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Concordance group and stable
commutator length in braid groups

MICHAEL BRANDENBURSKY

JAREK KĘDRA

We define quasihomomorphisms from braid groups to the concordance group of knots
and examine their properties and consequences of their existence. In particular, we
provide a relation between the stable four ball genus in the concordance group and the
stable commutator length in braid groups, and produce examples of infinite families
of concordance classes of knots with uniformly bounded four ball genus. We also
provide applications to the geometry of the infinite braid group B1 . In particular,
we show that the commutator subgroup ŒB1;B1� admits a stably unbounded conju-
gation invariant norm. This answers an open problem posed by Burago, Ivanov and
Polterovich.

20F36, 57M25; 20F69

1 Introduction and presentation of the results

We define maps ‰nW Bn! Conc.S3/ from the braid groups to the concordance group
of knots in the three-dimensional sphere and observe that they have good algebraic
and geometric properties. The maps are defined by closing a braid appropriately to
obtain a knot and then take its concordance class. They are compatible with inclusions
Bn! BnC1 and hence they induce a well-defined map ‰1W B1! Conc.S3/ on the
infinite braid group.

We examine the geometric properties with respect to the conjugation invariant word
norm on the braid group and the norm defined by the four ball genus on the concordance
group. The first observation is that the maps ‰n are quasihomomorphisms with the
defects depending on n and the second is that the maps are Lipschitz with the same
Lipschitz constant independent on n. The latter implies that the map defined on the
infinite braid group is also Lipschitz.

Before providing more details let us highlight several applications of these results.

� We relate the stable commutator length on braid groups and the stable four
ball genus (Corollary 1.5) which answers a question of Livingston [10] (who
attributes the question to D Calegari).
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� We provide an easy way of constructing infinite families of knots with uniformly
bounded four ball genus (Corollary 1.6 and the subsequent examples).

� We construct infinite families of prime knots with unbounded stable four ball
genus (Corollary 1.9).

� We prove that the commutator subgroup of the infinite braid group admits a
stably unbounded conjugation invariant norm. This result is interesting because
this (perfect) group admits no nontrivial quasimorphisms (see Kotschick [8])
(the main tool for proving stable unboundedness) and its commutator length is
bounded [3]. This answers an open problem from the paper by Burago, Ivanov
and Polterovich [3]. Another solution for the same problem has been recently
provided by Kawasaki [7] who showed that the group of compactly supported
symplectic diffeomorphisms of the Euclidean space is stably unbounded.

In the remaining part of the introduction we state our results and provide more details.

Two main observations

Let A be an abelian group equipped with a pseudonorm and let jaj denote the value of
the pseudonorm on an element a 2 A. Let G be a group. A map  W G!A is called
a quasihomomorphism if there exist a constant K � 0 such that

j .g/� .gh/C .h/j �K 

for all g; h 2G . The infimum of all such K is called the defect of  and is denoted
by D . A real valued quasihomomorphism is traditionally called a quasimorphism.

Let . /W Bn! †n be the natural projection from the braid group to the symmetric
group. Let BK

n denote the subset consisting of braids whose closures are knots. We
define a projection �nW Bn! BK

n by sending a braid ˛ to the braid ˛�.˛/ , where the
braid �.˛/ depends only on the permutation induced by ˛ (see Section 2.5).

Let Conc.S3/ denote the group of smooth concordance classes of knots in the three-
dimensional sphere. It is equipped with a norm defined by the four ball genus (see
Section 2 for details). Let ‰nW Bn! Conc.S3/ be defined as the composition

Bn
�n
�! BK

n

closure
����!Knots

Œ��
�! Conc.S3/; ‰n.˛/ WD Œ1̨�.˛/ �;

where b̨ denotes the closure of the braid ˛ . Our first observation was essentially
proven by the first author in [1]:

Theorem 1.1 The map ‰nW Bn! Conc.S3/ is a quasihomomorphism with respect
to the four ball genus norm and with defect D‰n

� 3nC 1. Its image contains all
concordance classes represented by knots which are closures of braids on n strings.

Algebraic & Geometric Topology, Volume 15 (2015)



Concordance group and stable commutator length in braid groups 2861

Remark The quasihomomorphisms ‰n are compatible with the inclusions Bn !

BnC1 and hence the above construction defines a surjective map ‰1W B1!Conc.S3/

(see Section 2.5). However, using the fact that every homogeneous quasimorphism on
B1 must be a homomorphism, see Kotschick [8], we show that the map ‰1 can’t be
a quasihomomorphism (Proposition 3.6).

Convention It is always assumed that n in the notation Bn for the braid group is a
natural number. Some of our statements extend to the infinite braid group. In such
cases we emphasize that n 2 N[f1g.

Let �1; : : : ; �n�1 2 Bn be the standard Artin generators of the braid group. That is,
the braid �i swaps the i th and the .i C 1/st string. Observe that these braids are
pairwise conjugate thus Bn is normally generated by the symmetric set f�˙1

1
g, where

n 2 N[f1g. Let us consider the associated conjugation invariant word norm on Bn ,
denoted by k˛k, and the induced biinvariant metric defined by d.˛; ˇ/ WD k˛ˇ�1k.

Theorem 1.2 Let n 2 N [ f1g. The map ‰nW Bn ! Conc.S3/ is Lipschitz with
respect to the conjugation invariant word norm on the braid group and the four ball
genus norm on the concordance group. More precisely,

g4.‰n.˛//�
1
2
k˛k

for all braids ˛ 2 Bn .

Remark (1) It follows from Theorem 1.1 that ‰n is Lipschitz with constant bounded
above by the defect D‰n

. We get a smaller constant in the above theorem by a more
direct and elementary geometric argument.

(2) If one defines a metric on the concordance group by

d4.K;L/ WD g4.K�L/

then it follows from the above theorems that

d4.‰n.˛/;‰n.ˇ//�
1
2

d.˛; ˇ/CD‰n
:

That is, the map ‰n is large scale Lipschitz with respect to the metrics and for any
natural number n 2 N.

Let us discuss applications and consequences of the above theorems.

Algebraic & Geometric Topology, Volume 15 (2015)
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Quasimorphisms on braid groups

Composing the quasihomomorphism ‰n with a suitable quasimorphism defined on the
concordance group yields a quasimorphism on the braid group. More precisely, we
have the following observation.

