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Universality of multiplicative infinite loop space machines
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THOMAS NIKOLAUS

We establish a canonical and unique tensor product for commutative monoids and
groups in an 1–category C which generalizes the ordinary tensor product of abelian
groups. Using this tensor product we show that En –(semi)ring objects in C give rise
to En –ring spectrum objects in C . In the case that C is the 1–category of spaces
this produces a multiplicative infinite loop space machine which can be applied to the
algebraic K–theory of rings and ring spectra.

The main tool we use to establish these results is the theory of smashing localizations
of presentable 1–categories. In particular, we identify preadditive and additive
1–categories as the local objects for certain smashing localizations. A central
theme is the stability of algebraic structures under basechange; for example, we show
Ring.D˝C/'Ring.D/˝C . Lastly, we also consider these algebraic structures from
the perspective of Lawvere algebraic theories in 1–categories.

55P48; 55P43, 19D23

0 Introduction

The Grothendieck group K0.M / of a commutative monoid M , also known as the
group completion, is the universal abelian group which receives a monoid map from M .
It was a major insight of Quillen that higher algebraic K–groups can be defined as
the homotopy groups of a certain spectrum which admits a similar description: more
precisely, from the perspective of higher category theory, the algebraic K–theory
spectrum of a ring R can be understood as the group completion of the groupoid of
projective R–modules, viewed as a symmetric monoidal category with respect to the
coproduct.

When R is commutative, the algebraic K–groups inherit a multiplication which stems
from the tensor product of R–modules. Just as the K–groups arise as homotopy groups
of the K–theory spectrum, it is essential for computational and theoretical purposes
to understand the multiplication on these groups as coming from a highly structured
multiplication on the K–theory spectrum itself. Unfortunately it turned out to be hard
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to construct such a multiplication directly, partly because for a long time the proper
framework to deal with multiplicative structures on spectra was missing. Important
work on this question was pioneered by May [22], and the general theory of homotopy
coherent algebraic structures goes back at least to Boardman and Vogt [8], May [21],
and Segal [28].

It was first shown by May that the group completion functor from E1–spaces to spectra
preserves multiplicative structure [22]; see also the more recent accounts [23; 24;
25]. Since then, several authors have given alternative constructions of multiplicative
structure on K–theory spectra: most notably, Elmendorf and Mandell promote the
infinite loop space machine of Segal to a multifunctor in [12] and in [13] they extend
the K–theory functor from symmetric monoidal categories to symmetric multicategories
(aka coloured operads), and Baas, Dundas, Richter and Rognes show how to correct
the failure of the “phony multiplication” on the Grayson–Quillen S�1S –construction
in [2], as identified by Thomason [29].

All of these approaches are very carefully crafted and involve for example the intricacies
of specific pairs of operads or indexing categories. Here we take a different approach
to multiplicative infinite loop space theory, replacing the topological and combinatorial
constructions of specific machines by the use of universal properties. The main
advantage of our approach is that we get strong uniqueness results, which follow for
free from the universal properties. The price we pay is that we use the extensive
machinery of 1–categories and argue in the abstract, without the aid of concrete
models. Similar results for the case of Waldhausen K–theory, also using the language
of 1–categories, have been obtained by Barwick in a recent paper [3].

In this paper we choose to use the language of (presentable) 1–categories. But we
emphasize the fact that every combinatorial model category gives rise to a presentable
1–category, and that all presentable 1–categories arise in this way. Moreover the
study of presentable 1–categories is basically the same as the study of combinatorial
model categories, so that in principle all our results could also be formulated in the
setting of model categories.

Let us begin by mentioning one of our main results. Associated to an 1–category C
are the 1–categories C� of pointed objects in C , MonE1.C/ of commutative monoids
in C , GrpE1.C/ of commutative groups in C , and Sp.C/ of spectrum objects in C . For
these 1–categories we establish the following:

Theorem 5-1 Let C˝ be a closed symmetric monoidal structure on a presentable 1–
category C . The1–categories C� , MonE1.C/, GrpE1.C/, and Sp.C/ all admit closed
symmetric monoidal structures, which are uniquely determined by the requirement that
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the respective free functors from C are symmetric monoidal. Moreover, each of the
following free functors also extends uniquely to a symmetric monoidal functor

C�!MonE1.C/! GrpE1.C/! Sp.C/:

Note that these symmetric monoidal structures allow us to talk about En –(semi)ring
objects and En –ring spectrum objects in C . Before we sketch the general ideas involved
in the proof, it is worth indicating what this theorem amounts to for specific choices
of C .

(i) If C is the ordinary category of sets, then the symmetric monoidal structures
of Theorem 5-1 recover for instance the tensor product of abelian monoids and
abelian groups. This also reestablishes the easy result that the group completion
functor K0 is symmetric monoidal.

(ii) In the case of the 2–category Cat of ordinary categories, functors, and natural
isomorphisms we obtain a symmetric monoidal structure on the 2–category of
symmetric monoidal categories SymMonCat. The symmetric monoidal structure
on SymMonCat'MonE1.Cat/ has been the subject of confusion in the past
due to the fact that SymMonCat only has the desired symmetric monoidal
structure when considered as a 2–category and not as a 1–category. In this case,
En –(semi)ring objects are En –(semi)ring categories (sometimes also called
rig categories), important examples of which are given by the bipermutative
categories of May [23]. We also obtain higher categorical analogues of this
picture using Catn and Cat1 .1

(iii) Finally, and most importantly for this paper, we consider Theorem 5-1 in the
special case of the 1–category S of spaces (which can be obtained from the
model category of spaces or simplicial sets). That way we get canonical monoidal
structures on E1–spaces and grouplike E1–spaces. The resulting En –algebras
are En –(semi)ring spaces; more precisely, they are an 1–categorical analogue
of the En –(semi)ring spaces of May; see, for example, May [25]. Moreover,
we obtain unique multiplicative structures on the group completion functor
MonE1.S/! GrpE1.S/ and the delooping functor GrpE1.S/! Sp which
assigns a spectrum to a grouplike E1–space. In particular, the spectrum asso-
ciated to an En –(semi)ring space is an En –ring spectrum, which amounts to
multiplicative infinite loop space theory.

These facts can be assembled together in Section 8 to obtain a new description of the
multiplicative structure on the algebraic K–theory functor KW SymMonCat!Sp and its

1Interestingly, we have equivalences GrpE1.Catn/'GrpE1.Gpdn/ and Sp.Catn/' Sp.Gpdn/ , and
the latter is trivial unless nD1 ; more generally, Sp.C/ is trivial for any n–category C if n is finite.
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1–categorical variant KW SymMonCat1! Sp. In particular, the algebraic K–theory
of an En –semiring (1–)category is canonically an En –ring spectrum. By a recognition
principle for En –semiring (1–)categories, this applies to many examples of interest.
More precisely, we show in Theorem 8-8 that these semiring 1–categories can be
obtained from En –monoidal 1–categories with coproducts such that the monoidal
structure preserves coproducts in each variable separately. For instance ordinary closed
monoidal, braided monoidal, or symmetric monoidal categories admit the structure of
En –semiring categories for nD 1; 2;1, respectively in which the addition is given
by the coproduct and the multiplication is given by the tensor product. More specific
examples are given by (1–)categories of modules over ordinary commutative rings or
En –ring spectra.2

One central idea to prove Theorem 5-1 as stated above, which is also of independent
interest, is to identify the assignments

(0-1) C 7! C�; C 7!MonE1.C/; C 7! GrpE1.C/; C 7! Sp.C/

as universal constructions. The first and the last case have already been thoroughly
discussed by Lurie [20], where it is shown that, in the world of presentable 1–
categories, C� is the free pointed 1–category on C and Sp.C/ is the free stable
1–category on C . We extend this picture by introducing preadditive and additive 1–
categories; see also Toën and Vezzosi [30] and Joyal [15]. These notions are obtained
by imposing additional exactness conditions on pointed 1–categories, just as is done
in the case of ordinary categories. In fact, a presentable 1–category C is (pre)additive
if and only if its homotopy category Ho.C/ is (pre)additive in the sense of ordinary
category theory. We show that, again in the framework of presentable 1–categories,
MonE1.C/ is the free preadditive 1–category on C and that GrpE1.C/ is the free
additive 1–category on C (Corollary 4-9).

As an application of this description as free categories one can deduce the existence
and uniqueness of the functors

C! C�!MonE1.C/! GrpE1.C/! Sp.C�/

from the fact that every stable 1–category is additive, every additive 1–category
is preadditive and every preadditive 1–category is pointed. More abstractly, the
assignments (0-1) give rise to endofunctors of the 1–category PrL of presentable
1–categories and left adjoint functors. The aforementioned universal properties are
equivalent to the observation that these endofunctors are localizations (in the sense

2But note that the 1–category of modules for an En –ring spectrum is only an En�1 –semiring
1–category.
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of Bousfield) of PrL with local objects the pointed, preadditive, additive, and stable
presentable 1–categories, respectively.

A second main theme of the paper is the stability of algebraic structures under base-
change. For example we show that we have equivalences

MonE1.C˝D/'MonE1.C/˝D; RingEn
.C˝D/' RingEn

.C/˝D;

where ˝ denotes the tensor product on PrL as constructed by Lurie [20] (Corollary 4-7
and Proposition 7-7). Such basechange properties are satisfied by many endofunctors of
PrL which arise when considering algebraic structures of certain kinds, eg C 7!AlgT .C/
for a Lawvere algebraic theory T . We give a brief account of algebraic theories in
Appendix B.

A key insight here is to consider endofunctors of PrL which satisfy both properties:
namely, they are simultaneously localizations and satisfy basechange. In keeping with
the terminology of stable homotopy theory we refer to such functors as smashing
localizations of PrL . The endofunctors .�/�;MonE1;GrpE1 and Sp from (0-1) are
the main examples treated in this paper. Then the proof of Theorem 5-1 follows as
a special case of the general theory of smashing localizations LW PrL ! PrL . For
example we prove that if C 2 PrL is closed symmetric monoidal, then the 1–category
LC admits a unique closed symmetric monoidal structure such that the localization
map C!LC is a symmetric monoidal functor (Proposition 3-9).

Organization of the paper In Section 1, we recall the definition of the 1–category
of monoid and group objects in an 1–category. They form the generic examples
of (pre)additive 1–categories which we introduce in Section 2. In Section 3, we
study smashing localizations of PrL , which turns out to be the central notion needed
to deduce many of the subsequent results in this paper. We then show, in Section 4,
that the formation of commutative monoids and groups in presentable 1–categories
are examples of smashing localizations of PrL , and we identify these localizations
with the free (pre)additive 1–category functor. This leads to the existence of the
canonical symmetric monoidal structures described in Section 5, and the next Section 6
is devoted to studying the functoriality of these structures. Then in Section 7 we consider
1–categories of (semi)ring objects in a closed symmetric monoidal presentable 1–
category; these are used in Section 8 to show that the algebraic K–theory of an En –
semiring 1–category is an En –ring spectrum. Finally, in Appendix A we show a
relation of functors with comonoids, and in Appendix B we consider monoid, group,
and ring objects from the perspective of Lawvere algebraic theories.
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Conventions We freely use the language of 1–categories throughout this paper. In
particular, we adopt the notational conventions of Lurie [19; 20] and provide more
specific references where necessary.
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work out these results in the setting of 1–categories and for carefully reading a
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1 1–categories of commutative monoids and groups

Given an1–category C with finite products, we may form the1–category MonE1.C/
of E1–monoids in C . By definition, an E1–monoid M2C is a functor M W N.Fin�/!
C such that the morphisms M.hni/!M.h1i/ induced by the inert maps �i W hni! h1i

exhibit M.hni/ as an n–fold power of M.h1i/ in C ; see [20, 2.1.1.8, 2.4.2.1, 2.4.2.2]
for details. In the terminology of [28], M is called a special � –object of C . In
what follows we will sometimes abuse notation and also use the same name for the
underlying object of such an E1–monoid. Given an E1–monoid M , we obtain a
(coherently associative and commutative) multiplication map

mW M �M !M;

uniquely determined up to a contractible space of choices.

