We say that D
has no nontrivial integral modulus if im.�/\ZD f1g.

Lemma 3.8 (Levitt [19, Lemma 2.4]) Let G be a nonelementary GBS group. The
deformation space D of minimal G –trees with infinite cyclic vertex and edge stabilizers
(Example 3.5) has no nontrivial integral modulus if and only if G contains no solvable
Baumslag–Solitar group BS.1; n/ with n� 2.
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Remark The group BS.1;�n/ contains a subgroup isomorphic to BS.1; n2/. Hence,
if G contains no solvable Baumslag–Solitar group BS.1; n/ with n� 2 then it contains
no solvable Baumslag–Solitar group BS.1; q/ with q ¤ ˙1 and, in particular, the
deformation space D is irreducible.

A subgroup H � G is small in G (as in [15, Section 8]) if there does not exist a
G–tree in which the axes of any two hyperbolic group elements of H intersect in a
compact set. Being small in G is a commensurability invariant and stable under taking
subgroups.

Proposition 3.9 [15, Proposition 8.6] Let D be a deformation space of locally finite
irreducible G–trees whose vertex and edge stabilizers are all commensurable with a
finitely generated subgroup H �G .

(1) If H is small in G then OutD.G/D Out.G/.

(2) If every subgroup of G commensurable with H has finite outer automorphism
group and D has no nontrivial integral modulus then OutD.G/ acts on D
with finitely many orbits of open cones (and on the projectivized deformation
space PD with finitely many orbits of open simplices).

Example 3.10 The unprojectivized Outer space Xn (Example 3.3) is locally finite
and irreducible, and all vertex and edge stabilizers of the Fn –trees in Xn are trivial.
We clearly have OutXn

.Fn/D Out.Fn/, and Out.Fn/ acts on Outer space PX n with
finitely many orbits of simplices.

Example 3.11 More generally, let G be a finitely generated virtually nonabelian free
group. The deformation space D of minimal G–trees with finite vertex stabilizers is
locally finite and irreducible (Example 3.4). Choosing H Df1g, we see that �.D/� 1.
We have OutD.G/ D Out.G/ and Out.G/ acts on PD with finitely many orbits of
simplices.

Example 3.12 Let G be a nonelementary GBS group that contains no solvable
Baumslag–Solitar group BS.1; n/ with n� 2. The deformation space D of minimal
G –trees with infinite cyclic vertex and edge stabilizers is locally finite and irreducible
(Example 3.5). Let H be any vertex or edge stabilizer of any G –tree in D . If G acts
on a tree such that H acts hyperbolically then all nontrivial elements of H have the
same hyperbolic axis (because H is infinite cyclic), whence H is small in G and
OutD.G/D Out.G/. Every subgroup of G commensurable with H , being virtually
cyclic, has finite outer automorphism group. By Lemma 3.8, D has no nontrivial
integral modulus and hence Out.G/ acts on PD with finitely many orbits of simplices.
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4 The Lipschitz metric

Let D be a deformation space of G–trees and T;T 0 2 D . As T and T 0 lie in the
same deformation space, there exists a G –equivariant map f W T ! T 0 , which we may
choose to be Lipschitz continuous. We denote by �.f / its Lipschitz constant.

Every G –equivariant Lipschitz map f W T !T 0 is G –equivariantly homotopic relative
to the vertices of T to a G–equivariant Lipschitz map f 0W T ! T 0 that is linear
(ie either constant or an immersion with constant slope) on edges. The Lipschitz
constant �.f 0/ is then given by the maximal slope of f 0 on the finitely many G –orbits
of edges of T and we have �.f 0/ � �.f /. We may therefore always assume every
G –equivariant Lipschitz map f W T ! T 0 to be linear on edges without increasing its
Lipschitz constant.

Definition 4.1 Define �.T;T 0/D inff �.f /, where f ranges over all G –equivariant
Lipschitz maps from T to T 0 .

Recall that, as a set, we think of the projectivized deformation space PD as the
covolume–1–section in D . With this convention, we can assign to each pair of
projectivized G –trees .T;T 0/ 2 PD�PD the well-defined value �.T;T 0/.

Proposition/Definition 4.2 The function

dLipW PD�PD!R; .T;T 0/ 7! log.�.T;T 0//

is an asymmetric pseudometric on PD . That is, for all T;T 0;T 00 2 PD we have:

(1) dLip.T;T
0/� 0.

(2) If T and T 0 are G –equivariantly isometric then dLip.T;T
0/D 0.

(3) dLip.T;T
00/� dLip.T;T

0/C dLip.T
0;T 00/.

We call dLip the Lipschitz metric.

Proof To prove (1), let f W T ! T 0 be a G –equivariant Lipschitz map. We will show
that �.f / is bounded below by 1. Since the G –trees T and T 0 are minimal, both f
and the induced map on quotient graphs G n f W G nT ! G nT 0 are surjective. We
have �.G nf /D �.f / and vol.G nT /D vol.G nT 0/D 1. If now �.f / < 1 then

vol.im.G nf //� �.f / � vol.G nT / < 1;

contradicting the surjectivity of G nf .

Algebraic & Geometric Topology, Volume 15 (2015)



The Lipschitz metric on deformation spaces of G–trees 999

Statement (2) is immediate. In order to show (3), observe that for any sequence of
G –equivariant Lipschitz maps

T
f
�! T 0

f 0

�! T 00

we have �.T;T 00/� �.f 0 ıf / and �.f 0 ıf /� �.f / � �.f 0/, whence

log.�.T;T 00//� inf
f;f 0

log.�.f 0 ıf //� inf
f;f 0

log.�.f / � �.f 0//

D inf
f;f 0

.log.�.f //C log.�.f 0///

D inf
f

log.�.f //C inf
f 0

log.�.f 0//

D log.�.T;T 0//C log.�.T 0;T 00//:

Proposition 4.3 The group OutD.G/ acts on .PD; dLip/ by isometries, ie for all
T;T 0 2 PD and � 2 OutD.G/ we have dLip.T�;T

0�/D dLip.T;T
0/.

Proof Every G –equivariant map from T to T 0 is also G –equivariant with respect to
the actions twisted along � , and vice versa.

The following example demonstrates why we speak of the Lipschitz metric as an
“asymmetric pseudometric”:

Example 4.4 In general we have dLip.T;T
0/ ¤ dLip.T

0;T / (see Algom-Kfir and
Bestvina [1] for examples in the special case of Outer space; see also the remark after
Proposition 4.5). Moreover, dLip.T;T

0/D 0 does not generally imply that T and T 0

are G–equivariantly isometric (see Proposition 4.16 for an exception in the case of
Outer space; see also Section 5.1):

Let G D F2 � .Z=2Z/ and consider the graph of groups decompositions � and � 0 of
G as in Figure 1, where all edge group inclusions are the obvious ones and all edges
have constant length 1

3
.

The corresponding Bass–Serre trees T and T 0 lie in the same deformation space, as
they are related by an elementary collapse followed by an elementary expansion (the
intermediate graph of groups is given by �int ). The vertices of T have valence 3 and 6,
whereas the vertices of T 0 all have valence 5. Hence, T and T 0 are not homeomorphic
and in particular not G –equivariantly isometric. Still, the natural morphism of graphs
of groups (in the sense of [2]) from � to � 0 lifts to a G –equivariant map from T to T 0

that is an isometry on edges and thus has Lipschitz constant 1, whence dLip.T;T
0/D 0.
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� �int � 0
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1
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Z=2Z

1
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Z=2Z

Z=2Z

1

Figure 1: The Bass–Serre trees of the above graphs of groups lie in the same
deformation space of G –trees. They are irreducible and locally finite. Since
the group G acts on them cocompactly and with finite point stabilizers, it is
virtually free.

The symmetrized Lipschitz metric A standard way to overcome these issues is to
consider the symmetrized Lipschitz metric

d
sym
Lip W PD�PD!R; .T;T 0/ 7! dLip.T;T

0/C dLip.T
0;T /;

which turns out to be an actual metric on projectivized deformation spaces of irreducible
G –trees (in Section 4.3 we discuss its convergent sequences):

Proposition 4.5 If the projectivized deformation space PD consists of irreducible
G –trees then for all T;T 0 2 PD we have d

sym
Lip .T;T

0/D 0 if and only if T and T 0 are
G –equivariantly isometric.

Proof By Proposition/Definition 4.2(2) it suffices to show the “only if” direction. Sup-
pose that we have d

sym
Lip .T;T

0/D 0, equivalently dLip.T;T
0/D 0 and dLip.T

0;T /D 0.
Then for all " > 0 there exist G –equivariant .1C "/–Lipschitz maps f W T ! T 0 and
f 0W T 0! T . Let g 2G be a hyperbolic group element in T and p 2Ag � T a point
in its hyperbolic axis. We have

lT 0.g/� d.f .p/;gf .p//D d.f .p/; f .gp//

� �.f / � d.p;gp/D �.f / � lT .g/� .1C "/ � lT .g/

and, analogously, lT .g/ � .1C "/ � lT 0.g/. As " was arbitrary, we conclude that
lT D lT 0 and hence, by [9, Theorem 3.7], that the irreducible G –trees T and T 0 are
G –equivariantly isometric.
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Remark Thus, for T and T 0 as in Example 4.4 we have dLip.T
0;T / > 0, since

dLip.T;T
0/D 0 but T and T 0 are not G –equivariantly isometric.