Corollary 1.3 Let 'W Conc.S3/! R be a quasimorphism. If ' is Lipschitz with
respect to the four ball genus norm then the composition ' ı‰nW Bn! R is a quasi-
morphism.

This idea was used by the first author in [1]. The next applications provide new results.

The quasihomomorphism ‰n is Lipschitz with respect to the commutator
length

The commutator length cl.g/ of an element g in ŒG;G� is defined to be the minimal
number of commutators in G whose product is equal to g . The following result is an
application of Theorem 1.1 and a general fact about quasihomomorphisms presented
in Lemma 3.2.

Corollary 1.4 The restriction of the quasihomomorphism ‰n to the commutator
subgroup ŒBn;Bn� is Lipschitz with respect to the commutator length. More precisely,

g4.‰n.˛//� 4D‰n
cl.˛/

for any ˛ 2 ŒBn;Bn�.

The above result does not extend to the infinite case because the commutator length is
bounded by 2 on the infinite braid group according to Burago, Ivanov and Polterovich
(see Theorem 1.11).

A relation between the stable four ball genus and the scl

Livingston asked in [10, Section 8.1] whether there is a connection between the stable
commutator length in groups and the stable four ball genus in Conc.S3/. The next
corollary provides such a connection.

Corollary 1.5 If ˛ 2 ŒBn;Bn� then

sg4.‰n.˛//� 4D‰n
scl.˛/CD‰n

:

In particular, if the stable commutator length of ˛ is trivial then the stable four ball
genus of ‰n.˛/ is bounded above by the defect D‰n

:

scl.˛/D 0 H) sg4.‰n.˛//�D‰n
:

Algebraic & Geometric Topology, Volume 15 (2015)
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Remark The braids ˛2n from Example 4.4 have trivial stable commutator length
and sg4.‰4.˛

2n// > 0. The last inequality follows from the fact that the ‰4.˛
2n/D

ŒT2nC1 # T �
2n�1

�, where Tk is the torus knot obtained by closing the braid �1 2 B2

and T �
k

is its mirror image. The signature of T2nC1 # T �
2n�1

is equal to two and
hence its stable four ball genus is bounded from below by one, due to the Murasugi
inequality (4-1).

Families of knots with uniformly bounded four ball genus

The next result can be used to produce concrete infinite families of knots (and concor-
dance classes) with uniformly bounded four ball genus.

Corollary 1.6 Let ˛ 2 ŒBn;Bn�. If scl.˛/D 0 then the concordance classes ‰n.˛
k/

for k 2 Z have uniformly bounded four ball genus.

Remark Infinite families of knots with bounded four ball genus have been known
since the 1960s [9, Section 3.1]. Since it is easy to provide braids with trivial stable
commutator length, our corollary yields many families of knots for which checking the
boundedness of the four ball genus could be difficult otherwise.

Examples of braids with trivial stable commutator length abound. For instance, a braid
which is conjugate to its inverse has trivial stable commutator length.

Example 1.7 Let ˛ D �1�
�1
2
2 B3 . It is straightforward to see that �˛��1 D ˛�1 ,

where �D �1�2�1 is the Garside element. Consequently, scl.˛/D 0 and it follows
from Corollary 1.6 that the family consisting of the closures of the braids ˛k�.˛k/

has uniformly bounded four ball genus. It is not difficult to show that this family is
infinite. It is easy to show that the closure of the braid ˛k�.˛k/ is an amphicheiral
knot and hence the concordance class of ‰3.˛

k/ is of order at most two in Conc.S3/.
However, it remains an open question whether the family ‰3.˛

k/ of concordance
classes is infinite.

Example 1.8 Let ˛D �1�
�1
3
2 B4 . It is again straightforward to see that this braid is

conjugate to its inverse and hence it has trivial stable commutator length. However, in
this case we obtain that the set of concordance classes ‰.˛2n/ is infinite (Section 4.6)
and has uniformly bounded four ball genus.

Algebraic & Geometric Topology, Volume 15 (2015)
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Families of prime knots with unbounded stable four ball genus

Let G be a group and 'W G ! R be a quasimorphism. We denote by 'W G ! R
the homogenization of ' , ie '.g/ WD limp!1 '.g

p/=p . For more information about
quasimorphisms, see Calegari [4].

Corollary 1.9 Let 'W Conc.S3/! R be a quasimorphism which is Lipschitz with
respect to the four ball genus norm. Let C' denote its Lipschitz constant. If ˛ 2 Bn

and p 2 N, then

sg4.‰n.˛
p//�

j.' ı‰n/.˛/j

C'
�p�D‰n

;

where ' ı‰n denotes the homogenization of the quasimorphism ' ı‰n . If particular,
if the quasimorphism ' ı‰n is unbounded on the cyclic subgroup generated by ˛ then
the stable genus of the knots ‰n.˛

p/ grows linearly with p .

Example 1.10 Let 'W Conc.S3/! R be a quasimorphism given by the signature of
a knot. It is known (see Murasugi [13]) that it is Lipschitz with respect to the four ball
genus and hence we can apply the above corollary. In this example we show that there
exists a braid ˛ 2 B3 , such that for each p 2 N the knot ‰3.˛

p/ is prime and the
composition ' ı‰3 is unbounded on the cyclic subgroup generated by ˛ . The braid ˛
is given by the following presentation ˛ D ��4

1
�2�

2
1
�2 2 B3 . The fact that ‰3.˛

p/ is
a prime knot for each p 2 N follows from Morton [12].

Applications to conjugation invariant geometry of the infinite braid group

Recall that a norm � on a group G is called stably unbounded if there exists g 2 G

such that

s�.g/D lim
p!1

�.gp/

p
¤ 0:

If  W G ! R is a nontrivial homogeneous quasimorphism which is Lipschitz with
respect to � then � is stably unbounded. This is the usual argument proving the stable
unboundedness of a norm.

It follows from a result of Kotschick [8] that the only nontrivial homogeneous quasi-
morphism on the infinite braid group is the abelianization (up to a constant). Moreover,
the commutator length on ŒB1;B1� is bounded by two according to Burago, Ivanov
and Polterovich [3, Theorem 2.2]. More precisely, they proved the following result.
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Theorem 1.11 (Burago, Ivanov and Polterovich) Let H be a subgroup of a group G .
Suppose that for every natural number m2N there exists an element g2G such that the
conjugate subgroups giHg�i and gj Hg�j pairwise commute for 0� i<j �m. Then
the commutator length in G of every element h 2H is bounded by two: clG.h/� 2.