We use the term MonE1.C/ to denote the 1–category of E1–monoids in C with
respect to the cartesian product. If C is an 1–category equipped with a symmetric
monoidal structure which is not necessarily the cartesian product, we write AlgE1.C/
for the 1–category of E1–algebras in C ; if the symmetric monoidal structure on C
happens to be the cartesian product, then we have an equivalence Mod.C/' Alg.C/.

Proposition 1-1 Let C be an 1–category with finite products and let M be an
E1–monoid in C . Then the following conditions are equivalent:

(i) The E1–monoid M admits an inversion map, ie, there is a map i W M !M

such that the composition

M
�
�!M �M

id�i
�!M �M

m
�!M

is homotopic to the constant functor at the unit.
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(ii) The commutative monoid object of Ho.C/ underlying the E1–monoid M is a
group object.

(iii) The shear map sW M �M !M �M , defined as the projection pr1W M �M !

M on the first factor and the multiplication mW M �M !M on the second
factor, is an equivalence.

(iv) The special � –object M W N.Fin�/! C is very special (again in the terminology
of [28]).

Proof This follows immediately from the fact that C!N.Ho.C// is conservative and
preserves products.

Definition 1-2 Let C be an 1–category with finite products. An object M 2

MonE1.C/ is called an E1–group in C if it satisfies the equivalent conditions of
Proposition 1-1. We write GrpE1.C/ for the full subcategory of MonE1.C/ consisting
of the E1–groups.

Remark 1-3 There are similar equivalent characterizations as in the proposition for
En –monoids, n � 1. In fact, they can be applied more generally to algebras for
monochromatic 1–operads O equipped with a morphism E1!O . In this case, these
characterizations serve as a definition of O–groups. Since an ordinary monoid having
right-inverses is a group, we can use the fact that every morphism in Ho.C/ lifts to a
morphism in C to conclude that also the characterizations (i) and (iii) are equivalent to
their respective two-sided variants, but in characterization (iv) one must instead use
(very) special simplicial objects in C .

Remark 1-4 Recall [20, Remark 5.2.6.9] that an En –monoid object M of an 1–
topos C is said to be grouplike if (the sheaf) �0M is a group object. In more general
situations, such as for instance C D Cat1 , the correct �0 is unclear, and in any case
the resulting notion of “grouplike monoid” may not agree with that of “group”.

Remark 1-5 In our definition of a group object we force the inversion morphism to
be an actual morphism of the underlying objects in C . In many situations, however,
there is a natural inversion which is naturally only an anti-morphism. For example,
this is the case in a tensor category with tensor inverses, or in the category of Poisson
Lie groups. This suggests that there should be a notion of group object with such an
anti-inversion morphism. It would be interesting to study such a notion, though we
will not need this.
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Given two 1–categories C and D with finite products, we write Fun….C;D/ for
the 1–category of finite product preserving functors from C to D . If C and D are
complete, we write FunR.C;D/ for the1–category of limit preserving functors. In this
situation, the 1–category FunR.C;D/ is also complete and limits in FunR.C;D/ are
formed pointwise in D . This follows from the corresponding statement for Fun.C;D/
and from the fact that such a pointwise limit of functors is again limit preserving.

Lemma 1-6 If C and D are 1–categories with finite products, then Fun….C;D/ also
has finite products and we have canonical equivalences

MonE1.Fun….C;D//' Fun….C;MonE1.D//;

GrpE1.Fun….C;D//' Fun….C;GrpE1.D//:

If C and D are complete, then so is FunR.C;D/, and we have canonical equivalences

MonE1.FunR.C;D//' FunR.C;MonE1.D//;

GrpE1.FunR.C;D//' FunR.C;GrpE1.D//:

Proof We only give the proof of the second case, as the first one is entirely analo-
gous. As recalled above, an E1–monoid in an 1–category E is given by a functor
M W N.Fin�/! E satisfying the usual Segal condition, ie, the inert maps hni ! h1i
exhibit M.hni/ as the n–fold power of M.h1i/. We denote the full subcategory
spanned by such functors by

Fun�.N.Fin�/; E/� Fun.N.Fin�/; E/:

Using this notation, we obtain a fully faithful inclusion

MonE1.FunR.C;D//' Fun�.N.Fin�/;FunR.C;D//

� Fun.N.Fin�/;Fun.C;D//' Fun.N.Fin�/� C;D/

whose essential image consists of those functors F such that F.�;C /W N.Fin�/! D
is special for all C 2 C and such that F.hni;�/W C! D preserves limits for all hni 2
N.Fin�/. This follows from the fact that limits in FunR.C;D/ are formed pointwise,
as remarked above. In a similar vein, we obtain a fully faithful inclusion

FunR.C;MonE1.D//' FunR.C;Fun�.N.Fin�/;D//

� Fun.C;Fun.N.Fin�/;D//

' Fun.C �N.Fin�/;D/' Fun.N.Fin�/� C;D/

with the same essential image, concluding the proof for the case of monoids. The proof
for the case of groups works exactly the same. In fact, using characterization (4) of
Proposition 1-1, it suffices to replace special � –objects by very special � –objects.
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2 Preadditive and additive 1–categories

An 1–category is preadditive if finite coproducts and products exist and are equivalent.
More precisely, we have the following definition.

Definition 2-1 An 1–category C is preadditive if it is pointed, admits finite co-
products and finite products, and the canonical morphism C1 tC2! C1 �C2 is an
equivalence for all objects C1;C2 2 C . In this case any such object will be denoted by
C1˚C2 and will be referred to as a biproduct of C1 and C2 .

Let us collect a few immediate examples and closure properties of preadditive 1–
categories.

Example 2-2 An ordinary category C is preadditive if and only if N.C/ is a preadditive
1–category. Products and opposites of preadditive 1–categories are preadditive.
Clearly any 1–category equivalent to a preadditive one is again preadditive. Finally,
if C is a preadditive 1–category and K is any simplicial set, then Fun.K; C/ is
preadditive. This follows immediately from the fact that (co)limits in functor categories
are calculated pointwise [19, Corollary 5.1.2.3].

We will obtain more examples of preadditive 1–categories from the following propo-
sition, which gives a connection to Section 1.

Proposition 2-3 Let C be an 1–category with finite coproducts and products. Then
the following are equivalent:

(i) The 1–category C is preadditive.

(ii) The homotopy category Ho.C/ is preadditive.

(iii) The 1–operad Ct! N.Fin�/ as constructed in [20, Construction 2.4.3.1] is
cartesian [20, Definition 2.4.0.1].

(iv) The forgetful functor MonE1.C/! C is an equivalence.

Moreover, MonE1.C/ is preadditive if C has finite products.

Proof Let us begin by proving that the first two statements are equivalent. The
direction (i))(ii) follows from the fact that the functor  W C! N.Ho.C// preserves
finite (co)products. For the converse direction, let us recall that a morphism in C is
an equivalence if and only if  sends it to an isomorphism. Now, by our assumption
on Ho.C/, the canonical map C1 tC2! C1 �C2 in C is mapped to an isomorphism
under  and is hence an equivalence.
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To show (i) ) (iii) we only need to check that the symmetric monoidal structure
Ct ! N.Fin�/ exhibits finite tensor products (in this case the disjoint union) as
products. But this follows directly from (i).

Now assume (iii) holds. Then by [20, Corollary 2.4.1.8] there exists an equivalence of
symmetric monoidal structures Ct ' C� . Thus we get an induced equivalence

MonE1.C/' AlgE1.C
�/' AlgE1.C

t/

compatible with the forgetful functors to C . But for the latter symmetric monoidal
structure the forgetful functor AlgE1.C

t/! C always induces an equivalence, as
shown in [20, Corollary 2.4.3.10].

Finally, assume (iv) holds. Then in order to show that C is preadditive it suffices to
show that MonE1.C/ is preadditive. To see that MonE1.C/ is preadditive we note
that limits in MonE1.C/ are formed as the limits of the underlying objects of C . In
particular, the underlying object of the product in MonE1.C/ is given by the product
of the underlying objects. Coproducts are more complicated, but it is shown in [20,
Proposition 3.2.4.7] that the underlying object of the coproduct is formed by the tensor
product of the underlying objects, ie, by the product of the underlying objects in our
case. Thus, the underlying object of the coproduct and the product are equivalent.
But, by assumption, MonE1.C/! C is fully faithful, so that we already have such an
equivalence in MonE1.C/. This implies (i) and concludes the proof.

Corollary 2-4 Let C and D be 1–categories with finite products and suppose that
either C or D is preadditive. Then the 1–category Fun….C;D/ is preadditive.

Proof If D is preadditive, then Fun.C;D/ is also preadditive, and clearly Fun….C;D/�
Fun.C;D/ is stable under products. In particular, given two product preserving functors
f;gW C! D , the pointwise product f � gW C! D again lies in Fun….C;D/. Since
(co)limits in Fun.C;D/ are calculated pointwise [19, Corollary 5.1.2.3], we can use
the preadditivity of D to conclude that f �g is also the coproduct f tg of f and g

in Fun.C;D/, and hence, a posteriori, also the coproduct in Fun….C;D/. A similar
reasoning yields a zero object in Fun….C;D/, and we conclude that Fun….C;D/ is
preadditive.

The case in which C is preadditive is slightly more involved. Recall that a product
preserving functor f W C ! D induces a functor MonE1.C/! MonE1.D/ (simply
by composing a special � –object in C with f ). Since products in 1–categories of
E1–monoids are calculated in the underlying 1–categories, this induced functor
preserves products. Thus, we obtain a functor

Fun….C;D/! Fun….MonE1.C/;MonE1.D//:
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By Proposition 2-3 we know that MonE1.D/ is preadditive. The first part of this proof
implies the same for Fun….MonE1.C/;MonE1.D//, and hence we are done if we can
show that the above functor is an equivalence. A functor in the reverse direction is given
by composition with the equivalence C 'MonE1.C/ (use Proposition 2-3 again) and
with MonE1.D/!D . It is easy to check that the resulting endofunctor of Fun….C;D/
is equivalent to the identity, as is also the case for the other composition.

Corollary 2-5 Let C be an1–category with finite products and let D be a preadditive
1–category.

(i) The 1–category MonE1.C/ is preadditive.

(ii) The forgetful functor MonE1.MonE1.C//!MonE1.C/ is an equivalence.

(iii) There is an equivalence Fun….D;MonE1.C//' Fun….D; C/.

Proof The first assertion is a consequence of the proof of Proposition 2-3. The second
follows immediately from that same proposition, while the last statement is implied
by Lemma 1-6 and the observation that Fun….D; C/ is preadditive whenever D is as
guaranteed by Corollary 2-4.

We now establish basically the analogous results for additive 1–categories. As it
is very similar to the case of preadditive 1–categories, we leave out some of the
details. Parallel to ordinary category theory, we introduce additive 1–categories by
imposing an additional exactness condition on preadditive 1–categories. Let C be a
preadditive 1–category and let A be an object of C . We know from Proposition 2-3
that A can be canonically endowed with the structure of an E1–monoid, and it is
shown in [20, Section 2.4.3] that this structure is given by the fold map rW A˚A!A.
The shear map

sW A˚A!A˚A

is the projection pr1W A˚A!A on the first factor and the fold map rW A˚A!A

on the second.

Definition 2-6 A preadditive 1–category C is additive if, for every object A 2 C ,
the shear map sW A˚A

�
�!A˚A is an equivalence.

Examples 2-7 An ordinary category C is additive if and only if N.C/ is an additive
1–category. Products and opposites of additive 1–categories are additive. If C is an
additive 1–category, then any 1–category equivalent to C is additive 1–category,
and any functor 1–category Fun.K; C/ is additive.
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The connection to E1–groups and hence to Section 1 is provided by the following
analog of Proposition 2-3.

