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Floer homology and splicing knot complements

EAMAN EFTEKHARY

We obtain a formula for the Heegaard Floer homology (hat theory) of the three-
manifold Y .K1;K2/ obtained by splicing the complements of the knots Ki � Yi ,
i D 1; 2 , in terms of the knot Floer homology of K1 and K2 . We also present a
few applications. If hi

n denotes the rank of the Heegaard Floer group bHFK for the
knot obtained by n–surgery over Ki , we show that the rank of cHF.Y .K1;K2// is
bounded below by

j.h1
1� h1

1/.h
2
1� h2

1/� .h
1
0� h1

1/.h
2
0� h2

1/j:

We also show that if splicing the complement of a knot K � Y with the trefoil com-
plements gives a homology sphere L–space, then K is trivial and Y is a homology
sphere L–space.

57M27; 57R58

1 Introduction

Heegaard Floer homology, introduced by Ozsváth and Szabó [12], has been the source
of powerful techniques for the study of objects in low-dimensional topology. It is
interesting to investigate whether Heegaard Floer homology can distinguish the standard
sphere from other homology spheres. Since the Heegaard Floer groups of the connected
sum of two homology spheres are obtained as the tensor product of the Heegaard Floer
groups associated with the two pieces, the question is reduced to determining prime
homology spheres with trivial Heegaard Floer groups. The Poincaré homology sphere
†.2; 3; 5/ with either orientation is the unique known example of a non-trivial prime
homology sphere Y with �HF.Y IZ/DZ. A conjecture of Ozsváth and Szabó predicts
that this is in fact the only possible example.

In this paper we study the Heegaard Floer groups of a homology sphere Y which
contains an incompressible torus. We may use the incompressible torus to decompose Y ,
fill out the torus boundary of each of the two pieces by gluing a solid torus, and obtain
two new homology spheres, Y1 and Y2 . By requiring Y1 and Y2 to be homology
spheres the gluing of the solid tori is determined; the decomposition determines a knot
Ki in Yi , i D 1; 2, and Y D Y .K1;K2/ is obtained by splicing the complements of
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K1 and K2 in Y1 and Y2 , respectively. A formula is obtained for �HF.Y IF/ in terms
of the knot Floer objects associated with K1 � Y1 and K2 � Y2 , where F denotes the
field Z=2Z with two elements.

The more precise statement of the splicing formula obtained in this paper is as follows.
Let K � Y denote a null-homologous knot inside a three-manifold Y . For every
n 2 Z [ f1g let Yn D Yn.K/ denote the three-manifold obtained by performing
n–surgery on K and let Kn � Yn denote the knot in Yn which is the core of the
neighbourhood replaced for nd.K/�Y in constructing Yn . Denote the homology group
bHFK.Yn;KnIF/ by Hn.K/ and its dimension as a vector space over F by hn.K/.

In particular, H1.K/ D bHFK.Y;KIF/ and H0.K/ D bHFL.Y;KIF/ are the knot
Floer homology and the longitude Floer homology of K , respectively (see Ozsváth
and Szabó [11] and Eftekhary [2]).

Choose a Heegaard diagram

H D .†; ˛D f˛1; : : : ; ˛gg; y̌ D fˇ1; : : : ; ˇg�1g/

for the knot complement Y nK , and let �� denote an oriented longitude which has
framing coefficient � 2 Z[f1g. One can choose the curves �� (which are disjoint
from the curves in y̌) so that the pairs .�0; �1/, .�1; �1/ and .�0; �1/ have single
intersection points in the Heegaard diagram. For � 2 f0; 1;1g set

ˇ� D fˇ
�

1; : : : ; ˇ
�

g�1; ��g;

where ˇ�i is an isotopic copy of the curve ˇi . The pictures on the left-hand side and the
right-hand side of Figure 1 illustrate two possible general arrangements for the curves
�0 , �1 and �1 . In Figure 1 and other figures in this paper, the surface orientation is
chosen opposite from the standard orientation of the page in order to stay compatible
with the orientation convention of [12].

The two Heegaard quadruples

.†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/ and .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/

obtained in this way then correspond to the exact triangles

(1)

H0.K/

f1.K / $$

H1.K/
f1.K /

oo

H1.K/

f0.K /

::

and

H0

f1.K / ""

H1.K/
f1.K /

oo

H1.K/
f0.K /

::
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Figure 1: The curves �0 (orange), �1 (pink) and �1 (green) and the punc-
tures are chosen following one of the above two patterns. The punctures u , v
and w are used to define f0 , f1 and f1 , while u , v and w are used to define
f0 , f1 and f1 .

respectively. The ranks of both f�.K/ and f�.K/ are equal to

a�.K/D
1
2
.h0.K/C h1.K/C h1.K/� 2h�.K//; � 2 f0; 1;1g:

The exactness of the above two triangles imply that the induced maps

Coker.f0.K// �! Ker.f1.K// and Coker.f0.K// �! Ker.f1.K//

by f1.K/ and f1.K/ are isomorphisms. Both the domain and the target of the afore-
mentioned isomorphisms are of dimension a1.K/. Take �.K/W H0.K/!H1.K/
(resp. �.K/W H0.K/! H1.K/) to be an arbitrary extension of the inverse of the
isomorphism induced by f1.K/ (resp. f1.K/), so that the ranks of both �.K/ and
�.K/ are equal to a1.K/.

Suppose that a pair of knots K1 and K2 is given. For every ?; � 2 f0; 1;1g and
i D 1; 2, set Hi

�
DH�.Ki/, H?;�DH1

?˝H2
�

, fi
�
D f�.Ki/, fi�D f�.Ki/, � i D �.Ki/

and � i D �.Ki/. Consider the chain complex .�.K1;K2/; d�/ constructed as follows.
The F–module �.K1;K2/ is the direct sum of the modules which appear on the
vertices of the cube illustrated in Figure 2.

Each directed edge (including the dashed edges) in the aforementioned diagram deter-
mines a homomorphism from �.K1;K2/ to itself, which is trivial on all summands
except for the one which corresponds to its start point. The map takes the summand
corresponding to its start point to the summand corresponding to its endpoint by the
homomorphism which labels the directed edge. The differential d� of the complex
�.K1;K2/ is defined to be the sum of the homomorphisms which correspond to the
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Figure 2: The above cube determines the chain complex �.K1;K2/ and its
differential d�

directed edges of the cube in Figure 2. One should of course make sure that d�ıd�D0.
However, this follows quickly from the exactness of the triangle in (1).

Theorem 1.1 With the above notation fixed, the Heegaard Floer homology of the
three-manifold Y .K1;K2/ obtained by splicing the knot complements Y1 nK1 and
Y2 nK2 is given by

�HF.Y .K1;K2/IF/'H�.�.K1;K2/; d�/:

We use the combinatorial description of Heegaard Floer homology by Sarkar and Wang
[16], which is also adapted for knots in S3 by Manolescu, Ozsváth and Sarkar [8] and
Manolescu, Ozsváth, Szabó and Thurston [9]. These combinatorial descriptions help
us avoid several technical issues that arise when one glues holomorphic curves.
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For the knots K1 � Y1 and K2 � Y2 as above, define

�.K1;K2/ WD .h
1
1� h1

1/.h
2
1� h2

1/� .h
1
0� h1

1/.h
2
0� h2

1/:

As a corollary of Theorem 1.1 we prove the following:

Corollary 1.2 For Y D Y .K1;K2/ as above we have

rnk. �HF.Y IF//�maxfj�.K1;K2/j; j�.K1;K2/jg;

where Ki � Yi D �Yi denotes the mirror of Ki in the three-manifold Yi D �Yi

for i D 1; 2.

When one of the two knots is the trefoil, the formula is simplified significantly. In
particular, we prove the following corollary in Section 6:

Corollary 1.3 Let R denote the right-handed trefoil. With the above notation fixed,

rnk
� �HF.Y .R;K//

�
� h0.K/Ch1.K/;

rnk
� �HF.Y .R;K//

�
� 4 maxfh0.K/; h1.K/; h1.K/g�.h0.K/Ch1.K/C2h1.K//:

Moreover, if K is non-trivial, Y .R;K/ is not an L–space.

It is shown by Hedden and Levine [5] that splicing non-trivial knots inside homology
sphere L–spaces never produces an L–space. Meanwhile, the knot K in Corollary 1.3
lives in an arbitrary homology sphere. In this regard, Corollary 1.3 goes beyond the
result of Hedden and Levine.

Remark 1.4 The splicing formula of Theorem 1.1 is different from the splicing
formula from the original arXiv version of the paper. The results of a few other papers
of the author are based on the splicing formula of this paper. The results of [3] remain
unchanged, since the formula (17) presented in Section 5.1 which is used in [3] remains
unchanged. The proof of the main theorem of [4] no longer goes through. Fixing the
argument requires developing some technology, including a description of the bordered
Floer homology for a knot complement only in terms of the knot chain complex
associated with the knot. The modifications will appear in an upcoming revision of [4].
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2 Graphs of chain complexes

2.1 Oriented graphs and chain complexes

Let G denote an oriented graph without oriented loops, which consists of a set V .G/

of vertices and a set
E.G/� V .G/�V .G/

of directed edges. For every eD .v1; v2/2E.G/ we let vs.e/Dv2 and vt .e/Dv1 . The
edge e is thus oriented from its starting vertex vs.e/ towards its terminal vertex vt .e/.
The condition that G does not contain any oriented loops implies that there is no
sequence e1; : : : ; ek 2E.G/ with the property

vt .ei/D vs.eiC1/; i D 1; : : : ; k � 1; and vt .ek/D vs.e1/:

Definition 2.1 Let G denote an oriented graph without any oriented loops, as above.
A collection f.Cv; dv/gv2V .G/ of chain complexes, together with the chain maps

ffeW Cvs.e/! Cvt .e/ j e 2E.G/g

is called a graph of complexes if, for every v1 , v2 2 V .G/,

(2)
X

e1;e22E.G/
vs.e1/Dv1; vt .e2/Dv2

vt .e1/Dvs.e2/

fe2
ıfe1

D 0:

Associated with a graph of complexes as above, write CG D
L
v2V .G/ Cv and define

the differential dG W CG! CG as follows. For c 2 Cv � CG , let

dG.c/D
X

w2V .G/

dG;w.c/;

where dG;w.c/ 2 Cw is defined by

dG;w.c/D

8<:
dv.c/ if w D v;
fe.c/ if there exists e 2E.G/ with vs.e/D v and vt .e/D w;

0 otherwise.

Definition 2.2 The chain complex .CG ; dG/ is called the chain complex associated
with the graph G of chain complexes.

The condition (2) implies that dG ıdG D 0, ie that .CG ; dG/ is a chain complex, since
each fe is a chain map. The chain complex .CG ; dG/ is usually represented by drawing
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the oriented graph G , labelling each vertex v 2 V .G/ by the chain complex .Cv; dv/
(or simply by Cv if there is no confusion) and labelling each oriented edge e by the
chain map fe .

Let G denote an oriented graph without any loops. It is then possible to label the
vertices of G by 1; 2; : : : ; n so that for each e 2 E.G/ we have vs.e/ < vt .e/ (as
numbers in f1; : : : ; ng). Correspondingly, the chain complexes associated with the
vertices of G may be labelled .C1; d1/; : : : ; .Cn; dn/. Let H denote the graph with
vertices 1; : : : ; n and edges

E.H /D f.i; j / j i; j 2 f1; : : : ; ng and i > j g:

For e 2 E.H / let ge D fe if e 2 E.G/ and ge D 0 otherwise. Associated with
fCigi2V .H / and fgege2E.H / we thus find the complex .CH ; dH /, which is identified
with .CG ; dG/. In other words, we may always assume that the underlying graph in a
graph of complexes is the complete oriented graph H . The condition (2) in this case is
equivalent to X

i>k>j

g.i;k/ ıg.k;j/ D 0 for all i; j 2 f1; : : : ; ng:

2.2 Replacing chain complexes with their homology

When the ring of coefficients is F D Z=2Z we would like to replace each complex
.Ci ; di/ in .CH ; dH / with .H�.Ci ; di/; 0/, at the expense of modifying the chain maps
fgege2E.H / so that the homology of the chain complex associated with the graph of
chain complexes remains intact. Let us begin with a lemma.

Lemma 2.3 Suppose that a chain complex .C; dC / is decomposed, as a vector space
over F , as C ' A˚ A˚ B for some vector spaces A and B . Suppose that the
differential dC of C has the following block form in this decomposition:

dC D

0@ 0 IA f1

0 0 f2

g1 g2 h

1A
Then dB D hCg2f1W B! B is a differential and H�.C; dC /DH�.B; dB/.

Proof Since dC is a differential, f1g2 D 0 and the matrix

P D

0@ I 0 0

0 I f1

g2 0 I

1A

Algebraic & Geometric Topology, Volume 15 (2015)
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is thus its own inverse. Since d2
C
D 0 we get

P

0@ 0 IA f1

0 0 f2

g1 g2 h

1AP D

0@0 IA 0

0 0 0

0 0 hCg2f1

1A:
This completes the proof of the lemma.

We refer to the procedure which changes the chain complex .C; dC / to the chain com-
plex .B; dB/ as the cancellation of the two subspaces A˚0˚0'A and 0˚A˚0'A

of C against each other.

The differential di of Ci may be used to decompose Ci as A1
i ˚Hi ˚A2

i , where A1
i

and A2
i are two copies of the same F–module Ai , so that di takes the form

di D

0@0 0 IAi

0 0 0

0 0 0

1A; i D 1; : : : ; n:

Note that Hi DH�.Ci ; di/ is in fact the homology of the complex Ci . In particular,
Hi �Ker.di W Ci! Ci/. Since dvt .e/ ıge D ge ıdvs.e/ , in this basis the matrix block
presentation of ge is of the form

ge D

0@Me Pe Ne

0 Ge Qe

0 0 Me

1A for all e 2E.H /:

Initially, the block presentation for dH is of the form

dH D

0BBBBB@
d1 0 0 : : : 0

g.2;1/ d2 0 : : : 0

g.3;1/ g.3;2/ d3 : : : 0
:::

:::
:::

: : :
:::

g.n;1/ g.n;2/ g.n;3/ : : : dn

1CCCCCA:
Replacing the above 3� 3 block presentations for g.i;j/ and di , the homomorphism
dH takes a 3n� 3n block presentation, where n of the block entries are the identity
matrices corresponding to d1; : : : ; dn . Lemma 2.3 may be used inductively to cancel
A1

i against A2
i for i D 1; : : : ; n and modify the remaining blocks correspondingly.

Straightforward linear algebra implies the following lemma:

Lemma 2.4 Fix the above notation and for i; j 2 f1; : : : ; ng let

h.i;j/ DG.i;j/C
X
`�1

X
i>k1>k2>���>k`>j

Q.i;k1/N.k1;k2/ � � �N.k`�1;k`/P.k`;j/:
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Then the homology of the chain complex associated with H that has complexes
f.Ci ; di/g

n
iD1

and chain maps fgege2E.H / is isomorphic to the homology of the chain
complex associated with H that has complexes f.Hi ; 0/g

n
iD1

and homomorphisms
fhege2E.H / .

For ` D 1 set k D k1 . For hj 2 Ker.G.k;j/W Hj ! Hk/, P.k;j/.hj / D dk.ak/

for some ak 2 Ak . The element ak may of course be modified by adding to ak an
element hk 2Hk . From here, Q.i;k/P.k;j/.hj / is equal to g.i;k/.ak/ up to the addition
of an element in g.i;k/.Hk/. In particular, we find a natural well-defined map

�.i>k>j/W Ker.G.k;j// �! Coker.G.i;k//

and Q.i;k/P.k;j/ is an extension of �.i>k>j/ to a homomorphism from Hj to Hk . It
is however important to note that simultaneous replacement of the maps Q.i;k/P.k;j/
with arbitrary extensions of �.i > k > j / in Lemma 2.3 is not a priori possible.