Nevertheless, the arguments in Section 5 are specific for the asymmetric pseudomet-
ric dLip . Besides, in contrast to dLip , the symmetrization d

sym
Lip fails to be geodesic, as

was shown in [14, Section 6] in the special case of Outer space (see Section 4.4 for the
existence of dLip –geodesics).

4.1 Minimal stretch maps

Theorem 4.6 (Existence of minimal stretch maps) Let D be a deformation space
of irreducible G –trees. For all T;T 0 2 D there exists a G –equivariant Lipschitz map
f W T ! T 0 such that �.f /D �.T;T 0/.

The proof of Theorem 4.6 will involve an argument of Horbez [17] that uses nonprincipal
ultrafilters and ultralimits of metric spaces, which are defined as follows:

Definition 4.7 A nonprincipal ultrafilter ! on an infinite set I is a finitely additive
probability measure with values in f0; 1g such that all subsets S � I are !–measurable
and !.S/D 0 if S is finite.

Existence of nonprincipal ultrafilters follows from the axiom of choice. Given a
nonprincipal ultrafilter ! on the set of natural numbers N , for every bounded se-
quence .cn/n2N � R there exists a unique point lim! cn 2 R such that for all open
neighborhoods U of lim! cn we have !.fn 2 N j cn 2 U g/ D 1 (see, for instance,
Kapovich [18, Section 9.1]). In particular, if the sequence .cn/n2N converges then
lim! cn D limn!1 cn .

Definition 4.8 Let ! be a nonprincipal ultrafilter on N . For a sequence of metric
spaces .Xn; dn/n2N with basepoints .pn/n2N let X1 be the set of all sequences
.xn/n2N 2

Q
n2N Xn for which the sequence .dn.xn;pn//n2N �R is bounded. Let �

be the equivalence relation on X1 defined by

.xn/n2N � .yn/n2N if lim
!

dn.xn;yn/D 0:

Define the !–ultralimit X! of .Xn; dn;pn/n2N as the quotient X1=� endowed with
the metric d!..xn/n2N ; .yn/n2N/D lim! dn.xn;yn/.

If each .Xn; dn/, n 2 N is a complete R–tree then .X! ; d!/ is again a complete
R–tree; see Stalder [25, Lemma 4.6]. Moreover, if a group G acts on each .Xn; dn/
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by isometries and for all g 2G the sequence .dn.gpn;pn//n2N �R is bounded then
.X! ; d!/ carries a natural isometric G–action: for g 2 G and .xn/n2N 2 X! we
define g.xn/n2N D .gxn/n2N . Since for all g 2G and n 2N we have

dn.gxn;pn/� dn.gxn;gpn/C dn.gpn;pn/D dn.xn;pn/C dn.gpn;pn/

and the sequences of real numbers .dn.xn;pn//n2N ; .dn.gpn;pn//n2N are bounded,
so is the sequence .dn.gxn;pn//n2N . For all g 2G we have

d!.g.xn/n2N ;g.yn/n2N/D lim
!

dn.gxn;gyn/

D lim
!

dn.xn;yn/D d!..xn/n2N ; .yn/n2N/

and the action of G on .X! ; d!/ is by isometries.

Proof of Theorem 4.6 Let T;T 0 2 D and C D �.T;T 0/. We wish to construct a
G –equivariant C –Lipschitz map f W T ! T 0 .

Let ! be a nonprincipal ultrafilter on N and .fnW T ! T 0/n2N a sequence of G–
equivariant Cn –Lipschitz maps with Cn � 2C and limn!1 Cn D C . We will first
choose a distinguished basepoint p 2 T and show that for all n 2N the image fn.p/

lies in a bounded subset of T 0 that does not depend on n. This then implies that
for all g 2 G the sequence d 0.gfn.p/; fn.p//n2N � R is bounded and that the !–
ultralimit T 0! D .T 0; d 0; fn.p//! carries a natural isometric G–action. (Evidently,
T! D .T; d;p/! carries a natural isometric G–action as well.) Indeed, as the action
of G on T is irreducible, G contains a free subgroup of rank 2 acting freely. Suppose
that this free subgroup is generated by g; h2G . Since T and T 0 have the same elliptic
subgroups, the free subgroup hg; hi � G also acts freely on T 0 . If the hyperbolic
axes Ag and Ah in T intersect, they must intersect in a compact segment, as we could
otherwise find integers k; l 2Znf0g such that gkh�l fixes a point in Ag\Ah . For the
following arguments we will assume that they intersect; if they are disjoint, we replace
the basis of the free subgroup with fg; hgg, whose associated axes then intersect by
Proposition 2.2(3). Let p 2Ag \Ah be a point that lies in both axes and denote the
hyperbolic axes of g and h in T 0 by A0g and A0

h
respectively. By Proposition 2.2(1),

and since fn is G –equivariant and Cn –Lipschitz with Cn � 2C , for all n 2N ,

2C � lT .g/D 2C � d.gp;p/� d 0.fn.gp/; fn.p//

D d 0.gfn.p/; fn.p//D lT 0.g/C 2d 0.fn.p/;A
0
g/
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and hence d 0.fn.p/;A
0
g/ �

1
2
.2C � lT .g/ � lT 0.g// � C � lT .g/. Thus, fn.p/ lies

within a .C; lT .g//–bounded2 distance from A0g and, analogously, within a .C; lT .h//–
bounded distance from A0

h
. We conclude that fn.p/ lies within a .C; lT .g/; lT .h//–

bounded distance from the compact segment A0g \A0
h

if the two axes intersect and
from the unique compact connecting segment between them if they are disjoint. In
particular, fn.p/ lies in a bounded subset of T 0 that does not depend on n. As remarked
above, this implies that the ultralimits T! D .T; d;p/! and T 0! D .T

0; d 0; fn.p//!
carry natural isometric G –actions.

The G–trees T and T 0 naturally embed G–equivariantly and isometrically into T!
and T 0! respectively: since for all n 2N the point fn.p/ 2 T 0 lies in a bounded subset
that does not depend on n, for all x 2 T 0 the sequence .d 0.x; fn.p///n2N is bounded
and hence the constant sequence .x/n2N defines a point in T 0! . One easily verifies that
the natural inclusion T 0 ,! T 0! , x 7! .x/n2N is indeed G –equivariant and isometric.
We analogously obtain a G –equivariant isometric embedding T ,! T! .

Observe next that if .d.xn;p//n2N is bounded then .d 0.fn.xn/; fn.p///n2N is bounded
as well, since for all n 2 N we have d 0.fn.xn/; fn.p// � 2C � d.xn;p/. Thus, the
maps .fn/n2N induce a natural map

f! W T!! T 0! ; .xn/n2N 7! .fn.xn//n2N :

The map f! is easily seen to be G –equivariant, since for all g 2G we have

f!.g.xn/n2N/Df!..gxn/n2N/D.fn.gxn//n2N

D.gfn.xn//n2NDg.fn.xn//n2NDgf!..xn/n2N/:

Moreover, f! is C –Lipschitz, since for all .xn/n2N ; .yn/n2N 2 T! we have

d 0!.f!..xn/n2N/; f!..yn/n2N//D lim
!

d 0.fn.xn/; fn.yn//

� lim
!
.Cn � d.xn;yn//

D lim
!

Cn � lim
!

d.xn;yn/

D C � d!..xn/n2N ; .yn/n2N/:

Finally, T 0! is a complete R–tree, being the !–ultralimit of complete R–trees (namely,
metric simplicial trees). In particular, the metric simplicial tree T 0 embeds into T 0!
as a closed subspace, as complete subspaces of complete metric spaces are closed.
By the nature of R–trees, there exists a continuous nearest point projection of T 0!
onto the closed G –invariant subtree T 0 , which is easily seen to be G –equivariant and
1–Lipschitz. We define f W T ! T 0 as the composition of the G –equivariant isometric

2We mean bounded in terms of C and lT .g/ .
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embedding T ,! T! with f! W T!! T 0! and the nearest point projection T 0!! T 0 ,
and we obtain a G –equivariant C –Lipschitz map from T to T 0 .

Train tracks and optimal maps In fact, we will be interested in particularly nice
G –equivariant Lipschitz maps realizing �.T;T 0/, so-called optimal maps. In order to
define and construct optimal maps, we involve the concept of train tracks:

Definition 4.9 Let D be a deformation space of G –trees and T 2D . A direction at a
point x 2 T is a germ of isometric embeddings  W Œ0; "/! T , " > 0 with  .0/D x .
Given g2G with gx¤x , we will denote the unique direction at x pointing towards gx

by ıx;gx . Denote the set of directions at x by DxT . A train track structure on T

is a collection of equivalence relations, one on DvT for each vertex v 2 V .T /, such
that two directions ı1; ı2 2DvT are equivalent (denoted ı1 � ı2 ) if and only if for
all g 2G the directions gı1;gı2 2DgvT are equivalent as well. Equivalence classes
of directions at a vertex v 2 V .T / are called gates at v . A turn at a vertex v 2 V .T /

is a pair of directions at v . Given a train track structure on T , we say that a turn at a
vertex is illegal if the two directions are equivalent, ie if they represent the same gate,
and legal if not. Whenever a nondegenerate immersed path  in T passes through a
vertex v of T , we may locally reparametrize  to an isometric embedding so that the
incoming direction (with opposite orientation) and the outgoing direction of  at v
define a turn at v . A nondegenerate immersed path in T is legal if it only makes legal
turns and illegal otherwise.