Proposition 2-8 For an 1–category C with finite products and coproducts, the fol-
lowing are equivalent:

(i) The 1–category C is additive.

(ii) The homotopy category Ho.C/ is additive.

(iii) The forgetful functor GrpE1.C/! C is an equivalence.

Moreover, if C is an 1–category with finite products, then GrpE1.C/ is additive.

Proof The proof of the equivalence of (i) and (iii) parallels the proof of Proposition 2-3.
To see that (i) implies (iii) we note that by Proposition 2-3 we have an equivalence
AlgE1.C

t/'MonE1.C/! C . But it is shown in [20, Section 2.4.3] that an inverse
to this equivalence endows an object A 2 C with the algebra structure given by the
fold map rW A˚A!A. Now, the statement that such an algebra object is grouplike
is equivalent to the shear map being an equivalence. Thus, invoking (i), we obtain an
equivalence MonE1.C/ ' GrpE1.C/, which gives (iii). Conversely, to see that (iii)
implies (i), we need to show that GrpE1.C/ is additive. Preadditivity is clear and
additivity follows from the characterization of groups given in Proposition 1-1.

Corollary 2-9 Let C and D be 1–categories with finite products and suppose that
either C or D is additive. Then the 1–category Fun….C;D/ is additive.

Corollary 2-10 Let C be an 1–category with finite products and let D be an additive
1–category.

(i) The 1–category GrpE1.C/ is additive.

(ii) The forgetful functor GrpE1.GrpE1.C//! GrpE1.C/ is an equivalence.

(iii) There is an equivalence Fun….D;GrpE1.C//' Fun….D; C/.

Remark 2-11 Corollaries 2-5 and 2-10 basically state that MonE1.�/ and GrpE1.�/

are colocalizations of the1–category of1–categories with finite products and product
preserving functors. Much of the remainder of the paper makes use of this observation,
although we prefer to phrase things slightly differently: namely, MonE1.�/ and
GrpE1.�/ also induce colocalizations of PrR , which in turn (using the anti-equivalence
between PrL and PrR ) induce localizations of PrL . We have opted to state our results in
term of localizations as we think they are slightly more intuitive from this perspective.
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3 Smashing localizations

So far we have discussed 1–categories with finite products. We now turn our attention
to presentable1–categories. The primary purpose of this section is to review the notion
of smashing localizations, which we then specialize to PrL;˝ in order to deduce some
important consequences which will play an essential role throughout the remainder of
the paper.

Let C be an 1–category. Recall that a localization of C is functor LW C! D which
admits a fully faithful right adjoint RW D! C . If LW C! D is a localization, then D
is equivalent (via the fully faithful right adjoint) to a full subcategory LC of C , called
the subcategory of local objects. For this reason we typically identify localizations
with reflective subcategories (ie, full subcategories such that the inclusion admits a
left adjoint). We will also sometimes write L for the endofunctor of C obtained as
the composite of LW C ! D followed by the fully faithful right adjoint RW D! C .
Given such a localization, a map X ! Y is a local equivalence if LX !LY is an
equivalence.

Lemma 3-1 Let C be an 1–category and M W C! C an endofunctor equipped with
a natural transformation �W id!M . Then M is equivalent to the composite R ıL of
a localization LW C! D if and only if, for every object X of C , the two obvious maps
M.X /!M.M.X // are equivalences.

Proof This is condition (3) of [19, Proposition 5.2.7.4].

If C has a symmetric monoidal structure C˝ , then it is sometimes the case that a
localization of C is given by smashing with a fixed object I of C . In keeping with the
terminology used in stable homotopy theory, we make the following definition.

Definition 3-2 Let C˝ be a symmetric monoidal 1–category. We say that a local-
ization LW C ! C is smashing if it is of the form L ' .�/˝ I for some object I

of C .

Recall [20, Definition 4.8.2.1] that an idempotent object in C˝ is an object I together
with a morphism from the tensor unit such that the two obvious maps I ! I ˝ I

are equivalences. It follows that the endofunctor of C given by tensoring with I

is a localization [20, Proposition 4.8.2.4]. Conversely for a smashing localization
L' .�/˝ I the object I is necessarily an idempotent commutative algebra object
of C . In other words, showing that the functor .�/˝ I is a localization is the same as
endowing I with the structure of an idempotent commutative algebra object of C . This
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provides a one-to-one correspondence between smashing localizations and idempotent
commutative algebra objects.

There are two obvious key features of smashing localizations: first, they preserve
colimits (provided the tensor structure is compatible with colimits, which is always
the case if it is closed), and second, they are symmetric monoidal in the sense of the
following definition.

Definition 3-3 Let C˝ be a symmetric monoidal 1–category equipped with a local-
ization LW C! D of the underlying 1–category C . Then L is compatible with the
symmetric monoidal structure (or simply symmetric monoidal) if, whenever X ! Y is
a local equivalence, then so is X ˝Z! Y ˝Z for any object Z of C .

Given such a localization, the subcategory D'LC of local objects inherits a symmetric
monoidal structure from that of C . This is the content of the following lemma which
also justifies the terminology symmetric monoidal localization. Identifying D with the
full subcategory LC of local objects, let R˝W D˝ � C˝ be the inclusion of the full
subcategory consisting of those objects X1˚ � � �˚Xn such that each Xi is in D .

Lemma 3-4 Let C˝ be a symmetric monoidal1–category equipped with a symmetric
monoidal localization LW C! D . Then there is a symmetric monoidal structure D˝

on D such that L extends to a symmetric monoidal functor L˝W C˝! D˝ and such
that the right adjoint R˝W D˝! C˝ is lax symmetric monoidal.

Proof This is a special case of [20, Proposition 2.2.1.9].

Remark 3-5 If C˝ is a closed symmetric monoidal 1–category equipped with a
symmetric monoidal localization LW C! C . Then L is compatible with the closed
structure in the sense that, for every pair of objects C and D of C , the localization
C !LC induces an equivalence

DLC
'DC

whenever D is local. This follows immediately from the definition.

Lemma 3-6 Let C˝ be a symmetric monoidal1–category equipped with a symmetric
monoidal localization LW C!D , and let RW D! C denote the right adjoint of L. Then
there is an induced localization L0W AlgE1.C/! AlgE1.D/ such that the diagram

AlgE1.C/
L0
//

��

AlgE1.D/

��

C L
// D
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commutes. Moreover, given A 2AlgE1.C/, there exists a unique commutative algebra
structure on RLA such that unit map A!RLA extends to a morphism of commutative
algebras.

Proof By Lemma 3-4 above, we obtain maps L0W AlgE1.C/ ! AlgE1.D/ and
R0W AlgE1.D/!AlgE1.C/ by composing sections E1! C˝ with L˝ and sections
E1 ! D˝ with R˝ , respectively. In a similar fashion we also obtain unit and
counit transformations such that the counit is an equivalence. It follows that L0 is a
localization.

For the second assertion, we know already that R0L0A comes with a canonical com-
mutative algebra map �0W A! R0L0A, the adjunction unit evaluated at A, and that
this map extends the adjunction unit �W A ! RLA of the underlying objects. If
�00W A! R0B is a second such map of commutative algebras, then the universality
of �0 implies that �00 factors essentially uniquely as

� ı �0W A!R0L0A!R0B:

Since the underlying map of � is an identity, if follows that � itself is an equivalence
since AlgE1.C/ ! C is conservative. We can now conclude since the space of
reflections of a fixed object in a full subcategory is contractible if non-empty.

Remark 3-7 The second part of the lemma implies that RLA can be turned into an
E1–algebra such that the unit map A!RLA can be enhanced to a morphism of E1–
algebras. Moreover, the space of such enhancements is contractible. In particular, if
RLA is endowed with two different E1–algebra structures, then the identity morphism
of the underlying objects in D can be essentially uniquely turned into an equivalence
of these two E1–algebras compatible with the localizations. We will apply this in
Section 5 to smashing localizations on PrL .

Now we specialize to the case of the (very large) 1–category PrL of presentable
1–categories and colimit-preserving functors. We will write C , D , etc for objects
of PrL . Recall that PrL admits a closed symmetric monoidal structure which is uniquely
characterized as follows: given presentable1–categories C and D , their tensor product
C˝D corepresents the functor PrL! cCat1 which sends E to

FunL;L.C �D; E/� Fun.C �D; E/;

the full subcategory consisting of those functors F W C �D! E which preserve col-
imits separately in each variable. The unit of this monoidal structure on PrL is the
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1–category S of spaces, as follows from the fact that FunL.S; C/ ' C [20, Exam-
ple 6.3.1.19]. Moreover, by [20, Proposition 4.8.1.16] this tensor product admits the
description

C˝D' FunR.Cop;D/:

Recall that FunL.C;D/ is presentable ([19, Propositon 5.5.3.8]). It is immediate from
the definition of C˝D as a corepresenting object that the symmetric monoidal structure
on PrL is closed, with right adjoint to C˝.�/W PrL!PrL given by FunL.C;�/W PrL!

PrL . Lastly, the (possibly large) mapping spaces in PrL are given by the formula

MapPrL.C;D/' FunL.C;D/� ;

the maximal subgroupoid. This description will be applied in Section 4 to our context
of monoids and groups.

Proposition 3-8 Let LW PrL! PrL be a smashing localization or, more generally, a
symmetric monoidal localization, and let C and D be presentable 1–categories such
that D is in the essential image of L.

(i) The map FunL.LC;D/! FunL.C;D/ induced by the localization C!LC is an
equivalence.

(ii) If L is smashing, then the localization of the (very large) 1–category PrL of
presentable 1–categories and colimit-preserving functors is equivalent to the
1–category of modules over LS 2 AlgE1.PrL/:

LPrL
'ModLS.PrL/:

(iii) Given a second symmetric monoidal localization L0W PrL ! PrL such that
L0PrL �LPrL , then the canonical morphism LC!L0C induces an equivalence
FunL.L0C;D/! FunL.LC;D/ for every L0–local D .

Proof The first statement follows from Remark 3-5 and the second from [20, Propo-
sition 4.8.2.10]. Finally, the third one follows immediately from the first and the
two-out-of-three property of equivalences.

Let us now consider a presentable 1–category endowed with a closed symmetric
monoidal structure C˝ . In this context the closedness is equivalent to the fact that the
monoidal structure preserves colimits separately in each variable, ie, C˝ is essentially
just a commutative algebra object in PrL [20, Remark 4.8.1.9].

Proposition 3-9 Let LW PrL ! PrL be a smashing localization or, more generally,
a symmetric monoidal localization. Let C˝ and D˝ be closed symmetric monoidal
presentable 1–categories.
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(i) The 1–category LC admits a unique closed symmetric monoidal structure such
that the localization map C!LC is a symmetric monoidal functor.

(ii) The map FunL;˝.LC;D/! FunL;˝.C;D/ induced by the localization C!LC
is an equivalence whenever D is L–local.

(iii) Given a second symmetric monoidal localization L0W PrL ! PrL such that
L0PrL � LPrL , the induced morphism LC ! L0C admits a unique symmet-
ric monoidal structure. In particular, for every L0–local D the induced map
FunL;˝.L0C;D/! FunL;˝.LC;D/ is an equivalence.

Proof Statement (i) follows from Lemma 3-6, which induces an equivalence

FunL;˝.LC;DK /! FunL;˝.C;DK /

on underlying 1–groupoids for any simplicial set K such that DK is local. Then (ii)
follows from the fact that AlgE1.PrL/ is cotensored over Cat1 in such a way that
DK is local whenever D is local; indeed, the cotensor DK is given by the internal
mapping object FunL.P.K/;D/, and this is a local object since .�/˝P.K/ preserves
local equivalences by assumption. Finally, (iii) is obtained by the same argument as
(i) after replacing PrL with LPrL , which has an induced closed symmetric monoidal
structure, LW PrL! PrL with the functor LPrL! LPrL induced by the composite
PrL!L0PrL�LPrL , and C with LC , which also inherits a closed symmetric monoidal
structure.