Observe that the hypothesis of the above theorem is satisfied by the braid groups
Bn � B1 for every n 2 N (see the proof of Proposition 3.10 for a detailed argument).
This implies that the commutator length on the infinite braid group is bounded by two.

On the other hand, the diameter of the infinite braid group with respect to the biinvariant
word metric is infinite. To see this consider the projection B1!†1 to the infinite
symmetric group. It is Lipschitz and the cardinality of the support of a permutation
defines a conjugation invariant norm on the symmetric group which is clearly unbounded.
This implies that the conjugation invariant word norm is unbounded on the infinite
braid group. The argument, however, says nothing on the geometry of cyclic subgroups
of the infinite braid group and, in particular, it does not answer the question whether the
word norm is stably unbounded. Our next corollary answers this question affirmatively.

Corollary 1.12 Let ˛ 2 ŒB1;B1�. If there exists a Lipschitz quasimorphism

'W Conc.S3/! R

such that '.‰1.˛//¤ 0 then

lim
p!1

k˛pk

p
> 0:

In particular, the braid ��4
1
�2�

2
1
�2 2 ŒB1;B1� discussed in Example 1.10 satisfies

the above assumption and hence the conjugation invariant word norm on B1 is stably
unbounded.

Burago, Ivanov and Polterovich [3] posed several problems about existence of groups
with certain metric properties. One of them asks if there exists a group G with the
following properties:

(1) G has finite abelianization.

(2) The commutator length of G is stably trivial.

(3) G admits a stably unbounded conjugation invariant norm.

The infinite braid group satisfies the last two conditions of the above problem but its
abelianization is infinite cyclic. We have, however, the following observation.

Algebraic & Geometric Topology, Volume 15 (2015)
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Theorem 1.13 The commutator subgroup ŒB1;B1� of the infinite braid group satis-
fies the conditions of the above problem.

Proof Observe that the commutator subgroup ŒB1;B1� is the union of the commuta-
tor subgroups ŒBn;Bn� of the braid group on finitely many strings. Let us justify that
the group ŒB1;B1� satisfies the properties of the above problem.

(1) It is known, see Gorin and Lin [6], that the commutator subgroup ŒBn;Bn� of the
braid group is perfect for n > 4. This implies that the group ŒB1;B1� is perfect as
well. Equivalently, its abelianization is trivial.

(2) Observe that the subgroups ŒBn;Bn� � ŒB1;B1� satisfy the assumption of
Theorem 1.11 (Proposition 3.10). This implies that the commutator length is bounded
by two and, in particular, it is stably trivial.

(3) The restriction of the conjugation invariant word norm from the whole infinite
braid group to its commutator subgroup is stably unbounded due to Corollary 1.12.
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2 Preliminaries

2.1 A norm on a group

Let G be a group. A function �W G ! R is called a pseudonorm if it satisfies the
following conditions for all g; h 2G :

(1) �.g/� 0.

(2) �.g/D �.g�1/.

(3) �.gh/� �.g/C �.h/.

If in addition �.g/D 0 if and only if gD 1G , then � is called a norm. If �.ghg�1/D

�.h/, then � is called conjugation invariant.

Algebraic & Geometric Topology, Volume 15 (2015)
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Remark If G is an abelian group then a norm is often required to be homogeneous.
That is, �.ng/D jnj�.g/ for all g 2 G and all integers n 2 Z. We do not make this
requirement here.

The stabilization of � is defined by

s�.g/ WD lim
k!1

�.gk/

k
:

The stabilization of a norm does not have to be a pseudonorm. Both the nontriviality and
the triangle inequality can be violated. If G is abelian, however, then the stabilization
of a norm is a pseudonorm. A norm � is called stably unbounded if there exists g 2G

such that s�.g/ ¤ 0. Such an element g is called undistorted with respect to the
norm � .

2.2 The conjugation invariant word norm

Let G be a normally finitely generated group. This means that there exists a finite
symmetric set S � G such that the set Sconj of all conjugates of the elements of S

generates the group G . We also say that S normally generates G . The associated
word norm is defined by

kgk WDminfk 2 N j g D s1 � � � sk ; where si 2 Sconjg:

This norm is, by definition, conjugation invariant and hence the induced metric, de-
fined by dS .g; h/ WD kgh�1k is biinvariant. The standard argument shows that any
homomorphism G!H is Lipschitz with respect to dS and any biinvariant metric on
H . Let us recall this basic argument.

Let S be a finite symmetric set such that the conjugates of its elements generate
the group G . Let H be a group equipped with a conjugation invariant norm � and
let ‰W G ! H be a homomorphism. Let g 2 G be such that kgk D k and let
C‰ WDmaxf�.‰.s// j s 2 Sg. For any h; f 2G let f h WD hf h�1 . Observe that

�.‰.g//D �.‰.s
p1

1
: : : s

pk

k
//�

kX
iD1

�.‰.s
pi

i //�

kX
iD1

�.‰.si//� kC‰ D C‰kgk:

In particular, applying this to ‰ being the identity homomorphisms, we obtain that the
Lipschitz class of the norm k k does not depend on the choice of a finite set normally
generating G .

Algebraic & Geometric Topology, Volume 15 (2015)
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2.3 The commutator length

Let g 2 ŒG;G�. Its commutator length is defined by

cl.g/ WDminfk 2 N j g D Œa1; b1� � � � Œak ; bk �; where ai ; bi 2Gg:

This quantity has been extensively studied and we refer the reader to D Calegari’s
book [4] for more information. The stable commutator length of an element g is
denoted by scl.g/. Let us explain that for a braid group Bn the vanishing of the stable
commutator length is equivalent to the vanishing of the stabilization of the conjugation
invariant word norm.

It is known that braid groups satisfy the bq–dichotomy; see [2, Theorem 5.E]. This
means that for every element ˛ 2 Bn the cyclic subgroup h˛i is either biinvariantly
bounded or there exists a homogeneous quasimorphism qW G!R such that q.˛/¤ 0.
If ˛ 2 ŒBn;Bn� then the bq–dichotomy implies that the stable commutator length is
trivial if and only if ˛ generates a bounded cyclic subgroup. Consequently the stable
commutator length of ˛ is trivial if and only if the stable biinvariant word norm of ˛
is trivial.