Definition 4.10 Let D be a deformation space of G–trees and T;T 0 2 D . Let
f W T ! T 0 be a G –equivariant map that is linear on edges. We denote the union of all
(closed) edges of T on which f attains its maximal slope by �.f /� T and we call
it the tension forest of f . The tension forest �.f /� T is a G –invariant subforest.

Every G–equivariant map f W T ! T 0 that is linear on edges defines a natural train
track structure on its tension forest �D�.f /�T as follows: for each vertex v2V .�/

we have a map Dvf W Dv�!Df .v/T
0 that maps the direction of  W Œ0; "/!� with

 .0/D v to the direction of the unique isometric embedding in the reparametrization
class of f ı (since f does not collapse any edges in its tension forest, it has nonzero
slope on the image of  ). We define two directions ı1; ı2 2 Dv� to be equivalent
if Dvf .ı1/DDvf .ı2/. By the G –equivariance of f , this collection of equivalence
relations is indeed a train track structure on �.

The tension forest �.f / endowed with the train track structure defined by f might
have vertices of valence 1 and, more generally, there might be vertices with only
one gate.
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Definition 4.11 A G–equivariant Lipschitz map f W T ! T 0 that realizes �.T;T 0/
and is linear on edges is an optimal map if its tension forest �.f / has at least 2 gates
at every vertex.

Optimality of f implies that any legal path in �.f / may be extended in both directions
to a longer legal path and, inductively, that there exists a legal line in �.f /. This will
be made use of in the proof of Theorem 4.14.

Proposition 4.12 Let D be a deformation space of G–trees and T;T 0 2 D . Every
G –equivariant Lipschitz map f W T ! T 0 that realizes �.T;T 0/ and is linear on edges
is G–equivariantly homotopic to an optimal map f 0W T ! T 0 with �.f 0/ � �.f /.
If f is not optimal to begin with then we have �.f 0/¤�.f /.

Theorem 4.6 and Proposition 4.12 imply that if D is an irreducible deformation space
then for all T;T 0 2 D there exists an optimal map f W T ! T 0 .

Proof Let � D �.f /. If a vertex v 2 V .�/ has only one gate ı 2 Dv�, slightly
move f .v/ in the direction of Dvf .ı/ 2Df .v/T

0 (see Figure 2).

f .v/

Figure 2: The image of � under f (dashed) and the direction in which we
slightly move f .v/ (arrow)

Perform this perturbation G–equivariantly and keep the homotopy fixed on all other
G –orbits of vertices of T . This decreases the slope of f on the G –orbits of all edges
of � adjacent to v and we obtain a G–equivariant Lipschitz map f 0W T ! T 0 with
�.f 0/�� but �.f 0/¤�. Keeping the perturbation small enough ensures that the
(finitely many) G–orbits of the edges of T n� adjacent to v , on which the slope is
increased, do not become part of the new tension forest. As f is assumed to have
minimal Lipschitz constant among all G–equivariant Lipschitz maps from T to T 0 ,
we will not have removed all edges of � and started over with a new tension forest
that corresponds to a strictly smaller maximal stretching factor. This process eventually
terminates by the cocompactness of T .
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4.2 Witnesses

The results in this section will imply that the Lipschitz metric on projectivized deforma-
tion space of irreducible G –trees can be computed in terms of hyperbolic translation
lengths. We begin with an easy observation:

Lemma 4.13 Let D be a deformation space of G–trees and T;T 0 2 D . For any
G–equivariant Lipschitz map f W T ! T 0 and any hyperbolic group element g 2 G

we have �.f /� lT 0.g/=lT .g/. In particular, we have �.T;T 0/� supg lT 0.g/=lT .g/,
where g ranges over all hyperbolic group elements of G .

Proof Let p 2 Ag . We have lT 0.g/ � d.gf .p/; f .p// � �.f / � d.gp;p/D �.f / �

lT .g/, whence the claim.

Theorem 4.14 (Existence of witnesses) Let D be a deformation space of irreducible
G –trees. For all T;T 0 2 D there exists a hyperbolic group element � 2G such that

�.T;T 0/D
lT 0.�/

lT .�/
D sup

g

lT 0.g/

lT .g/
;

where g ranges over all hyperbolic group elements of G . In fact, we can always arrange
that some (and hence any) fundamental domain for the action of � on its hyperbolic
axis A� � T meets each G –orbit of vertices of T at most 10 times.

We will call a hyperbolic group element � 2 G (or, depending on the context, its
hyperbolic axis A� �T ) satisfying �.T;T 0/D lT 0.�/=lT .�/ a witness for the minimal
stretching factor from T to T 0 . A hyperbolic group element g 2 G such that some
(and hence any) fundamental domain for the action of g on its axis Ag � T meets
each G–orbit of vertices of T at most 10 times will be called a candidate of T .
Theorem 4.14 asserts that there always exists a witness which is a candidate (our notion
of candidates is nonstandard, as remarked below). We will denote by cand.T / � G

the set of candidates of T .

If we choose for each g 2 cand.T / a fundamental domain for the action of g on
its axis Ag � T , these fundamental domains project to only finitely many different
edge loops in the quotient graph G n T . In particular, the set of translation lengths
flT .g/ j g 2 cand.T /g � R is finite. At the same time, for any T 0 2 D the set
flT 0.g/ j g 2 cand.T /g � R is finite as well, since the image of lT 0 in R is discrete
and we have lT 0.g/ � �.T;T

0/ � lT .g/ for all g 2 G . Clearly, if T;T 0 2 D are
G –equivariantly homeomorphic then cand.T /D cand.T 0/.
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Remark With significantly more effort, one can further show that there always exists
a witness whose hyperbolic axis projects to a loop in G nT with certain topological
properties, as was done in [14, Proposition 3.15] for free Fn –trees and in [13, The-
orem 9.10] in the special case of irreducible G–trees with trivial edge stabilizers.
However, the weaker finiteness properties of candidates discussed above will suffice
for all our applications.

In the proof of Theorem 4.14 we will use the following characterization of witnesses:

Lemma 4.15 Let D be a deformation space of G –trees and T;T 0 2D . For an optimal
map f W T ! T 0 and a hyperbolic group element g 2G , the following are equivalent:

(1) �.f /D lT 0.g/=lT .g/.

(2) The hyperbolic axis Ag � T is contained in the tension forest �.f / and it is
legal with respect to the train track structure defined by f .

(3) The hyperbolic axis Ag � T is contained in the tension forest �.f / and
f .Ag/� T 0 equals A0g , the hyperbolic axis of g in T 0 .

Proof (2))(3))(1) Since f is G –equivariant and Ag is legal, the image f .Ag/

is a g–invariant line and thus equals A0g . Consequently, and since Ag is assumed to
lie in the tension forest �.f /, for p 2Ag we have

lT 0.g/D d.gf .p/; f .p//D d.f .gp/; f .p//D �.f / � d.gp;p/D �.f / � lT .g/

and we conclude that �.f /D lT 0.g/=lT .g/.

(1))(2) We will argue by contradiction. First, suppose that Ag is not contained in
the tension forest �.f /. Then for any p 2 Ag the segment Œp;gp� is stretched by
strictly less than �.f / and we have

lT 0.g/� d.gf .p/; f .p//D d.f .gp/; f .p//

< �.f / � d.gp;p/D �.f / � lT .g/

whence �.f / > lT 0.g/=lT .g/. On the other hand, if Ag is contained in �.f / but not
legal with respect to the train track structure defined by f then there exists a vertex
v 2 V .Ag/ at which the two directions of Ag define the same gate. The images of
Œg�1v; v� and Œv;gv� under f then overlap in a segment of positive length and lT 0.g/

is strictly smaller than �.f / � lT .g/, whence lT 0.g/=lT .g/ < �.f /.

Proof of Theorem 4.14 Since T and T 0 are irreducible, there exists an optimal map
f W T ! T 0 (this is the only step in the proof that uses irreducibility). By Lemma 4.15,
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in order to prove the claim, it suffices to find a hyperbolic group element � 2G whose
axis A� �T is contained in �D�.f / and legal with respect to the train track structure
defined by f . It will be clear from our construction of � that a fundamental domain
for the action of � on A� meets each G –orbit of vertices of T at most 10 times, ie �
is a candidate.

Since � has at least 2 gates at every vertex, we can find a legal ray R�� based at some
vertex v0 2 V .�/. There always exists a vertex x 2 V .R/ such that xD gx0 for some
x0 2 Œv0;x/ and some hyperbolic group element g 2G , which can be seen as follows:
Since T is minimal and therefore cocompact, there are only finitely many G–orbits
of vertices in T . We can thus find pairwise distinct vertices x0;x1;x2 2 V .R/ and
g1;g2 2G such that x1 D g1x0 and x2 D g2x1 . If either g1 or g2 is hyperbolic, we
are done. If both are elliptic, each gi fixes only the midpoint of the segment Œxi�1;xi �

and the product g D g2g1 maps x0 to x2 . The fixed point sets of g1 and g2 being
disjoint, g is hyperbolic by Proposition 2.2(2).

We choose x to be the first vertex of R with this property, for which the segment
Œx0;x� meets the G–orbit of x0 at most 3 times (there could lie an elliptic translate
of x0 in between x0 and gx0 ) and each G –orbit of vertices other than that of x0 at
most 2 times. The segment Œx0;x��R is then a closed fundamental domain for the
action of g on Ag and the stretching factor of f on any subsegment of Ag equals
that of f on Œx0;x� � �, whence Ag � �. If Ag is legal, we are done. If not,
since all turns of Ag in between x0 and x are legal but Ag is assumed illegal, the
turns at x0 and x must be illegal. We then have Ag \RD Œx0;x� and we continue
moving along the legal ray R until we reach the first vertex y 2 V .R/ with y D hy0

for some y0 2 .x;y/ and some hyperbolic group element h 2 G . Analogously, the
segment Œy0;y� meets the G –orbit of y0 at most 3 times and each G –orbit of vertices
other than that of y0 at most 2 times. Note that the open segment .x;y0/ meets each
G –orbit of vertices of T at most 2 times.