We shall see in the next section that formation of 1–categories of commutative
monoid and group objects in a presentable 1–category C are instances of smashing
localizations of PrL . For the moment, it is worth mentioning that there are other
well-known examples of smashing localizations of PrL . The most obvious one is the
functor which associates to a presentable 1–category C its 1–category C� of pointed
objects; the fact that this is a smashing localization follows from the formula

C� ' C˝S�

and the fact that S� is an idempotent object of PrL [20, Proposition 4.8.2.11]. An
important feature of S� is that it is symmetric monoidal under the smash product, which
is uniquely characterized by the requirement that the unit map S! S� is symmetric
monoidal. A further example of a smashing localization which is central to this paper is
the passage from a presentable 1–category C to the 1–category Sp.C/ of spectrum
objects in C [20, Proposition 4.8.2.18].

Algebraic & Geometric Topology, Volume 15 (2015)



3124 David Gepner, Moritz Groth and Thomas Nikolaus

4 Commutative monoids and groups as smashing
localizations

In this section we show that the passage to 1–categories of commutative monoids or
groups are instances of smashing localizations of PrL .

Proposition 4-1 Given a presentable 1–category C , then also the 1–categories
MonE1.C/ and GrpE1.C/ are presentable.

Proof By definition the 1–categories MonE1.C/ and GrpE1.C/ are full subcate-
gories of the presentable 1–category Fun.N.Fin�/; C/. Therefore, it suffices to show
that the monoids and groups, respectively, are precisely the S –local objects for a small
collection S of morphisms in Fun.N.Fin�/; C/ [19, Proposition 5.5.4.15]. We will
give the details for the case of monoids and leave the case of groups to the reader.

In order to define S we first note that the evaluation functors

evhniW Fun.N.Fin�/; C/! C

admit left adjoints FhniW C!Fun.N.Fin�/; C/. Now, M 2Fun.N.Fin�/; C/ belongs to
MonE1.C/ if for every n 2N the morphism M.hni/!

Q
M.h1i/ is an equivalence

in C , and this is the case if and only if for every C 2 C the morphism

(4-2) MapC.C;M.hni//!
Y

MapC.C;M.h1i//

is an equivalence of spaces. Since C is accessible it suffices to check this for ob-
jects in C� , the essentially small subcategory of �–compact objects for some regular
cardinal � . Now we use the equivalences

MapC.C;M.hni//'MapFun.N.Fin�/;C/.Fhni.C /;M /;Y
MapC.C;M.h1i//'MapFun.N.Fin�/;C/

�G
Fh1i.C /;M

�
and see that the morphism (4-2) is induced by a morphism �n;C W

F
n Fh1i.C / !

Fhni.C / in Fun.N.Fin�/; C/. Thus we may take S to consist of the �n;C , where C

ranges over any small collections of objects of C which contains a representative of
each equivalence class of object in C� .

Remark 4-3 The proof for groups is similar, though we have to add more maps to
the set S to account for the very special condition. This tells us in particular that
GrpE1.C/ is a reflective subcategory of MonE1.C/.
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Corollary 4-4 Let C be a presentable 1–category. Then there are functors

C!MonE1.C/! GrpE1.C/;

which are left adjoint to the respective forgetful functors.

Proof Since limits in MonE1.C/ and GrpE1.C/ are computed as the limits of the
underlying objects, this follows from the adjoint functor theorem.

Remark 4-5 Let C be a presentable 1–category. The functor

MonE1.C/! GrpE1.C/;

left adjoint to the forgetful functor GrpE1.C/!MonE1.C/, is called the group com-
pletion. Thus, in the framework of 1–categories, the group completion MonE1.C/!
GrpE1.C/ has the expected universal property, defining a left adjoint to the forgetful
functor GrpE1.C/!MonE1.C/.

The following theorem, while straightforward to prove, is central.

Theorem 4-6 The assignments C 7!MonE1.C/ and C 7! GrpE1.C/ refine to smash-
ing localizations of PrL . Thus, we have, in particular, equivalences of 1–categories

MonE1.C/' C˝MonE1.S/ and GrpE1.C/' C˝GrpE1.S/:

The local objects are precisely the preadditive presentable 1–categories and the addi-
tive presentable 1–categories, respectively.

Proof The description of the tensor product of presentable 1–categories together
with Lemma 1-6 gives us the chain of equivalences

C˝MonE1.D/' FunR.Cop;MonE1.D//'MonE1.FunR.Cop;D//

'MonE1.C˝D/:

In particular, we have MonE1.C/ ' C ˝ MonE1.S/. The fact that MonE1 is a
localization follows from Corollary 2-5. The local objects are precisely the presentable
1–categories C for which the canonical functor is an equivalence MonE1.C/ ' C ,
hence by Proposition 2-3 precisely the preadditive 1–categories. The case of groups
is established along the same lines.

As a consequence we obtain the following result.
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Corollary 4-7 Let C and D be presentable 1–category. Then there are canonical
equivalences

C˝MonE1.D/'MonE1.C˝D/'MonE1.C/˝D;
C˝GrpE1.D/' GrpE1.C˝D/' GrpE1.C/˝D:

Let us denote the full subcategories of PrL spanned by the preadditive and additive
1–categories respectively by

PrL
Pre � PrL and PrL

Add � PrL:

Then Proposition 3-8 specializes to the following two corollaries.

Corollary 4-8 The forgetful functors

ModMonE1.S/.PrL/! PrL and ModGrpE1.S/.PrL/! PrL

induce equivalences of 1–categories

ModMonE1.S/.PrL/' PrL
Pre and ModGrpE1.S/.PrL/' PrL

Add:

Corollary 4-9 Let C and D be presentable 1–categories.

(i) If D is preadditive then the free E1–monoid functor C!MonE1.C/ induces
an equivalence of 1–categories

FunL.MonE1.C/;D/
'
�! FunL.C;D/;

exhibiting MonE1.C/ as the free preadditive presentable 1–category generated
by C . In particular, we have canonical equivalences

FunL.MonE1.S/;D/
'
�! FunL.S;D/ '�! D;u

exhibiting MonE1.S/ as the free preadditive presentable 1–category on one
generator.

(ii) If D is additive then the free E1–group functor C ! GrpE1.C/ induces an
equivalence of 1–categories

FunL.GrpE1.C/;D/
'
�! FunL.C;D/;

exhibiting GrpE1.C/ as the free additive presentable 1–category generated
by C . In particular, the free E1–group functor S! GrpE1.S/ induces canon-
ical equivalences

FunL.GrpE1.S/;D/
'
�! FunL.S;D/ '�! D;

exhibiting GrpE1.S/ as the free additive, presentable 1–category on one gen-
erator.
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The results of this section give us a refined picture of the stabilization process of
presentable 1–categories as we describe it in the next corollary (we will obtain a
further monoidal refinement in Corollary 5-5). In [20, Chapter 1] it is shown that the
stabilization of a presentable 1–category C is given by the 1–category Sp.C/ of
spectrum objects in C , which is to say the limit

Sp.C/' limfC�
�
 � C�

�
 � C�

�
 � � � � g;

taken in the1–category of (not necessarily small)1–categories, or equivalently in the
1–category PrR of presentable1–categories by [19, Theorem 5.5.3.18]. Alternatively,
Sp.C/ is equivalent to the 1–category of reduced excisive functors

Sp.C/' Exc�.Sfin
� ; C/I

see [20, Section 1.4.2] for details. Recall from [20, Proposition 1.4.4.4] that for such
a C the 1–category Sp.C/ is related to C by the suspension spectrum adjunction
.†1C ; �

1
� /W C � Sp.C/.

Corollary 4-10 The stabilization of presentable 1–categories PrL! PrL
St factors as

a composition of adjunctions

PrL � PrL
Pt � PrL

Pre � PrL
Add � PrL

St:

In particular, if C is a presentable 1–category, then †1C W C ! Sp.C/ factors as a
composition of left adjoints

†1C W C! C�!MonE1.C/! GrpE1.C/! Sp.C/;

each of which is uniquely determined by the fact that it commutes with the correspond-
ing free functors from C .

Proof This follows from Corollary 4-9 and the corresponding corollary for the functor
.�/CW C! C� together with the facts that Sp.C/ is additive [20, Corollary 1.4.2.17
and Remark 1.1.3.5], GrpE1.C/ is preadditive (even additive by Corollary 2-10), and
MonE1.C/ is pointed (in fact, preadditive by Corollary 2-5). For the second statement,
it suffices to use Proposition 3-8.

5 Canonical symmetric monoidal structures

Let us now assume that C is a presentable 1–category endowed with a closed sym-
metric monoidal structure C˝ . In this section we specialize the general results from
Section 3 (or more specifically Proposition 3-9) to the localizations .�/� , MonE1.�/,
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GrpE1.�/, and Sp.�/. The two cases of C� and Sp.C/ are already essentially covered
in [20, Section 4.8.2], but since these results are not stated explicitly, we include them
here for the sake of completeness.

Theorem 5-1 Let C˝ be a closed symmetric monoidal structure on a presentable 1–
category C . The1–categories C� , MonE1.C/, GrpE1.C/, and Sp.C/ all admit closed
symmetric monoidal structures, which are uniquely determined by the requirement that
the respective free functors from C are symmetric monoidal. Moreover, each of the
functors

C�!MonE1.C/! GrpE1.C/! Sp.C/

uniquely extends to a symmetric monoidal functor.

Proof This follows directly from the fact that the localizations are smashing using
Proposition 3-9.

From now on, when considered as symmetric monoidal 1–categories, these 1–
categories are always endowed with the canonical monoidal structures of the theorem.

Warning 5-2 The reader should not confuse the two symmetric monoidal structures
on C that are used in the above construction. The first one is the cartesian structure C�

which is used to define the 1–category MonE1.C/ of E1–monoids. The second one
is the closed symmetric monoidal structure C˝ which induces a monoidal structure on
MonE1.C/ as described in the theorem. In applications, these two monoidal structures
on C often agree, which amounts to assuming that C is cartesian closed. This is the
case in the most important examples, namely 1–topoi (such as S ) and Cat1 .

Example 5-3 (i) The (nerve of the) category Set of sets is a cartesian closed
presentable 1–category, and GrpE1.Set/ is just the (nerve of the) category Ab
of abelian groups. The free functor Set! Ab can then of course be turned into
a symmetric monoidal functor with respect to the cartesian product on Set and
the usual tensor product on Ab. Thus, in this very special case, the theorem
reproduces the classical tensor product of abelian groups.

(ii) The 1–category S of spaces is a cartesian closed presentable 1–category. The
1–category MonE1.S/ of E1–spaces hence comes with a canonical closed
symmetric monoidal structure, as does the 1–category GrpE1.S/ of grouplike
E1–spaces. Since the latter 1–category is equivalent to the 1–category of
connective spectra [20, Remark 5.2.6.26], the canonical symmetric monoidal
structure on GrpE1.S/ agrees with the smash product of connective spectra.
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(iii) Let Cat denote the cartesian closed presentable 1–category of small ordinary
categories (this is actually a 2–category, in the sense of [19, Section 2.3.4]). Thus,
the 1–category SymMonCat ' MonE1.Cat/ of small symmetric monoidal
categories admits a canonical closed symmetric monoidal structure such that
the free functor Cat! SymMonCat can be promoted to a symmetric monoidal
functor in a unique way. This structure on SymMonCat has been explicitly
constructed and discussed in the literature; see [14] and the more explicit [26].
In fact, this tensor product is slightly subtle since, at least to the knowledge
of the authors, it can not be realized as a symmetric monoidal structure on the
1–category of small categories (as opposed to the 2–category Cat).