Remark The commutator subgroup of the infinite braid group contains undistorted
elements, according to Corollary 1.12. Since B1 does not admit nontrivial quasimor-
phisms different from homomorphisms it does not satisfy the bq–dichotomy.

2.4 The four ball genus norm on the concordance group

Let Conc.S3/ denote the abelian group of smooth concordance classes of knots in
S3 . Two oriented knots K0;K1 2 S3 D @B4 are concordant if there exists a smooth
embedding cW S1 � Œ0; 1�! B4 such that c.S1 � f0g/DK0 and c.S1 � f1g/D�K1 .
The knot is called slice if it is concordant to the unknot. The addition in Conc.S3/ is
defined by the connected sum of knots. The inverse of an element ŒK� 2 Conc.S3/

is represented by the knot �K� , where �K� denotes the mirror image of the knot
K with the reversed orientation. This group is equipped with a norm defined by the
four ball genus. More precisely, g4ŒK� is the minimal genus of an embedded oriented
surface in B4 bounded by the knot K . We will call it the four ball genus norm. Its
stabilization is denoted by sg4ŒK�. For more information about the group Conc.S3/,
see [9].

2.5 The knot closure of a braid and the definition of ‰n

Let Bn be the braid group on n–strings and let �1; : : : ; �n�1 denote the standard Artin
generators. We are interested in closures of braids in S3 . In general, the closure of a
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braid has many components. Here we describe the procedure which produces a knot
from a braid. The closure of a braid ˛ will be denoted either by closure.˛/ or by b̨.

Let us introduce some notation. Let . /W Bn!†n be the projection onto the symmetric
group on n letters. The elements .�i/ are then the transpositions .i; i C 1/. Let
�nW Bn! BnC1 denote the inclusion onto the first n strands.

Let BK
n denote the set of braids on n strands consisting of braids whose closures are

knots. It is a conjugation invariant set and it is the preimage of the set of the longest
cycles with respect to the projection to the symmetric group. We define a projection
�nW Bn! BK

n as follows.

Given a braid ˛ 2 Bn we construct a braid �.˛/ depending only on the permutation
.˛/ 2†n induced by ˛ such that the composed braid ˛�.˛/ induces a longest cycle.
More precisely, let

.˛/D .a1;1 � � � a1;n1
/.a2;1 � � � a2;n2

/ � � � .ak;1 � � � ak;nk
/

be presented as a product of cycles such that a1;1 < a2;1 < � � �< ak;1 and ai;1 < ai;j

for all j D 1; : : : ; ni . We also require that
Pk

iD1ni D n, that is, we list cycles of length
one. Then we define

�.˛/ WD �a2;1�1�a3;1�1 � � � �ak;1�1:

The permutation induced by ˛�.˛/ is then the longest cycle obtained inductively by
inserting the second cycle to the first one, the third cycle into the resulting cycle and
so on.

A geometric description of the procedure goes as follows. Consider the closure of ˛
and color the component containing the first strand red. Move to the left and if the
i th strand is not red then multiply ˛ by �i�1 , extend the coloring and continue the
procedure. The following properties are clear directly from the construction:

� The closure of ˛�.˛/ is a knot.
� The braid �.˛/ is a product of C˛ � 1 transpositions, where C˛ is the number

of components of the closure of ˛ .
� The closure of �.˛/ is a trivial link.

� If ˛2BK
n then �.˛/ is the identity; in other words ˛ 7!˛�.˛/ defines a projection

�nW Bn! BK
n .

Next we define a map ‰nW Bn! Conc.S3/ to be the composition of the projection �n

followed by the closure of a braid and taking the concordance class:

‰n.˛/D Œclosure.�n.˛//�D Œ1̨�.˛/ �:

Algebraic & Geometric Topology, Volume 15 (2015)
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Now the proof of the following observation is straightforward.

Proposition 2.6 Let �nW Bn ! BnC1 be the inclusion onto the first n strings. The
following diagram is commutative:

Bn
�n //

�n

��

BK
n

closure

''
�n.�/�n

��
BnC1

�nC1 // BK
nC1

closure // Knots
Œ � // Conc.S3/

Consequently, ‰nC1 ı �nD‰n and the map ‰1W B1!Conc.S3/ is well defined and
surjective.

Remark The restriction of the map ‰1 to the commutator subgroup ŒB1;B1� is
surjective. To see this let KD‰n.˛/ where ˛ 2BK

n . Suppose that Ab.˛/D k , where
AbW Bn ! Z is the abelianization homomorphism. Observe that the closure of the
braid �.˛/��1

n � � � �
�1
nCk�1 is equal to K and that this braid belongs to the commutator

subgroup ŒBnCk ;BnCk �.

3 Proofs

3.1 General facts about quasihomomorphisms

The following lemma will be used in the proof of Corollary 1.4. For ˛; ˇ 2 G the
following notation is used: ˛ˇ D ˇ˛ˇ�1 .

Lemma 3.2 Let A be an abelian group equipped with a pseudonorm � and let  W G!
A be a quasihomomorphism.

(1) The following inequalities hold for every ˛; ˇ 2G :
� �. .ˇ/C .ˇ�1//� �. .1G//CD .
� �. .˛ˇ/� .˛//� 2D .
� �. .Œ˛; ˇ�//� 3D .

(2) If  is bounded on a set S normally generating G , then it is Lipschitz with
respect to the biinvariant word metric on G . In particular,  is Lipschitz if G is
normally finitely generated.

(3) The restriction of  to the commutator subgroup ŒG;G� is Lipschitz with respect
to the commutator length. The Lipschitz constant is bounded by 4D .
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Proof (1) All inequalities follow directly from the quasihomomorphism property:

� �. .ˇ/C .ˇ�1//D �. .1G/C .ˇ/� .1G/C .ˇ
�1//� �. .1G//CD :

� �. .˛ˇ/� .˛//

D �. .ˇ˛ˇ�1/C .ˇ�1/� .˛ˇ�1/C .˛ˇ�1/� .ˇ�1/� .˛//

� �. .ˇ˛ˇ�1/C .ˇ�1/� .˛ˇ�1//C �. .˛ˇ�1/� .ˇ�1/� .˛//

� 2D :

� Since �. .˛ˇ˛�1ˇ�1/C .ˇ˛ˇ�1/� .˛//�D , we get the following inequal-
ities where the last one follows from the previous item.