If Ah �� is legal, we are done. If not, we have Ag \Ah D∅ and the product hg is
hyperbolic by Proposition 2.2(3). A closed fundamental domain for the action of hg

on its axis Ahg is given by Œx0; hx�D Œx0;x�[ Œx;y0�[ Œy0;y�[ hŒy0;x���, since
we have hgŒx0; hx�\ Œx0; hx�D fhxg (see Figure 3). We conclude that Ahg ��. In
particular, the fundamental domain Œx0; hx/ meets each G–orbit of vertices of T at
most 3C 2C 3C 2D 10 times and hg is a candidate of T .

In order to show that Ahg is legal, it suffices to show that Œx0; hx� does not make
any illegal turns and that the directions hgıx0;x and ıhx;y are not equivalent. By the
legality of R, it is clear that all turns of the subsegment Œx0;y� are legal. The turn of
Œx0; hx� at y is legal if and only if ıy;y0

œ ıy;hx . This is equivalent to ıy0;h�1y0
œ ıy0;x
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Ag

x0 x D gx0 gx

g�1Ah

Ah
h�1y0

y0

hx hgx

y D hy0

hAg

ıhx;y
hgıx0;x

Figure 3: The segment Œx0; hx� (both bold and dashed, where we know that
the bold part lies in R) and the directions hgıx0;x and ıhx;y (arrows)

but which is true since Ah is assumed illegal (ie ıy0;h�1y0
� ıy0;y ) and ıy0;y œ ıy0;x

by the legality of R. Lastly, we need to show that hgıx0;x œ ıhx;y . We analogously
observe that this is the case if and only if ıx;gx œ ıx;y0

but which is true as Ag is
illegal (ie ıx;gx � ıx;x0

) and ıx;x0
œ ıx;y0

by the legality of R.

We give a proof of the following well-known fact in the language of trees:

Proposition 4.16 The Lipschitz metric on Outer space PX n (Example 3.3) is an
asymmetric metric. That is, if two Fn –trees T;T 0 2 PX n satisfy dLip.T;T

0/D 0 then
they are Fn –equivariantly isometric.

Proof Let f W T ! T 0 be an optimal map with �.f /D 1. For e 2E.T / we denote
by �e.f / the slope of f on e . Since f is surjective, the induced map on metric
quotient graphs Fn nf W Fn nT ! Fn nT 0 is surjective as well and we have

1D vol.im.Fn nf //D

� X
e2E.FnnT /

�e.f / � length.e/
�
�C;

where C � 0 measures overlaps of images of edges. Since T has covolume 1 and
�e.f /� �.f /D 1 for all e 2E.T /, we conclude that 1� �.f /�C D 1�C , whence
C D 0. Consequently, we have �e.f /D 1 for all e 2E.T / and hence �.f /D T .

The Fn –trees in PX n are irreducible, and in order to prove the claim it suffices to show
that for all hyperbolic (here, nontrivial) group elements g2Fn we have lT .g/D lT 0.g/.
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On the one hand, if g 2 Fn is hyperbolic and p 2 Ag � T a point in its hyperbolic
axis, we have

lT 0.g/� d.f .p/;gf .p//D d.f .p/; f .gp//� �.f / � d.p;gp/D lT .g/:

On the other hand, suppose that there exists a hyperbolic group element g 2 Fn such
that lT 0.g/ is strictly smaller than lT .g/. Since the tension forest of f is all of T , by
Lemma 4.15 the hyperbolic axis Ag � T cannot be legal with respect to the train track
structure defined by f . Hence, we can find a vertex v2V .Ag/ at which the turn defined
by Ag is not legal, ie at which the germs of two adjacent edges are mapped to the same
germ under f . Since Fn acts on T freely, the two germs are not Fn –equivalent and
we can find a fundamental domain X � T for the action of Fn on T that contains
the two germs and has volume 1. Its image f .X /� T 0 is a fundamental domain for
the action of Fn on T 0 whose volume is strictly smaller than 1, contradicting the fact
that T 0 has covolume 1.

Remark The proof of Proposition 4.16 is specific for free Fn –trees, as the two germs
may otherwise be G –equivalent (their common vertex may be stabilized by a nontrivial
group element that swaps the two adjacent edges). In that case, we can no longer find
a fundamental domain of volume 1 that contains both germs.

4.3 Convergent sequences

In this section we relate topological convergence in projectivized deformation spaces
of G –trees with convergence with respect to the (symmetrized) Lipschitz metric.

Proposition 4.17 Let PD be a projectivized deformation space of irreducible G –trees
and .Tk/k2N a sequence of G–trees in PD that converges to T 2 PD in the weak
topology. Then limk!1 d

sym
Lip .Tk ;T /D 0.

In the weak topology, PD is homeomorphic to the covolume–1–section in the un-
projectivized deformation space D . Thus, the sequence .Tk/k2N weakly converges
to T also as covolume–1–representatives in D . The weak topology being the finest
of the three topologies, .Tk/k2N converges to T in all three topologies, where con-
vergence in the unprojectivized axes topology means that for all g 2 G we have
limk!1 lTk

.g/D lT .g/ (pointwise convergence of translation length functions).

Proof We will first show that limk!1 dLip.Tk ;T /D 0. Let .fk W Tk ! T /k2N be
a sequence of optimal maps. By Theorem 4.14, for all k 2N there exists a candidate
�k 2 cand.Tk/�G such that

dLip.Tk ;T /D log
�

lT .�k/

lTk
.�k/

�
:

Algebraic & Geometric Topology, Volume 15 (2015)



The Lipschitz metric on deformation spaces of G–trees 1011

Since the sequence .Tk/k2N converges weakly, it meets only finitely many open
simplices of PD and the G –trees .Tk/k2N are of only finitely many G –equivariant
homeomorphism types. After decomposing the sequence into subsequences (for each
of which we will obtain the same result), we may assume that the G–trees are in
fact all G –equivariantly homeomorphic, or even equal as nonmetric G –trees. The set
of candidates cand.Tk/ � G is then independent of k and .lT .�k//k2N takes only
finitely many values. After decomposing .Tk/k2N into subsequences once more, we
may assume that .lT .�k//k2N is constant, say lT .�k/D C for all k 2N .

By the remarks made above, the sequence .Tk/k2N converges also as covolume–1–
representatives in the unprojectivized axes topology. Thus, for all K 2 N we have
limk!1 lTk

.�K /D lT .�K /D C . Recall that the candidates .�K /K2N �G give rise
to only finitely many different edge loops in the quotient graph G nT1 . In fact, if two
candidates �K1

and �K2
give rise to the same edge loop in G nT1 , they give rise to the

same edge loop in G nTk for all k 2N (because the G –trees .Tk/k2N are equal as
nonmetric G –trees). Thus, the family of sequences f.lTk

.�K //k2N jK 2Ng is finite
and for all " > 0 there exists N > 0 such that for all K 2N we have

jC � lTk
.�K /j< "

whenever k �N . In particular, we have jC � lTk
.�k/j< " whenever k �N and we

conclude that limk!1 lTk
.�k/D C . Consequently,

lim
k!1

dLip.Tk ;T /D log
�

lim
k!1

lT .�k/

lTk
.�k/

�
D log

�
C

limk!1 lTk
.�k/

�
D log.1/D 0:

Showing that limk!1 dLip.T;Tk/D 0 is similar but easier, because it does not require
that the sequence .Tk/k2N meets only finitely many open simplices of PD .

As for the converse of Proposition 4.17, we have the following:

Proposition 4.18 Let PD be a projectivized deformation space of irreducible G–
trees and .Tk/k2N a sequence of G –trees in PD such that for some T 2 PD we have
limk!1 d

sym
Lip .Tk ;T /D 0. Then .Tk/k2N converges to T in the axes topology.

In contrast to convergence in the unprojectivized axes topology, the sequence .Tk/k2N

converges to T in the projectivized axes topology if there exist positive real numbers
.Ck/k2N such that for all g 2 G we have limk!1 Ck � lTk

.g/ D lT .g/ (pointwise
convergence of projectivized translation length functions).

Proof We will argue as in the proof of [14, Theorem 4.11]. For any positive real-
valued function f satisfying sup 1

f .x/
<1 we have sup 1

f .x/
D

1
inff .x/ . Therefore,
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since
1

lTk
.g/

lT .g/

D
lT .g/

lTk
.g/
� �.Tk ;T / <1

for all hyperbolic group elements g 2G , we have

lim
k!1

d
sym
Lip .Tk ;T /D 0 , lim

k!1

supg

lTk
.g/

lT .g/

infg
lTk

.g/

lT .g/

D 1:

Assuming that limk!1 d
sym
Lip .Tk ;T /D 0, we conclude that for all " > 0 there exists

K 2N such that for all k �K we have

(1) inf
g

lTk
.g/

lT .g/
� sup

g

lTk
.g/

lT .g/
� inf

g

lTk
.g/

lT .g/
� .1C "/:

Clearly, for all hyperbolic group elements � 2G we have

inf
g

lTk
.g/

lT .g/
�

lTk
.�/

lT .�/
� sup

g

lTk
.g/

lT .g/
:

Setting Ik D infg lTk
.g/=lT .g/, inequality (1) implies that Ik � lTk

.�/=lT .�/ �

Ik � .1C "/ whenever k � K . In particular, the unprojectivized translation length
functions ..1=Ik/lTk

/k2N converge to lT uniformly and a fortiori pointwise. Thus,
the G –trees .Tk/k2N converge to T in the projectivized axes topology.