(iv) The 1–category Cat1 of small 1–categories is a cartesian closed presentable
1–category. Thus, as an 1–categorical variant of the previous example, we
obtain a canonical closed symmetric monoidal structure on the 1–category
SymMonCat1 of small symmetric monoidal 1–categories.

We have already seen that, for presentable1–categories C , the passage to commutative
monoids and commutative groups has a universal property (Corollary 4-9). In the case of
closed symmetric monoidal presentable1–categories we now obtain a refined universal
property for the symmetric monoidal structures of Theorem 5-1. For convenience,
we also collect the analogous results for the passage to pointed objects and spectrum
objects.

Proposition 5-4 Suppose C and D are closed symmetric monoidal presentable 1–
categories.

(i) If D is pointed then the symmetric monoidal functor C! C� induces an equiva-
lence of 1–categories

FunL;˝.C�;D/! FunL;˝.C;D/:

(ii) If D is preadditive then the symmetric monoidal functor C!MonE1.C/ induces
an equivalence of 1–categories

FunL;˝.MonE1.C/;D/! FunL;˝.C;D/:

(iii) If D is additive then the symmetric monoidal functor C!GrpE1.C/ induces an
equivalence of 1–categories

FunL;˝.GrpE1.C/;D/! FunL;˝.C;D/:

(iv) If D is stable then the symmetric monoidal functor C ! Sp.C/ induces an
equivalence of 1–categories

FunL;˝.Sp.C/;D/! FunL;˝.C;D/:
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Proof This follows immediately from the second statement of Proposition 3-9.

Here is the monoidal refinement of the stabilization process which is now an immediate
consequence of the third statement of Proposition 3-9.

Corollary 5-5 (i) Let C and D be closed symmetric monoidal presentable 1–
categories and let us consider a symmetric monoidal left adjoint F W C! D . In
the following commutative diagram, each of the functors induced by F admits a
symmetric monoidal structure:

C

��

// C�

��

// MonE1.C/

��

// GrpE1.C/

��

// Sp.C/

��

D // D� // MonE1.D/ // GrpE1.D/ // Sp.D�/

Moreover, these symmetric monoidal structures are uniquely characterized by
the fact that the functors commute with the free functors from C .

(ii) The stabilization of presentable 1–categories PrL! PrL
St admits a symmetric

monoidal refinement PrL;˝! PrL;˝
St which factors as a composition of adjunc-

tions
PrL;˝� PrL;˝

Pt � PrL;˝
Pre � PrL;˝

Add � PrL;˝
St :

Remark 5-6 (i) One can use the theory of � –objects in C to obtain a more
concrete description of the tensor product on MonE1.C/ and GrpE1.C/ as the
convolution product; see [20, Corollary 4.8.1.12] for the case in which C is the
1–category of spaces.

(ii) The uniqueness of the symmetric monoidal structures can be used to compare our
results to existing ones. Every simplicial combinatorial, monoidal model category
leads to a presentable, closed symmetric monoidal 1–category. Thus for the
monoidal model category of � –spaces as discussed in [27] it follows immediately
that the symmetric monoidal structure on the underlying 1–category has to
agree with our structure. The same applies to the model structure on � –objects
in any nice model category, for example in presheaves as discussed in [4].

6 More functoriality

In Section 4 we saw that for presentable 1–categories the passages to commutative
monoids and groups are smashing localizations and hence, in particular, define functors

MonE1.�/;GrpE1.�/W PrL
! PrL:
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But this passage allows for more functoriality. In fact, a product-preserving functor
F W C! D induces functors

F W MonE1.C/!MonE1.D/ and F W GrpE1.C/! GrpE1.D/

simply by post-composing the respective (very) special � –objects with F . The main
goal of this section is to establish Corollary 6-6, which states that under certain mild
assumptions these extensions themselves are lax symmetric monoidal with respect to the
canonical symmetric monoidal structures established in Theorem 5-1. This corollary
will be needed in our applications to algebraic K–theory in Section 8. We begin
by comparing these two potentially different functorialities of the assignments C 7!
MonE1.C/ and C 7! GrpE1.C/.

Lemma 6-1 Let LW C ! D be a functor of presentable 1–categories with right
adjoint RW D! C .

(i) If LW C! D is product-preserving and if products in C and D commute with
countable colimits, then the functors

MonE1.L/W MonE1.C/!MonE1.D/ and LW MonE1.C/!MonE1.D/

described above are equivalent.

(ii) The canonical extension RW MonE1.D/! MonE1.C/ is right adjoint to the
functor MonE1.L/.

The corresponding two statements for E1–groups hold as well.

Proof For the first claim we must show that if L preserves products then the two
functors agree. This follows if we can show that L is a left adjoint and the diagram

(6-2)

CFr
L

//

��

D

Fr
��

MonE1.C/�L // MonE1.D/

commutes in bCat1 . To see that L is left adjoint we observe that it commutes
with sifted colimits, as they are detected by the forgetful functors MonE1.C/! C
and MonE1.D/! D , and also that it commutes with coproducts, as coproducts in
MonE1.C/ and MonE1.D/ are given by the tensor product which is preserved by L.
To conclude this part of the proof it suffices to show that there is an equivalence FrıL'
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LıFr. For this, we consider the mate of the equivalence LıU 'U ıLW MonE1.C/!D ,
ie, we form the following pasting with the respective adjunction morphisms:

C Fr
//

D
,,

MonE1.C/

U
��

L
// MonE1.D/

U
��

D

��

C
L

//

@H

D
Fr

//

CK
'

MonE1.D/

CK

In order to show that the resulting transformation

Fr ıL! Fr ıL ıU ıFr' Fr ıU ıL ıFr!L ıFr

is an equivalence, it is enough to check that this is the case after applying the forgetful
functor U W MonE1.D/! D . But this follows from the explicit description of the free
functors as

Fr.C /'
G
n

C n=†n

(see [20, Example 3.1.3.14]) and by unraveling the definitions of L and the adjunction
morphisms.

To prove the second statement we first remark that R has a left adjoint since it preserves
all limits and filtered colimits which are formed in the underlying 1–category. More-
over, any such left adjoint has to make diagram (6-2) commute since this is the case
for the corresponding diagram of right adjoints. By the above, this left adjoint has to
coincide with MonE1.L/. The proof for the case of groups is completely parallel.

This lemma can be applied to adjunctions between cartesian closed presentable 1–
categories.

Lemma 6-3 Let C and D be closed symmetric monoidal presentable 1–categories,
let LW C! D be a symmetric monoidal left adjoint functor and let RW D! C be right
adjoint to L.

(i) The functors RW MonE1.D/ ! MonE1.C/ and RW GrpE1.D/ ! GrpE1.C/
have canonical lax symmetric monoidal structures.

(ii) If C and D are cartesian closed, then the canonical extensions LW MonE1.C/!
MonE1.D/ and LW GrpE1.C/!GrpE1.D/ both admit structures of symmetric
monoidal functors which are determined up to a contractible space of choices by
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the fact that the following diagrams commute.

C //

L

��

MonE1.C/

L

��

C //

L

��

GrpE1.C/

L

��

D // MonE1.D/ D // GrpE1.D/

Proof Corollary 5-5 tells us that MonE1.L/ is canonically symmetric monoidal,
and the right adjoint of a symmetric monoidal functor always inherits a canonical lax
symmetric monoidal structure [20, Corollary 7.3.2.7]. Together with Lemma 6-1 this
establishes the first part. The second part is an immediate consequence of Corollary 5-5
and Lemma 6-1, and again the case of groups is entirely analogous.

Lemma 6-4 Suppose F W C ! D is an accessible functor between presentable 1–
categories.

(i) We can factor F ' L ıR where R is a right adjoint and L is a left adjoint
functor.

(ii) If C and D are closed symmetric monoidal, then the factorization can be chosen
such that L and the left adjoint to R are symmetric monoidal (this means of
course that the intermediate 1–category is symmetric monoidal as well). In
particular, R itself is lax symmetric monoidal.

(iii) If F preserves products and D is cartesian closed, then L can be chosen to
preserve products.

Proof Choose � sufficiently large such that both C and D are �–compactly generated
and F preserves �–filtered colimits. Then the restricted Yoneda embedding RW C!
P.C�/ preserves limits and �–filtered colimits, and therefore admits a left adjoint.
Similarly, the functor LW P.C�/ ! D induced (under colimits) by the composite
C�! C! D preserves all colimits, and therefore admits a right adjoint. Since F is
equivalent to the composite L ıR, this completes the proof of the first claim.

Now, if in addition C and D are closed symmetric monoidal, then it follows from
the universal property of the convolution product [20, Proposition 4.8.1.10] that L

is symmetric monoidal and also that the left adjoint P.C�/! C of R is symmetric
monoidal, completing the proof of the second claim (the fact that R is lax symmetric
monoidal again follows from [20, Corollary 7.3.2.7]).

Finally, if F preserves products, then L preserves products of representables C� , and
if D is cartesian closed then products commute with colimits in both variables. Hence
L preserves products.
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Proposition 6-5 Suppose C and D are closed symmetric monoidal presentable 1–
categories and let F W C! D be product-preserving, symmetric monoidal, and accessi-
ble. If D is also cartesian closed then the functors F W MonE1.C/!MonE1.D/ and
F W GrpE1.C/! GrpE1.D/ admit lax symmetric monoidal structures.

Proof Factor F according to Lemma 6-4 and apply Lemma 6-3.

Corollary 6-6 Let C and D be cartesian closed presentable 1–categories and let
F W C ! D be product-preserving and accessible. Then the canonical extensions
F W MonE1.C/ ! MonE1.D/ and F W GrpE1.C/ ! GrpE1.D/ are lax symmetric
monoidal.

7 1–categories of semirings and rings

In this section we will use the results of Section 5 to define and study semiring (aka
rig) and ring objects in suitable 1–categories. We know by Theorem 5-1 that given
a closed symmetric monoidal presentable 1–category C , there are canonical closed
symmetric monoidal structures on MonE1.C/ and GrpE1.C/ which will respectively
be denoted by

Mon˝E1E1
.C/ and Grp˝E1E1

.C/:

Definition 7-1 Let C be a closed symmetric monoidal presentable 1–category and
let O be an 1–operad. The 1–category RigO.C/ of O–semirings in C and the
1–category RingO.C/ of O–rings in C are respectively defined as the 1–categories
of O–algebras

RigO.C/ WD AlgO.Mon˝E1E1
.C// and RingO.C/ WD AlgO.Grp˝E1E1

.C//:

In the case of ordinary categories and the associative or commutative operad, the
alternative terminology rig objects is also used for what we call semiring objects, hence
the notation. We will be mainly interested in the case of OD En for nD 1; 2; : : : ;1.
In the case nD 1, RingE1

.C/ is the 1–category of associative rings in C and, in the
case n D1, RingE1.C/ is the 1–category of commutative rings in C . Similarly,
there are 1–categories of associative or commutative semirings in C .

Let us take up again the examples of Section 5.

Example 7-2 (i) In the special case of the cartesian closed presentable1–category
Set of sets, our notion of associative or commutative (semi)ring object coincides
with the corresponding classical notion.
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(ii) Since the1–category S of spaces is cartesian closed and presentable, we obtain,
for each 1–operad O , the 1–category RigO.S/ of O -rig spaces and the 1–
category RingO.S/ of O -ring spaces. For the special case of the operads ODEn

for nD 1; : : : ;1, the point-set analogue of these spaces were intensively studied
by May and others using carefully chosen pairs of operads; see the recent articles
[25; 23; 24] and the many references therein.

