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Moments of a length function on the
boundary of a hyperbolic manifold

NICHOLAS G VLAMIS

In this paper we will study the statistics of the unit geodesic flow normal to the
boundary of a hyperbolic manifold with nonempty totally geodesic boundary. Viewing
the time it takes this flow to hit the boundary as a random variable, we derive a formula
for its moments in terms of the orthospectrum. The first moment gives the average
time for the normal flow acting on the boundary to again reach the boundary, which
we connect to Bridgeman’s identity (in the surface case), and the zeroth moment
recovers Basmajian’s identity. Furthermore, we are able to give explicit formulae for
the first moment in the surface case as well as for manifolds of odd dimension. In
dimension two, the summation terms are dilogarithms. In dimension three, we are
able to find the moment generating function for this length function.

51M10; 57M50

1 Introduction

Let M be a compact hyperbolic manifold with nonempty totally geodesic boundary.
An orthogeodesic for M is an oriented geodesic arc with endpoints normal to @M
(see Basmajian [1]). We will denote the collection of orthogeodesics by OM D f˛ig.
If `i denotes the length of ˛i , then the collection jOM j D f`ig (with multiplicities)
is known as the orthospectrum. As we will be summing over the orthospectrum, it is
important to note that OM is a countable collection: this can be seen by doubling the
manifold and observing that the orthogeodesics correspond to a subset of the closed
geodesics in the double.

Given x 2 @M , let ˛x be the geodesic emanating from x normal to @M . Then, as the
limit set is of measure zero for almost every x 2 @M we have that ˛x terminates in
@M ; hence the length of ˛x is finite. This allows us to define a measurable function
LW @M ! R given by L.x/ D length.˛x/. If dV denotes the hyperbolic volume
measure on @M , then V.@M/ is finite allowing us to define the probability measure
dmD dV=V.@M/ on @M , so that .@M; dm/ is a probability space. This lets us view
LW @M !R as a random variable. Given a random variable X on a probability space
with measure p , the kth moment of X is defined to be EŒXk�D

R
Xkdp, where EŒX�
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1910 Nicholas G Vlamis

denotes the expected value. Let Ak.M/ be the kth moment of L, and in particular
A1.M/ be the expected value of L. In this paper we will show that the positive
moments of L are finite and encoded in the orthospectrum:

Theorem 1.1 Let M DM n be an n–dimensional compact hyperbolic manifold with
nonempty totally geodesic boundary. Then Ak.M/ is finite for all k 2 Z�0 .

Theorem 1.2 Let M DM n be an n–dimensional compact hyperbolic manifold with
nonempty totally geodesic boundary. Then for all k 2 Z�0 ,

Ak.M/D
1

V.@M/

X
`2jOM j

Fn;k.`/;

where

Fn;k.x/D�n�2

Z log coth.x=2/

0

�
log
�

coth xC cosh r
coth x� cosh r

��k
sinhn�2.r/ dr

and �n is the volume of the standard n–sphere. Furthermore, the identity for A0.M/

is Basmajian’s identity.

Basmajian’s identity gives the volume of the boundary in terms of the orthospectrum:

Theorem 1.3 (Basmajian’s identity [1]) If M is a compact hyperbolic n–manifold
with totally geodesic boundary, then

V.@M/D
X

`i2jOM j

Vn�1.log coth.`i=2//;

where Vn.r/ is the volume of the hyperbolic n–ball of radius r .

Note that by combining Theorem 1.2 and Basmajian’s identity we see that Ak.M/

depends solely on the orthospectrum.

As corollaries to Theorem 1.2 we can write the function Fn;1.x/ in dimension 2 and
all odd dimensions without integrals. In the following corollary, Li2.x/ is the standard
dilogarithm (see Lewin [8]). We will also write `.@S/ for sum of the lengths of each
boundary component of a surface S .

Corollary 1.4 Let S be a compact hyperbolic surface with nonempty totally geodesic
boundary. Then

A1.S/D
2

`.@S/

X
`2jOS j

h
Li2
�
� tanh2 `

2

�
�Li2

�
tanh2 `

2

�
C
�2

4

i
:
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Corollary 1.5 Let M be an n–dimensional compact hyperbolic manifold with non-
empty totally geodesic boundary, where n is odd. Then

A1.M/D
2�n�2

Vol.@M/

X
`2jOM j

.n�3/=2X
jD0

.�1/.n�3/=2�j
�
.n�3/=2

j

�
2j C 1

coth2jC1.`/

�

�
log.2 cosh `/� `i tanh2jC1.`/C

jX
kD1

1�tanh2k.`/
2k

�
:

The rest of the paper is dedicated to understanding the asymptotics of the Fn;k and
finding the moment generating function in dimension 3. The motivation of this paper
comes from recent work of Bridgeman and Tan [6], where the authors study the
moments of the hitting function associated to the unit tangent bundle of a manifold (ie
the time it takes the geodesic flow of a vector to reach the boundary). In the paper they
are able to show the moments are finite and give an explicit formula for the expected
value in the surface case as well as relate the orthospectrum identities of Basmajian
and Bridgeman (see Bridgeman alone [4] and with Kahn [5], and Section 6 below) as
different moments of the hitting function. In Section 6 we give a relationship between
Bridgeman’s identity and A1.S/ in dimension 2.
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for his guidance as well as Ser Peow Tan for helpful conversations and hosting the
author at the National University of Singapore. In addition, the author would like to
thank the reviewer for valuable comments.
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2 Kleinian groups

For n� 2, let IsomC.Hn/ be the space of orientation-preserving isometries of hyper-
bolic n–space. With the topology of uniform convergence on the space of isometries,
we define a Kleinian group to be a discrete torsion-free subgroup of IsomC.Hn/.
If � < IsomC.Hn/ is a Kleinian group, then Hn=� is a hyperbolic manifold, ie a
Riemannian manifold of constant curvature �1.

