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A new obstruction of quasialternating links

KHALED QAZAQZEH

NAFAA CHBILI

We prove that the degree of the Q–polynomial of any quasialternating link is less than
its determinant. Therefore, we obtain a new and simple obstruction criterion for the
link to be quasialternating. As an application, we identify some knots of 12 crossings
or less and some links of 9 crossings or less that are not quasialternating. Our
obstruction criterion applies also to show that there are only finitely many Kanenobu
knots that are quasialternating. Moreover, we identify an infinite family of Montesinos
links that are not quasialternating.

57M27

1 Introduction

The notion of quasialternating links was first introduced by Ozsváth and Szabó in [20].
This class of links appeared in the context of link homology as a natural generalization
of alternating links. The set of quasialternating links is defined as follows:

Definition 1.1 The set of quasialternating links Q is the smallest set satisfying the
following properties.

(1) The unknot belongs to Q.

(2) If L is a link with a diagram D containing a crossing c such that

(a) both smoothings of the diagram D at the crossing c , L0 and L1 as given
in Figure 1 belong to Q,

(b) det.L0/; det.L1/� 1,
(c) det.L/D det.L0/C det.L1/,

then L is in Q and in this case we say that L is quasialternating at the crossing c

with quasialternating diagram D .

In general, it is not easy to decide whether a link is quasialternating or not by the use
of the definition only. A different approach to address this question is to study the
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L L0 L1

Figure 1: The diagram of the link L at the crossing c and its smoothings L0

and L1 respectively

behavior of the invariants of quasialternating links in order to find obstruction criteria
for a link to be quasialternating. This is actually the main motivation of this paper.

We list below the main obstruction criteria for a link to be quasialternating and the
well-known properties that quasialternating links share with alternating links.

(1) The branched double-cover of any quasialternating link is an L–space [20].

(2) The space of branched double-cover of any quasialternating link bounds a nega-
tive definite 4–manifold W with H1.W /D 0 [20].

(3) The Z=2Z knot Floer homology group of any quasialternating link is thin [17].

(4) The reduced ordinary Khovanov homology group of any quasialternating link is
thin [17].

(5) The reduced odd Khovanov homology group of any quasialternating link is
thin [19].

In this paper, a new obstruction for a link to be quasialternating is introduced and it
is used to provide a table of knots with 12 crossings or less, and a table of links of 9
crossings or less that are not quasialternating. Also, it is used to show that there are only
finitely many Kanenobu knots that are quasialternating. This gives an easier proof of one
of the claims of Greene and Watson [10, Theorem 2] and supports [8, Conjecture 3.1]
of Greene that states that there are only finitely many quasialternating links with a
given determinant. Moreover, it is applied to identify an infinite family of Montesinos
links that are not quasialternating. This family was conjectured by the authors and
Qublan in [22] to be not quasialternating.

2 Main theorem and its proof

In 1984, Jones introduced a new Laurent polynomial VL.t/ which is an invariant of
ambient isotopy of oriented links in the three-sphere. The Jones polynomial can be
defined recursively by the following relations:

Algebraic & Geometric Topology, Volume 15 (2015)



A new obstruction of quasialternating links 1849

(1) If U is the unknot, then VU .t/D 1.

(2) If LC , L� and L0 are three links which are identical except in a small ball
where they are as given in Figure 2, then

tVLC.t/� t�1VL�.t/D
�p

t C 1p
t

�
VL0

.t/:

Figure 2: The diagrams of the links LC , L� and L0 , in the small ball respectively

Shortly after the discovery of the Jones polynomial, a new Laurent polynomial QL.x/

is introduced by Brandt, Lickorish and Millett [4] and Ho [11] that is known as the
Q–polynomial. This polynomial is an invariant of ambient isotopy of unoriented links
in the three-sphere that is defined recursively by the following relations:

(1) If U is the unknot, then QU .x/D 1.