�. Œ˛; ˇ�/� �. .ˇ˛ˇ�1/� .˛//�D ;

�. Œ˛; ˇ�/�D C �. .ˇ˛ˇ
�1/� .˛//;

�. Œ˛; ˇ�/� 3D :

(2) Let ˛ D s
ˇ1

1
: : : s

ˇk

k
, where si 2 S . According to the hypothesis  is bounded on

S . It follows from the previous part that  is bounded, say by C � 0, on the set Sconj

of all conjugates of the elements of S . We have

�. .˛//D �. .s
ˇ1

1
: : : s

ˇk

k
//� �

� kX
iD1

 .s
ˇi

i /

�
C .k � 1/D 

�

kX
iD1

�. .s
ˇi

i //C .k � 1/D � .C CD /k;

and the statement follows.

(3) The last inequality of item .1/ shows that  is bounded on commutators. This
implies that if  2 ŒG;G� is a product of k commutators then

�. . //D �

�
 

� kY
iD1

Œ˛i ; ˇi �

��
�

kX
iD1

�. Œ˛i ; ˇi �/C .k � 1/D 

� k3D C .k � 1/D D .4k � 1/D � 4D k:

Thus the Lipschitz constant of the restriction of  to the commutator subgroup with
respect to the commutator length is bounded by 4D .

3.3 Proof of the first results and basic consequences

Recall that given two knots K and K0 we denoted by �K the knot K with the reversed
orientation, by K� the knot which is the mirror image of the knot K , and by K#K0 the

Algebraic & Geometric Topology, Volume 15 (2015)



2872 Michael Brandenbursky and Jarek Kędra

connected sum of K and K0 . In [1, Lemma 2.7], the first author proved the following
lemma (we reproduce the proof for completeness).

Lemma 3.4 Let ˛; ˇ 2 Bn . There exists a smooth bordism †! B4 between the
knots

1̨�.˛/ # 1̌�.ˇ/ #�. 2˛ˇ�.˛ˇ/ /� and 2˛ˇ�.˛ˇ/ #�. 2˛ˇ�.˛ˇ/ /�

such that �.†/� �6n.

Proof The proof relies on the observation that if a link L is obtained from a link L0

by the operation presented in Figure 3.1 then there is an oriented bordism between L

and L0 of Euler characteristic equal to �1.

saddle move

Figure 3.1: Saddle move which results in a cobordism of Euler characteristic
�1 between links L and L0

Applying this argument inductively we get that the there is a bordism between č̨
and y̨ t y̌, where ˛; ˇ 2 Bn and that the Euler characteristic of this bordism is equal
to �n. In our situation we obtain the following sequence of bordisms (the number
over an arrow is an upper bound on the number of one-handles attached to the previous
bordism):

2˛ˇ�.˛ˇ/ 2n
�! b̨t b̌t1�.˛ˇ/ 2n�1

���! b̨t b̌tb�.˛/ tb�.ˇ/
2n
�! 1̨�.˛/ t1̌�.ˇ/ 1

�! 1̨�.˛/ # 1̌�.ˇ/:
The number of handles in the second bordism follows from an observation that the
closure b�. / is a trivial link with at most n components for any  2 Bn . It follows
that there is a bordism

2˛ˇ�.˛ˇ/ #�. 2˛ˇ�.˛ˇ/ /� 6n
�! 1̨�.˛/ # 1̌�.ˇ/ #�. 2˛ˇ�.˛ˇ/ /�;

which is the cylinder with at most 6n handles attached, which implies the statement.

Since the second knot in the above lemma is slice, we obtain that the four ball genus
of the first knot is bounded by 3nC 1.
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Proof of Theorem 1.1 Let ˛; ˇ 2 Bn . Then

g4.‰n.˛/C‰n.ˇ/�‰n.˛ˇ//D g4

�1̨�.˛/ # 1̌�.ˇ/ #�. 2˛ˇ�.˛ˇ/ /�
�
� 3nC 1:

This proves that ‰nW Bn! Conc.S3/ is a quasihomomorphism with defect bounded
by 3nC 1.

Let us specify the general inequalities from Lemma 3.2 to our situation.

Corollary 3.5 The quasihomomorphism ‰nW Bn! Conc.S3/ satisfies the following
inequalities for every ˛; ˇ 2 Bn :

� g4.‰n.˛/C‰n.˛
�1/�D‰n

� 3nC 1.

� g4.‰n.˛
ˇ �‰n.˛//� 2D‰n

� 6nC 2.

� g4.‰n.Œ˛; ˇ�//� 3D‰n
� 9nC 3.

Proof Since the closure of �1 � � � �n�1 is the unknot we get that ‰n.1Bn
/ is equal to

the trivial concordance class and hence g4.‰n.1Bn
// D 0. Consequently, the above

inequalities follow directly from Lemma 3.2 and Theorem 1.1.

Proposition 3.6 The sequence of the defects of the quasihomomorphisms ‰nW Bn!

Conc.S3/ is unbounded:
lim sup
n!1

D‰n
D1:

Proof If the defects were uniformly bounded then the map ‰1 would be a quasi-
homomorphism. This would imply, according to Kotschick [8], that the composition
B3 ! B1 ! Conc.S3/ ! R, where the last map is given by the signature link
invariant, is a bounded distance from a homomorphism. However, it is known that this
composition is a quasimorphism, whose homogenization which does not vanish on
the commutator subgroup ŒB3;B3�. This follows, for example, from the fact that the
nontrivial homogeneous signature quasimorphism sign3 on B3 defined in [5] is not
a homomorphism. Indeed, if it is a nontrivial homomorphism, then its value on the
braid �3;3 must be equal to twice its value on the braid �2;3 , where the braids �2;3

and �3;3 are shown in Figure 4.1. However, in [5] Gambaudo and Ghys showed that
sign3.�2;3/D sign3.�3;3/D 2.