In the Poincaré model of hyperbolic space we can identify the boundary of Hn with
the .n� 1/–sphere called the sphere at infinity and denoted Sn�11 . Pick x 2Hn and
define the limit set of � to be the set ƒ� D �x \ Sn�11 . Note that this definition
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is independent of the choice of x . Define the convex hull CH.ƒ�/ of the limit set
ƒ� to be the smallest convex subset of Hn containing all the geodesics in Hn with
endpoints in ƒ� . As ƒ� is �–invariant, so is CH.ƒ�/ and so we can take the quotient
of CH.ƒ�/ by � , which we call the convex core and denote C.�/. A Kleinian group
is convex cocompact if its associated convex core is compact (see [11]).

With these definitions at hand, we recall the following two theorems from Patterson–
Sullivan theory (see [10]):

Theorem 2.1 Let � < IsomC.Hn/ be a convex cocompact Kleinian group and let
ı D ı.�/ be the Hausdorff dimension of the limit set of � . There exists r0 such that
for r � r0 ,

Nx.r/D
ˇ̌
f 2 � j d..x/; x/ < rg

ˇ̌
� aeır

for some constant a depending on � and x .

Theorem 2.2 Let � < IsomC.Hn/ be a convex cocompact Kleinian group and let
ı D ı.�/ be the Hausdorff dimension of the limit set of � . Then ı D n� 1 if and only
if Hn=� is of finite volume.

3 Finite moments

Let M DM n be a compact n–dimensional hyperbolic manifold with totally geodesic
boundary. As above, let L denote the time to the boundary of the unit normal flow on
the boundary. We let dV be the induced hyperbolic volume measure on the boundary
and define dmD dV=V.@M/, so that .@M;m/ is a probability space and L W @M !R
is a random variable on this space. We let Ak.@M/DEŒLk�D

R
@M Lkdm be the kth

moment of L. In this section we will show that Ak.M/ is finite for all nonnegative
integers k . We first state a basic fact from hyperbolic geometry.

Lemma 3.1 Let U be a hyperplane in Hn and BR a hyperbolic n–ball of radius
R a distance s from U . The orthogonal projection of BR to U has radius r <
log coth.s=2/.

Proof Let p 2 @BR be the point closest to U , so that d.p; U /D s and let V be the
hyperplane containing p such that d.U; V /D s . Then the orthogonal projection of
BR is contained in the orthogonal projection of V . The orthogonal projection of V to
U has radius log coth.s=2/ (see [1]), implying that r < log coth.s=2/ as desired.

We can now show that Ak.M/ is finite:

Theorem 1.1 Let M DM n be an n–dimensional compact hyperbolic manifold with
nonempty totally geodesic boundary. Then Ak.M/ is finite for all k 2 Z�0 .
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Proof We want to work in hyperbolic space: Identify the universal cover zM of M
with a convex subset of Hn , so that �1M D � < IsomC.Hn/ is a convex cocompact
Kleinian group. As M has a finite number of disjoint boundary components and we
are investigating the integral over the boundary, it is enough to prove finiteness for
a single component. Fix S � @M a component and a lift zS � zM of S (note that zS
is a copy of Hn�1 sitting in Hn ). Let U be a convex fundamental domain for the
action of � on zM . Pick p 2 U and let BR.p/ be a ball centered at p of radius R
such that U � BR.p/. Set W D U \ zS to be a fundamental domain for the action of
Stab. zS/ < � on zS . Define nt W W ! Hn to be the unit geodesic flow normal to zS
into zM for a time t and set Xt D fx 2W j nt .x/ 2 zM g. Define � W Hn! zS to be
orthogonal projection.

We will now bound V.Xt / for t � r0 , where r0 is taken from Theorem 2.1. If x 2Xt ,
then nt .x/2 U for some  2� . If nt .x/2 nt .Xt /\U , then d.p; .p// < tC2R .
Let �t D f 2 � j nt .Xt /\ U ¤ ∅g, then from the above theorem, we know that
j�t j �Np.t C 2R/� ae

ı.tC2R/ , where ı is the Hausdorff dimension of the limit set
of � . As nt .Xt /�

S
2�t

U and �.nt .Xt //DXt , we have

V.Xt /�
X
2�t

V.�.U //:

Now, fix  2 �t , then  �U �BR. �p/. Suppose that BR. �p/ is a distance s from
W and let r be the radius of its projection, we then have that t < r C sC 2R by the
triangle inequality; in particular, s > t � r �2R . Furthermore, as orthogonal projection
is always distance decreasing in hyperbolic space, r < R , so that s > t � 3R . From
the above lemma, we can conclude that

r � log coth.s=2/� log coth
�
t�3R

2

�
� f .t/:

As the above bound for the radius does not depend on  , we have

V.Xt /� j�t jVn�1.f .t//�Np.t C 2R/Vn�1.f .t//� ae
ı.tC2R/ Vn�1.f .t//;

where Vn.r/ is the volume of a n–dimensional hyperbolic ball of radius r . We observe
two asymptotics: (1) limx!1 ex log coth.x=2/D 2 and (2) limr!0 Vn.r/=rn D Cn
for some constant Cn > 0. From these facts and the above inequality, we see that

lim
t!1

e.n�1�ı/t �V.Xt /� A

for some constant A. From the theorem stated above, we know that n� 1� ı > 0.