(2) If LC , L� , L0 and L1 are four link diagrams that are identical except in a
small ball where they are as given in Figure 3, then

QLC.x/CQL�.x/D x.QL0
.x/CQL1.x//:

Figure 3: The links LC , L� , L0 and L1 , respectively

We point out that the Q–polynomial is a specialization of the well known two-variable
Kauffman polynomial F that was defined later by Kauffman in [14]. More precisely,
for any link L, we have QL.x/DFL.1;x/. The degree of the Q–polynomial denoted
by deg.Q/ is the highest power of this Laurent polynomial. Here are some properties
of the Q–polynomial that are used in this paper and can be derived from the work
in [4].
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Proposition 2.1 The Q–polynomial satisfies the following:
(1) If L is the unlink of k –components, then QL.x/D .2x�1� 1/k�1 .
(2) deg.Q/� 0.
(3) Q.L0/ = Q.L/, where L0 is the mirror image of L.
(4) QL.2/ D .det.L//2 , where det.L/ is the determinant of the link L that is

originally defined from the Seifert matrix and that can be obtained easily from
the Alexander and the Jones polynomials of the link.

The following lemma is the key step towards the proof of the main result of this paper.

Lemma 2.1 Let L be a link. Then

deg QL �maxfdeg QL0
; deg QL1gC 1;

where L0;L1 are the smoothings of the link L at any crossing c .

Proof For any link diagram D , we define n.D/ to be the length of the switching
sequence defined in [14, Section VI] that is the number of crossing switches

$

necessary to transform D into a diagram of the unlink. We prove the lemma by
induction on nD n.D/. Without loss of generality, we can assume that D DDC . If
nD 1, then there is a crossing in D whose change produces a diagram D� of the unlink
with k components L� . Since QL�.x/ D .2x�1 � 1/k�1 , then the skein relation
writes QL.x/Dx.QL0

.x/CQL1.x//�.2x�1�1/k�1 . Using the fact that the degree
of QL is always nonnegative, we can see that deg QL�maxfdeg QL0

; deg QL1gC1.

Now, let L be a link having a diagram D with a sequence of crossing switches of
length n.D/ D n. Without loss of generality we can assume that D D DC and the
crossing that we want to apply the skein relation at is the first element of the switching
sequence. Therefore, D� has a switching sequence of length n� 1 induced by the
switching sequence of DC . Now assume that the result is true for all link diagrams
with a switching sequence of length less than n, in particular for the link diagram D� .
Again the skein relation writes QL.x/ D x.QL0

.x/CQL1.x// �QL�.x/ with
deg QL.x/�maxfdeg.QL0

CQL1/C1; deg QL�g �maxfdeg QL0
; deg QL1gC1,

where the last equality follows from the induction hypothesis on the link L� .

Now we state our main theorem of this paper that gives an obstruction for a link to be
quasialternating.

Theorem 2.2 For any quasialternating link L, we have deg QL < det.L/.
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Proof We use induction on the determinant of the given quasialternating link L.
The result is obvious if det.L/ D 1 since the only link that is quasialternating with
determinant 1 is the unknot. Now assume that the result is true for all quasialternating
links with determinant less than or equal to m. If L is a quasialternating link with
determinant mC1, then both det.L0/ and det.L1/ are less than or equal to m. By the
induction assumption deg QL0

< det.L0/ and deg QL1 < det.L1/. Consequently,

deg QL �maxfdeg QL0
; deg QL1gC 1<maxfdet.L0/; det L1gC 1

< det.L0/C det.L1/D det.L/:

3 Applications and further results

In [13], Kanenobu introduced an infinite family of knots K.p; q/, where p; q are two
integers. All these knots are known to have determinant equal to 25 according to the
main result of [13]. We want to discuss for which values of p and q the Kanenobu
knot K.p; q/ is quasialternating. The answer is obtained by applying the obstruction in
Theorem 2.2, but first we have to find the degree of the Q–polynomial of the Kanenobu
knot K.p; q/. For this purpose, we need the following proposition.

Proposition 3.1 [13, Proposition 4.5] Let Q.a; b/ be the Q–polynomial of the
Kanenobu knot K.a; b/. Then we have

Q.a; b/D��a�b.Q.89/� 1/Cx�1.�aC1�bC1C �a�1�b�1/.Q.88/� 1/C 1;

where Q.88/ D 1C 4x C 6x2 � 10x3 � 14x4 C 4x5 C 8x6 C 2x7 and Q.89/ D

�7C 4xC 16x2� 10x3� 16x4C 4x5C 8x6C 2x7 .