Recall from Section 3.1 that if PD is a projectivized deformation space of locally
finite irreducible G –trees with finitely generated vertex stabilizers then the equivariant
Gromov–Hausdorff topology, the axes topology, and the weak topology agree on PD .

Corollary 4.19 If PD consists of locally finite irreducible G–trees with finitely
generated vertex stabilizers then the symmetrized Lipschitz metric d

sym
Lip induces the

standard topology on PD .

Proof Since the locally finite complex PD is metrizable, it suffices to show that the
two topologies have the same convergent sequences. This immediately follows from
Propositions 4.17 and 4.18 and the fact that the three topologies agree on PD .

Example 4.20 The symmetrized Lipschitz metric induces the standard topology on
the projectivized deformation spaces discussed in Examples 3.3, 3.4 and 3.5.
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4.4 Folding paths and geodesics

Let D be a deformation space of G–trees and T;T 0 2 D . A G–equivariant map
f W T ! T 0 is simplicial if it maps each edge of T isometrically to an edge of T 0 . A
G–equivariant map f W T ! T 0 is a morphism if it is an isometry on edges (but not
necessarily simplicial) or, equivalently, if the simplicial structures on T and T 0 may
be subdivided such that f becomes simplicial.

Suppose we are given two G –trees T;T 0 2D and a morphism f W T !T 0 . Skora [24]
has described a technique of “folding T along f ” to obtain a 1–parameter family of
G –trees .Tt /t2Œ0;1� together with morphisms �t W T !Tt and  t W Tt!T 0 such that

� T0 D T and T1 D T 0 ,

� �0 D idT , �1 D  0 D f and  1 D idT 0 ,

� for all t 2 Œ0;1� the following diagram commutes:

T
f //

�t ��

T 0

Tt

 t

>>

Explicitly, for t 2 Œ0;1� we let �t be the equivalence relation on T generated by
x �t y if f .x/ D f .y/ and f .Œx;y�/ � Dt .f .x//, where Dt .f .x// denotes the
closed ball of radius t around f .x/ 2 T 0 . As a set, we define Tt as the quotient
T=�t . We let �t W T ! Tt be the G –equivariant quotient map and  t W Tt ! T 0 the
unique induced G –equivariant map, and we equip Tt with the maximal metric making
both �t and  t 1–Lipschitz.

For all t 2 Œ0;1�, after possibly restricting to the unique minimal G –invariant subtree,
the G–tree Tt lies in the deformation space D . The map Œ0;1� ! D , t ! Tt

is continuous in the equivariant Gromov–Hausdorff topology (see [24; 7; 16]) and
therefore also in the axes topology. The intermediate G –trees .Tt /t2Œ0;1� are contained
in a finite union of open cones [15, Lemma 6.5], because of which the map is also
continuous in the weak topology. We obtain a path Œ0;1�! PD , t ! Tt that is
continuous in all three topologies.

As in [14] in the special case of Outer space, one can make use of folding paths to
construct geodesics in projectivized deformation spaces of irreducible G –trees:

Definition 4.21 Let PD be a projectivized deformation space of G–trees. A path
 W Œa; b�! PD , t 7!  .t/ with a < b 2 R is dLip –continuous if for all convergent
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sequences .xn/n2N � Œa; b� with limn!1 xn D x we have

lim
n!1

dLip. .xn/;  .x//D 0 and lim
n!1

dLip. .x/;  .xn//D 0:

We say that a dLip –continuous path  W Œa; b�! PD , t 7!  .t/ with a < b 2 R is a
dLip –geodesic if for all x < y < z 2 Œa; b� we have

dLip. .x/;  .y//C dLip. .y/;  .z//D dLip. .x/;  .z//:

Remark In metric spaces, geodesics in the above sense can be reparametrized to
have unit speed. However, since dLip is an asymmetric pseudometric, unit speed
reparametrizations in PD need not always exist.

Lemma 4.22 Let PD be a projectivized deformation space of irreducible G –trees and
 W Œa; b�!PD be a dLip –continuous path with a< b 2R. If for all x < y < z 2 Œa; b�

there exists a hyperbolic group element � 2G such that

(2) �. .x/;  .y//D
l.y/.�/

l.x/.�/
and �. .y/;  .z//D

l.z/.�/

l.y/.�/

then  is a dLip –geodesic.

Proof We have

sup
g

l.z/.g/

l.x/.g/
�

l.z/.�/

l.x/.�/
D

l.y/.�/

l.x/.�/
�
l.z/.�/

l.y/.�/
D sup

g

�
l.y/.g/

l.x/.g/

�
� sup

g

�
l.z/.g/

l.y/.g/

�
and hence dLip. .x/;  .z// � dLip. .x/;  .y//C dLip. .y/;  .z//, from which we
conclude that dLip. .x/;  .z//D dLip. .x/;  .y//C dLip. .y/;  .z//.

By Proposition 4.17, if PD is irreducible then any path in PD that is continuous in the
weak topology — such as the folding path Œ0;1�! PD , t! Tt described above — is
dLip –continuous.

Theorem 4.23 (Existence of dLip –geodesics) If PD is a projectivized deformation
space of irreducible G–trees then for all T;T 0 2 PD there exists a dLip –geodesic
 W Œ0; 1�! PD with  .0/D T and  .1/D T 0 .

Proof Let f W T !T 0 be an optimal map and � 2G a witness for the distance from T

to T 0 . By Lemma 4.22, it suffices to construct a path  W Œ0; 1�! PD from T to T 0

such that for all x < y < z 2 Œ0; 1� we have (2). We will construct such a path in the
unprojectivized deformation space D , and since any witness for the minimal stretching
factor between two G –trees remains a witness after scaling the metrics on the trees, the
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projection of the path to PD will still satisfy (2). In order to do so, we again regard T

and T 0 as their covolume-1 representatives in D . Let

C D exp.dLip.T;T
0//D

lT 0.�/

lT .�/

and let xT be the G –tree obtained from T by G –equivariantly shrinking each edge of T

that is mapped to a point under f to length 0 (collapsing these edges does not create
any new elliptic subgroups, as the G–equivariant map f W T ! T 0 factors through
the quotient) and G –equivariantly shrinking all other edges so that they are stretched
by the factor C under f . Note that we only shrink edges in the complement of the
tension forest �.f /. Then, homothete xT to C xT such that f W C xT ! T 0 becomes an
isometry on edges, ie a morphism. We may now fold C xT along f to obtain a family
of G –trees .Tt /t2Œ0;1� that interpolate between C xT and T 0 as explained above (see
Figure 4 for a structural sketch).

C xT

f

&&

xT

f

**
T

f // T 0

Figure 4: The path from T to xT to C xT to T 0 in D projects to a geodesic
from T to T 0 in PD .

This produces a path  W Œ0; 1� ! D from T to T 0 that is continuous in all three
topologies and also with respect to dLip .

We claim that for every G –tree S in between T and C xT we have

�.T;S/D
lS .�/

lT .�/
and �.S;T 0/D

lT 0.�/

lS .�/
:

Analogously, we claim that for every intermediate G –tree Tt in between C xT and T 0

we have

�.T;Tt /D
lTt
.�/

lT .�/
and �.Tt ;T

0/D
lT 0.�/

lTt
.�/
:

As for any a � s � t � b the same construction of a path from  .s/ to  .t/ yields
precisely the restriction of  to Œs; t �, this then proves that  satisfies (2).
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First, consider a G –tree S that lies in between T and xT . As S is obtained from T by
shrinking edges of T , we have �.T;S/� 1. However, as we only shrink edges outside
of �.f /, the hyperbolic axis A� ��.f / is not touched and we have lS .�/=lT .�/D 1.
We may immediately deduce from this that �.T;S/D lS .�/=lT .�/, as for all hyperbolic
group elements g 2G we have �.T;S/� lS .g/=lT .g/ (see Lemma 4.13). Likewise,
the map f W S!T 0 still has Lipschitz constant C so that �.S;T 0/�C . The axis A��

�.f /� S remains legal and is stretched by the factor C , whence lT 0.�/=lS .�/D C

and therefore �.S;T 0/D lT 0.�/=lS .�/.

Analogously, if S lies in between xT and C xT , say S D C 0 xT with C 0 2 Œ1;C �, then
�.T;S/ � C 0 and lS .�/=lT .�/ D C 0 , whence �.T;S/ D lS .�/=lT .�/. The map
f W S ! T 0 has Lipschitz constant C=C 0 and the axis A� ��.f / � S is stretched
by C=C 0 . We conclude that �.S;T 0/D lT 0.�/=lS .�/.

Consider now an intermediate G–tree Tt in between C xT and T 0 . As the quotient
map �t W C xT ! Tt is 1–Lipschitz, the composition

T
id
�! C xT

�t
�! Tt

is C –Lipschitz. The hyperbolic axis A� ��.f /� T is legal with respect to f and
hence does not get folded in Tt D C xT = �t . We therefore have lTt

.�/=lT .�/ D C ,
whence �.T;Tt / D lTt

.�/=lT .�/. Analogously, the induced map  t W Tt ! T 0 is
1–Lipschitz and the hyperbolic axis A� ��. t /� Tt is legal with respect to  t . We
conclude that lT 0.�/=lTt

.�/D 1 and hence that �.Tt ;T
0/D lT 0.�/=lTt

.�/.