Remark The above proposition does not exclude the possibility that ‰1W B1 !
Conc.S3/ is Lipschitz. It can’t be Lipschitz, however, with respect to the commutator
length because the latter is bounded by two on the infinite braid group [3, Theorem 2.2].
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Proof of Theorem 1.2

The main ingredient of the proof is the following observation.

Lemma 3.7 Let ˛; ˇ 2 Bn be braids. Suppose that

˛ D �˙1
i1
� � � �˙1

im
2 Bn and ˇ D �˙1

i1
� � � �˙1

ik�1
�˙1

ikC1
� � � �˙1

im
:

That is, ˇ is obtained from ˛ by removing one crossing. Then there is a smooth
bordism †! B4 from the closure y̨ to the closure y̌ whose Euler characteristic is
equal to �1.

Proof It is enough to argue locally at a neighborhood of a crossing. The proof for
removal of �i is presented in Figure 3.2. The proof for removal of ��1

i is analogous.

Figure 3.2: Local moves

The first step is to change the braid after the crossing by the first Reidemeister move
(appropriately chosen) so the neighboring strings go in opposite directions. Next we
perform a saddle move. Then we apply the second Reidemeister move which results in
the braid ˇ . We obtain that there is a bordism from the closure of ˛ to the closure of
ˇ whose Euler characteristic is equal to �1.

Proof of Theorem 1.2 Let us first recall that all generators �i 2 Bn are conjugate to
each other and hence Bn is normally generated by �1 and its inverse. Let ˛ 2 Bn .
Suppose that k˛k D k which means that

˛ D ˇ1�
˙1
1 ˇ�1

1 � � �ˇk�
˙1
1 ˇ�1

k

for some ˇi 2 Bn . The knot ‰n.˛/ is the closure of the braid

ˇ1�
˙1
1 ˇ�1

1 � � �ˇk�
˙1
1 ˇ�1

k �.˛/:
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By applying Lemma 3.7 k times we remove the crossings corresponding to �˙1
1

in
the above presentation and we obtain that the above closure is bordant to the closure of
�.˛/ via a bordism whose Euler characteristic is equal to �k .

The closure of �.˛/ is a trivial link and we cap off all its components. This increases
the Euler characteristic by the number of components which is at least one and yields a
surface of genus at most k=2 in B4 bounded by ‰n.˛/. We get that

g4.‰n.˛//�
k

2
D

1

2
k˛k

as claimed.

3.8 Proofs of the corollaries

Proof of Corollary 1.3 Let ˛; ˇ 2Bn and let 'W Conc.S3/!R be a quasimorphism
which is Lipschitz with respect to the four ball genus norm. Let C' and D' denote its
Lipschitz constant and the defect respectively. Recall that the defect of ‰n satisfies
D‰n

� 3nC 1, due to Theorem 1.1.

Recall that for any ˛; ˇ 2 Bn the quasimorphism property of ‰n says that

g4.‰n.˛/�‰n.˛ˇ/C‰n.ˇ//�D‰n

and then it is a consequence of the Lipschitz property of ' that

j'.‰n.˛/�‰n.˛ˇ/C‰n.ˇ//j � C'D‰n
:

The defect of the composition ' ı‰n is estimated as

j'.‰n.˛//�'.‰n.˛ˇ//C'.‰n.ˇ//j

� j'.‰n.˛//C'.�‰n.˛ˇ//C'.‰n.ˇ//jC j'.‰n.˛ˇ//C'.�‰n.˛ˇ//j

� j'.‰n.˛/�‰n.˛ˇ/C‰n.ˇ//jC 3D' Cj'.1Conc.S3//j

� C'D‰n
C 3D' Cj'.1Conc.S3//j

� .3nC 1/C' C 3D' Cj'.1Conc.S3//j;

where the second inequality follows from the quasimorphism property of ' and
Lemma 3.2.

Proof of Corollary 1.4 First we prove that the quasihomomorphism ‰n is Lipschitz
with respect to the biinvariant word metric. Let ˛ 2Bn be an element of the biinvariant
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word norm k˛k equal to k . This means that ˛D .�˙1
1
/p1 : : : .�˙

1
/pk for some pi 2Bn .

Then

g4.‰n.˛//D g4.‰n.�
˙1
1 /p1 � � � .�˙1 /

pk /�

kX
iD1

g4.‰n..�
˙1
1 /pi //C .k � 1/D‰n

�D‰n
.k � 1/�D‰n

k˛k � .3nC 1/k˛k:

The first inequality follows from the quasihomomorphism property and the second
inequality is a consequence of the fact that the closure of �˙1

1
is the unknot.

Let us now consider the restriction of ‰n to the commutator subgroup ŒBn;Bn� equipped
with the commutator length. Since

g4.‰nŒ˛; ˇ�/� 3D‰n
� 9nC 3;

due to Corollary 3.5, we get that if ˛ 2 ŒBn;Bn�, then

g4.‰n.˛//� 4D‰n
cl.˛/� .12nC 4/ cl.˛/:

Proof of Corollary 1.5 Let ˛ 2 ŒBn;Bn�. It follows from the quasihomomorphism
property that

g4.‰n.˛
k/� k‰n.˛//� .k � 1/D‰n

:

By dividing by k and taking the limit we obtain that

(3-1)
ˇ̌̌̌
lim sup
k!1

g4.‰n.˛
k//

k
� sg4.‰n.˛//

ˇ̌̌̌
�D‰n

;

Since ‰n is Lipschitz with respect to the commutator length (the Lipschitz constant is
computed in the proof of Corollary 1.4), we have that

lim sup
k!1

g4.‰n.˛
k//

k
� lim

k!1

4D‰n
cl.˛k/

k
D 4D‰n

scl.˛/:

It then follows from Equation (3-1) that

sg4.‰n.˛//� 4D‰n
scl.˛/CD‰n

as claimed.

Proof of Corollary 1.6 Since the map ‰n is Lipschitz by Corollary 1.4 we obtain
that

g4.‰n.˛
k//� .3nC 1/k˛k

k:
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The stable commutator length of ˛ is trivial which implies, according to the bq–
dichotomy (see Section 2.3), that the cyclic subgroup generated by ˛ is bounded. As a
consequence we get the uniform bound on the four ball genus of ‰n.˛

k/.