Algebraic & Geometric Topology, Volume 15 (2015)



1914 Nicholas G Vlamis

We now move to the moments. We have set up the following situation:Z
S

LkdV D
1X
tD0

Z
L�1.t;tC1/

LkdV �
1X
tD0

.t C 1/k
Z
L�1.t;tC1/

dV �
1X
tD0

.t C 1/kV.Xt /:

But we saw that the asymptotics of V.Xt / are less than a multiple of e�bt with b > 0,
which implies the above sum converges since

P
.t C 1/ke�bt converges.

4 The moments as a sum over the orthospectrum

4.1 Basmajian’s ball decomposition of the boundary

In this section we introduce a decomposition of @M into a disjoint union of n�1 balls
(affectionately known as “leopard spots”). We will recall Danny Calegari’s method of
accomplishing this from [7].

Definition 4.1 Let X and Y be totally geodesic copies of Hn�1 sitting inside of
Hn with disjoint closure in Hn[Sn�11 . A chimney is the closure of the union of the
geodesic arcs from X to Y that are perpendicular to X .

The distance between the hyperplanes X and Y defining the chimney is realized by a
unique geodesic perpendicular to both planes, called the core, the length of which is
the height of the chimney. The chimney cuts out a disk in X , which is called the base.
Let ˛ be the geodesic containing the core and ˇ a geodesic containing a diameter of
the base. Then ˛ and ˇ span a copy of H2 in Hn . Furthermore, the intersection of
this plane with the chimney cuts out half an ideal quadrilateral with orthospectrum
f2`; 2rg, where ` is the length of the core and r the radius of the base. We then have
sinh.r/ sinh.`/D 1, which yields r D log coth.`=2/ (see [2]).

Theorem 4.2 (Chimney decomposition [7]) Let M be a compact hyperbolic n–
manifold with totally geodesic boundary S . Let MS be the covering space of M
associated to S . Then MS has a canonical decomposition into a piece of zero measure,
together with two chimneys of height `i for each `i in the (unordered) orthospectrum.

If we take the bases of the chimneys in the decomposition of the above theorem, then
we get a decomposition of @M into .n� 1/–balls. With this decomposition, we can
give the quick proof of Basmajian’s identity from [7]:
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Proof of Basmajian’s identity Recall that we are working with the ordered orthos-
pectrum. S in MS is decomposed into a set of measure zero together with the union
of the bases of the chimneys. Thus

V.S/D
X
i

Vn�1

�
log coth `i

2

�
;

where Vn.r/ is the volume of a hyperbolic n–ball of radius r .

4.2 Deriving the length function

Let Ui be the interior of the ball associated to `i 2 jOM j. By the above, the union
of the Ui is a full-measure set in S D @M . The measurable function LW S ! R
assigning to each x 2 S the length of the arc emanating perpendicularly from S at
x can be written as L D

P
`i2jOM j

Li , where Li D LjUi W Ui ! R, since the Ui
are pairwise disjoint. As a chimney has rotational symmetry about its core, we see
that L.x/ for x 2 S depends only on the distance between x and the core, ie Li is a
function of the radius; hence deriving a formula for Li is a problem in the hyperbolic
plane. Associated to each Ui are two components of the boundary, Ri and Ti , and
two lifts of these components to hyperplanes in Hn , zRi and zTi . If x 2Ri , then we
are interested in the chimney with its base in zRi and the lift of x sitting in zRi , call it
zx . There is a unique copy of H2 �Hn containing the core of the chimney, zx , and the
geodesic connecting the two. The geodesic contained in this plane going through zx
and intersecting zRi perpendicularly intersects zTi ; furthermore, the length of this arc is
Li .x/. A diagram of this situation in H2 is in Figure 1.

Li .r/
zx

r

`i

Figure 1: A Lambert quadrilateral showing the setup for L.r/

We see that Li .x/ is the length of a side in a Lambert quadrilateral (a hyperbolic
quadrilateral with three right angles). Let r be the distance from x to the core. Then
as we noted that Li is solely a function of the radius, we will write Li .x/D Li .r/.
From hyperbolic trigonometry we find cothLi .r/D sech.r/ coth.`i / (see [2]) or

(1) Li .r/D arccoth.sech.r/ coth.`i //D
1

2
log
�

coth `i C cosh r
coth `i � cosh r

�
;
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where the second equality holds as sech.r/ coth.`i / > 1 on the domain of interest
r 2 Œ0; log coth.`i=2//.