5 Displacement functions

Let PD be a projectivized deformation space of G–trees and ˆ 2 OutD.G/. We
equip PD with the Lipschitz metric dLip and define the displacement function associated
to ˆ as the function

ẑ W PD!R�0; T 7! dLip.T;Tˆ/:

We call ˆ elliptic if inf ẑ D 0 and the infimum is realized. We say ˆ is hyperbolic if
inf ẑ > 0 and the infimum is realized. Lastly, we say ˆ is parabolic if inf ẑ is not
realized.

5.1 Elliptic automorphisms

If ˆ 2OutD.G/ is elliptic then, by definition, there exists a G –tree T 2 PD such that
dLip.T;Tˆ/D 0. One would like to conclude that T lies in the fixed point set of ˆ,

Algebraic & Geometric Topology, Volume 15 (2015)



The Lipschitz metric on deformation spaces of G–trees 1017

but from Example 4.4 we know that the asymmetric pseudometric dLip fails to be an
asymmetric metric, ie dLip.T;T

0/ D 0 does generally not imply that T and T 0 are
G –equivariantly isometric. However, the G –trees T and T 0 in the counterexample are
not homeomorphic and thus they do not lie in the same OutD.G/–orbit, for they would
otherwise have the same underlying metric simplicial tree. Therefore, one may still ask
whether dLip is an asymmetric metric on OutD.G/–orbits. As we will see, the general
answer is “no” (Example 5.6) but it is “yes” in certain cases (Proposition 5.1). This
answers a question in an earlier preprint of this paper. The arguments in this section
arose out of discussions with Camille Horbez and Gilbert Levitt.

The separation property of dLip on OutD.G /–orbits Let T 2 PD; ˆ 2 OutD.G/
such that dLip.T;Tˆ/ D 0. If T is irreducible then there exists an optimal map
f W T !Tˆ with �.f /D 1, and one easily shows (as in the proof of Proposition 4.16)
that f has stretching factor 1 on all edges of T . After subdividing the simplicial
structures on T and Tˆ (independently of each other) by G–equivariantly adding
redundant vertices, f becomes simplicial (as defined in Section 4.4). We will denote
the subdivided G –trees again by T and Tˆ.

If all edge stabilizers of T are finitely generated then by Bestvina and Feighn [4, Sec-
tion 2] the simplicial map f factors as a finite composition of G –equivariant simplicial
quotient maps, so-called folds, which can be classified into types IA-IIIA, IB-IIIB
and IIIC (we refer the reader to [4] for definitions). All folds other than type IIA and IIB
folds irreversibly decrease the metric covolume, so they cannot occur. After subdividing
the simplicial structure on T once more, a type IIB fold is a composition of two type IIA
folds (these subdivisions add only a finite number of G –orbits of vertices), so we may
assume that f factors as a finite composition of type IIA folds. Explicitly, a type IIA
fold is a simplicial quotient map T ! T=�, where � is a G –equivariant equivalence
relation on T that is of the following form: there are distinct edges e1; e2 2 E.T /

with �.e1/D �.e2/ 2 V .T / and a group element g 2G�.e1/ such that ge1D e2 , and �
is the equivalence relation generated by he1 � he2 for all h 2G . Intuitively, on the
level of quotient graphs of groups, performing a type IIA fold corresponds to pulling
an element of a vertex stabilizer along an edge (see Figure 5).

G
E

H G
hE;gi

hH;gi
type IIA fold

g 2G; g 62E

Figure 5: The effect of a type IIA fold on the quotient graph of groups
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A type IIA fold always enlarges but never reduces an edge group. We will make use
of this behavior to confirm the separation property of dLip on OutD.G/–orbits in the
following special case:

Proposition 5.1 (Levitt) Let PD be a projectivized deformation space of locally
finite irreducible G–trees with finitely generated edge stabilizers. If PD has no
nontrivial integral modulus (see Section 3.2) and if T 2 PD and ˆ 2 OutD.G/ satisfy
dLip.T;Tˆ/D 0 then T and Tˆ are G –equivariantly isometric.

Before we turn to the proof of Proposition 5.1, we discuss the existence of maximal
elliptic subgroups, ie elliptic subgroups that are not properly contained in any other
elliptic subgroup. A maximal elliptic subgroup is always a vertex stabilizer.

Lemma 5.2 Let PD be a projectivized deformation space of locally finite G–trees.
If PD has no nontrivial integral modulus then for any G–tree T 2 PD and any edge
e 2E.T / the edge group Ge is contained in a maximal elliptic subgroup of T .

Proof We first observe that, under these assumptions, for any vertex v 2 V .T / the
vertex group Gv � G is not properly contained in a conjugate of itself. Suppose to
the contrary that there exists a vertex v 2 V .T / such that Gv is a proper subgroup of
gGvg

�1 for some g 2G . We then have

�.g/D
ŒGv W .Gv \gGvg

�1/�

ŒgGvg�1 W .Gv \gGvg�1/�
D

1

ŒgGvg�1 WGv �

with ŒgGvg
�1 W Gv � > 1, in which case �.g�1/ D 1=�.g/ is a nontrivial integral

modulus, contradicting our assumptions. To prove the lemma, we again argue by
contradiction. Suppose that the edge group Ge is not contained in a maximal elliptic
subgroup. Each vertex group adjacent to e is then properly contained in another vertex
group, which is again properly contained in yet another vertex group. Inductively, we
obtain an infinite properly ascending chain of vertex groups that lie in only finitely
many conjugacy classes by the cocompactness of T . We conclude that there exists
a vertex v 2 V .T / and a group element g 2G such that Gv is a proper subgroup of
gGvg

�1 , which contradicts the first part of the proof.

Proof of Proposition 5.1 Since T is irreducible and has finitely generated edge
stabilizers, after subdividing the simplicial structures on T and Tˆ there exists a
G–equivariant simplicial map f W T ! Tˆ that factors as a finite composition of
type IIA folds. We claim that Tˆ cannot be obtained from T by nontrivial type IIA
folds, whence T and Tˆ are G –equivariantly isometric:
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By Lemma 5.2, the stabilizer Ge of any edge e 2 E.T / is contained in a maximal
elliptic subgroup of T , which is always a vertex stabilizer. Let Mi � G , i 2 I be
the maximal elliptic subgroups of T that contain Ge . Since T has only finitely many
G –orbits of vertices, the vertex groups Mi , i 2 I fall into only finitely many conjugacy
classes, and we assume for a moment that they are in fact all conjugate. Then, for a
distinguished maximal elliptic subgroup M containing Ge , the image of the modular
homomorphism �W G! .Q>0;�/ defined by

�.g/D
ŒM W .M\gMg�1/�

ŒgMg�1 W .M\gMg�1/�

contains the values
ŒMi W .M\Mi/�

ŒM W .M\Mi/�
D
ŒMi W .M\Mi/�

ŒM W .M\Mi/�
�
Œ.M\Mi/ WGe �

Œ.M\Mi/ WGe �
D
ŒMi WGe �

ŒM WGe �
; i 2 I:

Since PD has no nontrivial integral modulus, Forester [12, Lemma 8.1] implies the
indices ŒMi WGe �, i 2 I can take only finitely many values. Consequently, there exists
a maximum index I.Ge/ of Ge in the maximal elliptic subgroups Mi , i 2 I . If the
maximal elliptic subgroups containing Ge are not all conjugate, we associate to each
of their finitely many conjugacy classes the maximum index of Ge and define I.Ge/

as the sum of these. One readily sees that for all g 2G we have I.gGeg�1/D I.Ge/,
so I.Ge/D I.Ge0/ if e and e0 lie in the same G –orbit of edges of T . Finally, let

I.T /D
X

e2GnT

length.e/ � I.Ge/;

where e ranges over the finitely many edges in the metric quotient graph of groups of T .
The value I.T / is insensitive to simplicial subdivisions of T and for all ˆ 2OutD.G/
we have I.Tˆ/D I.T /. On the other hand, after performing a type IIA fold, for the
enlarged edge group hE;gi we have I.hE;gi/ < I.E/, whereas all other edge groups
are left invariant. Thus, if T 0 2 PD is obtained from T by a nontrivial sequence of
type IIA folds then I.T 0/ < I.T /, whence the claim.

Example 5.3 Let G be a finitely generated virtually nonabelian free group and PD
the projectivized deformation space of minimal G –trees with finite vertex stabilizers
(Example 3.4). We know from Example 3.11 that PD has no nontrivial integral modulus.
Hence, if for T 2 PD and ˆ 2OutD.G/DOut.G/ we have dLip.T;Tˆ/D 0 then T

and Tˆ are G –equivariantly isometric.

Corollary 5.4 Let G be a finitely generated virtually nonabelian free group and PD
the projectivized deformation space of minimal G–trees with finite vertex stabilizers.
An automorphism ˆ 2 OutD.G/D Out.G/ is elliptic with respect to dLip if and only
if it has finite order.
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Proof It follows from [15, Proposition 8.6] that Out.G/ acts on PD with finite point
stabilizers. Thus, and by Example 5.3, every elliptic automorphism ˆ 2 Out.G/ has
finite order. Conversely, by Clay [8] every finite-order automorphism of G has a fixed
point in PD and thus is elliptic.