In this paper, we will face situations where each complex Ci is of the form C 1
i ˝C 2

i and
each chain map g.i;j/W Cj !Ci is of the form g1

.i;j/
˝g2

.i;j/
, where g1

.i;j/
W C 1

j !C 1
i

and g2
.i;j/W C

2
j ! C 2

i are chain maps. In this situation, we may choose the decomposi-
tions C r

i DAr
i ˚H r

i ˚Ar
i for r D 1; 2. Subsequently, note that

Hi DH 1
i ˝H 2

i and Ai D .A
1
i ˝A2

i /˚ .A
1
i ˝H 2

i /˚ .H
1
i ˝A2

i /˚ .A
1
i ˝A2

i /:

Moreover, corresponding to gr
.i;j/

we obtain the blocks M r
.i;j/

, N r
.i;j/

, P r
.i;j/

, Qr
.i;j/

and Gr
.i;j/

for r D 1; 2.

We close this section with a pair of simple lemmas addressing this situation.

Lemma 2.5 In the situation above,

Q.i;k/P.k;j/ DQ1
.i;k/P

1
.k;j/˝Q2

.i;k/P
2
.k;j/CQ1

.i;k/P
1
.k;j/˝G2

.i;k/G
2
.k;j/

CG1
.i;k/G

1
.k;j/˝Q2

.i;k/P
2
.k;j/:

Proof Choose hj 2Hj DH 1
j ˝H 2

j . The image of hj under g.k;j/ is in

.A1
k ˚H 1

k ˚ 0/˝ .A2
k ˚H 2

k ˚ 0/� Ck :

In particular, we find

P.k;j/.hj / 2 .A
1
k ˝A2

k/˚ .A
1
k ˝H 2

k /˚ .H
1
k ˝A2

k/˚ 0�Ak :

For hj D h1
j ˝ h2

j the corresponding decomposition of P.k;j/.hj / is of the form�
P1
.k;j/.h

1
j /˝P2

.k;j/.h
2
j /;P

1
.k;j/.h

1
j /˝G2

.k;j/.h
2
j /;G

1
.k;j/.h

1
j /˝P2

.k;j/.h
2
j /; 0

�
:
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Note that Q.i;k/P.k;j/.hj / is the Hj DH 1
j ˝H 2

j –component of g.i;k/P.k;j/.hj /. The
components in the above presentation are thus mapped by Q.i;k/P.k;j/ to

Q1
.i;k/P

1
.k;j/.h

1
j /˝Q2

.i;k/P
2
.k;j/.h

2
j /; Q1

.i;k/P
1
.k;j/.h

1
j /˝G2

.i;k/G
2
.k;j/.h

2
j /;

G1
.i;k/G

1
.k;j/.h

1
j /˝Q2

.i;k/P
2
.k;j/.h

2
j / and 0;

respectively. This completes the proof of the lemma.

An interesting particular case of the above lemma is when one of the chain maps g1
.i;k/

or g1
.k;j/

is the identity, where we find

g1
.i;k/ D Id D) Q.i;k/P.k;j/G

1
.k;j/˝Q2

.i;k/P
2
.k;j/;

g1
.k;j/ D Id D) Q.i;k/P.k;j/ DG1

.i;k/˝Q2
.i;k/P

2
.k;j/;

respectively.

Lemma 2.6 With the above notation fixed, if i > k > l > j and g1
.i;k/

and g2
.l;j/

are
both the identity map, we find

Q.i;k/N.k;l/P.l;i/ D .Q
1
.k;l/P

1
.l;j//˝ .Q

2
.i;k/P

2
.k;l//:

Proof Following the proof of Lemma 2.5, for hj D h1
j ˝ h2

j 2H 1
j ˝H 2

j one finds

P.l;j/.hj /D .0;P.l;j/.h
1
j /˝ h2

j ; 0/ 2Al :

The image of this element of Al under g1
.k;l/
˝g2

.k;l/
is precisely

g1
.k;l/P

1
.l;j/.h

1
j /˝g2

.k;l/.h
2
j /� C 1

j ˝ .H
2

j ˚A2
j /:

On the other hand, the domain of C.i;k/ (where it is non-zero) is the subset

0˚ 0˚ .H 1
k ˝A2

k/˚ 0�Ak :

In other words, only the component of g1
.k;l /

P1
.l;j /

.h1
j /˝g2

.k;l /
.h2

j / which lands in
H 2

k ˝A2
k survives under the map Q.i;k / . The aforementioned component is precisely

Q1
.k;l/P

1
.l;j /.h

1
j /˝P2

.k;l/.h
2
j / and the image of this element under Q.i;k / is precisely

Q1
.k;l /

P1
.l;j /

.h1
j /˝Q2

.i;k /
P2

.k;l /
.h2

j /. This completes the proof of the lemma.
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3 A pair of exact triangles

3.1 The chain maps

Let K � Y denote a null-homologous knot and fix a Heegaard diagram

yH D .†; ˛D f˛1; : : : ; ˛gg; y̌ D fˇ1; : : : ; ˇg�1g/

for the knot complement Y nK . Set ˇ�D fˇ�1; : : : ; ˇ
�

g�1
; ��g, where ˇ�i is an isotopic

copy of the curve ˇi and �� is chosen so that the Heegaard triple .†;˛;ˇ�/ corresponds
to the three-manifold obtained from Y by �–surgery on the knot K . Choose the curves
�0 , �1 and �1 so that each pair of them has a unique transverse intersection point.
The orientation on K induces an orientation on the three curves �0 , �1 and �1 .

We assume that the intersection pattern of �0 , �1 and �1 is one of the two patterns
illustrated in Figure 1. This gives the Heegaard quadruples

H D .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/ and H D .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/:

Note that there is an identification �CF.†;˛;ˇ�Iu; v; w/D �CF.†;˛;ˇ�Iu; v; w/ for
� 2 f0; 1;1g. Moreover, for �; ? 2 f0; 1;1g the complexes �CF.†;ˇ�;ˇ?Iu; v; w/
and �CF.†;ˇ�;ˇ?Iu; v; w/ are identical and the corresponding homology group is�HF.#g�1

.S1 �S2//. The top generator ‚D‚�;? in this Heegaard Floer homology
group may be used to define two holomorphic triangle maps (see Ozsváth and Szabó [12]
for more details on the definition of holomorphic triangle maps).

Definition 3.1 Associated with the Heegaard triples

H� DH nˇ� and H � DH nˇ�;

define the maps

�.H0/; �.H 0/W �CF.†;˛;ˇ1Iu; v; w/ �! �CF.†;˛;ˇ1Iu; v; w/;

�.H1/; �.H 1/W �CF.†;˛;ˇ1Iu; v; w/ �! �CF.†;˛;ˇ0Iu; v; w/;

�.H1/; �.H1/W �CF.†;˛;ˇ0Iu; v; w/ �! �CF.†;˛;ˇ1Iu; v; w/

to be the holomorphic triangle maps corresponding to the triply punctured Heegaard
triples H0 , H 0 , H1 , H 1 , H1 and H1 , respectively, defined using the top gen-
erators ‚�;? . Denote the induced maps in homology by ��.H�/ and ��.H �/ and
set

f�.K/ WD ��.H�/ and f�.K/ WD ��.H �/ for � 2 f0; 1;1g:
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3.2 Behaviour under Heegaard moves

The group �HF.†;˛;ˇ�Iu; v; w/, denoted by H�.K/, is independent of the particular
Heegaard diagram used for the definition. We have thus defined the maps

f0.K/; f0.K/W H1.K/!H1.K/ and f1.K/; f1.K/W H0.K/!H1.K/:

The definition of the map f0.K/ depends on a Heegaard triple .†;˛;ˇ1;ˇ1Iu; v; w/

associated with the knot K . Changing H to another Heegaard triple changes H1.K/

and H1.K/ by an isomorphism which is determined by the corresponding Heegaard
moves that change one Heegaard diagram to the other. We would now like to show that
the corresponding change in the triangle maps f0.H / and f0.H / respects the above
isomorphisms. This justifies using the names f0.K/ and f0.K/ for the above two
homomorphisms. The same statement would be true for f�.K/ and f�.K/.

Let f�g D f0; 1;1gn f�; ?g. Suppose that two marked Heegaard triples

H� D .†;˛;ˇ�;ˇ?;u; v; w/ and H 0� D .†
0;˛0;ˇ 0

�
;ˇ 0?;u

0; v0; w0/

correspond to the same knot K � Y for a pair .�; ?/ 2 f.1; 1/; .1; 0/g. Similarly, one
may consider the Heegaard diagrams H� and H 0� . Suppose furthermore that the maps

{�W �HF.†;˛;ˇ�Iu; v; w/ �! �HF.†0;˛0;ˇ 0
�
Iu0; v0; w0/;

{?W �HF.†;˛;ˇ?Iu; v; w/ �! �HF.†0;˛0;ˇ 0?Iu
0; v0; w0/

are the isomorphisms of the corresponding Heegaard Floer homology groups associated
with the Heegaard moves (and the change of almost complex structure) changing one
Heegaard diagram to the other.

Theorem 3.2 With the above notation fixed,

f�.H�/ ı {� D {? ı f�.H
0
�/ and f�.H�/ ı {� D {? ı f�.H

0
�/:

Proof The proof consists of some standard steps in Heegaard Floer theory, which are
sketched below for the Heegaard moves.

Note that the first Heegaard triple may be changed to the second Heegaard triple by a
sequence of Heegaard moves, supported in the complement of the marked points, of
the following types:

� Changing the almost complex structure on the surface †.

� Isotopies of the curves in ˛ which are supported away from a neighbourhood U

of ��\�? containing the marked points u, v and w , so that the curves in each
collection remain disjoint.
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� Handle slides among the curves in ˛ supported away from U .

� Simultaneous handle slides among ˇ� n f��g and ˇ? n f�?g supported away
from U .

� Stabilization and destabilization of the Heegaard triple away from U .

The independence of the induced map in homology from the choice of the path of almost
complex structures follows the corresponding argument of Ozsváth and Stipsicz [10].
Corresponding to each one of the above Heegaard moves, we obtain a holomorphic
square map in the level of chain complexes, comprising of a chain homotopy map
between the compositions of the chain maps we are interested in. More precisely,
performing an isotopy or a handle slide in ˛ would result in a new set of simple closed
curves, which may be denoted by ˛0 , by slight abuse of notation. The punctured
Heegaard 4–tuple

.†;˛;˛0;ˇ�;ˇ?Iu; v; w/

determines a homomorphism

ŷ W �CF.†;˛;˛0Iu; v; w/˝ �CF.†;˛0;ˇ�Iu; v; w/˝ �CF.†;ˇ�;ˇ?Iu; v; w/

�! �CF.†;˛;ˇ?Iu; v; w/;

which is defined by counting holomorphic squares with Maslov index �1. Using the
top closed elements in the complexes �CF.†;˛;˛0Iu; v; w/ and �CF.†;ˇ�;ˇ?Iu; v; w/,
we obtain a corresponding map

ˆW �CF.†;˛0;ˇ�Iu; v; w/ �! �CF.†;˛;ˇ?Iu; v; w/:

Let us denote the differentials of the chain complexes

�CF.†;˛0;ˇ�Iu; v; w/ and �CF.†;˛;ˇ?Iu; v; w/

by d˛0;ˇ� and d˛;ˇ?
, respectively. The Heegaard triples .†;˛;˛0;ˇ�/, .†;˛;˛0;ˇ?/

determine chain equivalences

{.˛;˛0;ˇ�/W �CF.†;˛0;ˇ�Iu; v; w/ �! �CF.†;˛;ˇ�Iu; v; w/;

{.˛;˛0;ˇ?/W �CF.†;˛0;ˇ?Iu; v; w/ �! �CF.†;˛;ˇ?Iu; v; w/:

Moreover, we obtain holomorphic triangle maps associated with the Heegaard triples
.†;˛;ˇ�;ˇ?/ and .†;˛0;ˇ�;ˇ?/, which are denoted by

�.˛;ˇ�;ˇ?/W �CF.†;˛;ˇ�Iu; v; w/ �! �CF.†;˛;ˇ?Iu; v; w/;

�.˛0;ˇ�;ˇ?/W �CF.†;˛0;ˇ�Iu; v; w/ �! �CF.†;˛0;ˇ?Iu; v; w/:
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Considering different types of degenerations for a square of Maslov index 0, we obtain
the relation

d˛ˇ?
ıˆCˆ ı d˛0ˇ� D {.˛;˛0;ˇ?/ ı�.˛;ˇ�;ˇ?/C�.˛

0;ˇ�;ˇ?/ ı {.˛;˛0;ˇ�/:

The induced relation in homology gives the claim for the invariance of ��.H�/ under
handle slides in ˛ . The corresponding argument for ��.H�/ is done by changing the
marked points.

The invariance under handle slides among the ˇ–curves is proved similarly, and we
only highlight the important modifications. Let ˇ 0

�
and ˇ 0? be obtained from ˇ� and ˇ?

by handle slides which correspond to a handle slide in y̌. We thus have the following
square of chain maps:

�CF.†;˛;ˇ�Iu; v; w/
�.˛;ˇ�;ˇ?/

//

{�.˛;ˇ�;ˇ
0
�/

��

�.˛;ˇ�;ˇ
0
?/

))

�CF.†;˛;ˇ?Iu; v; w/

{�.˛;ˇ?;ˇ
0
?/

���CF.†;˛;ˇ 0
�
Iu; v; w/

�.˛;ˇ 0�;ˇ
0
?/
// �CF.†;˛;ˇ 0?Iu; v; w/;

while the quadruples .†;˛;ˇ�;ˇ 0�;ˇ
0
?Iu; v; w/ and .†;˛;ˇ�;ˇ?;ˇ 0?Iu; v; w/ deter-

mine a pair of holomorphic square maps

ˆ1; ˆ2W
�CF.˛;ˇ�Iu; v; w/ �! �CF.˛;ˇ 0?Iu; v; w/:

Considering different possible degenerations of holomorphic squares of Maslov index 0

gives the relations

d˛ˇ0? ıˆ1Cˆ1 ı d˛ˇ� D �.˛;ˇ
0
�
;ˇ 0?/ ı {.˛;ˇ�;ˇ

0
�
/C�.˛;ˇ�;ˇ

0
?/;

d˛ˇ0? ıˆ2Cˆ2 ı d˛ˇ� D {.˛;ˇ?;ˇ
0
?/ ı�.˛;ˇ�;ˇ?/C�.˛;ˇ�;ˇ

0
?/:

If we set ˆDˆ1Cˆ2 we thus find

d˛ˇ0? ıˆCˆ ı d˛ˇ� D �.˛;ˇ
0
�
;ˇ 0?/ ı {.˛;ˇ�;ˇ

0
�
/C {.˛;ˇ?;ˇ

0
?/ ı�.˛;ˇ�;ˇ?/;

which completes the proof of the invariance under handle slides of the ˇ–curves
for ��.H�/. The argument for �.H�/ is completely similar.

The proof of the invariance under stabilization and destabilization follows the general
argument of [10] as well.

Remark 3.3 This theorem should be compared with the naturality theorem of Ozsváth
and Stipsicz [10].
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Lemma 3.4 With the above notation fixed, the triangles

(3)

H0.K/

f0.K / $$

H1.K/
f1.K /

oo

H1.K/

f1.K /

::

and

H0

f0.K / ""

H1.K/
f1.K /

oo

H1.K/
f1.K /

::

are both exact.