In the proposition above, �n is defined as

�n D

8̂<̂
:
˛n�ˇn

˛�ˇ
if n> 0;

0 if nD 0;

�
˛�n�ˇ�n

˛�ˇ
if n< 0;

where ˛Cˇ D x and ˛ˇ D 1.

Now the degree of the Q–polynomial of the Kanenobu knot K.p; q/ can be derived
from the above and it is given in the following proposition that appeared first in [23]
by Mansour and the second author and whose proof can be found there:

Proposition 3.2 For the Kanenobu knot K.p; q/, we have

deg Q.p; q/D

�
jpjC jqjC 6 if pq � 0;

jpjC jqjC 5 otherwise:
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The answer to the above question is given in the following corollary.

Corollary 3.3 There are only finitely many Kanenobu knots that are quasialternating.

Proof According to the obstruction in Theorem 2.2, a necessary condition for the
Kanenobu knot to be quasialternating, is

deg QK.p;q/ � jpjC jqjC 6< 25:

This implies that jpjC jqj< 19 and we know that there are only finitely many values
of p and q that satisfy this inequality.

The following corollary identifies an infinite family of Montesinos links that are not
quasialternating.

Corollary 3.4 The Montesinos link LDM.eI .̨ 1; ˇ1/; .̨ 2;ˇ2/; : : : ; .˛r;ˇr/; .̨ ;ˇ// for
all ˛ D l C kˇ with k large enough and l D 0; 1; : : : ; ˇ � 1 in standard form is not
quasialternating if e D 1 and

Pr
iD1 ˇi=˛i D 1.

Proof According to the obstruction in Theorem 2.2, a necessary condition for the
above Montesinos link to be quasialternating is

deg QLD c.D/�2D c.L/�2<det.L/D
�
˛

rY
iD1

˛i

��
�1C

rX
iD1

ˇi

˛i
C
ˇ

˛

�
Dˇ

rY
iD1

˛i I

the first two equalities follow from Lickorish and Thistlethwaite [15, Lemma 8, Theo-
rem 10] where c.L/ and c.D/ are the crossing numbers of the Montesinos link and
its corresponding Montesinos reduced link diagram respectively. The third equality
follows from the formula to compute the determinant of Montesinos link that first
appeared in Champanerkar and Ording [7, Proposition 3.1] and it can be derived from
the work in [22]. Note that increasing the value of k will increase the value of c.D/

while the determinant stays fixed. Therefore, we can choose k large enough for fixed ˇ
so that ˇ

Qr
iD1 ˛i � c.L/� 2.

Corollary 3.5 The above corollary gives a partial solution of [22, Conjecture 3.10].

Proof To show the claim, we have to show that ˛i=.˛i � ˇi/ � minfminf j̨= ǰ j

j ¤ ig; ˛=ˇg for any 1 � i � r and ˛=.˛ � ˇ/ � minf j̨= ǰ j 1 � j � rg. If we
choose k large enough such that ˛=ˇ D .l=ˇ/C k > ˛i=ˇi for all 1 � i � r , then
it is enough to show that ˛i=.˛i � ˇi/ � minf j̨= ǰ j j ¤ ig for any 1 � i � r and
˛=.˛�ˇ/�minf j̨= ǰ j1�j � rg. For the first part, suppose ˛i=.˛i�ˇi/> j̨= ǰ for
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some j , then we have ˛i ǰC j̨ˇi > j̨˛i . This implies that ǰ= j̨Cˇi=˛i > 1 which
contradicts the assumption. Similarly for the second part suppose that ˛=.˛ �ˇ/ >
˛m=ˇm D minf j̨= ǰ j 1 � j � rg for some m, then we have .˛ �ˇ/=˛ < ˇm=˛m .
Therefore, we obtain

1�
ˇm

˛m
< 1�

ˇ

˛
<
ˇm

˛m
:

So we conclude that 1
2
< ˇm=˛m . Thus, 2< ˛=ˇ D .j C kˇ/=.j C .k � 1/ˇ/. This

implies that j C .k � 2/ˇ < 0 which is a contradiction since 0 � j ; k � 2; ˇ for
large k .