Proof of Corollary 1.9 Recall that 'W Conc.S3/! R is a Lipschitz quasimorphism
with the Lipschitz constant C' . Let ˛ 2 Bn and p 2 N. Then

sg4.‰n.˛
p//D lim sup

k

g4.k ‰n.˛
p//

k
� lim sup

k

g4.‰n.˛
kp//� .k � 1/D‰n

k

�
1

C'
lim sup

k

j.' ı‰n/.˛
kp/j

k
�D‰n

�
1

C'
j.' ı‰n/.˛

p/j �D‰n

D
j.' ı‰n/.˛/j

C'
�p�D‰n

:

The first inequality follows from the quasihomomorphism property, the second is the
Lipschitz property of ' and the third is the definition of the homogenization of a
quasimorphism.

Proof of Corollary 1.12 Let ˛ 2 Bn and assume that ˛ 2 ŒB1;B1�. Since the
abelianizations homomorphisms Bn! Z commute with inclusions Bn! BnC1 , we
have that ˛ 2 ŒBn;Bn�. Let 'W Conc.S3/! R be a Lipschitz quasimorphism such
that '.‰n.˛//¤ 0. We have the inequalities

j.' ı‰n.˛/j

C'
�p�D‰n

� sg4.‰n.˛
p//� g4.‰n.˛

p//D g4.‰1.˛
p//� 1

2
k˛p
k:

The first inequality follows from Corollary 1.9, the second one is obvious, the equality
follows from Proposition 2.6 and the last one follows from Theorem 1.2. By dividing
by p and passing to the limit with p!1 we obtain that limp!1 k˛

pk=p > 0 as
claimed.

3.9 Strong displaceability of braids

Let m2N be a natural number. A subgroup H �G is called strongly m–displaceable if
there exists g 2G such that the conjugate subgroups giHg�i and gj Hg�j commute
for 0� i < j �m.

Proposition 3.10 For every natural numbers m; n 2N, the braid group Bn is strongly
m–displaceable in B1 and the commutator subgroup ŒBn;Bn� is strongly m–displace-
able in ŒB1;B1�.
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Proof For every n 2 N we define an argyle braid An;i to be

An;i WD

nY
kD1

nY
jD1

�in�kCj :

This is a braid that swaps the i th n strings with the .iC1/st n strings, it is a product of
n2 standard generators and it looks like an argyle pattern. For example, A1;i D �i . If n

is even then by making the pattern alternating we define a commutator argyle braid by

A0n;i WD

nY
kD1

nY
jD1

�
.�1/j

in�kCj
:

An example of A0
4;1

drawn in Figure 3.3.

Figure 3.3: The commutator argyle braid A04;1

Let Bn � B1 , where n is a positive and even natural number. For any m 2 N we
define

� WDA0n;1A0n;2 � � �A
0
n;m�1 2 ŒBmn;Bmn�:

The braid � is presented in Figure 3.4 in which each line represents n strings and each
crossing is the appropriate argyle braid A0n;i .

Figure 3.4: The braid � for mD 6
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It shows that the group Bn is strongly m–displaceable in Bmn by the braid � and that
the commutator subgroup ŒBn;Bn� is strongly m–displaceable in ŒBmn;Bmn� which
finishes the proof.

4 Examples

4.1 Bounded cyclic subgroup of braid groups

The following lemma was proved in [2] but, since its proof is short, we present it for
completeness.

Lemma 4.2 Let G be a normally finitely generated group and let ˛;� 2 G . If
˛ commutes with the conjugate ˛� then the cyclic subgroup generated by Œ˛;��

is bounded with respect to the biinvariant word metric on G . In particular, if ˛ is
conjugate to its inverse then ˛ generates a bounded cyclic subgroup.

Proof An induction argument yields the equality

Œ˛;��n D Œ˛n; ��:

This implies that kŒ˛;��nk D kŒ˛n; ��k � 2k�k which finishes the general part. If ˛
is conjugate to its inverse via � then ˛2 D Œ˛;�� and the second statement follows.
Moreover, the braid k˛nk is bounded by 2k�kCk˛k in this case.

Example 4.3 Let �1�
�1
2
2 B3 and let �D �1�2�1 be the Garside element (the half

twist). Observe that

.�1�
�1
2 /� D �2�

�1
1 ;

that is �1�
�1
2

is conjugate to its inverse. It then follows from Lemma 4.2 that the braid
�1�
�1
2

generates a cyclic subgroup in B3 bounded by 8D 2k�kCk�1�
�1
2
k.

Example 4.4 Let �1�
�1
3
2B4 . It is conjugate to its inverse via the braid which swaps

the first two and the last two strings. More precisely, the conjugating braid is given
in this case by � D �2�1�3�2 . Again, by the above lemma we obtain that �1�

�1
3

generates a cyclic subgroup of B4 bounded by 10D 2k�kCk�1�
�1
3
k.
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4.5 The notorious family ‰3..�1�
�1
2
/n/

We saw in the previous section that the cyclic subgroup generated by �1�
�1
2

is bounded
in B3 . According to Corollary 1.4, Corollary 1.6 and Example 4.3 we get the following
bound on the four ball genus

g4.‰3..�1�
�1
2 /n//� 1

2
k.�1�

�1
2 /nk � 4:

So we obtain a very simple example of a infinite family of knots with uniformly bounded
four ball genus. However, this family has been notorious in the sense that it remains
an open problem whether the induced family of concordance classes ‰3..�1�

�1
2
/n/

for n not divisible by three is infinite.1 It is known that these concordance classes are
of order at most two, since these knots are amphicheiral, so the question is whether
these knots are slice. By the work of Long [11], if n is odd and not divisible by 3

then the closure of the braid .�1�
�1
2
/n is strongly plus-amphicheiral and hence it is

algebraically slice.

4.6 The family ‰4..�1�
�1
3
/n/

The same argument as above shows that the four ball genus of the knots ‰4..�1�
�1
3
/n/

is bounded by 1
2
k.�1�

�1
3
/n/k D 5. In this case, however, we know that the set of

induced concordance classes is infinite. More precisely, we have the following result.

Proposition 4.7 Let  D �2
1
��2

3
2 B4 . Then the set f‰4.

n/g1
nD1

is infinite in
Conc.S3/, and the four ball genus of ‰4.

n/ is uniformly bounded. Moreover, there ex-
ists an increasing sequence of natural numbers fnig

1
iD1

such that the set f‰4.
ni /g1

iD1

generates Z1 in Conc.S3/.