Proof The more general forms of exact triangles associated with pointed Heegaard
diagrams are discussed by Alishahi and Eftekhary [1, Section 9], using a generalization
of Lemma 4.4 of Ozsváth and Szabó [13]. The arguments are rather standard and
are omitted from the paper. The only remark is that if the intersection pattern of
�0 , �1 and �1 follows the left-hand side of Figure 1, the contributing holomorphic
triangles for .†;ˇ0;ˇ1;ˇ1Iu; v; w/ come in cancelling pairs, allowing us to follow
the standard arguments. For the Heegaard triple .†;ˇ0;ˇ1;ˇ1Iu; v; w/, however,
there is a unique contributing triangle class, which corresponds to the small triangle
bounded between the three curves, which implies that the corresponding triangle map
takes ‚0;1˝‚1;1 to ‚0;1 . Nevertheless, the position of the punctures in this case
implies that the map �.˛;ˇ0;ˇ1Iu; v; w/ that is defined using ‚0;1 is trivial (unlike
�.˛;ˇ1;ˇ0Iu; v; w/). From here, the rest of the argument is standard.

By exactness of the triangles in (3), Ker.f1.K// is isomorphic to Coker.f0.K// while
Ker.f1.K// is isomorphic to Coker.f0.K//. Furthermore, the first isomorphism is
induced by the natural chain map f1.K/ while the second isomorphism is induced
by f1.K/. Let �.K/W H0.K/ ! H1.K/ denote a map which has the same rank
as f1.K/ and induces the inverse of the isomorphism

f1.K/W Ker.f1.K// �! Coker.f1.K//;

while �.K/W H0.K/!H1.K/ denotes a map which has the same rank as f1.K/ and
induces the inverse of the isomorphism

f1.K/W Ker.f1.K// �! Coker.f1.K//:

The choice of the maps �.K/ and �.K/ are of course not unique. If

�1 D �.˛;ˇ0;ˇ1Iu; v; w/ and �0 D �.˛;ˇ1;ˇ1Iu; v; w/

denote the triangle maps associated with the punctured Heegaard triples

.†;˛;ˇ0;ˇ1Iu; v; w/ and .†;˛;ˇ1;ˇ1Iu; v; w/;
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as above, the map �.K/ is in fact the correction term, in the sense of Lemma 2.4,
associated with the sequence (or, in fact, graph of complexes)

�CF.†;˛;ˇ0Iu; v; w/
�1
��! �CF.†;˛;ˇ1Iu; v; w/

�0
�! �CF.†;˛;ˇ1Iu; v; w/:

Similarly, �.K/ corresponds to the sequence

�CF.†;˛;ˇ0Iu; v; w/
�1
��! �CF.†;˛;ˇ1Iu; v; w/

�0
�! �CF.†;˛;ˇ1Iu; v; w/;

where

�1 D �.˛;ˇ0;ˇ1Iu; v; w/ and �0 D �.˛;ˇ1;ˇ1Iu; v; w/:

3.3 Some properties of the maps f�.K / and f�.K /

Our first observation is that changing the orientation of the knot K and, correspondingly
that of K1 and K0 , corresponds to changing the markings u, v , w with u, v , w
in Figure 1. Suppose that .†;˛;ˇI z1; z2/ represents K� , meaning that an oriented
longitude for K� is constructed from gluing an oriented arc on † from z1 to z2 in
the complement of ˛ and an oriented arc on † from z2 to z1 in the complement
of ˇ . Then .†;˛;ˇI z2; z1/ is a Heegaard diagram for �K� (the knot K� with the
reverse orientation) while .�†;ˇ;˛I z2; z1/ is a Heegaard diagram for K� . The chain
complexes associated with the above three Heegaard diagrams are identical. Heegaard
moves give chain homotopy equivalences

��.K/W �CF.†;˛;ˇI z1; z2/ �! �CF.�†;ˇ;˛I z2; z1/D �CF.†;˛;ˇI z1; z2/:

These chain homotopy equivalences induce the involutions

��.K/W H�.K/ �!H�.K/; � 2 f0; 1;1g:

In terms of these isomorphisms,

(4)

f0.K/D �1.K/ ı f0.K/ ı �1.K/;

f1.K/D �0.K/ ı f1.K/ ı �1.K/;

f1.K/D �1.K/ ı f1.K/ ı �0.K/:

Note however, that the equality �.K/ D �1.K/�.K/�0.K/ is only satisfied for the
induced maps from Ker.f1.K// to Coker.f0.K//.
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The exactness of the sequences in (3) implies that, in appropriate decompositions

(5)

H0.K/D
H0.K/

Ker.f1.K//
˚Ker.f1.K//DWA1.K/˚A1.K/;

H1.K/D
H1.K/

Ker.f0.K//
˚Ker.f0.K//DWA0.K/˚A1.K/;

H1.K/D
H1.K/

Ker.f1.K//
˚Ker.f1.K//DWA1.K/˚A0.K/;

we have

f�.K/D

�
0 0

Ia�.K / 0

�
;

where a�.K/ denotes the rank of A�.K/ for every � 2 f0; 1;1g. In this basis we may
present the matrices ��.K/ as

��.K/D

�
A�.K/ B�.K/

C�.K/ D�.K/

�
; � 2 f0; 1;1g:

The map B0.K/ corresponds to the induced map

�0.K/W Ker.f1.K// �!
H0.K/

Ker.f1.K//
:

The decomposition H0.K/DA1.K/˚A1.K/ may be modified using a change of
basis of the form PX D

�
I
�X

0
I

�
, which does not change the block presentations of the

maps f1.K/ and f1.K/. In the new basis, �0.K/ has the following presentation:

�0.K/D

�
I 0

�X I

��
A0.K/ B0.K/

C0.K/ D0.K/

��
I 0

�X I

�
D

�
A0.K/�B0.K/X B0.K/

? �XB0.K/CD0.K/

�
If B0.K/ is injective we may thus assume that D0.K/D0, while if B0.K/ is surjective
we may assume that A0.K/D 0. With similar reasoning, if B�.K/ is injective we may
assume that D�.K/D 0, while if B�.K/ is surjective we may assume that A�.K/D 0.

In the above decompositions for H�.K/, the map �.K/ WH0.K/!H1.K/ takes the
form

�.K/D

�
X I

Z Y

�
;

since the induced map from A1.K/�H0.K/ to A1.K/�H1.K/ is the inverse of
the map induced by f1.K/, ie the identity. Moreover, since the rank of �.K/ is the
same as the rank of f1.K/, we conclude that Z D YX . Applying the change of basis

Algebraic & Geometric Topology, Volume 15 (2015)



3172 Eaman Eftekhary

PY on H0.K/ and the corresponding change of basis PX on H1.K/, �.K/ takes
the form �

I 0

�Y I

��
X I

YX Y

��
I 0

�X I

�
D

�
0 I

0 0

�
:

It is thus possible to choose the above decompositions so that �.K/D
�

0
0

I
0

�
. If this is

the case, the 2� 2 presentation of �1.K/�.K/�0.K/ will be of the form

�1.K/�.K/�0.K/D

�
M I

Q P

�
and, since the ranks of �.K/ and �.K/ are the same, we find QD PM .

3.4 Relative Spinc structures

The vector spaces H1.K/ and H1.K/ are naturally decomposed by relative Spinc

classes in

Spinc.Y;K/D Spinc.Y1.K/;K1/D Z;

where the identification with Z is made using the first Chern class (divided by 2).
Similarly, the relative Spinc classes corresponding to K0 are identified with 1

2
CZ.

Thus,

H�.K/D
M
i2Z

H�.K; i/; � 2 f1;1g; and H0.K/D
M

j2 1
2
CZ

H0.K; j /:

Note that ��.K/ takes H�.K; i/ isomorphically to H�.K;�i/ for � D 0; 1;1.

Let H0 D .†;˛;ˇ1;ˇ1Iu; v; w/ be a Heegaard triple used for defining f0.K/. If
x 2 T˛ \Tˇ1

and y 2 T˛ \Tˇ1 are two generators connected by a triangle class
� 2 �2.x; ‚1;1;y/ with nu.�/ D nw.�/ D 0 (as observed in the surgery exact
sequences of [14]), then c1.su;w.x//D c1.su;v.y//. This observation, together with (4)
imply that the maps f0.K/ and f0.K/ are decomposed as

f0.K/D
M
i2Z

f0.K; i/; f0.K; i/W H1.K; i/ �!H1.K; i/;

f0.K/D
M
i2Z

f0.K; i/; f0.K; i/W H1.K; i/ �!H1.K; i/:

The map f1.K/W H0.K/! H1.K/ drops the Spinc grading by 1
2

, while the map
f1.K/W H1.K/ ! H0.K/ increases the Spinc grading by 1

2
. The corresponding

Algebraic & Geometric Topology, Volume 15 (2015)



Floer homology and splicing knot complements 3173

decompositions are thus

f1.K/D
M
i2Z

f1.K; i/; f1.K; i/W H0

�
K; i � 1

2

�
�!H1.K; i/;

f1.K/D
M
i2Z

f1.K; i/; f1.K; i/W H0

�
K; i C 1

2

�
�!H1.K; i/:

In particular, for a knot K of genus g the maps f1.K;g/ and f1.K;�g/ are trivial,
since H0

�
K;gC 1

2

�
DH0

�
K;�g� 1

2

�
D 0 by [2, Theorem 3.2]. Moreover,

f1.K/D
M
i2Z

f1.K; i/; f1.K; i/W H1.K; i/ �!H0

�
K; i � 1

2

�
;

f1.K/D
M
i2Z

f1.K; i/; f1.K; i/W H1.K; i/ �!H0

�
K; i C 1

2

�
:

Let us now assume that .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/ is one of the Heegaard quadruples
illustrated in Figure 1. If we drop the marked point u (resp. the marked point w ) from
the Heegaard diagram, associated with either of the two resulting punctured Heegaard
quadruples we obtain a triangle of chain maps:

�CF.†;˛;ˇ1I v;w/

�.˛;ˇ1;ˇ0Iv;w/ ))

�CF.†;˛;ˇ1I v;w/
�.˛;ˇ1;ˇ1Iv;w/

oo

�CF.†;˛;ˇ0I v;w/

�.˛;ˇ0;ˇ1Iv;w/

55

�CF.†;˛;ˇ1Iu; v/

�.˛;ˇ1;ˇ1Iu;v/ ))

�CF.†;˛;ˇ0Iu; v/
�.˛;ˇ0;ˇ1Iu;v/

oo

�CF.†;˛;ˇ1Iu; v/
�.˛;ˇ1;ˇ0Iu;v/

55

The domain of any holomorphic triangle which contributes to �.˛;ˇ1;ˇ1I v;w/ has
coefficient 1 precisely at one of the base points u and u, and coefficient 0 at the other
one. In other words,

�.˛;ˇ1;ˇ1I v;w/D �.˛;ˇ1;ˇ1Iu; v; w/C�.˛;ˇ1;ˇ1Iu; v; w/

D �.˛;ˇ1;ˇ1Iu; v; w/C�.˛;ˇ1;ˇ1Iu; v; w/:

A similar argument implies that

�.˛;ˇ0;ˇ1Iu; v/D �.˛;ˇ0;ˇ1Iu; v; w/C�.˛;ˇ0;ˇ1Iu; v; w/:
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We thus obtain the following two exact triangles, respectively:

(6)

H1.K/

%%

H1.K/
f0Cf0

oo

�HF.Y0.K//

99
H1.K/

##

H0.K/
f1Cf1

oo

�HF.Y /

;;

where f� D f�.K/ and f� D f�.K/. The exact triangles in (3) and (6) may be used to
deduce the following conclusions regarding the ranks of the chain maps:

(7)
rnk.f�.K//D rnk.f�.K//D 1

2
.h1.K/C h1.K/C h0.K/� 2h�.K//;

rnk.f�.K/C f�.K//D
1
2
.h1.K/C h1.K/C h0.K/�y�.K/� h�.K//;

where h�.K/ denotes the rank of H�.K/ and y�.K/ denotes the rank of �HF.Y�.K//.

4 Combinatorial presentation of the exact triangles

4.1 Heegaard diagrams for knot complements

The aim of this subsection is to construct Heegaard diagrams of particular type asso-
ciated with a knot K inside a three-manifold Y , so that the chain complexes C�.K/

and the chain maps f�.K/ and f�.K/ may all be described combinatorially.

Let us assume that a framed longitude y� for K is given as a simple closed curve on the
torus boundary of Y n nd.K/. Together with the meridian y� of the knot K , y� gives a
parametrization of the boundary of Y n nd.K/. It also determines the three-manifold
Yy�.K/ obtained by surgery on K . The curves y� and y� thus give Y n nd.K/ the
structure of a bordered three-manifold. As such, we remind the reader that a nice
Heegaard diagram

.†; ˛D f˛1; : : : ; ˛gg; y̌ D fˇ1; : : : ; ˇg�1g; �; �I z/

for the bordered three-manifold determined by .Y;K/ and y� consists of a surface †
of genus g , a g–tuple of disjoint simple closed curves ˛, a .g�1/–tuple of disjoint
simple closed curves y̌, a pair of simple closed curves � and � disjoint from y̌ which
intersect in a single transverse point, and a marked point z in the complement of all
curves in †. The data satisfies the following conditions:

� The diagram .†;˛; y̌/ corresponds to Y n nd.K/, while .†;˛; y̌ [ f�g/ and
.†;˛; y̌ [ f�g/ correspond to the three-manifolds Y and Yy�.K/, respectively.
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� All domains in † n .˛[ y̌[ f�; �g/ are either bigons, triangles or rectangles,
except for the domain Dz containing the marked point z , which is a .2NC1/–
gon for some integer N . In particular, Dz contains the single intersection point
of � and � as a corner.

� Every curve ˇi 2
y̌ contains at least one of the 2N C 1 edges of Dz .

Nice Heegaard diagrams exist by Lipshitz, Ozsváth and Thurston [6, Proposition 8.2].
However, two remarks are necessary here. First, note that in the aforementioned
proposition the roles of the ˛– and ˇ–curves is the opposite of our convention. In
particular, the curves � and � are ˛–curves in [6]. The second point is that the third
condition above is a priori not guaranteed by [6, Proposition 8.2]. However, if ˇi

does not contain any of the edges of Dz , all neighbouring regions of ˇi would be
bigons or rectangles. Since ˇi is homotopically non-trivial, a computation of the
Euler characteristic for the neighbourhood of ˇi (the union of all regions which are
neighbours of ˇi/ implies that all neighbouring regions of ˇi are rectangles. However,
this in turn implies that, for some j ¤ i , ǰ is parallel (and thus homologous) to ˇi , a
contradiction. Thus, the third condition is also guaranteed by [6, Proposition 8.2].

The picture on the top of Figure 3 describes a surface �†1 of genus 4. The opposite
edges of the rectangle are identified and the pairs of yellow and red circles are also
glued together (using a horizontal reflection). The pair of green circles is identified
using a vertical reflection. The solid red curves are labelled � and �, which meet in a
single transverse point O . The green domains glue together and form a disk D on �†1 .
We set †1 D

�†1 n Int.D/. The dashed blue curves in †1 correspond to the ˇ–curves,
while the solid black curves correspond to the ˛–curves. The ˛– and ˇ–curves may
have boundary in @D .

Lemma 4.1 Let K be a knot inside a three-manifold Y together with an arbitrary fram-
ing. Then there is a nice Heegaard diagram .†;˛; y̌ [ f�; �g; z/ for the corresponding
bordered three-manifold with the following properties:

� †D†1q@†1D@†2
†2 , where �†1 is the surface of genus 4 illustrated in Figure 3

and †2 is a surface with one boundary component.

� The arcs in ˛\†1 are identified with the solid black curves in Figure 3, while
the arcs in y̌ \†1 are identified with the dashed blue curves in Figure 3.

� The curves � and � correspond to the bold red curves on †1 .