(iii) In the case of the cartesian closed presentable 1–category Cat of ordinary
small categories, we obtain the 1–category RigOCat of O-rig categories and
the 1–category RingOCat of O-ring categories. Coherences for lax semiring
categories have been studied by Laplaza [16; 17]; note that, in our case, all
coherence morphisms must be invertible. It should be possible to obtain a precise
comparison of our notion with these more classical ones, but we bypass this via
a recognition principle (Corollary 8-9) for semiring 1–categories which allows
us to work directly with the examples of interest to us, without having to check
coherences for distributors.

(iv) An 1–categorical version of the previous example is obtained by considering
the cartesian closed presentable 1–category Cat1 . Associated to it there is
the 1–category RigOCat1 of O -semiring 1–categories and the 1–category
RingOCat1 of O-ring 1–categories.

Remark 7-3 For a general closed symmetric monoidal presentable 1–category C
there are two potentially different symmetric monoidal structures playing a role in
the notion of an O–(semi)ring object. Thus it may be useful to provide an informal
description of the structure given by an E1–semiring object in C . It consists of an
object R 2 C together with an addition map CW R �R! R and a multiplication
map �W R˝R!R such that both maps are coherently associative and commutative.
Moreover, the multiplication has to distribute over the addition in a homotopy coherent
fashion. In the case of an ordinary category with the Cartesian monoidal structure, our
notion reduces to the usual one.

As in the case of commutative monoids and commutative groups, Theorem 5-1 also
guarantees that the 1–category Sp.C/ of spectrum objects associated to a closed
symmetric monoidal presentable 1–category C has a canonical closed symmetric
monoidal structure Sp˝.C/. This allows us to make the following definition.

Definition 7-4 Let C be a closed symmetric monoidal presentable 1–category and
let O be an 1–operad. The 1–category RingSpO.C/ of O–ring spectrum objects
in C is defined as

RingSpO.C/ WD AlgO.Sp˝.C//:
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Theorem 7-5 Let C be a closed symmetric monoidal presentable 1–category and
let O be an 1–operad. Then the group completion functor MonE1.C/! GrpE1.C/
and the associated spectrum functor GrpE1.C/! Sp.C/ refine to functors

RigO.C/! RingO.C/ and RingO.C/! RingSpO.C/;

called the ring completion and the associated ring spectrum functor, respectively.

Proof This is clear since the group completion MonE1.C/!GrpE1.C/ and also the
associated spectrum functor GrpE1.C/! Sp.C/ are symmetric monoidal as shown in
Theorem 5-1.

Example 7-6 (i) In the special case of the 1–category Set of sets this reduces to
the usual ring completion of associative or commutative semirings.

(ii) From an1–operad O , we get an associated ring completion functor RigO.S/!
RingO.S/ from O–rig spaces to O–ring spaces and an associated ring spectrum
functor RingO.S/! RingSpO.S/ from O–ring spaces to O–ring spectra. The
latter 1–category will also be written RingSpO .

(iii) Let us again consider the cartesian closed presentable 1–category Cat of ordi-
nary small categories. Then for each 1–operad O , we obtain a ring completion
functor RigOCat! RingOCat from O–rig categories to O–ring categories.

(iv) Again, we immediately obtain an1–categorical refinement of the previous exam-
ple. For each 1–operad O , we obtain a ring completion functor RigOCat1!
RingOCat1 from O–rig1–categories to O–ring1–categories. Using explicit
models, a similar construction was obtained by Baas, Dundas, Richter and
Rognes [2].

Theorem 7-5 shows that semirings can be used to produce highly structured ring spectra.
Unfortunately, the definition of a semiring object is a bit indirect, so in practice it is
often difficult to write down explicit examples of such objects. Theorem 8-8 provides
a natural class of semirings in the case of the cartesian closed 1–category C D Cat1 .
Moreover, this is the class that is of most interest in applications to algebraic K–theory,
as we discuss in Section 8.

We conclude this section with a base-change result (similar to Corollary 4-7) which
sheds some light on the definition of semiring and ring object. This result will also be
needed in Appendix B where we show En –(semi)rings to be algebraic.

Proposition 7-7 Let C be a cartesian closed presentable 1–category and O an 1–
operad. Then we have equivalences

RigO.C/' C˝RigO.S/ and RingO.C/' C˝RingO.S/:

Algebraic & Geometric Topology, Volume 15 (2015)



Universality of multiplicative infinite loop space machines 3137

Proof We show more generally that, for D any closed symmetric monoidal presentable
1–category, there exists a canonical equivalence

(7-8) AlgO.D/˝ C! AlgO.D˝ C/:

Then, taking D to be MonE1.S/, using Theorem 4-6, we obtain the desired chain of
equivalences

RigO.C/' AlgO.MonE1.C//' AlgO.MonE1.S/˝ C/

' AlgO.MonE1.S//˝ C ' RigO.S/˝ C:

In the case of rings we get an analogous chain of equivalences.

To show (7-8), first consider the case in which C D P.C0/ is the 1–category of
presheaves of spaces on a (small) 1–category C0 . In this case, we have that D˝ C '
Fun.Cop

0
;D/, so that

AlgO.D/˝ C ' Fun.Cop
0
;AlgO.D//' AlgO.Fun.Cop

0
;D//' AlgO.D˝ C/:

A general cartesian closed presentable 1–category C is a full symmetric monoidal
subcategory of some P.C0/, say for C0 the full subcategory of �–compact objects in
C for a sufficiently large regular cardinal � . Since D˝ C ' FunR.Cop;D/, we see that
D˝ C is a full symmetric monoidal subcategory of D˝P.C0/, and similarly with D
replaced by AlgO.D/. Thus it suffices to show that AlgO.D/˝ C and AlgO.D˝ C/
define equivalent full subcategories of AlgO.D/˝P.C0/' AlgO.D˝P.C0//.

If O is monochromatic (ie if there exists an essentially surjective functor �0!O˝
h1i

),
then an object of AlgO.D˝P.C0// lies in the full subcategory AlgO.D˝ C/ if and
only if the projection to D ˝ P.C0/ factors through D ˝ C . For arbitrary O , an
object of AlgO.D˝P.C0// lies in the full subcategory AlgO.D˝ C/ precisely when
the restriction along any full monochromatic suboperad O0! O satisfies this same
condition. As the analogous results for AlgO.D/˝ C hold by the same argument,
we see that AlgO.D/˝ C and AlgO.D˝ C/ define equivalent full subcategories of
AlgO.D/˝P.C0/' AlgO.D˝P.C0//.

8 Multiplicative infinite loop space theory

In this section we apply the results of the previous section to some specific 1–
categories; namely, we consider the 1–categories S of spaces, the 1–category
Cat of ordinary categories (really a 2–category, but we regard it as an 1–category),
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and the 1–category Cat1 of 1–categories. Let us emphasize that, as a special case
of Theorem 7-5, the group completion and the associated spectrum functor

MonE1.S/! GrpE1.S/! Sp

refine to functors

RigO.S/! RingO.S/! RingSpO:

This gives us not only a way of obtaining (highly structured) ring spectra, but it also
allows us to identify certain spectra as ring spectra.

Recall that the group completion functor MonE1.S/! GrpE1.S/! Sp plays an
important role in algebraic K–theory. The input data for algebraic K–theory is often
a symmetric monoidal category M; as a primary example, we have the category
MD ProjR of finitely generated projective modules over a ring R, which is symmet-
ric monoidal under the direct sum ˚ (which is the coproduct). In any case, given
such a category M, we form the subcategory of isomorphisms M� and pass to the
geometric realization jM� j. That way we obtain an E1–space jM� j, ie, an object
of MonE1.S/. The algebraic K–theory spectrum K.M/ is then defined to be the
spectrum associated to the group completion of jM� j; see eg [28]. In other words,
(direct sum) algebraic K–theory is defined as the composition

(8-1) KW SymMonCat
.�/�

�! SymMonCat
j�j
�!MonE1.S/! GrpE1.S/! Sp:

It is a result of May [22], with refinements by Elmendorf and Mandell [12] and Bass,
Dundas, Richter and Rognes [2], that this functor respects multiplicative structures, in
the appropriate sense. Our methods give an even more refined result.

Proposition 8-2 The algebraic K–theory functor KW SymMonCat! Sp is lax sym-
metric monoidal. In particular, it induces a functor RigOCat ! RingSpO for any
1–operad O .

Proof The last two functors in the composition (8-1) are symmetric monoidal by
Theorem 5-1. The remaining two functors .�/� W SymMonCat! SymMonCat and
j�jW SymMonCat!MonE1.S/ are the canonical extensions of the product preserving
functors .�/� W Cat! Cat and j � jW Cat! S respectively. Since these latter functors
are accessible, Corollary 6-6 implies that their canonical extensions are lax symmetric
monoidal, concluding the proof.
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We now have the tools necessary to establish corresponding results in the1–categorical
case. Note that the composition of the first two functors in (8-1) is the same as the
composition of the nerve SymMonCat ! SymMonCat1 followed by the functor
.�/� W SymMonCat1!MonE1.S/, which sends a symmetric monoidal 1–category
to its maximal subgroupoid, and of course is again symmetric monoidal. This allows
us to recover the algebraic K–theory of a symmetric monoidal category M by an
application of the following 1–categorical version of algebraic K–theory to the nerve
of M.

Definition 8-3 Let M be a symmetric monoidal 1–category. The algebraic K–
theory spectrum K.M/ is the spectrum associated to the group completion of M� .
Thus, the algebraic K–theory functor is defined as the composition

(8-4) KW SymMonCat1
.�/�

�! MonE1.S/ �! GrpE1.S/ �! Sp:

Remark 8-5 Strictly speaking, this is the direct sum K–theory, since it does not
take into account a potential exactness (or Waldhausen) structure on the symmetric
monoidal 1–categories in question. Nevertheless, in many cases of interest, eg that
of a connective ring spectrum R, the algebraic K–theory of R, defined in terms of
Waldhausen’s S� construction applied to the stable 1–category of R–modules (which
agrees with the K–theory of any suitable model category of R–modules; see [6] for
details), is computed as the direct sum K–theory of the symmetric monoidal1–category
ProjR of finitely generated projective R–modules [20, Definition 7.2.2.4].

For more sophisticated versions of K–theory, the situation is slightly more complicated
but entirely analogous. In [7] it is shown that the algebraic K–theory KW Catperf

1 !Sp of
small idempotent-complete stable 1–categories is a lax symmetric monoidal functor,
as is the nonconnective version; the methods employed to do so are similar to the ones
used in the present paper, in that K is shown to be the tensor unit in a symmetric
monoidal 1–category of all additive (respectively, localizing) functors Catperf

1 ! Sp,
so that the commutative algebra structure ultimately relies on the existence of an
idempotent object in an appropriate symmetric monoidal 1–category. The case of
general Waldhausen 1–categories is treated in [3], where it is shown that the algebraic
K–theory KW Wald1 ! Sp of Waldhausen 1–categories is again a lax symmetric
monoidal functor.

As already mentioned, the 1–categorical algebraic K–theory

KW SymMonCat1! Sp
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applied to nerves of ordinary symmetric monoidal categories recovers the 1–categorical
algebraic K–theory KW SymMonCat! Sp. Note, however, that the inclusion of sym-
metric monoidal 1–categories into symmetric monoidal 1–categories given by the
nerve functor does not commute with the tensor products. In fact, the tensor product
N.C/˝N.D/ of the nerves of two symmetric monoidal 1–categories C , D need not
again be (the nerve of) a symmetric monoidal 1–category; rather, one can show that
N.C˝D/ is the 1–categorical truncation of N.C/˝N.D/.

Theorem 8-6 The algebraic K–theory functor KW SymMonCat1! Sp is lax sym-
metric monoidal. In particular, it refines to a functor RigO.Cat1/! RingSpO for any
1–operad O .

Proof The proof is almost the same as in the 1–categorical case. The last two functors
in the defining composition (8-4) are symmetric monoidal by Theorem 5-1. The
remaining functor .�/� W SymMonCat1!MonE1.S/ is the canonical extension of
the accessible, product preserving functors .�/� W Cat1 ! S . Thus, Corollary 6-6
implies that this canonical extension is lax symmetric monoidal as intended.