Proof By definition ‰4.
n/ equals to the concordance class of the closure of the braid

�2n
1
��2n

3
�1�2�3 . For n 2N denote by T2n�1 the knot obtained by taking a closure of

the braid �2n�1
1

2 B2 . It follows that the closure of the braid �2n
1
��2n

3
�1�2�3 equals

to the knot T2nC1 # .T2n�1/
� .

The knot T2nC1 is a .2; 2nC 1/ torus knot. Hence

�T2nC1
.t/D

.t4nC2� 1/.t � 1/

.t2� 1/.t2nC1� 1/
D

2nX
iD0

.�1/i t2n�i ;

1Paolo Lisca told the authors of this history.
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where �K .t/ is the Alexander polynomial of a knot K . It follows that

det.T2nC1/D .2nC 1/; det..T2n�1/
�/D 2n� 1;

det.T2nC1 # .T2n�1/
�/D .2nC 1/.2n� 1/;

where the determinant of K is defined to be det.K/ WD j�K .�1/j. Let fnig
1
iD1

be an
increasing sequence of natural numbers such that pi WD 2ni C 1 is a prime number. It
follows that for each i 2 N we have

det.Tpi
# .Tpi�2/

�/D pi.pi � 2/:

Hence det.Tpi
# .Tpi�2/

�/ is not a square, and for each i > j 2 N

det.Tpi
# .Tpi�2/

� #�.Tpj
/� #�.Tpj�2//D pi.pi � 2/pj .pj � 2/

is not a square. Since the determinant of a slice knot must be a square number, the
concordance classes of knots .Tpi

# .Tpi�2// are pairwise distinct. Hence the set
f‰4.

ni /g1
iD1

is infinite in Conc.S3/.

Let fpig
1
iD1

be a set of odd primes such that for each i

pi > 2p1 � � �pi�1:

Let ni WD p1 � � �pi . In what follows we are going to show that the set f‰4.
ni /g1

iD1

generates Z1 in Conc.S3/.

Recall that for each complex number ! ¤ 1, such that j!j D 1, there exists the !–
signature (Levine–Tristram !–signature) homomorphism sign! W Conc.S3/! Z. For
each odd prime p denote by !p WD exp..p�1/� i=p/. It follows from [14, Lemma 3.5]
that for each prime p and each natural number n we have

sign!p
.‰4.

n//D sign!p
.T2nC1 # .T2n�1/

�/D 2� 2
�h

n

p
C

1

2p

i
�

h
n

p
�

1

2p

i�
;

where Œ � � denotes the integer part. Since pi > 2p1 � � �pi�1 and ni WD p1 � � �pi we
obtain

sign!piC1
.‰4.

ni //D sign!piC1
.T2niC1 # .T2ni�1/

�/D 2;

sign!piC1
.‰4.

nj //D sign!piC1
.T2njC1 # .T2nj�1/

�/D 0 if i C 1< j ;

and the proof follows.

Remark Note that the standard 3–dimensional genus of knots ‰4.
n/ goes to infinity

when n!1, since the genus of T2nC1 D n and thus the genus of ‰4.
n/ equals to

2n� 1.
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4.8 Prime knots with unbounded stable genus

This section provides details for Example 1.10. We construct a braid ˛ 2 Bn for n� 3

such that the four ball genus of the knots ‰n.˛
p/ grows linearly with p .

Let sign.L/ 2 Z denote the signature invariant of a link L. The restriction of the
signature to knots descends to a homomorphism

signW Conc.S3/! Z

on the concordance group. It is a well-known fact due to Murasugi [13] that the
inequality

(4-1) jsign.K/j � 2 g4.K/

holds for every knot K . In other words the signature is Lipschitz with constant
Csign D 2. It follows from Corollary 1.3 that the composition sign ı‰nW Bn! R is a
quasimorphism on the braid group.

In order to apply Corollary 1.9 we need to show that the there exists a braid ˛ 2 Bn

such that the quasimorphism sign ı‰n is unbounded on the cyclic subgroup generated
by ˛ .

Let �i;n WD �i�1 � � � �2�
2
1
�2 � � � �i�1 2 Bn , be the braid presented in Figure 4.1.

i � 1 i

Figure 4.1: The braid �i;n

Let ˛ D ��2
2;n
�3;n 2 Bn . Observe that ˛ D ��4

1
�2�

2
1
�2 and hence we get that

˛ 2 ŒBn;Bn�. Notice moreover that ˛ is a pure braid and hence for each integer
p we have �.˛p/ D ı , where ı WD �1 � � � �n�1 .

Let signnW Bn ! Z be a function defined by signn.ˇ/ D sign. b̌/. Gambaudo and
Ghys showed in [5] that signn is a quasimorphism on Bn with a defect Dsignn

� n�1.
We denote by signn the induced homogeneous quasimorphism. They also proved that

signn.�i;n/D

�
i if i is even;
i � 1 if i is odd:
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Since the braids �i;n pairwise commute we have

signn.˛/D signn.�
�2
2;n/C signn.�3;n/D�2:

Since the closure bı is the unknot we get that

jsignn.˛
p
n ı/� signn.˛

p
n /j � n� 1;

for every integer p 2 Z. It follows from a general fact about the homogenization of
quasimorphisms that

jsignn.˛
p
n /� signn.˛

p
n /j �Dsignn

� n� 1:

By combining the two inequalities we obtain that

jsignn.˛
p
n ı/� signn.˛

p
n /j D jsignn.˛

p
n ı/C 2pj � 2n� 2

for every integer p 2Z. Recall that signn.˛
pı/D .sign ı‰n/.˛

p/. The above inequal-
ity then says that the restriction of the quasimorphism sign ı‰n to the cyclic subgroup
generated by ˛ is within bounded distance from the homogeneous quasimorphism signn

restricted to the cyclic subgroup h˛i � Bn . This implies that sign ı‰n is unbounded
on the cyclic subgroup generated by ˛ and, moreover, its homogenization restricted to
h˛i is equal to signn . It is then a consequence of Corollary 1.9 that

sg4.‰n.˛
p//�

j.sign ı‰n/.˛/j

Csign
�p�D‰n

� p� 3nC 1:
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