� The domains on †1 which contain the bold markings belong to the connected
component Dz in † n .˛[ y̌[�[�/ which contains z .
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double destablization

Figure 3: Special Heegaard diagrams for knot complements are the union
of the genus-4 surface †1 with boundary illustrated as the white part of
the figure on top with another surface with boundary. The curves � and �
are illustrated as bold red curves, while ˛ \†1 and y̌ \†1 are denoted
by black curves and dashed blue curves, respectively. The intersection of �
and � is denoted by O and some of the intersection points in ˛\ .�[�/ are
labelled (by A , B , C , D , E , X , Y , Z and W ). Double destablization and
a change in the framing (equivalently, in the parametrization of the boundary
torus) gives the two Heegaard diagrams on the bottom of the figure.
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Proof Destabilization on †1 gives the equivalent Heegaard diagram, which locally
looks like the surface on the lower left part of Figure 3. Changing � to �0 D �� �
in the aforementioned diagram corresponds to changing the parametrization of the
boundary. It is thus enough to show that every bordered three-manifold with torus
boundary admits a nice Heegaard diagram which locally looks like the lower right side
of Figure 3, so that every domain which meets the green region is either a bigon, a
rectangle or contains the puncture. If this is the case, every domain in the Heegaard
diagram illustrated on the upper side of Figure 3 is either a bigon, a triangle, a rectangle
or contains the puncture. In other words, the diagram on the upper side of Figure 3 is
nice.

Start with a nice bordered Heegaard diagram for Y nnd.K/ with parametrization given
by �0 and �, which exists by [6, Proposition 8.2]. Denote the intersection point of
�0 and � by O . Three of the four quadrants around O are triangles, while the last
quadrant contains the marked point z . There is thus some curve ˛i in ˛ which cuts
�0 in the points D and A close to O and the curve � in X and W (close to O ),
so that the picture around O on † is the one illustrated in part (a) of Figure 4. We
may assume for simplicity that i D g . The three triangles are thus ŒDOX �, ŒXOA�

and ŒAOW �. There is a path  disjoint from ˇ0[f�
0; �g which starts from the interior

of the triangle ŒAOW � and ends at the marked point z and passes only through the
rectangles. One may add a 1–handle to † with attaching circles placed at the endpoints
of  . The core of this 1–handle may be added to ˛ as the curve ˛gC1 and the arc 
may be completed to a simple closed curve ˇg by attaching its endpoints with an arc
going over the 1–handle. This gives a stabilization of the previous Heegaard diagram.
We may then handle slide ˛gC1 over ˛g to obtain the Heegaard diagram illustrated in
part (b) of Figure 4.

Next, we may add a 1–handle to the Heegaard diagram with attaching circles placed
in the middle of the arcs ŒOX � and ŒOW �. Denote the arc connecting the above two
midpoints by ı . The curve �0 will be renamed ˇgC1 , the core of this handle will
be replaced for �0 , the curve � will be modified by deleting the arc ı from it and
replacing a corresponding arc which travels over the 1–handle, and, finally, the arc ı
is completed to a simple closed curve ˛gC2 using the 1–handle. The new Heegaard
diagram is illustrated in part (c) of Figure 4. This new Heegaard diagram corresponds
to the same bordered three-manifold.

Next, we attach another 1–handle to the Heegaard diagram. The attaching circles are
placed on � on the two sides of the arc bounded between the intersection of ˛gC1

and � and the intersection of �0 and �. The aforementioned arc may be completed (by
adding to it a segment which travels over the 1–handle) to a simple closed curve, which
will be replaced for �. The remainder of (the old) � may also be completed (again by
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Figure 4: The ˛–curves are denoted by solid black lines, the ˇ–curves are
the dashed blue lines, and the curves �0 and � are denoted by bold red lines.
Dz is the domain containing bold circles. (a) In a nice Heegaard diagram,
three of the quadrants around O D�0\� are triangles. Use an arc  disjoint
from y̌ [ f�0; �g to connect the triangle ŒAOW � to z . The closest ˛–curve
to O is ˛g . (b) Attach a handle at the endpoints of  , complete  to a
ˇ–curve and slide the core of the handle over ˛g to produce a new ˛–curve.
(c) Attach a handle on � at the two sides of O (the attaching circles are
painted yellow). Rename �0 to ˇgC1 and replace the core of the handle for
�0 . Push � above the handle and complete the segment on �0 containing O

to ˛gC2 . (d) Attach a handle on � at the points illustrated by purple circles.
The arcs on � connecting the purple attaching circles to the yellow attaching
circles may be completed to a closed curve, which will be replaced for � . The
complement of these two arcs on initial � may be completed to a ˇ–curve.
The core of the 1–handle slides over ˛g to produce the new ˛–curve. Finally,
a finger move modifies ˛gC2 . (e)–(f) Re-draw the subsurface of genus 2

around the intersection of �0 and � which was shaded in part (d).

adding to it a segment which travels over the 1–handle) to a simple closed curve, which
will be denoted by ˇgC2 . One may slide the core of the new 1–handle over ˛gC1

to obtain ˛gC3 . Finally, we apply a finger move isotopy to ˛gC2 to create a pair of
intersection points between ˛gC2 and ˇgC2 . The new Heegaard diagram (which still
corresponds to the same bordered three-manifold) is illustrated in part (d) of Figure 4
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and a subset of the diagram which lives on a subsurface of genus 2 is re-drawn in
part (e) of the same picture, where a 7–gon and a pair of pentagons are painted orange,
green and purple, respectively. One may then identify the aforementioned subsurface
of genus 2 with the surface illustrated in part (f). To illustrate the correspondence, the
domains corresponding to the 7–gon and the two pentagons are painted in the new
picture with the relevant colour. This completes the proof of the lemma.

Definition 4.2 For every knot K � Y and every framing � for K , the Heegaard
diagrams of the type constructed in Lemma 4.1 are called special Heegaard diagrams.

4.2 A combinatorial description of f�.K / and f�.K /

Suppose that .Y;K/ denotes a knot K inside a homology sphere Y . Let us assume
that

.†; ˛D f˛1; : : : ; ˛gg; y̌ D fˇ1; : : : ; ˇg�1g; �; �; z/

is a special Heegaard diagram for the bordered three-manifold determined by a zero-
framed longitude for K inside Y . The picture around the intersection point O of the
simple closed curves � and � is illustrated on the top of Figure 3.

We introduce three auxiliary curves, denoted by �1 , �0 and �1 , respectively, as in
the Heegaard diagram illustrated in Figure 5. The Heegaard diagrams

H� D .†;˛; y̌ [ f��gIu; v; w/ and H � D .†;˛; y̌ [ f��gIu; v; w/

are (triply punctured) diagrams that correspond to the knot K��Y�.K/ for �2f0; 1;1g
(note that two of the three punctures are placed in the same connected component
of † n .˛[ y̌ [ ��/ for � 2 f0; 1;1g). The above claim is checked by computing
the intersection numbers of each �� with the simple closed curves � and �, since
the curves are disjoint from y̌. Each pair of these three curves intersect each other
exactly once. Each of the three diagrams H� , H � , � 2 f0; 1;1g, is a nice Heegaard
diagram and they determine the chain complexes C� D �CF.H�/D �CF.H �/. Denote
the differential of the complex C� by d� for � 2 f0; 1;1g. The chain maps f�.K/ and
f�.K/ have a simple combinatorial description, which is discussed in the remainder of
this section.

Fix the labelling of the intersection points of �0 , �1 , �1 , ˇg�1 and ˇg�2 with the
curves in ˛ as in Figure 5. Let

fP0g D �1\�1; fP1g D �0\�1 and fP1g D �0\�1:

The Heegaard triple

.†;˛; y̌ [ f�1g; y̌ [ f�1gIu; v; w/
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Figure 5: The curves in ˛ are denoted by solid black lines while the curves
in y̌ are denoted by dashed blue lines. Three simple closed curves �0 , �1

and �1 are denoted by bold red, purple and green lines, respectively. Six
marked points u , v , w , u , v and w are introduced close to the intersection
points of these three curves. The intersection points on ˇg�1 , �1 and �1

are labelled. Associated with i � 3 there is a pentagon with vertices at P0 ,
r3 , p2 , pi and qi . For i D 3 the pentagon is shaded orange in the picture.

determines a combinatorial triangle map Nf0W C1 ! C1 as follows. Let ˇg�1 be
the ˇ–curve which contains the intersection points p1;p2; : : : ;pn in Figure 5. Let
x D .x1; : : : ;xg/ be a generator of C1 with xi 2 ˛�.i/ \ ˇi for some � 2 Sg ,
i D 1; : : : ;g� 1, and xg 2 �1 . Define

Nf0.x/ WD

�
.x1; : : : ;xg�1; si/ if xg D ri ; i D 1; 2;

0 otherwise.
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Similarly, the Heegaard triple

.†;˛; y̌ [ f�1g; y̌ [ f�1gIu; v; w/

determines a combinatorial triangle map f0W C1! C1 defined by

f0.x/ WD

8<:
.x1; : : : ;xg�2;p2; qi/ if .xg�1;xg/D .pi ; r3/; i � 3;

.x1; : : : ;xg�2;p1; qi/ if .xg�1;xg/D .pi ; r2/; i � 3;

0 otherwise.

The Heegaard triples

.†;˛; y̌ [ f�0g; y̌ [ f�1gIu; v; w/ and .†;˛; y̌ [ f�0g; y̌ [ f�1gIu; v; w/;

correspond to the combinatorial triangle maps f1 , Nf1W C0! C1 . For a generator
x D .x1; : : : ;xg/, these two maps are defined by setting

Nf1.x/D

�
.x1; : : : ;xg�1; r1/ if xg D t0;

0 otherwise,

f1.x/D

�
.x1; : : : ;xg�2;p3; r3/ if .xg�1;xg/D .p2; t1/;

0 otherwise.

Lemma 4.3 With the above notation fixed, f0 ıf1 D Nf0 ı
Nf1 D 0.

Proof This is trivial from the combinatorial definitions of f0 , Nf0 , f1 and Nf1 .

Let

† n .˛[ y̌[�0[�1/D

� Na
iD1

Di

�
[Du[Dv [Dw;

where D� are the regions in the complement of these curves, with Du , Dv and Dw

the regions containing the marked points u, v and w , respectively. We set

ˇ0
i D ˇi ; i D 1; : : : ;g� 1; and ˇ D fˇ1; : : : ; ˇgg D

y̌[ f�0g:

The construction of the Heegaard diagram implies the following properties:

� The regions D2; : : : ;DN are rectangles or bigons, while D1 is a pentagon.

� One of the corners of the pentagon D1 is the unique intersection point P D

P1 D �0\�1 , and the three punctures u, v and w are placed on three of the
quadrants around P (other than the quadrant corresponding to D1 ).

� All the neighbours of D1 (the regions having an edge in common with D1 ) are
punctured.

� Each ˇ–curve is adjacent to at least one of the punctured domains.
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Figure 6: The region around the pentagon D1 is illustrated on the left-hand
side. The punctured domains are marked by solid circles inside them. The
curves in ˇ D ˇ0 ,  D ˇ1 and ˛ have colours orange, pink and black,
respectively. The pentagon is changed to a hexagon in the new Heegaard
diagram, which is coloured red. The initial pentagon is the union of the
hexagon D1 with the triangle R1 . The right-hand side illustrates the labelling
near the intersection of ˇi with its Hamiltonian isotope i .

The edges of the pentagon are five arcs: two of them are on �0 and �1 , two of them
are on the ˛–curves and one of them is on a ˇ–curve, which is assumed to be ˇ1 .
The ˛–curve which cuts �0 in a corner of the pentagon is assumed to be ˛1 and the
other one is assumed to be ˛2 . Denote the vertices of the pentagon by P DQ1 , Q2 ,
Q3 , Q8 and Q6 in counter-clockwise order, so that Q1 is the intersection point of
�0 and �1 , Q2 is on the intersection of ˛1 with �0 , and Q6 is the intersection point
of �1 with ˛2 .

For i D 2; : : : ;g� 1, let ˇ1
i D i be a parallel copy of ˇi which is drawn very close

to ˇi and is slightly pushed to one of the punctured domains adjacent to ˇi by a finger
move, so that a pair of intersection points (denoted by Xi and Yi ) is created between
these two curves (see the right-hand side picture in Figure 6). Let us assume that
the small positively oriented disk connecting these two intersection points (with ˇi

on the left and i on the right) goes from Xi to Yi . In order to define 1 , choose a
parallel copy of ˇ1 and push it slightly over the intersection point of ˇ1 with ˛1 to
obtain 1 , so that a pair of cancelling intersection points X1 and Y1 is created between
1 and ˇ1 on the two sides of the intersection point Q3 of ˛1 and ˇ1 , and so that 1

slightly enters the punctured domain next to the ˇ–edge of the pentagon. The local
picture around D1 looks like Figure 6, where this procedure is pictured. Let g be the
curve �1 and set ˇ1 D  D f1; : : : ; gg.
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Figure 7: The region around the hexagon D1 is illustrated. The labelling
of the intersection points in the Heegaard diagram, as well as the labelling
of some of the connected components in the complement of the curves, is
illustrated. The curves in ˇ1 , ˇ1 and ˛ have colours pink, green and black,
respectively.

In order to construct ˇ1i for i D 2; : : : ;g � 1, choose a parallel copy of  i D ˇ1
i

and, as this parallel copy enters the bigon Ti , push it into the neighbouring punctured
domain by a finger move. The curve ˇ1

1
is constructed as illustrated in Figure 7. We

set
ˇ1 D fˇ

1
1 ; : : : ; ˇ

1
g�1; �1g:

Lemma 4.4 The punctured Heegaard diagrams

.†;˛;ˇ?;ˇ�Iu; v; w/ and .†;˛;ˇ?;ˇ�Iu; v; w/

for .?; �/ 2 f.0; 1/; .1;1/g do not contain any non-trivial, positive, triply periodic
domains.
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Proof Let D denote a positive, triply periodic domain in the Heegaard diagram
.†;˛;ˇ1;ˇ1Iu; v; w/. Thus,

@DD
gX

iD1

ai˛i C

g�1X
iD1

biˇ
1
i C

g�1X
iD1

ciˇ
1
i C b�1C c�1:

Let Di denote the doubly periodic domain with @Di D ˇ
1
i �ˇ

1
i for i D 1; : : : ;g� 1.

Setting D0 D D�
Pg�1

iD1
biDi , we find

@D0 D
gX

iD1

ai˛i C

g�1X
iD1

.ci � bi/ˇ
1
i C b�1C c�1:

Since the left-hand side is trivial in H1.Y n nd.K/IZ/, so is the right-hand side.
This implies that c D�b . Let D0 denote the triply periodic domain in the punctured
Heegaard triple .†;ˇ0;ˇ1;ˇ1Iu; v; w/ with @D0D�1��0��1 . For D00DD0�bD0

we thus obtain

@D00 D
gX

iD1

ai˛i C

g�1X
iD1

.ci � bi/ˇ
1
i C b�0:

In other words, D00 is a doubly periodic domain for the nice (and hence weakly
admissible) Heegaard diagram

.†;˛;ˇ1[f�0g n f�1gIu; v; w/:

The coefficients of D00 and all Di , i D 1; : : : ;g� 1, over the small triangle bounded
between �0 , �1 and �1 is zero. In other words, the coefficient of

DD D00C bD0C

g�1X
iD1

biDi

over this small triangle is b , which should thus be non-negative. Choosing this triangle
sufficiently small we may thus assume that the total area of bD0 is negative unless bD0.

One may choose the area form on the surface † so that all doubly periodic domains
for the punctured Heegaard diagram .†;˛;ˇ1 [ f�0g n f�1gIu; v; w/ and all Di ,
i D 1; : : : ;g� 1, have zero total area. However, this implies that the total area of D is
the same as the total area of bD0 , which is at most zero. Since D is a positive domain,
we conclude D D 0. This completes the proof for the triple .†;˛;ˇ1;ˇ1Iu; v; w/.
The proof for the other triples is completely similar.

The Heegaard diagrams

.†;˛;ˇ�Iu; v; w/ and .†;˛;ˇ�Iu; v; w/
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are nice so, by Sarkar and Wang [16], the differentials of the complexes�CF.†;˛;ˇ�Iu; v; w/ and �CF.†;˛;ˇ�Iu; v; w/

are given by counts of bigons and rectangles.