4.3 Proof of Theorem 1.2

For completeness, we restate the result:

Theorem 1.2 Let M DM n be an n–dimensional compact hyperbolic manifold with
nonempty totally geodesic boundary. Then for all k 2 Z�0 ,

Ak.M/D
1

V.@M/

X
`2jOM j

Fn;k.`/;

where

Fn;k.x/D�n�2

Z log coth.x=2/

0

�
log
�

coth xC cosh r
coth x� cosh r

��k
sinhn�2.r/ dr

and �n is the volume of the standard n–sphere. Furthermore, the identity for A0.M/

is Basmajian’s identity.

Proof From the additivity property of measures we have
R
Lkdm D

PR
Ui
Lki dm.

As dmD dV=V.@M/ and dV is the .n� 1/–dimensional hyperbolic volume form we
can write it in spherical coordinates as

dmD
1

V.@M/
sinhn�2.r/ drd�n�2;

where d�n�2 is the volume form on the standard unit sphere. Above we saw that Li
is a function solely of the radius and Ui is a .n� 1/–dimensional hyperbolic ball with
radius log.coth.`i=2//, so thatZ

Ui

Lki dmD
1

V.@M/

Z
Sn�2

Z log.coth.`i=2//

0

Lki .r/ sinhn�2.r/ drd�n�2

D
�n�2

V.@M/

Z log.coth.`i=2//

0

Lki .r/ sinhn�2.r/ dr;

where we write �n�2 for the volume of the standard .n� 2/–dimensional unit sphere.
Define Fn;k.x/ as stated in the theorem, so that the equality holds for Ak.M/ by (1).

Note that Fn;0.x/ gives the volume of a hyperbolic .n�1/–ball of radius log coth.x=2/.
As A0.M/D 1, we see that this identity yields

1D
1

V.@M/

X
`2jOM j

Vn�1

�
log coth `

2

�
;

which is Basmajian’s identity.
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5 Surface case

5.1 Dilogarithms

For jzj< 1 in C , the dilogarithm is defined as

Li2.z/D
1X
nD1

zn

n2
:

Using the Taylor series for log.1� z/ about z D 0, we can write

Li2.z/D
Z 0

z

log.1� z/
z

dz:

One can then take a branch of log.z/ in order to analytically continue Li2.z/ to
the complex plane minus a branch cut. The standard definition of the dilogarithm
assumes the branch cut for log.z/ is along .�1; 0�; however, for our purposes we
will be interested in a different branch cut. Define the function D.z/ to be the resulting
dilogarithm by using the branch cut along .�i1; 0� for log.z/ such that log.�1/D i� .
We note that Li2.z/D D.z/ for z 2 .�1; 1/.

The dilogarithm Li2.z/ obeys the well-known identity (see Lewin [8])

Li2.z/CLi2
�
1

z

�
D�

1

2
log2.�z/� �

2

6
:

This identity is verified by differentiating both sides. As Li02 D D0 and Li2.z/D D.z/

on the negative real axis, the identity holds for D; hence,

(2) D.z/CD
�
1

z

�
D�

1

2
log2.�z/� �

2

6
:

(The branch of logarithm being used should be clear from context.)

5.2 Deriving the formula for F2;1.x/

For a fixed positive value of x , we define the map

Hx W
h
0; log coth

�
x

2

�i
!C;

r 7!D
�
�e�r coth

�
x

2

��
�D

�
e�r coth

�
x

2

��
CD

�
�e�r tanh

�
x

2

��
�D

�
e�r tanh

�
x

2

��
:

Lemma 5.1
d.<Hx/

dr
D log

coth xC cosh r
coth x� cosh r
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Proof We first calculate H 0x and then take real parts. Given the definition of the
dilogarithm and the fact that coth.x=2/C tanh.x=2/D 2 coth x , we have that

H 0x.r/D log
�
1C e�r coth x

2

�
� log

�
1� e�r coth x

2

�
C log

�
1C e�r tanh x

2

�
� log

�
1� e�r tanh x

2

�
D log

h�
1C e�r coth x

2

��
1C e�r tanh x

2

�i
� log

h�
1� e�r coth x

2

��
1� e�r tanh x

2

�i
D log

�
2e�r.cosh r C coth x/

�
� log

�
2e�r.cosh r � coth x/

�
D log.coth xC cosh r/� log.cosh r � coth x/D log

coth xC cosh r
coth x� cosh r

� i�:

Given the domain for Hx , the argument of the logarithm above is always a positive
real number.

We therefore see that F2;1.x/ D 2 � <ŒHx.log coth.x=2//�Hx.0/� as �0 D 2. For
a surface S with boundary, let `.@S/ be the sum of the lengths of the boundary
components. Given the above we can now prove the following:

Corollary 1.4 Let S be a compact hyperbolic surface with nonempty totally geodesic
boundary. Then

A1.S/D
2

`.@S/

X
`2jOS j

h
Li2
�
� tanh2 `

2

�
�Li2

�
tanh2 `

2

�
C
�2

4

i
:

Proof From the above formulation of F2;1.x/, we get

F2;1.x/D 2 � <
h
D.a/CD

�
1

a

�
�D.�a/�D

�
�
1

a

�
CD

�
�
1

a2

�
�D

�
1

a2

�
�
�2

4

i
;

where aD coth.x=2/. From applying (2) twice we see that:

D.a/CD
�
1

a

�
�D.�a/�D

�
�
1

a

�
D
1

2

�
log2.a/� log2.�a/

�
:

Recalling that log.�1/D i� for a > 0, we have log.a/� log.�a/D � log.�1/, so
that simplifying the above gives

D.a/CD
�
1

a

�
�D.�a/�D

�
�
1

a

�
D
�2

2
� i� log a for a > 0:

In particular, for positive values of a , the real part is always �2=2. As `i is always
positive this identity holds in the case of interest. Furthermore, Li2.˙ tanh.`i=2//D
D.˙ tanh.`i=2// as ˙ tanh.`i=2/ 2 .�1; 1/; hence the result follows.
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5.3 Asymptotics for F2;1.x/

We will use the following notation throughout the rest of the paper: For f; gW R!R
we will write f � g if limx!1Œf .x/=g.x/� D 1. This is clearly an equivalence
relation on real-valued functions. Below we find the asymptotic behavior of F2;1.x/
from our above result; we note that we will also come to the same result later in the
paper when we study the asymptotics of Fn;k from the integral definition.

Proposition 5.2 Let F2;1.x/ be defined as above. Then F2;1.x/� 8xe�x .

Proof We start with the observation that

lim
x!1

Li2.�x/�Li2.x/C�2=4
.x� 1/ log.1� x/

D 1;

which is a direct application of L’Hôpital’s rule and the definition of the dilogarithm.
From this, we gather that

F2;1.x/� 2
�

tanh2 x
2
� 1

�
log
�
1� tanh2 x

2

�
D 4 sech2 x

2
log cosh x

2

D 4

�
2

ex=2C e�x=2

�2
log
�
ex=2

�
1C e�x

2

��
� 8xe�x :

6 Connecting with Bridgeman’s identity in dimension 2

6.1 Liouville measure and Bridgeman’s identity

We first need to recall Bridgeman’s identity. Denote the space of oriented geodesics in
H2 by G.H2/, then by identifying a geodesic with its endpoints in S11 we see that

G.H2/Š .S11 �S11/��;

where � denotes the diagonal and we view the geodesic Œx; y� 2G.H2/ as oriented
from x to y . The Liouville measure � is an Isom.H2/ invariant measure on G.H2/.
If we identify S11 with R, then � is characterized by

�
�
.a; b/� .c; d/

�
D 2

ˇ̌̌̌
log
ˇ̌̌̌
.a� c/.b� d/

.a� d/.b� c/

ˇ̌̌̌ˇ̌̌̌
for disjoint intervals .a; b/ and .c; d/ in R. The Liouville measure on G.H2/ is
derived from the Liouville measure on the unit tangent bundle T1.H2/, which is given
by dVd� , where dV is the hyperbolic volume measure and d� is the standard measure
on S1 (see [3; 10] for details). In fact, the natural fibering T1.H2/!G.H2/ is such
that the volume measure on T1.H2/ is d�dl , where dl is the length along a fiber. Note
that the factor of 2 appears above so that d�dl agrees with dVd� .
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There are local coordinates for G.H2/ in which the Liouville measure can be written
as a product measure. Let  2 G.H2/ and p 2  a base point. If � be a geodesic
intersecting  , then � is determined by the signed hyperbolic distance sD˙d.\�; p/
coming from the orientation of  and the angle � between  and � measured from �

to  . In these local coordinates, we have

(3) d�.s;�/ D sin � dsd�:

These coordinates are described in the appendices of [3].

Given a hyperbolic surface S with totally geodesic boundary, identify the universal
cover of S with a convex subset zS �H2 . Define G. zS/�G.H2/ to be the set of all
geodesics intersecting zS . Let � � Isom.H2/ such that S D zS=� . Then we can set
G.S/DG. zS/=� to be the space of geodesics in S . The Liouville measure descends
to a measure on G.S/.

Let S be an orientable compact hyperbolic surface with nonempty totally geodesic
boundary and given v 2 T1.S/ let ˛v 2 G.S/ such that ˛0v.t/ D v for some t 2 R.
For each orthogeodesic ˛i , set Wi D fv 2 T1.S/ j ˛v ' ˛i rel @Sg, where ' denotes
homotopy equivalence in S . We then have Vol.T1.S//D 4�2j�.S/j D

P
Vol.Wi /.

If we define LS W G.S/!R by LS .g/D length.g/, where length is measured in S ,
and set W i D f˛v 2G.S/ j v 2Wig, then it was proved in [4] that

Vol.Wi /D
Z
W i

LS d�D 8L
�

sech2 `i
2

�
;

where L.x/D Li2.x/C 1
2

log jxj log.1�x/ for x � 1 is the Rogers dilogarithm. This
gives Bridgeman’s identity,X

i

L
�

sech2 `i
2

�
D
�2

2
j�.S/j:

6.2 Random variables

Let S be an orientable compact hyperbolic surface with nonempty totally geodesic
boundary. Given an angle � 2 .0; �/, we define a new random variable on .@S; dm/
as follows: Let  be a component of @S and x 2  . Let v 2 Tx.S/ such that the unit
speed geodesic ˛v resulting from the geodesic flow in the direction of v makes an
angle � with  when measured from ˛v to  (where the orientation of  is such that
the surface is on the right). Define ˛�x D ˛v . Then the function L� W @S !R defined
by L� .x/D length.˛�x/ is a random variable on .@S; dm/. We define its moments

A�k.S/DEŒL
k
� �D

Z
@S

Lk� dm:
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As above, we can decompose our boundary into intervals associated to orthogeodesics:
for ˛i 2OS let

U �i D fx 2 @S j ˛
�
x ' ˛i rel @Sg:

Lemma 6.1 For every � 2 .0; �/, the set U �i is an interval of length 2 log coth.`i=2/.