Remark 8-7 The K–theory functor is defined as the composition (8-4) of lax sym-
metric monoidal functors. We know that the last two of these (namely, the group
completion and the associated spectrum functor) are actually symmetric monoidal.
Thus, one might wonder whether also the first functor (and hence the K–theory functor)
is symmetric monoidal as well. This is not the case, as the following counterexample
shows.

We begin by recalling from [20, Remark 2.1.3.10] that the 1–category MonE0
.Cat1/

is equivalent to .Cat1/�0= . Thus, an object in MonE0
.Cat1/ is just an1–category C

together with a chosen object x 2 C . The fact that an ordinary monoid gives rise to
a category with one object (which is hence distinguished) admits the following 1–
categorical variant. There is a functor

BW MonE1
.S/!MonE0

.Cat1/

which is left adjoint to the functor which sends xW �0 ! C to the endomorphism
monoid EndC.x/ of the distinguished object. Similarly, there is a functor

BW MonE1.S/!MonE1.Cat1/

which is left adjoint to the functor which sends a symmetric monoidal 1–category to
the E1–monoid of endomorphisms of the monoidal unit (we are also using the fact
that En˝E1 ' E1 for nD 0; 1).
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Now, let F D Fr.�0/ denote the free symmetric monoidal 1–category on the point,
which is to say the nerve of the groupoid of finite sets and isomorphisms. We claim
that, for any symmetric monoidal 1–groupoid C ,

.BF/˝ C ' BC:

This is clearly true if C D F , and the general formula follows by the observation that
both sides commute with colimits in the C variable and the fact that every symmetric
monoidal 1–groupoid is an iterated colimit of F . But the groupoid core .BF/� is
trivial. Thus, K.BF/˝K.C/D 0 for every C . On the other hand, taking C D Z, we
have that .BC/� ' BC , so K.BC/'†HZ, the suspension of the Eilenberg–MacLane
spectrum.

We have the following recognition principle for semiring 1–categories.

Theorem 8-8 Let C be an En –monoidal 1–category with coproducts such that the
monoidal product

˝W C � C! C

preserves coproducts separately in each variable. Then .C;t;˝/ is canonically an
object of RigEn

.Cat1/.

Proof Let Cat†1 be the 1–category of 1–categories which admit finite coproducts
and coproduct preserving functor. There is a fully faithful functor

Cat†1! SymMonCat1

given by considering an 1–category with coproducts as a cocartesian symmetric
monoidal 1–category; see [20, Variant 2.4.3.12]. We want to show that this functor
naturally extends to a lax symmetric monoidal functor, essentially by the construction
of the tensor product on Cat†1 of [20, Corollary 4.8.1.4] . From this the claim follows,
since an En –algebra in Cat†1 is the same as an En –monoidal 1–category such that
the tensor product preserves finite coproducts in each variable separately.

The first thing we want to observe is that the 1–category Cat†1 is preadditive. To see
this, note that Cat†1 has finite coproducts and products, because Cat†1 is presentable;
this follows from [20, Lemma 4.8.4.2] by taking K to be the collection of finite
sets. It remains to check that the product C �D , which is calculated as the product in
Ho.Cat1/, satisfies the universal property of the coproduct in Ho.Cat†1/. Given a third
1–category with finite coproducts E , we note that any pair of coproduct preserving
functors f W C! E and gW D! E extends to the coproduct preserving functor

C �D
f�g
�! E � E

t
�! E :
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Moreover, this extension is unique up to homotopy, because .c; d/Š .c;∅/t .∅; d/
for any .c; d/ 2 C �D .

Using [20, Proposition 4.8.1.10] again, the inclusion functor i W Cat†1!Cat1 admits a
left adjoint L which is symmetric monoidal. By Proposition 5-4 the functor L extends
to a left adjoint functor

L0W SymMonCat1 'MonE1.Cat1/!MonE1.Cat†1/' Cat†1:

The right adjoint of this functor can be described as the functor

MonE1.i/W Cat†1 'MonE1.Cat†1/!MonE1.Cat1/:

We can now conclude that MonE1.i/ is lax symmetric monoidal since it is right adjoint
to a symmetric monoidal functor. It remains to show that MonE1.i/ is the desired
functor. This is obvious.

Corollary 8-9 If C is an ordinary monoidal category with coproducts such that ˝W C�
C! C preserves coproducts in each variable separately, then .C;t;˝/ is canonically
an object of RigE1

.Cat/ � RigE1
.Cat1/. If C is moreover braided or symmetric

monoidal then .C;t;˝/ is an object of RigE2
.Cat/ or RigE1.Cat/ respectively.

Proof We only need the identification of the En –monoids in Cat with the respective
monoidal categories. This has been given in [20, Example 5.1.2.4].

Corollary 8-10 Let C be an En –monoidal1–category with coproducts such that ˝W
C � C! C preserves coproducts in each variable separately. Then the largest Kan com-
plex C� inside of C together with t and ˝ is an object of RigEn

.S/� RigEn
.Cat1/.

Proof The functor .�/� W Cat1! S � Cat1 preserves products and is accessible.
Thus we can apply Corollary 6-6 to deduce that the induced functor MonE1.Cat1/!
MonE1.Cat1/ is lax symmetric monoidal. But this implies that we obtain a further
functor RigEn

.Cat1/!RigEn
.Cat1/ which preserves the underlying object of Cat1 .

Now apply this functor to the semiring 1–category of Theorem 8-8.

Example 8-11 (i) For an ordinary commutative ring R, let ModR denote the
(ordinary) category of R–modules. Then ModR and the 1–groupoid Mod�R ,
equipped with the operations ˚ and ˝R , form E1–semiring categories. The
same applies to the category of sheaves on schemes and other variants.
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(ii) For an En –ring spectrum R, the 1–category ModR of (left) R–modules is a
En�1 –monoidal 1–category by [20, Section 4.8 or Proposition 7.1.2.6]. Since
the tensor product preserves coproducts in each variable we conclude that ModR ,
together with the coproduct ˚ and tensor product ˝R , is an En�1 –semiring
1–category.

Now we want to apply this to identify certain spectra as E1–ring spectra. For a con-
nective EnC1 –ring spectrum R the 1–category ProjR of finitely generated projective
R–modules is an En –semiring. The K–theory spectrum K.R/ can then be defined
as K.ProjR/. This definition is actually equivalent to the definition using Waldhausen
categories: for the variant which uses finitely generated free R–modules in place of
projective, this is shown in [11, Chapter VI.7], and for the general case this follows
from [5, Section 4].

Corollary 8-12 For a connective EnC1 –ring spectrum R, the algebraic K–theory
spectrum K.R/ of R is an En –ring spectrum.

We also have the following proposition, which states roughly that group completion of
monoidal 1–categories not only inverts objects, but arrows as well. It also shows why
it is necessary to discard all non-invertible morphisms before group completion.

Proposition 8-13 The underlying 1–category of an E1–group object of Cat1 is
an 1–groupoid. More precisely, the group completion functor MonE1.Cat1/ !
GrpE1.Cat1/ factors through the groupoid completion

MonE1.Cat1/!MonE1.S/! GrpE1.S/! GrpE1.Cat1/

and induces an equivalence GrpE1.S/' GrpE1.Cat1/.

Proof Let C be an E1–group object of Cat1 . Then the underlying 1–category of
C is an 1–groupoid precisely if its homotopy category Ho.C/ is a groupoid. Thus it
suffices to show that Ho.C/ is a groupoid. But since Ho.C/ is a group object in Cat,
this reduces the proof of the proposition to ordinary categories C .

A group object C in categories is a symmetric monoidal category .C;˝/ together with an
inversion functor I W C! C as in to Proposition 1-1. We clearly have I2' id. As a first
step we show that all endomorphisms of the tensor unit 1 in C are automorphisms. This
follows from the Eckman–Hilton argument since homC.1; 1/ carries two commuting
monoid structures (composition and tensoring), and as one of these is a group structure
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the other must also be as well. It follows that all endomorphisms in C are automorphisms
by the identification

I.x/˝�W homC.x;x/Š homC.1; 1/:

Finally, to show that C is a groupoid, it now suffices to show that for every morphisms
f W x! y in C there is a morphism gW y! x in C . By tensoring with I.y/ we see
that we may assume that y D 1. Then we have I.f /W I.x/! 1, and therefore, using
the usual identifications, g WD I.f /˝xW 1! x .

Remark 8-14 Proposition 8-13 is closely related to our comment in Remark 1-5. More
precisely, the reason that group completion produces groupoids lies in our definition of
group objects. We could have alternatively stipulated that a symmetric monoidal 1–
category C (considered as an object in MonE1.Cat1/) is a group if every object of C is
tensor invertible (or even just dualizable). Let us denote the 1–category of symmetric
monoidal categories satisfying this weaker group condition by Grp�E1.Cat1/. Then
we have strict inclusions

GrpE1.Cat1/� Grp�E1.Cat1/�MonE1.Cat1/

of reflective subcategories. The reflection from MonE1.Cat1/ to Grp�E1.Cat1/ is
closely related to Quillen’s S�1S construction.

Appendix A: Comonoids

In this short section we establish additional universal mapping properties for MonE1.S/
and GrpE1.S/ respectively. This gives a characterization of these1–categories among
all presentable 1–categories and not only among the (pre)additive ones. We write
FunRAd.C;D/ for the 1–category of right adjoint functors from C to D , which is a
full subcategory of Fun.C;D/.

Lemma A-1 If C and D are presentable, then we have canonical equivalences

MonE1.FunRAd.C;D//' FunRAd.C;MonE1.D//;

GrpE1.FunRAd.C;D//' FunRAd.C;GrpE1.D//:

Proof We note that right adjoint functors between presentable 1–categories can be
described as accessible functors that preserve limits. Then the proof works exactly the
same as the proof of Lemma 1-6.
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Definition A-2 Let C be an 1–category with finite coproducts. We define the 1–
categories of comonoids and cogroups in C to be the respective 1–categories

coMonE1.C/DMonE1.C
op/op and coGrpE1.C/D GrpE1.C

op/op:

Remark A-3 The comonoids as defined above are comonoids for the coproduct as
tensor product. This is a structure which is often rather trivial. For example in the
1–category S of spaces (or in the ordinary category of sets) there is exactly one
comonoid in the sense above, namely the empty set ∅.

Proposition A-4 Let C and D be presentable 1–categories. Then there are natural
equivalences

FunL.MonE1.C/;D/' coMonE1.FunL.C;D//

FunL.GrpE1.C/;D/' coGrpE1.FunL.C;D//:

In particular, for a presentable 1–category D we have natural equivalences

FunL.MonE1.S/;D/' coMonE1.D/ and FunL.GrpE1.S/;D/' coGrpE1.D/:

Proof Let us recall that given two 1–categories E and F , there is an equivalence
of categories FunL.E ;F/ and FunRAd.F ; E/op [19, Proposition 5.2.6.2]. The adjoint
functor theorem [19, Corollary 5.5.2.9] together with Lemma 1-6 then yields the
following chain of equivalences:

FunL.MonE1.C/;D/' FunRAd.D;MonE1.C//
op

'MonE1.FunRAd.D; C//op

'MonE1.FunL.C;D/op/op

D coMonE1.FunL.C;D//:

In the special case of C D S we can use the universal property of 1–categories of
presheaves [19, Theorem 5.1.5.6] to extend the above chain of equivalences by

coMonE1.FunL.S;D//' coMonE1.D/:

This settles the case of monoids and the case of groups works the same.