Theorem 4.5 Under the above identification of the chain complexes .C�; d�/,

f0 D �.†;˛;ˇ1;ˇ1Iu; v; w/; Nf0 D �.†;˛;ˇ1;ˇ1Iu; v; w/;

f1 D �.†;˛;ˇ0;ˇ1Iu; v; w/; Nf1 D �.†;˛;ˇ0;ˇ1Iu; v; w/:

4.3 Proof of Theorem 4.5

A similar discussion is carried over in [3] (and in particular Theorem 2.3 from that paper).
We repeat the proof, in most parts with more details, to keep the paper easier to read.

Proof We start by proving the statement for Nf1 . Note that the top generator ‚ of
the Heegaard Floer homology group �HF.#g�1

S1 �S2/ coming from the Heegaard
diagram .†;ˇ;Iu; v; w/ is the generator fP;X1; : : : ;Xg�1g.

Let x D .x1; : : : ;xg/ and y D .y1; : : : ;yg/ be generators with xi 2 ˛�.i/ \ ˇi

and yi 2 ˛�.i/\ i , with � , � 2 Sg . Let �W D! Symg.†/ be the homotopy class of
a triangle in �2.x; ‚;y/, with Maslov index zero, so that it supports a holomorphic
representative and remains disjoint from the punctures.

There are two types of domain in the complement † n .˛[ˇ [/ of the curves, the
large domains and the small domains. The small domains are those created between
the parallel pairs of curves i and ˇi (i D 1; : : : ;g�1), and their area may be chosen
arbitrarily small by choosing i close enough to ˇi . The large domains are the rest of the
domains, which are in correspondence with the domains D� , � 2 fu; v; w; 1; : : : ;N g,
introduced above. We abuse the notation and still denote these new regions by D� .

Let us assume that the small bigon connecting Xi to Yi is denoted by Ti and the region
having the small interval ŒXi ;Yi � on ˇi in common with Ti is Di , i D 2; : : : ;g� 1.
Then there are two triangles with corners Xi and Yi that have an edge in common
with Di , which will be denoted by Ri and Li , respectively. For i D 1, instead of
these three regions we have four triangles with one corner being X1 or Y1 , which will
be denoted by R1 , T1 , S1 and L1 , respectively (as they appear while we travel on
ˇ1 from X1 to Y1 ; see Figure 6). We are implicitly assuming that the regions Di for
i D 1; : : : ;g�1 (as described above) are different, while it may happen that this is not
the case. However, the argument we give below remains true in general and only needs
notational corrections.
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Let DD D.�/ denote the domain (ie the 2–chain on †) associated with the triangle
class �. Let di � 0 denote the coefficient of Di in D . Similarly, denote the coefficients
of Ti , Ri and Li by ti , ri and li , respectively. The coefficient of S1 will be denoted
by s1 . Of course, there are other regions which may appear in D with positive
coefficient, but all such regions are bigons or rectangles. Since P appears in ‚ and
three of the corners around P are punctured, the coefficient d1 is equal to 1.

Let P D Q1;Q2; : : : ;Q6 denote the corners of D1 (now a hexagon) in counter-
clockwise order (so Q4 D X1 ). Since two opposite quadrants around each one of
Q2 and Q6 are punctured, we have xg D Q2 and yg D Q6 . Thus, Q3 is not one
of x1; : : : ;xg and Q5 is not one of y1; : : : ;yg . Considering the local coefficients
around Q3 , we conclude that t1 D 1C s1 . If Q7 is the third corner of T1 (other
than Q3 and Q4 ), in order for D to be a non-negative domain we need x1 DQ7 and
the 4 local coefficients around Q7 are forced to be t1 D 1C s1 , s1 , 0 and 0 in the
counter-clockwise order. Two opposite quadrants around Y1 have zero coefficients
in D . Since Y1 does not appear in ‚, this implies that s1 D l1 D 0 (thus t1 D 1).
Similarly, considering the local coefficients around p1 we conclude r1 D 1. Since
Q5 is not among y1; : : : ;yg , the local coefficients around Q5 are 1, r1 D 1, 0 and 0

in the counter-clockwise order. Let Q8 be the third corner of R1 other than Q4

and Q5 . Since two opposite corners around Q8 have zero coefficient and r1 D 1, we
have x1DQ8 . Thus DDD0CD1DD0C.R1CD1CT1/, where D0 is a non-negative
2–chain which is disjoint from D1 and D1 is a hexagon with five acute angles and one
obtuse angle and with vertices fP;yg;x1;X1;y1;xgg. The contribution of D1 to the
index of � is zero, by Sarkar’s formula [15].

By Sarkar’s formula for the index of triangles [15],

(8) �.�/D e.D/C�x.D/C�y.D/C b.D/:c.D/� 1
2
g:

Here e.D/ is the Euler measure of the domain D , b.D/ is the part of @D on the ˇ–
curves, and c.D/ is the part of @D on the  –curves. Furthermore, �x.D/ and �y.D/
denote the local contributions of the intersection points included in x and y , respec-
tively, to the corners of D . We refer to [15] for more detailed definitions. Separat-
ing D1 — which has Maslov index 0 — from D we obtain the equality

�.�/D e.Ds/C e.Dl/C�x.D0/C�y.D0/C b.D0/:c.D0/� 1
2
.g� 2/:

Here Ds denotes the part of D0 which uses the regions Di , Ri , Ti and Li for
i D 2; : : : ;g� 1 and Dl D D0�Ds . Clearly, e.Dl/� 0 and

Ds D

g�1X
iD2

.diDi C tiTi C riRi C liLi/:
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Considering the local coefficients around Xi and Yi , we conclude ri D li C 1 and
di D ti C li . Having in mind that Ti are bigons, Ri and Li are triangles and Di are
hexagons, this implies the following computation:

(9) e.Ds/D

g�1X
iD2

..ti C li/e.Di/C tie.Ti/C .li C 1/e.Ri/C lie.Li//

D

g�1X
iD2

�
.ti C li/

�
�

1
2

�
C ti

�
1
2

�
C .li C 1/

�
1
4

�
C li

�
1
4

��
D

1
4
.g� 2/:

The 1–chain b.D0/ is a union of 1–chains on ˇi ; i D 2; : : : ;g�1, denoted by bi.D0/.
Similarly we have c.D0/D

Pg�1
iD2

ci.D0/. It is clear that bi.D0/ and cj .D0/ are disjoint
unless i D j . In this latter case, the only possible geometric intersections are at Xi

and Yi , where the intersection numbers are .li C 1
2
/.ti �

1
2
/ and �li ti , respectively.

Thus,

(10) b.D0/:c.D0/D
g�1X
iD2

��
li C

1
2

��
ti �

1
2

�
� li ti

�
D�

1
4
.g� 2/C 1

2

g�1X
iD2

.ti � li/:

Let us now consider the coefficients around the intersection points xi and yi for
i D 2; : : : ;g� 1. Since xi is on ˇi , there are non-negative integers ai , bi , ci and ei

such that the local coefficients around xi are ai , bi , bi C li C 1 and ai C li , and the
local coefficients around yi are ci , ei , ei C ti � 1 and ci C ti . Thus,

(11) �x.D0/C�y.D0/D 1
2

g�1X
iD2

..ai C bi C ci C ei/C .li C ti//:

Combining (9), (10) and (11) and replacing for the terms in the definition of �.�/, we
obtain

0D �.�/D e.Ds/C e.Dl/C�x.D0/C�y.D0/C b.D0/:c.D0/� 1
2
.g� 2/

D e.Dl/�
1
2
.g� 2/C 1

2

g�1X
iD2

.ai C bi C ci C ei C 2ti/

�
1
2

g�1X
iD2

.ai C bi C ci C .ei C ti � 1/C ti/:

Note that ei C ti � 1 is the coefficient of one of the domains around yi and is thus
non-negative. The above inequality thus implies that ai D bi D ci D ti D 0 and ei D 1

for i D 2; : : : ;g�1. Thus, the coefficients on the two sides of i either agree or differ
by 1, and the coefficients on the two sides of ˇi differ either by li or by li C 1. If we
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start from yi , where on the left (or right) side of yi the coefficients on the two sides of
i are zero, and travel on the ˛ curve intersecting i (ie orthogonal to i ) until we get
to an intersection point with ˇi , as we pass ˇi the coefficient changes either to �li or
to �li � 1. Since the latter is negative, the former happens and li D 0. It is easy to see
from here that xi and yi are the corresponding intersection points of ˇi and i with
the same ˛–curve and that the domain D0 is a union of obvious triangles which are
disjoint from each other.

We conclude that the domain of � is the disjoint union of g� 2 simple triangles with
a hexagon with five acute angles and one obtuse angle. It is quite well known that
the moduli space corresponding to this homotopy class contributes 1 to the triangle
map for a generic path of almost complex structures. These are thus the only holo-
morphic triangles which contribute to the chain map Nf1 defined using the Heegaard
triple .†;˛;ˇ;Iu; v; w/. Under the obvious identification of �CF.†;˛;Iu; v; w/
with �CF.†;˛;ˇ1Iu; v; w/, this is just the map which replaces the pair fQ2;Q8g

with fQ6;Q7g. This completes the proof of Theorem 4.5 for Nf1 .

The proofs of the other three claims are completely similar. In fact, the proofs of the
statement of the theorem for Nf0 and f1 are even easier, since the domains which
are not punctured in the corresponding Heegaard triple are all bigons, rectangles or
triangles. We thus only need to use the second part of the above argument in these two
cases (and the study of the neighbourhood of the hexagon is not needed). The proof
of the claim for f0 requires some more serious modification, which will be outlined
below.

Note that the Heegaard triples .†;˛;ˇ1;ˇ1Iu; v; w/ and

.†;˛;ˇ 0 D y̌[ f�1g;
0
D fˇ11 ; 2; : : : ; g�1; �1gIu; v; w/

may be identified using a diffeomorphism of the surface †. It is thus enough to show
that f0 D �.†;˛;ˇ

0; 0Iu; v; w/. This allows us to keep the same labelling for the
points Xi , Yi , i D 2; : : : ;g� 2. For the intersection points on  0

1
D ˇ1

1
and ˇ1 as

well as some of the intersection points on �1 and �1 , we use the labelling of Figure 7.
We abuse the notation and denote the two intersection points between ˇ1 and  0

1
by

X1 and Y1 . Moreover, some of the regions in the neighbourhood of X1 and Y1 are
labelled: again by abuse of notation, we denote these regions by D1 , R1 , L1 , S1

and T1 (see Figure 7). Let us use di , ri , si , ti and li to denote the coefficients of
the domains Di , Ri , Si , Ti and Li in the 2–chain D associated with a holomorphic
triangle connecting x D .x1; : : : ;xg/, y D .y1; : : : ;yg/ and ‚ that contributes to
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�.†;˛;ˇ 0; 0Iu; v; w/. We assume that, for some elements � , � 2 Sg ,

xi 2

�
ˇi \˛�.i/ if i D 1; : : : ;g� 1;

�1\˛�.g/ if i D g;

yi 2

8<:
i \˛�.i/ if i D 2; : : : ;g� 1;

 0
1
\˛�.1/ if i D 1;

�0\˛�.g/ if i D g:

The examination of the coefficients in Figure 7 implies the following:

� We have d1 D r1 D t1 D 1 and s1 D l1 D 0.

� Either xg D r2 and y1 D t1 , or xg D r3 and y1 D t2 .

� There are j , k 2 f3; 4; : : : ; ng such that yg D qk and x1 D pj .

Let us write DD DsCDl , where

Ds WD s1S1C

g�1X
iD1

.diDi C tiTi C riRi C liLi/ and Dl WD D�Ds:

Considering the local coefficients at Xi and Yi , we find ri D li C 1 and di D ti C li .
Applying the index formula in (8) we obtain

(12) 0D e.D/C�x.D/C�y.D/Cb.D/:c.D/� 1
2
g

D
�
e.Dl/C

�
�

1
2
C

1
4
C

1
4

�
C

1
4
.g�2/

�
C�x.D/C�y.D/Cb.D/:c.D/� 1

2
g

� �x.D/C�y.D/Cb.D/:c.D/� 1
4
.gC2/:

The 1–chains b.D/ and c.D/ may be written as

b.D/D
gX

iD1

bi.D/ and c.D/D
gX

iD1

ci.D/

as before. Note that b1.D/ is the arc on ˇ1 from X1 to pj , while c1.D/ is the arc
from one of t1 or t2 to X1 . Moreover, bg.D/ is the arc on �1 from Q to one of r2

or r3 , while cg.D/ is the arc on �1 from qi to Q. Thus,

(13) b.D/:c.D/D
�
�

1
4
C

1
4

�
C

g�1X
iD2

��
liC

1
2

��
ti�

1
2

�
�li ti

�
D�

1
4
.g�2/C 1

2

g�1X
iD2

.ti�li/:

Let us now assume that the local coefficients around xi are ai , bi , bi C li C 1 and
ai C li , while the local coefficients around yi are ci , ei , ei C ti � 1 and ci C ti for
iD2; : : : ;g�1. The corresponding local coefficients around x1 , y1 , xg and yg would

Algebraic & Geometric Topology, Volume 15 (2015)



3190 Eaman Eftekhary

be .a1; b1; b1C1; a1/, .c1; e1; e1; c1C1/, .0; 0; 1; 0/ and .0; 0; 0; 1/, respectively, for
some non-negative integers ai , bi , ci and ei , i D 1; : : : ;g� 1. Thus,

(14) �x.D/C�y.D/D 1
2
C

1
2

g�1X
iD1

..ai C bi C ci C ei/C .li C ti//

If we combine (12), (13) and (14), we find

0��1
2
gC

�
1
2

�
C

1
2

g�1X
iD1

.aiCbiCciCeiC2ti/D
1
2

g�1X
iD1

.aiCbiCciC.eiCti�1/Cti/:

As in the proof of the theorem for Nf1 , this implies that ai D bi D ci D ti D 0, while
ei D 1 for i D 1; : : : ;g� 1. It is easy to see from here that j D k and complete the
proof as before.

4.4 The maps �.K / and �.K /

Let H� denote the homology of the chain complex C� for � 2 f1; 1; 0g. If we choose
a representative a 2 C0 of a class

Œa� 2 Ker..f1/�/�H0;

there exists some b 2 C1 such that f1.a/D d1.b/. Then d1.f0.b//D f0.d1.b//D

f0.f1.a// D 0, so f0.b/ is closed and represents a class in H1 . If we replace b

with another element b0 D b C�b such that d1.b
0/ D f1.a/, �b is closed (ie it

represents an element in H1 ). The difference f0.b
0/�f0.b/D f0.�b/ is an element

in Im..f0/�/. Thus, the class

�.Œa�/D Œf0.b/� 2 Coker..f0/�/

is well defined. This gives a homomorphism

� D �.K/W Ker..f1/�/ �! Coker..f0/�/:

Similarly, we define the map � D �.K/W Ker.. Nf1/�/! Coker.. Nf0/�/ from

Nf1W C0 �!C1 and Nf0W C1 �! C1:

Proposition 4.6 The maps

�.K/W Ker.f1.K//�!Coker.f0.K// and �.K/W Ker.f1.K//�!Coker.f0.K//
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are the inverses of the maps induced by f1.K/, f1.K/W H1.K/!H0.K/ which sit
in the exact sequences:

H0.K/

f1.K / $$

H1.K/
f1.K /

oo

H1.K/

f0.K /

::

and

H0.K/

f1.K / $$

H1.K/
f1.K /

oo

H1.K/
f0.K /

::

Proof For this purpose, let us assume that the Heegaard diagram

.†;˛; y̌; f�0; �1; �1gIu; v; w;u; v; w/

is constructed from a special Heegaard diagram as before. Let ˇ� for � 2 f0; 1;1g
denote the set ˇ�D fˇ�1; : : : ; ˇ

�

g�1
; ��g constructed before. Let us furthermore assume

that ˇ 0
1

is a set of g simple closed curves, where the first g � 1 of them are small
Hamiltonian isotopes of the first g� 1 curves in ˇ1 (with two transverse intersection
points with the corresponding simple closed curve in ˇ1 ) while the last (gth ) curve
is denoted by �0

1
. We assume that �0

1
is a Hamiltonian isotope of �1 , which is very

close to the juxtaposition of the curves �0 and �1 .