Proof Let 1; 2 be the components of @S such that ˛i travels from 1 to 2 (possibly
1 D 2 ). We may then put this picture in the upper half-plane with z1 D Œ0;1� and
z2 D Œ1; ai �, where ai D coth2.`i=2/. For x 2 U �i there exists a unique lift z̨�x
intersecting z1 in angle � and also intersecting z2 . As in the proof of Basmajian’s
identity, we see that U �i lifts to the � –projection of 2 onto 1 . Define g.�/ such that
the geodesic ˇD Œg.�/; 1� intersects z1 at angle � as in Figure 2. Define b.�/ so that
ˇ intersects z1 at the point ib.�/. Observe that the geodesic Œaig.�/; ai � intersects z1
at angle � at the point iaib.�/ as it is the image of ˇ under the Möbius transformation
z 7! aiz . In particular, the length of U �i is log.ai /.

�

�

g.�/ ai g.�/ 1 ai

ib.�/

ib.�/ai

Figure 2: The figure shows the � –projection of the geodesic Œ1; ai � to Œ0;1�
as in Lemma 6.1

In the above proof we see that the picture of U �i only depends on `i , so as in
Theorem 1.2 we have that there exists functions

F �k .`i /D

Z
U �
i

Lk� dm;

such that
A�k.S/D

X
i

F �k .`i /:

In particular, each A�
k

gives an orthospectrum identity.
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Proposition 6.2 For � 2 .0; �/, the identity for A�0.S/ is Basmajian’s identity.

Proof As m.
S
i

U �i /D 1 and U �i \U
�
j D∅ for i ¤ j , we have

1D
X
i

m.U �i /D
1

`.@S/

X
i

2 log coth `i
2
:

We now have the following connection between A1.S/ and Bridgeman’s identity:

Theorem 6.3 Suppose S is a compact hyperbolic surface with nonempty totally
geodesic boundary. Let FS W Œ0; ��!R be defined by

FS .'/D `.@S/

Z '

0

A�1.S/ sin � d�:

Then the identity for FS .�/ is Bridgeman’s identity and F 0.�=2/D A1.S/.

Proof Let zS be the universal cover of S identified with a convex subset of the upper
half-plane H . Let ˛i be an orthogeodesic traveling from the boundary component 1
to the component 2 . Assume that the geodesic Œ0;1� �H2 is a lift of 1 and the
geodesic Œ1; ai � �H2 is a lift of 2 , where ai D log coth.`i=2/. As in the proof of
Lemma 6.1, we lift the set W i to the set zWi D .�1; 0/� .1; ai /�G. zS/. Then every
geodesic Œx; y� 2 zWi can be given coordinates .s; �/, where

s.Œx; y�/D log
�
Œ0;1�\ Œx; y�

i

�
and �.Œx; y�/ is the angle from Œx; y� to Œ0;1�. Using these local coordinates the
Liouville measure can be written as in (3) and from the notation above it follows that

Vol.Wi /D
Z
W i

LS d�D

Z �

0

Z log.b.�/ai /

log.b.�//
L� .s/ sin � dsd�

and thus

FS .�/D `.@S/

Z �

0

A�1.S/ sin � d� D
X
i

Z �

0

Z log.b.�/ai /

log.b.�//
L� .s/ sin � dsd�

D

X
i

Vol.Wi /D 8
X
i

L
�

sech2 `i
2

�
:

Using the notation from the beginning of the section, we see that almost every element
of G.S/ can be realized as ˛�p for p 2 @S and � 2 .0; �/ implying that @S � .0; �/
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is full-measure in G.S/. In particular,

FS .�/D`.@S/

Z �

0

A�1.S/ sin � d�D
Z �

0

Z
@S

L� sin � dsd�D
Z
G.S/

LS d�D4�
2
j�.S/j:

This shows that the identity for FS .�/ is Bridgeman’s identity. Further, it is clear from
the definition that F 0S .�=2/D A1.S/.

Remark This also shows that A�1.S/ is finite. We can also see that A�
k
.S/ is finite for

all k using the same approach as in the proof for the finiteness of An.M/ given earlier.