Remark Corollary 3.4 explains why most but finitely many of the Montesinos links
of the form

L.m; n/DM.0I .m2
C 1;m/; .n; 1/; .m2

C 1;�m//

DM.1I .m2
C 1;m/; .m2

C 1;m2
C 1�m/; .n; 1//

for positive integers m; n and large n for fixed m are not quasialternating. This
phenomena was first explained in [8, Theorem 1.3] for the Montesinos knot L.2; 3/

which is the knot 11n50. Also, Greene in [8, Subsection 3.2] pointed out that the proof
of [8, Theorem 1.3] can be generalized easily to all L.m; n/ with n>m.

In [16], Manolescu showed that all homologically thin in Khovanov homology nonal-
ternating knots of crossing number less than or equal to 9 are quasialternating, except
the knot 946 . Among the 42 nonalternating knots of 10 crossings, 32 are homologically
thin in Khovanov homology. Baldwin [1], Champanerkar and Kofman [6], Greene [9]
and Manolescu [16] showed that all these knots are quasialternating except for the
knot 10140 . Shumakovitch in [25] showed that the knots 946; 10140 have thick odd
Khovanov homology groups, so they are not quasialternating.

The inequality in Theorem 2.2 does not characterize quasialternating links since the
knots 946; 10128 , and 11n50 for instance, satisfy the inequality deg.QL/ < det.L/,
but they are not quasialternating. Actually, the knot 10128 is homologically thick
in Khovanov homology; see Bar-Natan and Morrison [2]. The knot 11n50 which
is the Kanenobu knot K.3; 0/ does not bound a negative definite 4–manifold with
torsion-free cohomology as has been shown by Greene in [8, Theorem 1.3].

The following two propositions show that the inequality in Theorem 2.2 is far from
characterizing quasialternating links even with assuming an extra condition on the link
namely of being homologically thin in Khovanov homology.
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Proposition 3.6 There are two infinite families, one of knots and one of links, which
are not quasialternating but satisfy the inequality in Theorem 2.2.

Proof The first family is the set of the pretzel knots of the form P .r C 2; r C 1;�r/

and the second family is the set of the pretzel links P .r C 1; r C 1;�r/, where r > 3

is an odd integer. It has been shown by the second author in [21] that these knots
and links are thick in Khovanov homology. Therefore, they are not quasialternating.
However, they satisfy the inequality in Theorem 2.2,

deg QP.rC2;rC1;�r/ D 3r C 1� r2
� 2D det.P .r C 2; r C 1;�r//;

deg QP.rC1;rC1;�r/ D 3r C 2� r2
� 1D det.P .r C 1; r C 1;�r//;

where the first equality in each of the two equations above follows from [15, Lemma 8,
Theorem 10].

Proposition 3.7 There is an infinite family of links that are not quasialternating
homologically thin in Khovanov homology and satisfy the inequality in Theorem 2.2.

Proof The family is the set of the pretzel links P .n; n;�n/ for n � 3. It has been
shown that all these links are homologically thin in Khovanov homology in [21].
However, they are not quasialternating by [8, Theorem 1.4]. It is left to show that all
these links satisfy the inequality in Theorem 2.2. We have

deg QP.n;n;�n/ D 3n� 2� n2
D det.P .n; n;�n//;

for n � 3, where the first equality of above equation follows from [15, Lemma 8,
Theorem 10].

The breadth of the Jones polynomial of an oriented link breadth VL.t/ is defined to
be the difference between the highest and the lowest degree of t that appear in VL.t/.
Inspired by the inequality in Theorem 2.2 and computations of the breadth and the
determinants of a large family of links, we conjecture the following.

Conjecture 3.8 If L is a quasialternating link, then breadth VL.t/� det.L/.

Conjecture 3.8 is weaker than the main conjecture of Jaradat, the second author and
Qublan in [24] which states that the crossing number is a lower bound of the determinant
for any quasialternating link, ie c.L/ � det.L/ since we know that for any link the
breadth of the Jones polynomial is always less than or equal to the crossing number.
The importance of the latter does also come from the fact that it solves a conjecture
of Greene in [8] which states that there are only finitely many quasialternating links

Algebraic & Geometric Topology, Volume 15 (2015)



A new obstruction of quasialternating links 1855

with a given determinant. However, Conjecture 3.8 has the advantage that it involves
the breadth of the Jones polynomial which is, in general, easier to compute than the
crossing number. Conjecture 3.8 is true for all quasialternating links that have been
checked to satisfy the conjecture c.L/� det.L/; see [24]. In the Appendix, we prove
both conjectures for quasialternating closed 3–braids.