Consider the two Heegaard quadruples

H D .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/ and H 0 D .†;˛;ˇ0;ˇ
0
1;ˇ1Iu; v; w/:

Let us denote the triangle maps associated with the first Heegaard diagram by

f0.H /D �.H nˇ0/W C1.KIH / �! C1.KIH /;

f1.H /D �.H nˇ1/W C0.KIH / �! C1.KIH /;

while the triangle maps associated with the Heegaard quadruple H 0 are denoted by

f0.H
0/D �.H 0 nˇ0/W C1.KIH

0/ �! C1.KIH
0/D C1.KIH /;

f1.H
0/D �.H 0 nˇ1/W C0.KIH

0/D C0.KIH / �! C1.KIH
0/:

The holomorphic triangle map f1.H / D f1.H
0/W C1.KIH /! C0.KIH / may be

defined using the Heegaard triple .†;˛;ˇ1;ˇ0Iu; v; w/. Count of the holomorphic
rectangles in H and H 0 , respectively, that avoid the punctures u, v and w gives the
homomorphisms

ˆ1W C0.KIH / �! C1.KIH / and ˆ01W C0.KIH / �! C1.KIH /

such that

d1 ıˆ1Cˆ1 ıd0 D f0.H /ı f1.H / and d1 ıˆ
0
1Cˆ

0
1 ıd0 D f0.H

0/ı f1.H
0/:
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The interesting observation is that both ˆ1 and ˆ0
1

vanish when the Heegaard diagram
is chosen as above. The reason for the first vanishing result is that there are no positive
squares connecting the four intersection points

x 2 T˛ \Tˇ0
; ‚0;1 2 Tˇ0

\Tˇ1
; ‚1;1 2 Tˇ1

\Tˇ1 and y 2 Tˇ1 \T˛:

In fact, nu.�/D nw.�/D 1 for every square class � 2 �C
2
.x; ‚0;1; ‚1;1;y/. Thus,

two opposite quarters around the intersection point r1 have zero coefficient, while one
other quadrant has coefficient 1. Since r1 is not among the intersection points in any
of x , y , ‚0;1 and ‚1;1 , the coefficient of the last quadrant around r1 is �1 and the
contribution of � is thus trivial. A similar argument implies that ˆ0

1
is zero.

For � 2 f0; 1;1g, the Heegaard triple H� D .†;˛;ˇ
0
�
;ˇ�Iu; v; w/ gives

{� D {.H�/W C�.KIH
0/ �! C�.KIH /:

The homomorphisms {0 and {1 are the identity maps of C0.KIH / and C1.KIH /,
respectively. The Heegaard quadruple

.†;˛;ˇ0;ˇ
0
1;ˇ1Iu; v; w/

determines a holomorphic square map

‰1W C0.KIH / �! C1.KIH /:

Considering different possible degenerations of a holomorphic square of Maslov index
zero, one finds the relation

(15) d1 ı‰1C‰1 ı d0 D {1 ı f1.H
0/C f1.H /:

Finally, one may consider the Heegaard 5–tuple

.†;˛;ˇ0;ˇ
0
1;ˇ1;ˇ1Iu; v; w/;

which may be used to construct a pentagon map QW C0.KIH /! C1.KIH /. Con-
sidering all possible degenerations of a holomorphic pentagon of Maslov index �1,
one obtains the relation

(16) d1 ıQCQ ı d0 D‰0 ı f1.H
0/C f0.H / ı‰1;

where ‰0W C1.KIH
0/! C1.KIH / is the holomorphic square map associated with

.†;˛;ˇ 0
1
;ˇ1;ˇ1Iu; v; w/. The reason for the above equality is that the contributing

holomorphic squares in the Heegaard quadruple .†;ˇ0;ˇ
0
1
;ˇ1;ˇ1Iu; v; w/ come in

cancelling pairs, while there is a single contributing holomorphic triangle corresponding
to each of the Heegaard triples

.†;ˇ 01;ˇ1;ˇ1Iu; v; w/ and .†;ˇ0;ˇ
0
1;ˇ1Iu; v; w/:
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�0
0

�01�1

�1�1

�0
0

�01�1

‚11
‚11

‚01

‚11‚11‚01

‚01

‚01

Figure 8: The domains for a cancelling pair of contributing squares connect-
ing ‚01 , ‚1;1 , ‚1;1 and ‚0;1

Figure 8 illustrates the domain for a cancelling pair of contributing squares. Moreover,
the maps ˆ1 and ˆ0

1
, which may potentially contribute, are trivial.

Our choice of �0
1

and the fact that the Heegaard diagram is nice imply that we have a
short exact sequence

0 �! C0.KIH /
f1.H

0/
�����! C1.KIH

0/
f0.H

0/
����! C1.KIH / �! 0:

Correspondingly, an isomorphism � 0W Ker.f1.K// ! Coker.f0.K// may be con-
structed. Choose some closed element a 2 C0.KIH / and let f1.H 0/.a/D d 0

1
.b0/ for

some b0 2 C1.KIH
0/. By (15),

f1.H /.a/D .{1 ı f1.H
0/C d1 ı‰1/.a/D d1.{1.b

0/C‰1.a//DW d1.b/:

Using (15) and (16) we compute

f0.H /.b/D f0.H /.{1.b
0/C‰1.a//

D f0.H
0/.b0/C.d1ı‰0C‰0ıd

0
1/.b

0/C.f0.H /ı‰1/.a/ by (15)

D f0.H
0/.b0/Cd1ı‰0.b

0/C.‰0ıf1.H
0/Cf0.H /ı‰1/.a/

D f0.H
0/.b0/Cd1.Q.a/C‰0.b

0// by (16):

This means that the maps �.K/ and � 0 , as maps from Ker.f1.K// to Coker.f0.K//,
are the same. However, the map � 0 is the inverse of the connecting homomorphism
ıW Coker.f0.K//! Ker.f1.K// resulting from the short exact sequence

0 �! C0.KIH /
f1.H

0/
�����! C1.KIH

0/
f0.H

0/
����! C1.KIH / �! 0:

Algebraic & Geometric Topology, Volume 15 (2015)



3194 Eaman Eftekhary

The above observations imply the claim for �.K/. The proof for the map �.K/ is
similarly reduced to showing the triviality of the holomorphic square map corresponding
to the Heegaard quadruple .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/.

The domain of every contributing holomorphic square corresponding to the afore-
mentioned punctured Heegaard diagram has coefficient zero at u, v , w and w , and
coefficient 1 at u and v . This implies that two opposite quadrants around r3 have
coefficient zero, while a third quadrant has coefficient 1. Since r3 cannot be among
the intersection points on the vertices of the square, the fourth quadrant around r3 has
coefficient �1. This contradiction gives the triviality of the holomorphic square map
corresponding to .†;˛;ˇ0;ˇ1;ˇ1Iu; v; w/ and completes the proof.

5 Gluing the knot complements

5.1 Extracting a chain complex for splicing

Given two Heegaard diagrams for the complements of the knots K1 and K2 , one may
construct a Heegaard diagram for Y .K1;K2/ as follows, similar to the construction of
Eftekhary [2]. Let

Hi D .†i ;˛
i ; y̌i [f�i ; �ig/

denote the Heegaard diagram for Ki with Heegaard surface †i , and with �i the
meridian for Ki and �i a zero-framed longitude for it which cuts �i in a single point Oi .
Then the Heegaard diagram for the three-manifold Y DY .K1;K2/ obtained by splicing
the complement of K1� Y1 and the complement of K2� Y2 is constructed as follows.
Attach a 1–handle to †1[†2 , with attaching circles placed at the intersections O1

and O2 . Use four parallel segments on this 1–handle to connect the four intersections
of �1[�1 with one of the attaching circles to the four intersections of �2[�2 with
the other attaching circle, so that intersection points on �1 are joined to the intersection
points on �2 . The union of the remaining parts from �1 and �2 with two of the
four parallel line segments gives a simple closed curve on †, which will be denoted
by �1 #�2 . The simple closed curve �1 #�2 is constructed in a similar way. Let

˛D ˛1
[˛2 and ˇ D y̌1[ y̌2[f�1 #�2; �1 #�2g:

The resulting Heegaard diagram H D .†;˛;ˇ/ is a Heegaard diagram for the three-
manifold obtained by splicing the two knot complements.

If the initial Heegaard diagrams Hi are special (see Definition 4.2) one may assume
that the Heegaard diagram H will have one bad region and the rest of the regions are
either bigons or rectangles. Thus, the combinatorial algorithm of Sarkar and Wang [16]

Algebraic & Geometric Topology, Volume 15 (2015)



Floer homology and splicing knot complements 3195

�1#�2

�1#�2

�1#�2

�1#�2

W1

A1B1C1

X1Y1Z1

D1E1 W2

A2 B2 C2

X2 Y2 Z2

D2 E2

Figure 9: The cylinder illustrates a neighbourhood of the 1–handle used for
attaching the two Heegaard diagrams. The union of the domains of the disks
intersecting the 1–handle and contributing to the differential is shaded yellow.

may be used to compute its (hat) Heegaard Floer homology with F coefficients. Let z

denote a marked point which is placed in the aforementioned bad region. The marked
point z corresponds to the marked points zi 2 †i , i D 1; 2. We may also choose a
second marked point z0i for the Heegaard diagram Hi which is placed next to Oi and
in the quadrant opposite to the quadrant containing zi .

Define the chain complexes M i and Li associated with Ki � Yi using the Heegaard
diagrams

.†i ;˛
i ; y̌i [f�igI zi ; z

0
i/ and .†i ;˛

i ; y̌i [f�igI zi ; z
0
i/;

respectively. Note that the generators of the complex C associated with the Heegaard
diagram H are in correspondence, either with the generators of M DM 1˝M 2 or
the generators of LDL1˝L2 , ie the F–module C may be identified with M ˚L.
Denote the differential of M by dM and the differential of L by dL . The domain
of every disk which contributes to the differential of C is then a rectangle or a bigon
in the diagram. Such a disk may either stay in one of the †i or intersect both †1

and †2 . The disks that stay in one of the †i correspond to the differentials dM and
dL of the complexes M and L. Only a few rectangles can intersect both †i and miss
the marked point z (see Figure 9), while no bigons can intersect both †1 and †2 .
Because of the way the bad region (the region containing the marked point) enters the
neighbourhood of the 1–handle, the rectangles which intersect both †1 and †2 stay
in the neighbourhood of the 1–handle. The contribution of such rectangles may be
described after introducing some extra notation.

The assumption on the Heegaard diagrams H1 and H2 from Lemma 4.1 implies that
the local picture around Oi looks like the genus-4 surface illustrated on the top of
Figure 3. Denote the intersection points on Hi which correspond to A, B , C , D , E ,
X , Y , Z and W by Ai , Bi , Ci , Di , Ei , Xi , Yi , Zi and Wi , respectively.
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The generators of M i˚Li are the tuples xD .x1; : : : ;xgi
/ such that, for a permutation

� W f1; : : : ;gig ! f1; : : : ;gig, we have xj 2 ˛�.j/ \ ǰ for j D 1; : : : ;gi � 1 and
xgi
2 ˛�.gi /\.�i[�i/. The complex M i is generated by those x such that xgi

2�i ,
and the complex Li is generated by the gi –tuples xD .x1; : : : ;xgi

/ with xgi
2�i . The

homology of the complex M i is the knot Floer homology bHFK.Ki/ and the homology
of the complex Li is the longitude Floer homology bHFL.Ki/. The homomorphisms
ˆi W M i!Li over x D .x1; : : : ;xgi

/ 2M i are defined by

ˆi.x/D

8̂̂̂<̂
ˆ̂:
.x1; : : : ;xgi�1;Xi/ if xgi

DAi ;

.x1; : : : ;xgi�1;Yi/ if xgi
D Bi ;

.x1; : : : ;xgi�1;Zi/ if xgi
D Ci ;

0 otherwise.

The corresponding contributing triangles are ŒAiOiXi �, ŒBiOiYi � and ŒCiOiZi �. The
map ˆ thus corresponds to the changes xgi

! ygi
which are one of the following:

Ai ! Xi , Bi ! Yi or Ci ! Zi . Similarly, the homomorphisms ‰i
1
W Li ! M i

correspond to the triangles ŒWiOiAi � and, over xD .x1; : : : ;xgi
/2Li , are defined by

‰i
1.x/D

�
.x1; : : : ;xgi�1;Ai/ if xgi

DWi ;

0 otherwise.

Define the maps ‰i
2

, ‰i
3
W Li!M i , where ‰i

2
corresponds to the changes Xi!Di

and Yi!Ei , and ‰i
3

corresponds to Wi!Di . Thus the triangles contributing to ‰i
2

are ŒXiOiDi � and ŒYiOiEi �, while the only triangle contributing to ‰i
3

is

ŒWiOiDi �D ŒWiOiAi �[ ŒAiOiXi �[ ŒXiOiDi �:

The contribution of the rectangles which intersect both †1 and †2 to the differential
of the complex C DM ˚L may thus be described by the maps

ˆDˆ1
˝ˆ2

W L1
˝L2

�!M 1
˝M 2;

‰1 D‰
1
1˝‰

2
2

‰2 D‰
1
2˝‰

2
1

‰3 D‰
1
3˝‰

2
3

9>=>;W M 1
˝M 2

�!L1
˝L2:

In other words, the differential of the complex C DM ˚L is the homomorphism

d D dC D

 
dM ˆP3
iD1‰i dL

!
:

Proposition 5.1 The complexes M i and Li are identified with the mapping cones of
Nf i
1 D

Nf1.Ki/ and f i
0
D f0.Ki/, respectively. More precisely, the F–module M i is

isomorphic to the direct sum of C1.Ki/ and C0.Ki/, while Li is isomorphic to the
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direct sum of C1.Ki/ and C1.Ki/. Moreover, the differentials dM i and dLi of M i

and Li are identified as

dLi
.c1; c1/D .d

i
1.c1/; d

i
1.c1/Cf

i
0 .c1// for all .c1; c1/ 2 C1.Ki/˚C1.Ki/;

dMi
.c0; c1/D .d

i
0.c0/; d

i
1.c1/C Nf

i
1.c0// for all .c0; c1/ 2 C0.Ki/˚C1.Ki/:

Proof We sketch the proof of the claim for Li . The corresponding claim for M i is
proved in a completely similar way. Consider the labelling of the intersection points
of the ˛–curves with the curves �1.Ki/, �1.Ki/ and �.Ki/ as in Figure 5. The
intersection points with the ˛–curves on �1.Ki/ are r1 , r2 and r3 . The intersection
points with the ˛–curves on �1.Ki/ are s1; s2; : : : ; sn; q3; q4; : : : ; qn and the inter-
section points with the ˛–curves on �.Ki/ are S1;S2; : : : ;Sn;Q3;Q4; : : : ;Qn and
R1;R2;R3 . Define the F–module isomorphism

Ii W C1.Ki/˚C1.Ki/ �!Li ; Ii.x D .x1; : : : ;xgi
// WD .x1; : : : ;xgi�1; Ii.xgi

//;

where Ii changes the letter in the labelling of an intersection point to a capital letter
(so Ii.rj /DRj , Ii.sj /D Sj and Ii.qj /DQj ). Straightforward combinatorics may
be used to verify dLi .Ii.x// D Ii.d

i
1.x// for every generator x of C1.Ki/ and

dLi .Ii.x//D Ii.d
i
1
.x//C Ii.f

i
0
.x// for every generator x of C1.Ki/.