Appendix B: Algebraic theories and monadic functors

In this section we give a short discussion of Lawvere algebraic theories in1–categories
and show that our examples are algebraic. For other treatments of 1–categorical
algebraic theories; see [9; 10], [15, Section 32] and [19, Section 5.5.8]. We write Fin
for the category of finite sets.
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Definition B-1 An algebraic theory is an 1–category T with finite products and a
distinguished object 1T , such that the unique product-preserving functor N.Fin/op!T
which sends the singleton to 1T is essentially surjective. A morphism of algebraic
theories is a functor which preserves products and the distinguished object. We write
Th� .Cat…1/� for the 1–category of theories and morphisms thereof.

This is the obvious generalization of algebraic theories, as defined by Lawvere [18], to
1–categories.

Definition B-2 Let C be an 1–category with finite products. An algebra in C for an
algebraic theory T is a finite product preserving functor T ! C . We write AlgT .C/
for the 1–category of algebras of T in C , ie, for the full subcategory of Fun.T ; C/
spanned by the algebras.

The notation AlgT .C/ should not be confused with the definition of algebra for an
1–operad used previously in the paper. If C is a presentable 1–category and T a
theory, then AlgT .C/ is again presentable. This follows since AlgT .C/ is an accessible
localization of the presentable 1–category Fun.T ; C/ (the proof is similar to that of
Proposition 4-1 which takes care of the case of commutative monoids). Applying the
adjoint functor theorem we also get that the forgetful functor AlgT .C/! C , ie the
evaluation at the distinguished object 1T , has a left adjoint.

Proposition B-3 Let C be a presentable 1–category and T a theory. Then we have
an equivalence

AlgT .C/' C˝AlgT .S/:

Proof The same proof as for Lemma 1-6 shows that we have an equivalence

AlgT .FunR.Cop;S//' FunR.Cop;AlgT .S//:

This then implies the claim since we have C˝D' FunR.Cop;D/ for any presentable
1–category D .

A monad on an1–category C is an algebra M in the monoidal1–category Fun.C; C/
of endofunctors; see [20, Chapter 4.7] for details. Any such monad M 2Alg.Fun.C; C//
admits an 1–category of modules which we denote AlgM .C/. This 1–category
comes equipped with a forgetful functor AlgM .C/! C which is a right adjoint (again,
this 1–category should not be confused with the 1–category of algebras for an
1–operad). Thus, given an arbitrary right adjoint functor U W D! C , it is natural
to ask whether this functor is equivalent to the forgetful functor from modules over
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a monad on C . In this case the corresponding monad is uniquely determined as the
composition M D U ıF , where F is a left adjoint of U . The functors U for which
this is the case are called monadic.

The Barr–Beck theorem (also called Beck’s monadicity theorem) gives necessary
and sufficient conditions for a functor U to be monadic. The conditions are that U

is conservative (ie, reflects equivalences) and that U preserves U –split geometric
realizations [20, Theorem 4.7.4.5]. We will not need to discuss here what U –split
means exactly since in our cases all geometric realizations will be preserved.

Proposition B-4 Let C be a presentable 1–category and let T be a theory. Then the
forgetful functor AlgT .C/! C is monadic and preserves sifted colimits.

Proof We will show that the evaluation Fun….T ; C/!C is conservative and preserves
sifted colimits. The result then follows immediately from the monadicity theorem. That
the functor is conservative is clear, so it remains to check the sifted colimit condition.
But the inclusion of the finite product preserving functors

Fun….T ; C/! Fun.T ; C/

preserves sifted colimits by (4) of [19, Proposition 5.5.8.10], and as colimits in functor
1–categories are computed pointwise the evaluation Fun.T ; C/! C also preserves
sifted colimits.

We will obtain a converse to the previous proposition in the case of the 1–category of
spaces; namely, in this case we will identify algebraic theories with certain monads.
To this end, note that an arbitrary monadic functor U W AlgM .S/! S defines a theory
TM by

TM WD .Algff
M .S//op;

where Algff
M .S/� AlgM .S/ is the full subcategory spanned by the free M –algebras

on finite sets (which we abusively refer to as finite free algebras, and should not to be
confused with more general free algebras on finite or finitely presented spaces). There
is a canonical functor

RW AlgM .S/! AlgTM
.S/

from modules for M to models to the associated theory TM , which is just the restriction
of the Yoneda embedding to the full subcategory Algff

M .S/.

Definition B-5 A monadic functor U W AlgM .S/ ! S is called algebraic if the
restricted Yoneda embedding RW AlgM .S/! AlgTM

.S/ is an equivalence of 1–
categories over S . We also say that a monad M on spaces is algebraic if the associated
forgetful functor U W AlgM .S/! S is algebraic.

Algebraic & Geometric Topology, Volume 15 (2015)



3148 David Gepner, Moritz Groth and Thomas Nikolaus

The main result of this section is Theorem B-7, which provides necessary and sufficient
conditions for a monadic functor to spaces to be algebraic. As preparation, we first
collect the following result, a straightforward generalization of a well-known result in
ordinary category theory.

Proposition B-6 Let C be a presentable 1–category and let M W C! C be a monad
which commutes with �–filtered colimits for some infinite regular cardinal � . Then
AlgM .C/ is a presentable 1–category.

Proof To begin with let us choose a regular cardinal � such that C is �–compactly
generated and M commutes with �–filtered colimits. Let C� � C and AlgM .C/� �
AlgM .C/ be the respective full subcategories spanned by the �–compact objects. We
claim that there is an equivalence Ind�.AlgM .C/�/ ' AlgM .C/. Since AlgM .C/
admits �–filtered colimits, the inclusion AlgM .C/� � AlgM .C/ induces a functor

�W Ind�.AlgM .C/�/! AlgM .C/

which we want to show is an equivalence. The fully faithfulness of � is a special case
of the following: if D is an 1–category with �–filtered colimits, then the inclusion
D� � D of the �–compact objects induces a fully faithful functor Ind�.D�/! D .
Thus it remains to show that � is essentially surjective.

Because M commutes with �–filtered colimits, we see that, if X 2 C� , then FX 2

AlgM .C/� , where F W C ! AlgM .C/ denotes a left adjoint to the forgetful functor
AlgM .C/! C . Since the forgetful functor AlgM .C/! C is conservative and C is
�–compactly generated, a map f W A! B of M –modules is an equivalence if and
only if

mapAlgM .C/.FX;A/!mapAlgM .C/.FX;B/

is an equivalence for all X 2 C� . We apply this criterion to the map colimA02AlgM .C/�
=A

A0!A; whose domain is a �–filtered colimit, in order to obtain the essential surjectivity
of � . We first show that, for any X 2 C� , the induced map

colimAlgM .C/�
=A
�0map.FX;A0/! �0map.FX;A/

is an isomorphism. Indeed, it is surjective because any (homotopy class of the) map
FX ! A is the image of the identity map FX ! A0 for A0 D FX , which is by
construction a �–compact object of AlgM .C/. Similarly, injectivity follows because
given any two maps f;gW FX ! A0 , the fact that AlgM .C/�=A is �–filtered implies
that there exists an A00!A which coequalizes f and g . Replacing X by K˝X for
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some finite simplicial set K , and noting that K˝X is a �–compact object of C since
K is finite, we obtain an isomorphism

�0map.K; colim map.FX;A0//Š �0map.K;map.FX;A//:

It follows that colim map.FX;A0/ ! map.FX;A/ is a homotopy equivalence, as
desired.

Theorem B-7 A monadic functor U W AlgM .S/ ! S is algebraic if and only if it
preserves sifted colimits.

Proof This is a necessary condition since the forgetful functor AlgTM
.S/ ! S

preserves sifted colimits (see Proposition B-4). Thus, suppose that U preserves sifted
colimits; we must show that R is an equivalence. Note that AlgM .S/ is presentable
by Proposition B-6, and AlgTM

.S/ is presentable as an accessible localization of the
presentable 1–category Fun.T ;S/. Because Algff

M .S/� AlgM .S/ is a subcategory
of compact projective objects, R preserves sifted colimits, and clearly R also preserves
small limits. Thus R admits a left adjoint L.

We now check that the adjunction counit LR! id is an equivalence. Since R is
conservative, as both the projections down to S are conservative, this will also imply
that the unit id!RL is an equivalence. Observe that both functors commute with
sifted colimits and spaces is freely generated under sifted colimits by the finite sets
hni, it is enough to check the counit equivalence on objects of the form Fhni. Now,
RFhni D bF hni, the functor represented by bF hni, so we must show that we have an
equivalence LbF hni ! Fhni. Let A 2 AlgM .S/ and consider the map

map.Fhni;A/!map.L OFhni;A/:

The left-hand side can be identified with map.Fhni;A/ ' U.A/n . Similarly, the
right-hand side is

map.LbF hni;A/'map.bF hni;RA/'map.bF h1i;RA/n ' U.A/n

where we used in the last step that R is compatible with the forgetful functors to S .

Finally, we wish to apply the results of this section to the study of semirings and rings
in 1–categories. We begin by showing that semirings and rings are algebraic over
spaces.

Proposition B-8 The functors RigEn
.S/! S and RingEn

.S/! S are monadic and
algebraic over S .
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Proof We claim that the functors RigEn
.S/!MonE1.S/! S and RingEn

.S/!
GrpE1.S/! S all preserve sifted colimits and reflect equivalences. Then the monadic-
ity follows from the Barr–Beck theorem [20, Theorem 4.7.4.5], and the algebraicity
from Theorem B-7.

To see that this claim is true note that three of the four functors, namely RigEn
.S/!

MonE1.S/, MonE1.S/! S , and RingEn
.S/! GrpE1.S/, are forgetful functors

from 1–categories of algebras over an 1–operad. These forgetful functors are
always conservative and for suitable monoidal structures they also preserve sifted
colimits [20, Corollary 3.2.3.2]. Thus we only have to establish the same properties for
GrpE1.S/! S . It is easy to see that this functor is conservative since GrpE1.S/ is
a full subcategory of MonE1.S/ and the given functor factors over the conservative
functor MonE1.S/! S . It remains to show that GrpE1.S/!MonE1.S/ preserves
sifted colimits. But for an E1–monoid in the 1–category of spaces being a group
object is equivalent to being grouplike. Thus, via the left adjoint functor �0 it reduces
to the statement that the sifted colimit of groups formed in the category of monoids is
again a group. And this result is a special case of [1, Proposition 9.3].

Definition B-9 We denote the algebraic theory corresponding to the functor

RigEn
.S/! S

by TEn–Rig and call it the theory of En –semirings. Accordingly we denote the algebraic
theory corresponding to the functor RingEn

.S/! S by TEn–Ring and call it the theory
of En –rings.

Proposition B-10 Let C be a cartesian closed, presentable 1–category. Then we
have equivalences

RigEn
.C/' AlgTEn–Rig

.C/ and RingEn
.C/' AlgTEn–Ring

.C/:

Proof For C D S the 1–category of spaces the statement is true by definition of
TEn–Rig and TEn–Ring . The general case follows from the base change formulas given
in Propositions 7-7 and B-3.

Remark B-11 (i) Theories of E1–semirings and rings have also been constructed
in [9] by the use of spans and distributive laws. These two approaches do agree.

(ii) The theory approach of semirings and rings gives a way of defining ring objects
in a much broader generality. One only needs an 1–category C with finite
products. In this way we can drop the assumption that C is presentable and
cartesian closed. However in this case semiring and ring objects do not admit a
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nice description in terms of a tensor product on monoids. It is also impossible to
apply this to different tensor products than the cartesian one.

(iii) We showed in Corollary 6-6 that an accessible, product preserving functor
F W C! D between cartesian closed symmetric monoidal categories extends to
a lax symmetric monoidal functor MonE1.C/!MonE1.D/. This means that
F extends to functors RigEn

.C/! RigEn
.D/ and RingEn

.C/! RingEn
.D/.

Therefore we may drop the assumption that F is accessible and conclude that any
product preserving functor C! D extends to functors RigEn

.C/! RigEn
.D/

and RingEn
.C/! RingEn

.D/.
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