We now apply the obstruction criterion introduced in Theorem 2.2 to provide a table
of knots of 12 crossings or less and a table of links of 9 crossings or less that are not
quasialternating. The computations of the Q–polynomials and the determinants are
done using the Knot Atlas [2] and Knotinfo [5].

Finally, we close this section with the following two questions:

Question 3.9 Can we determine all Kanenobu knots that are quasialternating?

We conjecture that K.0; 0/ D 41 # 41 , K.1; 0/ D 88 , K.1;�1/ D 89 , K.2;�1/ D

10129 , K.2; 0/ D 10137 , K.1; 1/ D 10155 are the only Kanenobu knots that are
quasialternating.

Question 3.10 Can we characterize all quasialternating knots with crossing number
less than or equal to 11?

Table 1 combined with the table in Jablan [12] gives a partial solution for the above
question.

Remark We would like to mention that a refinement of Theorem 2.2 was obtained by
M Teragaito in [26] in which he gives a sharper inequality.

Appendix: Proof of Conjecture 3.8 for closed 3–braids

In this section we prove Conjecture 3.8 for quasialternating closed 3–braids. Although
a direct proof can be given by computing the breadth of the Jones polynomial of closed
3–braids. We prefer here to prove that for any quasialternating link L of braid index
less than or equal to 3, we have c.L/� det.L/. This will imply that our conjecture is
true for this class of links.

For n� 2, let Bn be the braid group on n strings. It is well known that Bn is generated
by the elementary braids �1; �2; : : : ; �n�1 subject to the relations

�i�j D �j�i if ji � j j � 2;

�i�iC1�i D �iC1�i�iC1 for all 1� i � n� 2:
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Knot Det. Deg. Knot Det. Deg. Knot Det. Deg.
819 3 6 942 7 7 10124 1 8

10132 5 8 10139 3 8 10145 3 8
10153 1 8 10161 5 6 11n9 5 9
11n19 5 9 11n31 3 9 11n34 1 9
11n38 3 9 11n42 1 9 11n49 1 9
11n57 7 9 11n67 9 9 11n96 7 9
11n102 3 9 11n104 3 9 11n111 7 9
11n116 1 7 11n135 5 7 11n139 9 9
12n0019 1 10 12n0023 9 10 12n0031 9 10
12n0051 9 10 12n0056 9 9 12n0057 9 9
12n0096 7 10 12n0118 7 10 12n0121 1 10
12n0124 7 10 12n0129 7 10 12n0149 5 10
12n0175 3 10 12n0200 9 10 12n0210 1 10
12n0214 1 10 12n0217 5 10 12n0221 9 9
12n0242 1 10 12n0243 5 10 12n0268 9 10
12n0273 5 10 12n0292 1 10 12n0293 7 10
12n0309 1 10 12n0313 1 10 12n0318 1 8
12n0332 9 10 12n0336 5 10 12n0352 7 10
12n0370 5 10 12n0386 9 10 12n0402 9 10
12n0403 9 10 12n0404 3 10 12n0419 3 10
12n0430 1 9 12n0439 3 8 12n0446 7 10
12n0473 1 10 12n0475 7 10 12n0488 5 10
12n0502 9 10 12n0519 7 8 12n0552 9 9
12n0574 9 10 12n0575 3 10 12n0579 9 9
12n0582 9 10 12n0591 7 8 12n0605 9 10
12n0617 5 9 12n0644 7 8 12n0655 3 8
12n0673 5 10 12n0676 9 10 12n0689 7 10
12n0725 5 10 12n0749 7 8 12n0812 9 9
12n0815 7 9 12n0851 5 8

Table 1: Knot table

Link Det. Deg. Link Det. Deg. Link Det. Deg.
L8n3 4 6 L8n6 0 6 L8n8 0 5
L9n4 4 7 L9n9 4 7 L9n12 6 7
L9n15 2 7 L9n18 2 7 L9n19 0 5
L9n21 4 6 L9n27 4 7

Table 2: Link table
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The two generators �1 and �2 of the braid group B3 are pictured in Figure 4. Recall
that every link L in S3 can be obtained as the closure of a certain braid b . We write
LD yb . Closed 3–braids have been classified up to conjugation by Murasugi in the
following theorem [18].