Example 5.5 Let G be a nonelementary GBS group which contains no solvable
Baumslag–Solitar group BS.1; n/ with n�2. Let PD be the projectivized deformation
space of minimal G –trees with infinite cyclic vertex and edge stabilizers (Example 3.5).
By Lemma 3.8, PD has no nontrivial integral modulus. Thus, if for T 2 PD and ˆ 2
OutD.G/D Out.G/ we have dLip.T;Tˆ/D 0 then T and Tˆ are G –equivariantly
isometric.

Remark For G and PD as in Example 5.5, let b be the first Betti number of the
topological space G n T for any T 2 PD ; this number is an invariant of PD , as it
is not affected by elementary deformations. The stabilizer of each T 2 PD under
the action of Out.G/ on PD is virtually isomorphic to Zk , where k D b or b � 1

depending on G [19, Theorem 3.10].

However, the asymmetric Lipschitz pseudometric dLip does not restrict to an asymmetric
metric on OutD.G/–orbits in general:

Example 5.6 (Horbez) Let G D BS.1; 6/ � F2 D hx; t j txt�1 D x6i � F2 and
consider the graph of groups decompositions � and � 0 of G shown in Figure 6, where
all edge group inclusions are the obvious ones and all edges have length 1

3
.

� � 0

1

hx; t j txt�1 D x6i

hx3i

hx3i

1

1

hx; t j txt�1 D x6i

hxi

hxi

1

Figure 6: The Bass–Serre trees of the graphs of groups shown above lie in
the same OutD.G/–orbit. They are irreducible but not locally finite.

Let T and T 0 be the corresponding G –trees. The automorphism

'W BS.1; 6/
Š
! BS.1; 6/; x 7! x3; t 7! t;
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induces an automorphism ˆD ' � idF2
2 Aut.G/ and we have T 0 D Tˆ. Similarly

as in Example 4.4, the natural morphism of graphs of groups from � to � 0 lifts to
a G–equivariant map from T to Tˆ (namely, a type IIA fold) that is an isometry
on edges and thus has Lipschitz constant 1, whence dLip.T;Tˆ/D 0. However, T

and Tˆ are not G –equivariantly isometric, as the group element x 2G stabilizes an
edge in Tˆ but not in T (x is not a conjugate of x3 ).

5.2 Nonparabolic automorphisms

Let PD be a projectivized deformation space of irreducible G –trees and ˆ2OutD.G/ a
nonparabolic automorphism, ie inf ẑ is realized. Let T 2PD such that dLip.T;Tˆ/D

inf ẑ and let f W T ! Tˆ be an optimal map with tension forest � D �.f / � T .
The following observation will be used in the proof of Theorem 5.13:

Proposition 5.7 After a small perturbation of the metric on T , preserving the condi-
tion that dLip.T;Tˆ/D inf ẑ , the map f W T ! Tˆ is G –equivariantly homotopic to
an optimal map f 0W T ! Tˆ with �.f 0/�� such that

f 0.�.f 0//��.f 0/:

Proof Suppose that f .�/ is not contained in � and let e 2E.�/ be an edge such
that f .e/ª�. Slightly scale up the metric on � and down on T n� while maintaining
covolume 1. This lowers the stretching factor on e and produces a new tension forest,
of the original map f made linear on edges, that is properly contained in the old one.
Since dLip.T;Tˆ/ is minimal among all translation distances of ˆ, we will not have
removed all edges of � and started over with a new tension forest that corresponds to
a strictly smaller maximal stretching factor. In particular, there always exists an edge
e0 2E.�/ such that f .e0/��. The stretching factor of f on e0 remains unchanged
and we preserve the condition that dLip.T;Tˆ/D inf ẑ . As T has only finitely many
G –orbits of edges, after finitely many repetitions we have f .�/��. If at this point �
has a vertex with only one gate, we perturb f to an optimal map f 0 as in the proof of
Proposition 4.12.

5.3 Parabolic automorphisms

Let PD be a projectivized deformation space of G–trees and T 2 PD . We say a
G–invariant subforest S � T is essential if it contains the hyperbolic axis of some
hyperbolic group element. The notion of essential G –invariant subforests generalizes
the notion of homotopically nontrivial subgraphs of marked metric graphs in Outer
space.
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Definition 5.8 An automorphism ˆ 2 OutD.G/ is reducible if there exists a G –tree
T 2 PD and a G–equivariant map f W T ! Tˆ that leaves an essential proper G–
invariant subforest of T invariant. If ˆ is not reducible, it is irreducible.

As we will see, parabolic automorphisms are often reducible (Corollary 5.10). For this,
let ˆ2OutD.G/ be a parabolic automorphism (ie inf ẑ is not realized) and .Tk/k2N a
sequence of G –trees in PD such that limk!1 dLip.Tk ;Tkˆ/D inf ẑ . For ‚> 0 we
denote by PD.‚/ the OutD.G/–invariant subspace of PD consisting of all G –trees
T 2 PD that satisfy lT .g/ � ‚ for all hyperbolic group elements g 2 G . We call
PD.‚/ the ‚–thick part of PD .

Proposition 5.9 If the projectivized deformation space PD consists of irreducible
G –trees and OutD.G/ acts on PD with finitely many orbits of simplices then for only
finitely many k 2N we have Tk 2 PD.‚/.

Proof We will argue as in the proof of [20, Claim 72] by Meucci. Suppose that the
proposition is false and that, after passing to a subsequence, we have Tk 2 PD.‚/ for
all k 2N . This will lead to a contradiction.

Since OutD.G/ acts on PD with finitely many orbit of simplices, it acts on the thick
part PD.‚/ cocompactly in all three topologies. In particular, the image of .Tk/k2N in
the quotient PD.‚/=OutD.G/ has a weakly convergent subsequence. We can thus find
a sequence of outer automorphisms . k/k2N � OutD.G/ such that, after passing to a
subsequence, .Tk k/k2N weakly converges in PD.‚/ to some T2PD.‚/. We have

dLip.T 
�1
k ;T �1

k ˆ/� dLip.T 
�1
k ;Tk/C dLip.Tk ;Tkˆ/C dLip.Tkˆ;T 

�1
k ˆ/

D dLip.T;Tk k/C dLip.Tk ;Tkˆ/C dLip.Tk k ;T /;

where limk!1 dLip.T;Tk k/ D limk!1 dLip.Tk k ;T / D 0 by Proposition 4.17.
Hence, limk!1 dLip.T;T 

�1
k
ˆ k/D limk!1 dLip.Tk ;Tkˆ/D inf ẑ .

By Theorem 4.14, for all k 2N there exists a candidate �k 2 cand.T / such that

�.T;T �1
k ˆ k/D

lT �1
k
ˆ k

.�k/

lT .�k/
D

lT . 
�1
k
ˆ k.�k//

lT .�k/
:

The translation length function of T has discrete image in R and hence the numerator
takes discrete values. Since the candidates of T have only finitely many different
translation lengths, the denominator takes only finitely many values and we conclude
that the sequence .�.T;T �1

k
ˆ k//k2N is discrete. For large k we thus have

dLip.T 
�1
k ;T �1

k ˆ/D dLip.T;T 
�1
k ˆ k/D inf ẑ

contradicting the assumption that ˆ is parabolic.
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Corollary 5.10 Under the assumptions of Proposition 5.9, for large k any optimal
map f W Tk!Tkˆ leaves an essential proper G –invariant subforest of Tk invariant up
to G –equivariant homotopy. In particular, every parabolic automorphism ˆ2OutD.G/
is reducible.

If T is a minimal G –tree then a subforest S � T with no trivial components is a core
subforest if it does not have any vertices of valence 1. Every G–invariant subforest
S � T with no trivial components contains a unique (possibly empty) maximal G–
invariant core subforest core.S/� S � T , obtained by inductively removing G –orbits
of edges whose terminal or initial vertex has valence 1. The process of removing
G –orbits of edges terminates after finitely many steps by the cocompactness of T .

Proof For T 2 PD and " > 0, let T " � T be the union of all subsets of the
form

S
k2Z gk Œx;gx� with g 2G hyperbolic and x 2 T such that d.x;gx/� ". In

particular, T " contains the axes of all hyperbolic group elements g 2G with lT .g/� ".
Although T " � T is generally not a simplicial subcomplex of T , we will still speak
of T " as a (nonsimplicial) subforest, as it becomes a subcomplex after subdividing
the simplicial structure on T . In fact, T " has no trivial components and its maximal
G –invariant core subforest core.T "/� T " will be a genuine simplicial subforest of T .
Since G acts on T by isometries, if

S
k2Z gk Œx;gx� is contained in T " then for all

h 2G the translate

h

�[
k2Z

gk Œx;gx�

�
D

[
k2Z

.hgh�1/k Œhx; hgx�

is contained in T " as well. Thus, T " � T is G –invariant.

Since OutD.G/ acts on PD with finitely many orbits of simplices, the complex PD
must be finite-dimensional, say of dimension d 2N , and the number of G –orbits of
edges of any T 2 PD is bounded above by d C 1. Because the G –trees in PD have
covolume 1, in any G –tree T 2PD there exists an orbit of edges with associated edge
length greater than or equal to 1

dC1
. Therefore, for " < 1

dC1
the subforest T "� T is a

proper subforest. Given G –invariant simplicial subforests S 0 � S of T with no trivial
components, the subforest S 0 is a proper subforest of S if and only if G nS �G nS 0

consists of at least one edge. Hence, as the G –trees in PD have at most dC1 G –orbits
of edges, the number d C 1 is a uniform bound for the length of any chain of proper
G –invariant simplicial subforests with no trivial components of any G –tree in PD .