7 Odd dimensions

In this section we will write an explicit formula for A1.M n/ with n odd. For n odd,
we can simplify the integral in the definition of Fn;k by substituting uD cosh r to get

Fn;1.x/D�n�2

Z cothx

1

.u2� 1/.n�3/=2 log
coth xCu
coth x�u

du:

An elementary calculation gives these integrals (up to a constant) when m is even:

FCm .u; y/D

Z
um log.yCu/ du

D
1

mC 1

�
.umC1CymC1/ log.yCu/C

mC1X
kD1

.�1/m�k
ym�kC1uk

k

�
;

F�m .u; y/D

Z
um log.y �u/ du

D
1

mC 1

�
.umC1�ymC1/ log.y �u/�

mC1X
kD1

ym�kC1uk

k

�
:

Now set

fm.x/DF
C
m .coth x; coth x/�FCm .1; coth x/CF�m .1; coth x/� lim

u!.cothx/�
F�m .u; coth x/:

After some routine manipulation and simplification, we find that

fm.x/D
2 cothmC1.x/

mC 1

�
log.2 cosh x/� x tanhmC1.x/C

m=2X
kD1

1� tanh2k.x/
2k

�
:

If we expand out the binomial in Fn;1.x/, we find

Fn;1.x/D�n�2

.n�3/=2X
jD0

.�1/.n�3/=2�j

 
.n� 3/=2

j

!
f2j .x/:
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We then immediately have the following corollary.

Corollary 1.5 Let M be an n–dimensional compact hyperbolic manifold with non-
empty totally geodesic boundary where n is odd. Then

A1.M/D
2�n�2

Vol.@M/

X
`i2jOM j

.n�3/=2X
jD0

.�1/.n�3/=2�j
�
.n�3/=2

j

�
2j C 1

coth2jC1.`i /

�

�
log.2 cosh `i /� `i tanh2jC1.`i /C

jX
kD1

1� tanh2k.`i /
2k

�
:

8 The asymptotics of Fn;k

In this section, we explore the asymptotic behavior of the Fn;k .

Theorem 8.1 For all n; k 2 ZC ,

lim
x!1

e�.n�1/xFn;k.x/

xk
D
2nCk�1�n�2

n� 1
:

Furthermore, for n odd we have

lim
x!0

xn�2Fn;1.x/D
2

n�2

h
log 2C 1

2
H.n�1/=2

i
;

where Hn is the nth harmonic number.

Proof Recall that Fn;k.x/D�n�2
R log coth.x=2/
0 Lkx.r/ sinhn�2.r/dr . Using the sub-

stitution uD cosh r , we have

Fn;k.x/D�n�2

Z cothx

1

.u2� 1/.n�3/=2
�

log
�

coth xCu
coth x�u

��k
du:

For the moment, let n� 3, so that .n� 3/=2� 0. Then

2.n�3/=2�n�2

Z cothx

1

.u� 1/.n�3/=2
�

log
�

coth xCu
coth x�u

��k
du

� Fn;k.x/

� .coth xC 1/.n�3/=2�n�2

Z cothx

1

.u� 1/.n�3/=2
�

log
�

coth xCu
coth x�u

��k
du:

As coth xC 1 approaches 2 in the limit as x goes to infinity, we see from the above
inequalities that

Fn;k.x/� 2
.n�3/=2�n�1

Z cothx

1

.u� 1/.n�3/=2
�

log
�

coth xCu
coth x�u

��k
du:
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In the case nD 2, the inequalities above are reversed, but yield the same result; hence
what follows will hold for all n. We now look at the inequalitiesZ cothx

1

.u� 1/.n�3/=2
�
log.coth xC 1/� log.coth x�u/

�kdu

�

Z cothx

1

.u� 1/.n�3/=2
�

log
�

coth xCu
coth x�u

��k
du

�

Z cothx

1

.u� 1/.n�3/=2
�
log.2 coth x/� log.coth x�u/

�kdu:

Note for large x that coth x�u < 1 for all u 2 Œ1; coth x�, so that log.coth x�u/ < 0.
As both log.2 coth x/ and log.coth xC1/ limit to log 2, we see that both the integrals
in the inequalities are asymptotic to

R cothx
1 .u� 1/.n�3/=2Œlog.coth x�u/�kdu. Let us

write a.x/D coth x� 1 and v D .u� 1/=a , so that we now have

Fn;k.x/� 2
.n�3/=2�n�2a

.n�1/=2

Z 1

0

v.n�3/=2Œlog.a� av/�kdv

D 2.n�3/=2�n�2a
.n�1/=2

Z 1

0

v.n�2/=2Œlog aC log.1� v/�kdv:

As
R 1
0 v

.n�3/=2Œlog.1� v/�mdv is finite for all m, we find that

Fn;k.x/� .�1/
k2.n�3/=2�n�2.log a/ka.n�1/=2

Z 1

0

v.n�3/=2dv

D
2.n�1/=2�n�2

n� 1

�
log 1

a

�k
a.n�1/=2:

Since, a.x/D coth x� 1� 2e�2x , we get the stated result.

When n is odd, we have the following when x approaches 0: As x tends to 0, it is
easy to see that tanhmC1.x/fm.x/ is finite. As limx!0Œx coth x� is finite, we see that
limx!0 xmC1fm.x/ <1. Again, as Fn;1.x/ is a sum of the fm , the largest exponent
dominates, which gives the result.

9 The moment generating function in dimension 3

Let M be a hyperbolic 3–manifold with totally geodesic boundary and let S D @M .
We define the moment-generating function ML.t/ D EŒe

tL�, where EŒX� denotes
the expected value of a random variable X with respect to our probability measure
dmD dV=V.@M/. The moment-generating function encodes all the moments of L in
its derivatives: Ak.M/DEŒLk�DM

.k/
L .0/. In particular, by calculating ML.0/ we
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will recover Basmajian’s identity and A1.M/ by calculating M 0L.0/. The goal of this
section is to prove that following theorem:

Theorem 9.1 Let M be a compact hyperbolic 3–manifold with totally geodesic
boundary S and let ı be the Hausdorff dimension of the limit set of M . For t 2
.ı� 2; 2� ı/,

ML.t/D
4�

V.S/

X
`i2jOM j

coth.`i / �B
�
1� tanh `i

2
; 1� t; 1C t

�
;

where B is the incomplete beta function.