Under the identification of M i with the mapping cone of Nf i
1 and the identification

of Li with the mapping cone of f i
0

, the map ˆ has a simple description: it is
the map that takes C1.Ki/ in the mapping cone of f0W C1.Ki/! C1.Ki/ to the
complex C1.Ki/ in the mapping cone of Nf i

1W C0.Ki/ ! C1.Ki/ via the identity
map of C1.Ki/. Furthermore, the map f i

1 from C0.Ki/ in M i to C1.Ki/ in Li is
identified with the triangle map ‰i

1
. The induced map Nf i

0
from the copy of C1.Ki/

in M to the copy of C1.Ki/ in Li is the triangle map ‰i
2

. The map ‰i
3

is ob-
tained from the composition map Nf i

0
ı f i
1W C0.Ki/! C1.Ki/. Set C i

�
D C�.Ki/.

If we replace the mapping cone of f i
0
W C i

1
! C i

1 for Li , replace the mapping
cone Nf i

1W C
i
0
! C i

1
for M i , and also replace ˆi and ‰i

j with the appropriate
descriptions in terms of Nf i

0
and f i

1 , we obtain an alternative description of the
complex C .

The cube �D�.f i
�
; Nf i
�
j �D0;1; iD1; 2/ associated with the knots K1 and K2 , the

corresponding complexes C i
�

, i D 1; 2, � 2f0; 1;1g, and the maps f i
0

, Nf i
0
W C i

1
!C i

1

and f i
1 , Nf i

1W C
i
0
! C i

1
is the chain complex .�; d�/ associated with the graph of
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complexes represented by the following cube:

(17)

C 1
1˝C 2

1 C 1
1˝C 2

1

I˝f 2
0

oo

C 1
1
˝C 2
1

f 1
0
˝I

ee

C 1
1
˝C 2

1

I˝f 2
0

oo

f 1
0
˝Iee

I

��

C 1
0
˝C 2

0

Nf 1
0
f 1
1˝

Nf 2
0
f 2
1

OO

Nf 1
1˝I

//

I˝ Nf 2
1

%%

C 1
1
˝C 2

0

I˝ Nf 2
1

%%

Nf 1
0
˝f 2
1

OO

C 1
0
˝C 2

1

f 1
1˝

Nf 2
0

OO

Nf 1
1˝I

// C 1
1
˝C 2

1

Proposition 5.2 With the above notation fixed, the complex .C; d/ is identified, as a
chain complex, with the cube�

�D�.f i
�
; Nf i
�
j � D 0;1; i D 1; 2/; d�

�
:

5.2 The linear algebra of the cubes

Let Hi
�

denote the homology of the chain complex .C i
�
; d i
�
/ for i D 1; 2, � 2 f0; 1;1g.

Set H�;? DH1
�
˝H2

? for �; ? 2 f0; 1;1g. Abusing the notation, the map induced on
homology by f i

�
will also be denoted fi

�
and the map induced on homology by Nf i

�

will be denoted fi
�
.

Following the discussion of Section 5.3, we may choose appropriate decompositions
C i
�
DAi

�
˚Hi

�
˚Ai

�
such that the differential d i

�
takes the form

d i
�
D

0@0 0 I

0 0 0

0 0 0

1A:
Correspondingly, we find the matrices G.f i

�
/ D .f i

�
/� and G. Nf i

�
/ D . Nf i

�
/� , which

will be denoted by fi
�

and fi
�
, as well as the matrices

M.f i
�
/; M. Nf i

�
/; P .f i

�
/; P . Nf i

�
/; Q.f i

�
/; Q. Nf i

�
/; N.f i

�
/ and N. Nf i

�
/:

The maps Q.fi
0
/P .fi1/ and Q.fi

0
/P .fi1/ from Hi

0
to Hi

1 extend the homomorphisms

� i
W Ker.fi1/ �! Coker.fi0/ and � i

W Ker.fi1/ �! Coker.fi0/;
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associated with the knot Ki � Yi . These extensions are still denoted by � i and � i ,
respectively.

Lemma 2.4 implies that the homology of .�; d�/ is isomorphic to the homology of
the chain complex .H; dH/ associated with the graph of chain complexes determined
by the cube of Figure 2.

Proposition 5.3 Let .H; dH/ denote the complex obtained from the cube .�; d�/ by
applying Lemma 2.4. Then .H; dH/ is identified with the complex shown in Figure 2
provided that the maps � i D �.Ki/ and � i D �.Ki/ are given as above.

Proof If Lemma 2.4 is applied, we obtain the same oriented graph (ie the same new
edges) and the same complexes on the vertices. The directed edge from H0;0 to H1;1
is labelled by the map

f10f
1
1˝f

2
0f

2
1CQ.f 1

0 ˝I/N.f 1
1˝

Nf 2
0 /P .I˝

Nf 2
1/CQ.I˝f 2

0 /N.
Nf 1
0 ˝f

2
1/P .

Nf 1
1˝I/;

which is, by Lemma 2.6, equal to

f10f
1
1˝ f20f

2
1C �

1
˝ �2

C �1
˝ �2:

The map corresponding to the dashed edge from H0;0 to H1;1 is, by Lemma 2.5,

Q.f 1
1˝

Nf 2
0 /P .I ˝

Nf 2
1/D f11˝ .Q.

Nf 2
0 /P .

Nf 2
1//D f11˝ �

2:

The maps corresponding to the rest of dashed directed edges may be computed in a
completely similar way. This completes the proof of Proposition 5.3.

Remark 5.4 (1) Note that Y .K1;K2/ D Y .�K1;�K2/. One may assume that
f�.�K/D f�.K/ and f�.�K/D f�.K/, implying that �HF.Y .�K1;�K2// is isomor-
phic to the homology of the complex determined by the oriented graph in Figure 2,
where all barred maps change to the corresponding unbarred maps and all unbarred
maps change to the corresponding barred maps.

(2) Proposition 5.3 is still weaker than Theorem 1.1, since the extensions of � i

and � i to maps from Hi
0

to Hi
1 are not arbitrary yet. In fact, without freedom in

choosing these two extensions (which will be proved by the end of the current section)
Theorem 1.1 stays bound to the information from the corresponding nice Heegaard
diagram and has much less significance.
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5.3 Simplifications of the splicing formula

We now apply Lemma 2.3 to the splicing formula of Proposition 5.3 and make some
cancellations. The first cancellation comes from setting C DH , ADH1;1 and

B D .H1;1˚H1;1˚H1;1/˚ .H0;1˚H1;0˚H0;0/D E1˚E2:

We thus have �HF.Y /DH�.B; dB/, where

dB D

0BBBBBBB@

0 f1
0
˝ I I ˝ f2

0
�1˝ f2

0
f1
0
˝ �2 �

0 0 0 ˆ I ˝ .f2
0
ı f21/ f11˝ �

2

0 0 0 .f1
0
ı f11/˝ I ‰ �1˝ f21

0 0 0 0 0 I ˝ f21
0 0 0 0 0 f11˝ I

0 0 0 0 0 0

1CCCCCCCA
with � D .f1

0
ı f11/˝ .f

2
0
ı f21/C �

1˝ �2C �1˝ �1 , ˆ D f11˝ f2
0
C f11˝ f2

0
and

‰ D f1
0
˝ f21C f1

0
˝ f21 .

The dimension of the F–vector space H�.B; dB/ only depends on the rank of the
kernel and the cokernel of the matrix dB . Define a pair of matrices M1 and M2 to be
equivalent if Ker.M1/' Ker.M2/ and Coker.M1/' Coker.M2/. For a matrix M ,
let

{.M / WD Ker.M /˚Coker.M / and i.M / WD rnk.{.M //:

If M1 and M2 are equivalent matrices then {.M1/' {.M2/ and i.M1/D i.M2/.

We make a change of basis for E2 which is given by the matrix0@�0.K1/˝ �1.K2/ 0 0

0 �1.K1/˝ �0.K2/ 0

0 0 �0.K1/˝ �0.K2/

1A:
The matrix dB is thus equivalent to the matrix

d 0B D

0BBBBBBB@

0 f1
0
˝ I I ˝ f2

0
�1�1

0
˝ �2
1f2

0
�1
1f1

0
˝ �2�2

0
�

0 0 0 ˆ �1
1
˝ f2

0
�2

1
f21 f11�

1
0
˝ �2�2

0

0 0 0 f1
0
�1

1
f11˝ �

1
1

‰ �1�1
0
˝ f21�

2
0

0 0 0 0 0 I ˝ f21
0 0 0 0 0 f11˝ I

0 0 0 0 0 0

1CCCCCCCA
:
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with
ˆD �1

1 f
1
1˝ f20�

2
1 C f11�

1
0 ˝ �

2
1f20;

‰ D f10�
1
1 ˝ �

2
1 f

2
1C �

1
1f10˝ f21�

2
0 ;

� D �1
1f10f

1
1˝ �

2
1f20f

2
1C �

1�1
0 ˝ �

2�2
0 C �

1�1
0 ˝ �

2�2
0 :

Let us use the decompositions of (5) for K1 and K2 to obtain a 24 � 24 block
decomposition of d 0

B
. Moreover, following the discussion at the end of Section 3.3 we

may assume that, in the corresponding decompositions,

� i
D

�
0 I

0 0

�
and � i

1�
i� i

0 D

�
M i I

P iM i P i

�
:

Each entry in the above 6�6 decomposition for d 0B corresponds to a 4�4 submatrix of
the aforementioned 24�24 decomposition. For instance, the .1; 4/ entry �1�1

0
˝�2
1f2

0

corresponds to�
0 I

0 0

��
A1

0
B1

0

C 1
0

D1
0

�
˝

�
A2
1 B2

1

C 2
1 D2

1

��
0 0

I 0

�
D

�
C 1

0
D1

0

0 0

�
˝

�
B2
1 0

D2
1 0

�

D

0BB@
C 1

0
˝B2

1 0 D1
0
˝B2

1 0

C 1
0
˝D2

1 0 D1
0
˝D2

1 0

0 0 0 0

0 0 0 0

1CCA:
For another instance, the .3; 5/ entry corresponds to0BB@

0 0 0 0

0 0 0 0

A1
1
˝B2

1
0 B1

1
˝B2

1
0

A1
1
˝D2

1
0 B1

1
˝D2

1
0

1CCAC
0BB@

0 0 0 0

B1
1˝A2

0
B1
1˝B2

0
0 0

0 0 0 0

D1
1˝A2

0
D1
1˝B2

0
0 0

1CCA:

D

0BB@
0 0 0 0

B1
1˝A2

0
B1
1˝B2

0
0 0

A1
1
˝B2

1
0 B1

1
˝B2

1
0

A1
1
˝D2

1
CD1

1˝A2
0

D1
1˝B2

0
B1

1
˝D2

1
0

1CCA:
The aforementioned 24� 24 decomposition includes identity matrices as the entries
determined by the following block coordinates:

.2; 9/; .3; 5/; .4; 6/; .14; 21/; .16; 23/ and .20; 22/:

We use the above six identity matrices for cancellation to obtain an equivalent matrix
d D

�
0
0

D
0

�
over B1˚B2 , where A�? DA�.K1/˝A?.K2/ and
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B1 DA11˚A11˚A10˚A11˚A01˚A00;

B2 DA10˚A10˚A11˚A01˚A01˚A11:

Rearrange the rows and the columns of the matrix D so that D corresponds to the
rows 11, 7, 8, 10, 12, 1 and the columns 19, 13, 15, 17, 18, 24 in the above 24�24

decomposition to obtain the matrix0BBBBBBBB@

B1
1
˝B2

1
B1

1
˝A2

1
0 A1

1
˝B2

1
0 0

0 A1
0˝B2

1 B1
0˝B2

1 0 0 B1
0˝.A

2
1CB2

1P 2/

D1
1˝B2

1 D1
1˝A2

1CA1
0˝D2

1 B1
0˝D2

1 C 1
1˝B2

1 0 B1
0˝.C

2
1CD2

1P 2/

0 0 0 B1
1˝A2

0
B1
1˝B2

0
.A1
1CB1

1P 1/˝B2
0

B1
1
˝D2

1
B1

1
˝C 2

1
0 D1

1˝A2
0
CA1

1
˝D2

1
D1
1˝B2

0
.C 1
1CD1

1P 1/˝B2
0

0 C 1
0˝B2

1 D1
0˝B2

1 B1
1˝C 2

0 B1
1˝D2

0
�

1CCCCCCCCA
with � D B1

1B1
1
B1

0
˝B2

1B2
1
B2

0
C .A1

1CB1
1P1/˝D2

0
CD1

0
˝ .A2

1CB2
1P2/.

This matrix is in turn equivalent to the matrix DDD.K1;K2/ below, which is obtained
by adding I ˝P2 times the third column and P1˝ I times the fifth column to the
last column of the above matrix:

DD

0BBBBBBBB@

B1
1
˝B2

1
C 1

1
˝A2

1
0 A1

1
˝B2

1
0 0

0 A1
0
˝B2
1 B1

0
˝B2
1 0 0 B1

0
˝A2
1

D1
1˝B2

1 D1
1˝A2

1CA1
0˝D2

1 B1
0˝D2

1 C 1
1
˝B2

1
0 B1

0
˝C 2
1

0 0 0 B1
1˝A2

0 B1
1˝B2

0 A1
1˝B2

0

B1
1
˝D2

1
B1

1
˝C 2

1
0 D1

1˝A2
0
CA1

1
˝D2

1
D1
1˝B2

0
C 1
1˝B2

0

0 C 1
0
˝B2
1 D1

0
˝B2
1 B1

1˝C 2
0

B1
1˝D2

0
‰

1CCCCCCCCA
;

where ‰ D A1
1 ˝ D2

0
C D1

0
˝ A2

1 C X 1 ˝ X 2 and X i D X.Ki/ D Bi
1Bi

1
Bi

0

for i D 1; 2.

Combining Proposition 5.3 with the above observations, we find:

Proposition 5.5 Let Ki�Yi , iD1; 2, denote null-homologous knots and Y .K1;K2/

denote the three-manifold obtained by splicing the complement of K1 with the comple-
ment of K2 . With the above definition of D.K1;K2/,�HF.Y .K1;K2/;F/' {.D.K1;K2//:

Corollary 5.6 The splicing formula of Proposition 5.3 is independent of the choice of
extensions � i and � i .

Proof The fact that the matrices P i and M i do not appear in the matrix D.K1;K2/

implies that the choice of the extensions � i , � i W Hi
0
!Hi

1 does not change the rank
of the homology group in the splicing formula of Proposition 5.3 or Theorem 1.1.
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With the above corollary in place, the proof of Theorem 1.1 is now complete.

Definition 5.7 For a pair of knots Ki � Yi , i D 1; 2, define

�.K1;K2/ WD .h1.K1/� h1.K1//.h1.K2/� h1.K2//

� .h1.K1/� h0.K1//.h1.K2/� h0.K2//:

Note that �.K1;K2/ is in fact the difference between the ranks of B1 D B1.K1;K2/

and B2DB2.K1;K2/. In the corresponding Z=2Z–grading on B1˚B2 , �.K1;K2/ is
thus the Euler characteristic of the chain complex .B1˚B2; d/.