Let D D inf ẑ . Also, let " < 1=.d C 1/ and ‚D "=e.DC1/.dC1/ . By Proposition 5.9,
we can choose k so large that Tk 62 PD.‚/ and dLip.Tk ;Tkˆ/ < D C 1. For
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i D 0; : : : ; d C 1, define ıi D "=e.DC1/i and consider the chain of G–invariant
subforests

T "
k D T

ı0

k
� T

ı1

k
� � � � � T

ıdC1

k
D T‚

k

all of which are proper subforests of Tk . Note that T‚
k
¤ ∅ since Tk 62 PD.‚/

and thus there exists a hyperbolic group element g 2 G with lTk
.g/ < ‚ whose

axis lies in T‚
k

. The associated chain of core subforests is a chain of G–invariant
simplicial subforests of Tk whose number of proper inclusions is bounded by d by
the arguments given above. Thus, there exists i 2 f0; : : : ; dg for which we have
core.T ıiC1

k
/ D core.T ıi

k
/. Since dLip.Tk ;Tkˆ/ < DC 1, the Lipschitz constant of

the optimal map f W Tk ! Tkˆ is smaller than eDC1 and we have

f .core.T ıiC1

k
//� f .T

ıiC1

k
/� T

ıi

k
:

The subforest core.T ıi

k
/ � T

ıi

k
is a G–equivariant deformation retract of T

ıi

k
� Tk

and the obvious deformation retraction extends to a G–equivariant self homotopy
equivalence h of Tk (this is easily seen on the level of quotient graphs of groups).
Now f is G –equivariantly homotopic to the G –equivariant map

Tk

f
�! Tkˆ

h
�! Tkˆ

that leaves the proper G –invariant simplicial subforest core.T ıiC1

k
/D core.T ıi

k
/� Tk

invariant. As we remarked above, there exists a hyperbolic group element g 2 G

whose axis lies in T‚
k

and thus also in core.T ıi

k
/, and we conclude that core.T ıi

k
/ is

essential.

5.4 Train track representatives

Let PD be a projectivized deformation space of G –trees and T 2 PD . Moreover, let
ˆ 2 OutD.G/.

Definition 5.11 An optimal map f W T ! Tˆ is a train track map if it satisfies the
following three conditions:

(1) �.f /D T .

(2) f maps edges to legal paths (see Definition 4.9).

(3) If f maps a vertex v 2V .T / to a vertex f .v/2V .Tˆ/ then it maps legal turns
at v to legal turns at f .v/. (If v has 2 gates then f .v/ could alternatively lie
in the interior of an edge. Since f is linear on edges, it then maps inequivalent
directions at v to inequivalent directions at f .v/.)
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If f is a train track map then for any legal line L � T and every k 2N the image
f k.L/ � Tˆk is again a legal line. We say that an automorphism ˆ 2 OutD.G/ is
represented by a train track map if there exists a G –tree T 2 PD and an optimal map
f W T ! Tˆ that is a train track map.

Proposition 5.12 Let PD be a projectivized deformation space of G–trees. If an
automorphism ˆ 2 OutD.G/ is represented by a train track map f W T ! Tˆ then
dLip.T;Tˆ/D inf ẑ and, in particular, ˆ is nonparabolic.

Proof Our argument is a generalization of [3, Remark 8]. Suppose that f W T ! Tˆ

is an optimal map that is a train track map. By Theorem 4.14 and Lemma 4.15, there
exists a hyperbolic group element � 2G whose axis A� � T lies in �.f / and is legal
with respect to the train track structure defined by f (once we know that there exists
an optimal map f W T ! Tˆ, Theorem 4.14 no longer requires T to be irreducible).
Since f is a train track map, for all k 2N the image f k.A�/� Tˆk is a � –invariant
line — and thus equals the hyperbolic axis of � in Tˆk — that lies in �.f / and is
legal. We therefore have

�.T;Tˆk/D sup
g

lTˆk .g/

lT .g/
�

lTˆk .�/

lT .�/
D

lTˆ.�/

lT .�/
� � �

lTˆk .�/

lTˆk�1.�/

D �.T;Tˆ/ � � � �.Tˆk�1;Tˆk/

D �.T;Tˆ/k

from which we conclude that �.T;Tˆk/ D �.T;Tˆ/k . In order to show that
dLip.T;Tˆ/D inf ẑ , let T 0 2 PD be any other G –tree. We have

k � dLip.T;Tˆ/D dLip.T;Tˆ
k/

� dLip.T;T
0/C dLip.T

0;T 0ˆk/C dLip.T
0ˆk ;Tˆk/

� d
sym
Lip .T;T

0/C k � dLip.T
0;T 0ˆ/

and hence dLip.T;Tˆ/ �
1
k
� d

sym
Lip .T;T

0/C dLip.T
0;T 0ˆ/. Letting k go to infinity,

we see that dLip.T;Tˆ/� dLip.T
0;T 0ˆ/.

As for existence of train track representatives, we have the following:

Theorem 5.13 (Existence of train track representatives) Let PD be a projectivized
deformation space of irreducible G–trees. If OutD.G/ acts on PD with finitely
many orbits of simplices then every irreducible automorphism (see Definition 5.8)
ˆ 2 OutD.G/ is represented by a train track map.
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Proof Since the automorphism ˆ is irreducible, by Corollary 5.10 it is nonparabolic,
ie inf ẑ is realized. Let T 2 PD such that dLip.T;Tˆ/D inf ẑ and let f W T ! Tˆ

be an optimal map, which exists by the irreducibility of PD . We claim that f already
satisfies (1) and (2) of Definition 5.11:

Assertion (1) immediately follows from Proposition 5.7, as we could otherwise slightly
perturb the metric on T and find an optimal map T ! Tˆ that leaves an essential
proper G–invariant subforest of T invariant (the tension forest of an optimal map is
always essential by Theorem 4.14 and Lemma 4.15), contradicting the assumption
that ˆ is irreducible.

As for (2), suppose that an edge e 2E.T / is mapped over an illegal turn. Slightly fold
the illegal turn G –equivariantly and scale the metric on T back to covolume 1. The
optimal map f W T ! Tˆ naturally induces a G –equivariant map that we make linear
on edges relative to the vertices of T . The performed perturbation lowers the stretching
factor of f on the edge induced by e , which therefore drops out of the tension forest.
Each witness A���.f /DT is legal with respect to f and does not get folded, whence
the stretching factor of f on A� does not increase.3 Hence, we preserve the condition
that dLip.T;Tˆ/ D inf ẑ and the Lipschitz constant of f remains minimal among
all G–equivariant Lipschitz maps from T to Tˆ. After perturbing f to an optimal
map as in the proof of Proposition 4.12, we obtain an optimal map T ! Tˆ whose
tension forest is a proper subforest of T . By Proposition 5.7, this again contradicts the
assumption that ˆ is irreducible.

Finally, we may perturb T and f by an arbitrarily small amount, preserving the
condition that dLip.T;Tˆ/D inf ẑ and that f W T ! Tˆ is an optimal map — and
therefore also preserving conditions (1) and (2) — such that (3) of Definition 5.11 is
satisfied as well: if f maps a legal turn at a vertex v 2 V .T / to an illegal turn, slightly
fold the illegal turn G –equivariantly (see Figure 7).

Again, each witness A� � T is legal with respect to f and does not get folded so that
the stretching factor of f on A� does not increase. Thus, we preserve the property that
dLip.T;Tˆ/D inf ẑ and that f is a minimal stretch map. The perturbation makes the
legal turn at v illegal, but the induced map f made linear on edges is still optimal
and v still has at least two gates, for f would otherwise give rise to an optimal map
whose tension forest is a proper subforest of T . The folding decreases the number
G.T /D

P
w maxf0;G.w/� 2g, where w ranges over the finitely many G–orbits of

3In fact, there also exists a witness A� � T whose f –image Aˆ.�/ � T does not get folded either,
as the induced map would otherwise have strictly smaller Lipschitz constant, contradicting the fact that
dLip.T;Tˆ/ is minimal among all translation distances of ˆ .
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f f

v

v

Figure 7: Legal and illegal (dashed) turns: the upper row shows turns before
folding, the bottom row after folding. The number G.T / in the upper row
is 3 C 2 C .2 C 1/ D 8 , whereas in the bottom row it has decreased to
2C .2C 0/C .2C 1/D 7 .

vertices of T and G.w/ denotes the number of gates at w . After finitely many steps,
we obtain an optimal map f W T ! Tˆ that also satisfies condition (3).

Example 5.14 Let G be a finitely generated virtually nonabelian free group and PD
the projectivized deformation space of minimal G –trees with finite vertex stabilizers
(Example 3.4); it is irreducible and OutD.G/DOut.G/ acts on PD with finitely many
orbits of simplices (Example 3.11). We conclude that every irreducible automorphism
of G is represented by a train track map. This generalizes [5, Theorem 1.7] to virtually
free groups.

Example 5.15 Let G be a nonelementary GBS group that contains no solvable
Baumslag–Solitar group BS.1; n/ with n � 2. The projectivized deformation space
PD of minimal G –trees with infinite cyclic vertex and edge stabilizers is irreducible
(Example 3.5) and OutD.G/ D Out.G/ acts on PD with finitely many orbits of
simplices (Example 3.12). Hence, every irreducible automorphism of G is represented
by a train track map.
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