Figure 4: The generators �1 and �2 of B3 respectively

Theorem A.1 Let b be a 3–braid and let hD .�1�2/
3 be a full positive twist. Then b

is conjugate to exactly one of the following:

(1) hn�
p1

1
�
�q1

2
� � � �

ps

1
�
�qs

2
, where s;pi and qi are positive integers.

(2) hn�m
2

where m 2 Z.

(3) hn�m
1
��1

2
, where m 2 f�1;�2;�3g.

Baldwin classified quasialternating closed 3–braids in the following theorem [1]:

Theorem A.2 Let L be a closed 3–braid.

(1) If L is the closure of hn�
p1

1
�
�q1

2
� � � �

ps

1
�
�qs

2
, where s;pi and qi are positive

integers, then L is quasialternating if and only if n 2 f�1; 0; 1g.

(2) If L is the closure of hn�m
2

, then L is quasialternating if and only if either nD 1

and m 2 f�1;�2;�3g or nD�1 and m 2 f1; 2; 3g.

(3) If L is the closure of hn�m
1
��1

2
where m 2 f�1;�2;�3g, then L is quasialter-

nating if and only if n 2 f0; 1g.

We now introduce explicit formulas for the determinant of any closed 3–braid.

Proposition A.1 .1/ Suppose that

LD3hn�
p1

1
�
�q1

2
� � � �

ps

1
�
�qs

2
;

where s;pi and qi are positive integers. Let p D
Ps

iD1 pi and q D
Ps

iD1 qi .

(a) If n is odd, then

det.L/D 4CpqC

sX
kD2

i1<���<ik

pi1
� � �pik

.qi1
C � � �C qi2�1/

� � � .qik�1
C � � �C qik�1/.q� .qi1

C � � �C qik�1
//:
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(b) If n is even, then

det.L/D pqC

sX
kD2

i1<���<ik

pi1
� � �pik

.qi1
C � � �C qi2�1/

� � � .qik�1
C � � �C qik�1/.q� .qi1

C � � �C qik�1
//:

.2/ If LD1hn�m
2

where m 2 Z then det.L/D 0 if n is even and det.L/D 4 if n is
odd.

.3/ If L D 3hn�m
1
��1

2
where m 2 f�1;�2;�3g, then det.L/ D 2 if m D �2 and

det.L/D 2C .�1/3nCm if mD�1 or �3.

Proof In [3], Birman showed that the Jones polynomial of a closed 3–braid ˛ is
given by

Vy̨.t/D .�
p

t/e˛ .t C t�1
C tr. t .˛///;

where e˛ is the exponent sum of ˛ as a word in the elementary braids �1 and �2 .
Also,  t W B3! GL.2;ZŒt; t�1�/ is the Burau representation defined by

 t .�1/D

�
�t 1

0 1

�
and  t .�2/D

�
1 0

t �t

�
;

and tr denotes the usual matrix-trace function. Recall that for any link L, we have
det.L/D jVL.�1/j. The values of the determinants in cases (2) and (3) are obtained
easily. Indeed, we have explicit formulas for the Jones polynomials in these cases:

V dhn�m
2

.t/D .�
p

t/mC6n.t C t�1
C t3n

C .�1/mt3nCm/;

V d
hn��1

1
��1

2

.t/D .�
p

t/6n�2.t C t�1
C t3n.�t/�1/;

V d
hn��2

1
��1

2

.t/D .�
p

t/6n�3.t C t�1/;

V d
hn��3

1
��1

2

.t/D .�
p

t/6n�4.t C t�1
C t3n.�t/�2/:

Let ˇD1�p1

1
�
�q1

2
� � � �

ps

1
�
�qs

2
and ˛D hnˇ . Since  t .�1�2/

3D t3:I2 , then Vy̨.t/D

.�
p

t/e˛ Œt C t�1C t3n tr. t .ˇ//�. Consequently, det.y̨/ D jVy̨.�1/j D j � 1� 1C

.�1/n tr. �1..ˇ//j. On the other hand, for any positive integers n and m, we have

 �1.�
n
1 /D

�
1 n

0 1

�
and  �1.�

�m
2 /D

�
1 0

m 1

�
:

Hence

 �1.�
n
1�
�m
2 /D

�
1C nm n

m 1

�
:
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A simple induction implies that tr. �1.ˇ// is always positive. In conclusion, det.y̨/D
det. y̌/ if n is even and det.y̨/D det. y̌/C 4, if n is odd.