9.1 Hypergeometric function and incomplete beta function

The hypergeometric functions 2F1.a; b; c; z/ for z 2C with jzj< 1 are given by the
power series

2F1.a; b; c; z/D

1X
nD0

.a/n.b/n

.c/n

zn

nŠ

provided c … Z�0 , where

.a/n D

�
1 for nD 0;
a.aC 1/ � � � .aCn� 1/ for n > 0:

We will use the identity
.1� z/�a D 2F1.a; 1; 1; z/:

The incomplete beta functions B.x; a; b/ are defined as

B.x; a; b/D

Z x

0

sa�1.1� s/b�1ds:

We can also write an incomplete beta function in terms of a hypergeometric function
as (see [9])

(4) B.x; a; b/D
xa

a
2F1.a; 1� b; aC 1; x/:

We present two calculations as technical lemmas that will allow us to derive the moment
generating function.

Lemma 9.2
@

@x
2F1.1C t; t; 2C t; x/D

1C t

x

�
.1� x/�t � 2F1.1C t; t; 2C t; x/

�
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Proof We calculate:
@

@x
2F1.1C t; t; 2C t; x/

D

1X
nD1

.t/n.1C t /n

.2C t /n

xn�1

.n� 1/Š
D
1C t

x

1X
nD1

.t/n
n

t CnC 1

xn

nŠ

D
1C t

x

1X
nD1

�
.t/n�

.t/n.1C t /

t CnC 1

�
xn

nŠ
D
1C t

x

� 1X
nD0

.t/n
xn

nŠ
�

1X
nD0

.t/n.1C t /n

.t C 2/n

xn

nŠ

�
D
1C t

x

�
2F1.t; 1; 1; x/� 2F1.1C t; t; 2C t; x/

�
D
1C t

x

�
.1� x/�t � 2F1.1C t; t; 2C t; x/

�
:

Lemma 9.3 If

g.u; a; t/D .1C t /�1.aCu/tC1.2a/�t 2F1

�
1C t; t; 2C t;

aCu

2a

�
;

then
@g

@u
D

�
aCu

a�u

�t
:

Proof This is an immediate consequence of the previous lemma.

9.2 Proof of Theorem 9.1

We can now find the moment generating function of L.

Proof of Theorem 9.1 Let S D @M and recall that �1 D 2� . By definition,

ML.t/DEŒe
tL�D

Z
S

etLdmD
X
i

Z
Ui

etLidm

D
2�

V.S/

X
i

Z log.coth.`i=2//

0

�
coth.`i /C cosh r
coth.`i /� cosh r

�t
sinh r dr:

D
2�

V.S/

X
i

Z coth.`i /

1

�
coth.`i /Cu
coth.`i /�u

�t
du;

where uD cosh r . By replacing Lk with etL in the proof of Theorem 1.1, we see thatR
S e

tLdm converges for t < 2� ı . Note that if t 2 .2� ı; ı� 2/ then jt j < 1. From
the above lemma, we then have that

ML.t/D
2�

V.S/

X
`i2jOM j

�
g.coth.`i /; coth.`i /; t/�g.0; coth.`i /; t/

�
:
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After expanding the above terms using the definition of g , some simplifications get us

ML.t/D
2�

V.S/

X
`i2jOM j

coth.`i /
1C t

�
22F1.1C t; t; 2C t; 1/

�
1

2

�
1C tanh.`i /

2

�tC1
2F1

�
1C t; t; 2C t;

1C tanh.`i /
2

��
:

By (4) this becomes

ML.t/D
4�

V.S/

X
`i2jOM j

coth.`i /
�
B.1; 1C t; 1� t /�B

�
1C tanh.`i /

2
; 1C t; 1� t

��
:

It is left to investigate B.1; 1C t; 1� t /�B.a; 1C t; 1� t /. We find

B.1; 1C t; 1� t /�B.a; 1C t; 1� t /D

Z 1

a

st .1� s/�tdsD�
Z 0

1�a

.1�u/tu�tdu

D B.1� a; 1� t; 1C t /;

where uD 1� a . Therefore, we can conclude that

ML.t/D
4�

V.S/

X
`i2jOM j

coth.`i / �B
�
1� tanh.`i /

2
; 1� t; 1C t

�
:

9.3 Recovering Basmajian’s identity in dimension 3

As ML.0/D 1 we have

1D
4�

V.S/

X
`i2jOM j

coth.`i / �B
�
1� tanh.`i /

2
; 1; 1

�
and as B.a; 1; 1/D a , we have

V.S/D
X

`i2jOM j

2�.coth.`i /� 1/D
X

`i2jOM j

2�e�`i

sinh.`i /
D

X
`i2jOM j

V2

�
log
�

coth `i
2

��
;

where V2.r/ is the area of a hyperbolic circle of radius r .
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