To prove the formula in the case (1), we first compute the determinant of the alternating
link

y̌ D
1�p1

1
�
�q1

2
� � � �

ps

1
�
�qs

2

by counting the number of spanning trees of the Tait graph associated with the diagram
of y̌ given in Figure 5. This graph is made up of a cycle u1u2 � � �uqu1 together with
an extra vertex w of degree p which is connected to every vertex uqi

by pi parallel
edges.

w

p1

p2

ps

u1
q1 qs�1

uq
qs

Figure 5: The Tait graph associated with the diagram of y̌

A spanning tree where w has degree 1 consists of an edge among the p edges incident
to w and a spanning tree of the cycle. There are obviously pq such trees. For a
spanning tree where w has degree k � 2, we first make a choice of k mutually
nonparallel edges incident to w , say wuqi1

; : : : ; wuqik
. Then we break all the cycles

of type wuqir
� � �wuqirC1

w and the cycle wuqik
� � �uqiq

w by removing from each
cycle an edge not incident to w . Note that the number of spanning trees will be then
the product pi1

� � �pik
.qi1
C� � �C qi2�1/ � � � .qik�1

C� � �C qik�1/.q� .qi1
� � � qik�1//.

The total number of spanning trees is obtained by taking the sum through all k � s

and i1 < � � � < ik . If n is even, then det.L/ D det. y̌/. However, if n is odd, then
det.L/D j� 1� 1� tr. �1.ˇ/j D tr. �1.ˇ//C 2D det. y̌/C 4.

Now, we prove that for all quasialternating closed 3–braids, we have c.L/� det.L/.
We start by considering the class of links in the first case of Baldwin’s theorem. If
n D 0, then the link is alternating and the result holds. We will prove the result for
nD 1, the case nD�1 is similar. Assuming that

LD 6.�1�2/3�
p1

1
�
�q1

2
� � � �

ps

1
�
�qs

2
;
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we have the following.

If s > 1, or (s D 1;p1 > 1 and q1 > 1), then by the proposition above det.L/ �
4Cpq � 4CpC q . On the other hand we have

.�1�2/
3�

p1

1
�
�q1

2
� � � �

ps

1
�
�qs

2
� .�2�1/

3�
p1

1
�
�q1

2
� � � �

ps

1
�
�qs

2

� �2�1�2�1�2�1�
p1

1
�
�q1

2
� � � �

ps

1
�
�qs

2

� �1�2�1�2�1�
p1

1
�
�q1

2
� � � �

ps

1
�
�qsC1
2

:

Thus, c.L/� 5CpC q� 1D 4CpC q � det.L/.

If s D 1, p D 1 and q > 1, then det.L/D 4C q , and

.�1�2/
3�1�

�q
2
� �1�2�1�2�1�2�1�

�qC1
2

��1
2 � �2�1�2�1�2�1�1�

�qC1
2

��1
2

� �1�2�1�2�1�1�
�qC1
2

� �2�1�2�2�1�1�
�qC1
2

� �1�2�2�1�1�
�qC2
2

:

Thus, c.L/� 3C q � det.L/.

If s D 1, p > 1 and q D 1, then det.L/D 4Cp , and

.�1�2/
3�

p
1
��1

2 � �1�2�1�2�1�2�
p
1
��1

2 � �2�1�2�1�2�1�
p
1
��1

2

� �1�2�1�2�1�
p
1
� �1�1�2�1�

pC1
1
� �

pC4
1

:

Thus, c.L/D pC 4D det.L/.

If s D 1, p D 1 and q D 1, then det.L/D 5 and

.�1�2/
3�1�

�1
2 � �1�2�1�2�1�2�1�

�1
2 � �2�1�2�1�2�1�1�

�1
2

� �1�2�1�2�
2
1 � �1�1�2�1�

2
1 � �

2
1�2�

3
1 � �

5
1 :

Thus, c.L/D 5D det.L/.

The two other cases in Baldwin’s theorem involve only a finite number of knots. A
routine case by case check shows that the result holds for all these knots. This ends the
proof of Conjecture 3.8 in the case of closed 3–braids.
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