Corollary 5.8 With the above notation fixed,

rnk
� �HF.Y .K1;K2//

�
� j�.K1;K2/j:

Proof It is enough to note that

�.K1;K2/D rnk
�
Ker.D.K1;K2//

�
� rnk

�
Coker.D.K1;K2//

�
:

Consider the matrices

PL D

0BBBBBBB@

I ˝A2
1

0 0 0 I ˝B2
1

0

0 I ˝A2
1 I ˝B2

1 0 0 0

0 I ˝C 2
1 I ˝D2

1 0 0 0

0 0 0 I ˝A2
0

0 I ˝B2
0

I ˝C 2
1

0 0 0 I ˝D2
1

0

0 0 0 I ˝C 2
0

0 I ˝D2
0

1CCCCCCCA
;

PR D

0BBBBBBB@

D1
1
˝ I 0 0 C 1

1
˝ I 0 0

0 A1
0
˝ I B1

0
˝ I 0 0 0

0 C 1
0
˝ I D1

0
˝ I 0 0 0

B1
1
˝ I 0 0 A1

1
˝ I 0 0

0 0 0 0 D1
1˝ I C 1

1˝ I

0 0 0 0 B1
1˝ I A1

1˝ I

1CCCCCCCA
:

Since P2
R
DP2

L
D Id, both PR and PL are invertible and D.K1;K2/ is equivalent to

D0.K1;K2/D PLD.K1;K2/PR . The matrix D0.K1;K2/ has the block presentation0BBBBBBBB@

D1
1B1

1˝B2
1A2

0 B1
1A1

0˝I B1
1B1

0˝I D1
1A1

1˝B2
1A2

0 I˝B2
1B2

0 0

I˝B2
1B2

1
D1

1
A1

0
˝B2
1A2

1
D1

1
B1

0
˝B2
1A2

1
0 B1

0
B1
1˝I B1

0
A1
1˝I

I˝D2
1B2

1
‰1 D1

1
B1

0
˝D2

1A2
1

0 0 0

B1
1B1

1˝I 0 I˝B2
0B2
1 B1

1A1
1˝I �1 �2

D1
1B1

1
˝D2

1
A2

0
0 0 ‰2 I˝D2

1
B2

0
0

0 0 I˝D2
0
B2
1 0 �3 �4

1CCCCCCCCA
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with

‰1 D I˝ICD1
1A1

0˝D2
1A2

1; �1 DD1
0B1
1˝B2

0A2
1CX 1B1

1˝B2
0X 2;

‰2 D I˝ICD1
1A1

1˝D2
1A2

0; �2 DD1
0A1
1˝B2

0A2
1CX 1A1

1˝B2
0X 2;

�3 DD1
0B1
1˝D2

0A2
1CX 1B1

1˝D2
0X 2;

�4 D I˝ICD1
0A1
1˝D2

0A2
1CX 1A1

1˝D2
0X 2;

and is easier to use in actual computations. Note that

{.D0.K1;K2//' {.D.K1;K2//' �HF.Y .K1;K2/;F/:

6 Splicing with the trefoil

6.1 The maps f� and f� for the trefoils

Let us now consider the case of the right-handed trefoil, which will be denoted by R.
Thus, h1.R/D h1.R/D 3 and h0.R/D 4. Moreover, y1.R/D y1.R/D 1, while
y0.R/D2 (see Eftekhary [3, Section 5]). Since H�.R; i/DF for �D1;1, iD0;˙1,
the maps �1.R/ and �1.R/ are forced and we only need to determine �0.R/.

The decompositions of H1.R/DH1.R/D F3 according to relative Spinc classes
give

H1.R/D ha; b; ciF and H1.R/D ha
0; b0; c0iF ;

where a, a0 are generators in relative Spinc class �1, b , b0 are generators in relative
Spinc class 0 and c , c0 are generators in relative Spinc class C1. The homomorphisms
f0.R/ and f0.R/ have the following block forms in the corresponding basis:

(18) f0.R/D

0@˛ 0 0

0 ˇ 0

0 0 

1A and f0.R/D

0@ 0 0

0 ˇ 0

0 0 ˛

1A :
From (7) we know that the ranks of f0.R/ and f0.R/ are equal to 1, ie precisely
one of ˛ , ˇ and  is equal to 1 and the other two are zero. Moreover, the rank of
f0.R/C f0.R/ is 2, ie precisely two of ˛C  , ˛C  , 2ˇ are non-zero. Since the
coefficient ring is F , 2b is automatically zero. Thus, ˛ D 1 and ˇ D  D 0, or  D 1

and ˛ D ˇ D 0.

The generator a of H1.R/ is not in the image of f1.R/, since f1.R;�1/ is trivial.
Hence a is not in the kernel of f0.R;�1/. Thus, from the above two possibilities the
former is the case, ie in (18) we get ˛ D 1 and ˇ D  D 0.

Algebraic & Geometric Topology, Volume 15 (2015)



Floer homology and splicing knot complements 3205

The rank of f1.R/ is equal to 2 according to (7). Moreover, ha; biF is already in the
image of f0.R/. Thus, f0.R/ is surjective onto H1.R;�1/˚H1.R; 0/. Let us use a
basis a00 , b00 for H0

�
R;�1

2

�
which contains some pre-image a00 of a under f1 and

an element b00 in the kernel of f1 . Use the dual basis �0.b
00/, �0.a

00/ for H0

�
R; 1

2

�
.

The basis fa00; b00; �0.b
00/; �0.a

00/g for H0.R/ is thus invariant under �0 D �0.R/.
Correspondingly, we get

(19) f1.R/D

0@1 0 0 0

0 0 x y

0 0 0 0

1A and f1.R/D

0@0 0 0 0

y x 0 0

0 0 0 1

1A:
If xD0 then yD1, since the rank of f1.R/ is equal to 2. The rank of f1.R/Cf1.R/
is then equal to 2; on the other hand, (7) implies that this rank is 3, a contradiction.
The contradiction implies that x D 1. Replacing a00 with a00 � yb00 , we obtain the
presentation of f1.R/ and f1.R/ in a new basis for H0.R/ (which is still invariant
under the involution �0.R/) corresponding to the values x D 1 and y D 0 in (19).
From here, by taking into account the fact that the map �.R/ increases the Spinc

grading by 1
2

while �.R/ decreases the Spinc grading by 1
2

,

(20) �.R/D

0@0 0 0 0

1 0 0 0

0 0 1 0

1A and �.R/D

0@0 1 0 0

0 0 0 1

0 0 0 0

1A:
The above computations imply that a0.R/D 1 while a1.R/D a1.R/D 2. Moreover,
we may take

(21)

A0.R/DD0.R/D

�
0 0

0 0

�
; B0.R/D C0.R/D

�
0 1

1 0

�
;

A1.R/DD1.R/D .0/; D1.R/DA1.R/D

�
0 0

0 1

�
;

C1.R/D B1.R/D BT
1 .R/D C T

1.R/D

�
1

0

�
:

For the left-handed trefoil, a similar argument may be used for the computation, which is
sketched below. The rank of f0.L/ is 2 and the rank of f1.L/ is 3. The latter implies
that the rank of f1.L; 1/ is 1, the rank of f1.L; 0/ is 2 and the rank of f1.L;�1/ is
zero. Correspondingly, the ranks of f0.L; 1/, f0.L; 0/ and f0.L;�1/ are equal to 0, 1

and 1, respectively. If the images of f1.L; 0/ and f1.L; 0/ are identical, the maps
f0.L; 0/ and f0.L; 0/ are forced to be identical, since H1.L; 0/ is 1–dimensional.
In particular, f0.L; 0/C f0.L; 0/ is trivial. Hence the rank of f0.L/C f0.L/ is at
most 2, which is in contradiction with y0.L/ D 2. The 2–dimensional subspaces
Im.f1.L; 0// and Im.f1.L; 0// of H1.L; 0/ are thus different. From here, their
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intersection is 1–dimensional and is generated by some �1.L/–invariant element
f1.b/ with b 2H0

�
L;�1

2

�
.

Let a 2H0

�
L; 1

2

�
denote the unique non-trivial vector in the kernel of f1.L/. Let us

first assume that b D �0.a/. Complete a to a basis .a; c/ for H0

�
L; 1

2

�
. Then

fa; c; �0.a/; �0.c/g

is an ordered basis for H0.L/. Correspondingly, we obtain the basis˚
f1.c/; f1.c/; f1.�0.a//; f1.�0.c//; �1.f1.c//

	
for H1.L/ and the matrices f1.L/ and f1.L/ take the following forms, respectively:

f1.L/D

0BBBB@
0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1CCCCA and f1.L/D

0BBBB@
0 0 0 0

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 1

1CCCCA :
In particular, the matrix

f1.L/C f1.L/D

0BBBB@
0 1 0 0

0 1 0 0

1 0 1 0

0 0 0 1

0 0 0 1

1CCCCA
is a matrix of rank 3, while we should have

rnk.f1.L/C f1.L//D
1
2
.h0.L/C h1.L/�y1.L//D 4:

This contradiction implies that b is different from �0.a/, so we may take .�0.a/; b/ as
a basis for H0

�
L; 1

2

�
. Correspondingly, we obtain the basis˚

�0.a/; b; �0.b/; a
	

for H0.L/. As a basis for H1.L; 0/ we obtain the three vectors f1.a/, f1.a/

and f1.b/. This basis is completed to the (ordered) basis for H1.L/˚
f1.a/; f1.b/; f1.b/; f1.a/; �1.f1.b//

	
:

Finally, we choose the following basis for H1.L/:˚
f0.f1.b//; f0.f1.a//; �1.f0.f1.b///

	
:
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In these bases, we may compute

f1.L/D

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1CCA and f0.L/D

0@0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

1A :
Moreover, after re-ordering the elements of the above bases, we find the presentations

D0.L/DA1.L/D 0; A1.L/D

�
0 0

0 0

�
; B1.L/D C T

1 .L/D

�
1 0 0

0 0 1

�
;

A0.L/D

0@0 0 0

0 0 1

0 1 0

1A; D1.L/D

0@0 0 0

0 1 0

0 0 0

1A; D1.L/D

�
1 0

0 0

�
;

B0.L/D C T
0 .L/D

0@1

0

0

1A and B1.L/D C T
1.L/D

�
0 1

�
:

6.2 Splicing a knot complement with the complement of a trefoil

For a knot K � Y , let Y .R;K/ denote the three-manifold obtained by splicing the
complement of K � Y with the complements of the right-handed trefoil. We study
the rank rr .K/ of �HF.Y .R;K// in this subsection. With the notation of Section 5.3,
rr .K/D i.D0.R;K//. Replacing the block forms of (21) in D0.R;K/, we find

D0.R;K/D

0BBBBBBBBBBBBBBB@

0 0 0 0 0 I 0 B1B0 0 0

B1B1 0 0 0 0 0 0 0 0 I

0 B1B1 0 0 B1A1 0 0 I 0 0

D1B1 0 I 0 0 0 0 0 0 0

0 D1B1 0 I D1A1 0 0 0 0 0

I 0 0 0 B0B1 0 0 0 0 B0X

0 0 0 0 0 B0B1 0 0 0 0

0 0 0 0 0 0 I D1B0 0 0

0 0 0 0 D0B1 0 0 0 I D0X

0 0 0 0 0 D0B1 0 0 0 I

1CCCCCCCCCCCCCCCA
;

where A� D A�.K/, B� D B�.K/, C� D C�.K/, D� D D�.K/ and X D X.K/

for � 2 f0; 1;1g. Doing a series of cancellations that correspond to the identity
matrices which appear as the

.1; 6/; .3; 8/; .4; 3/; .5; 4/; .6; 1/; .8; 7/; .9; 9/ and .10; 10/
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entries in the above block presentation, we obtain the equivalent matrix

(22) Rr .K/ WD

�
0 B0XB1

XB1B1 XB1A1CD0XB1

�
:

Corollary 6.1 For a knot K � Y , let Y .R;K/ denote the three-manifold obtained by
splicing the complement of K and the complement of the trefoil. Then

(23) �HF.Y .R;K//D {.Rr .K//:

Proof The claim follows immediately from the above discussion.

For the trefoils, our computations imply that

X.R/B1.R/DX.L/B1.L/D 0 D) Rr .R/DRr .L/D 0

D) j �HF.Y .R;R//j D 7; j �HF.Y .R;L//j D 9:

The above computations agree with the computations of Hedden and Levine [5].

Corollary 6.2 For every knot K in a homology sphere Y we have

j �HF.Y .R;K//j � .a0.K/C a1.K/C 2a1.K//� 4 minfa0.K/; a1.K/; a1.K/g

D 4 maxfh0.K/; h1.K/; h1.K/g� .h0.K/C h1.K/C 2h1.K//:

Moreover, if Y .R;K/ is a homology sphere L–space, K is trivial and Y is a homology
sphere L–space.

Proof Let M DM.K/DX.K/B1.K/ and note that

rnk.Rr .K//D rnk
�

0 B0.K/M

MB1.K/ MA1.K/CD0.K/M

�
� rnk

�
MB1.K/ MA1.K/

�
C rnk

�
B0.K/M

D0.K/M

�
D 2 rnk.M /

� 2 rnk.X.K//:

For every knot K � Y as above note that the rank of X DX.K/ is at most equal to
the minimum of the sizes of the matrices B0.K/, B1.K/ and B1.K/, which is

minfa0.K/; a1.K/; a1.K/g:

Since Rr .K/ is of size h0.K/� h1.K/ D .a1.K/C a1.K//� .a0.K/C a1.K//,
this proves the first part of the corollary.
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Let us assume that rnk
� �HF.Y .R;K//

�
D 1. From here we find

.a0.K/C a1.K/C 2a1.K//� 4 minfa0.K/; a1.K/; a1.K/g

D .a0.K/C a1.K/C 2a1.K//� 4 rnk.M /D 1:

Since a1.K/ and a1.K/ have the same parity while the parity of a0.K/ is different
from the parity of both a1.K/ and a1.K/, one can easily conclude that a0.K/�1D

a1.K/D a1.K/. Let a denote the common value a1.K/D a1.K/. Then the rank
of M is a and both B0.K/ and X.K/ are invertible. We may thus assume that
A0.K/DD0.K/D 0. Since

rnk.f1.K/C f1.K//D rnk
�

B1.K/A0.K/ B1.K/B0.K/

I CD1.K/A0.K/ D1.K/B0.K/

�
D 2a;

the three-manifold Y is an L–space. Since splicing K with the trefoil is also a
homology sphere L–space, we conclude that K is trivial, by [5, Theorem 1].

Appendix: Bordered Floer homology for knot complements

The first draft of this paper appeared while the theory of bordered Floer homology
was being developed. With bordered Floer homology conventions widely known to
the Heegaard Floer community, the referee recommended the inclusion of an appendix
which addresses the contribution of this paper within the realm of bordered Floer
homology.

Let K � Y denote a null-homologous knot inside the three-manifold Y and let
H D .†;˛; y̌[f�;�gI z/ denote a special Heegaard diagram for K , as constructed in
Lemma 4.1. In particular, H is a nice Heegaard diagram for the bordered three-manifold
YK determined by K � Y in the sense of Lipshitz, Ozsváth and Thurston [6]. The
bordered Floer complex bCFD.YK / may then be constructed from the chain complexes
M DM.K/ and LDL.K/ (which are described in Proposition 5.1 as the mapping
cones of f1.K/W C0.K/! C1.K/ and f0.K/W C1.K/! C1.K/, respectively) and
the chain maps ˆDˆ.K/W L!M and ‰i D‰i.K/W M !L, i D 1; 2; 3.

More precisely and following the notation of [7, Section 4.2], the idempotents {0 and {1
and the chords �1 , �2 , �3 , �12 D �1�2 , �23 D �2�3 and �123 D �1�2�3 form an
F–basis for the differential graded algebra associated with the torus boundary:

A.T 2; 0/D

�
{0 �

�1

%%

�3

66
� {1

�2
oo

� ı
.�2�1 D �3�2 D 0/:
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The module bCFD.YK / is generated (over A.T 2; 0/) by the generators of M and L.
For a generator x of L we have

(24) I.x/D {0 and @.x/D dL.x/C �1‰1.x/C �3‰2.x/C �123‰3.x/;

while for a generator y of M we have

(25) I.y/D {1 and @.y/D dM .y/C �2ˆ.y/:

The splicing formula of (17) is then just the gluing formula for bordered Floer homology,
ie [6, Theorem 1.3]. A related discussion is carried over in [6, Section 8].

Definition A.1 The chain complexes .C�.K/; d�/, � 2 f0; 1;1g, and the chain maps
f�.K/, Nf�.K/, � 2 f0;1g, are called admissible data associated with the knot K if
they satisfy the following conditions:

� The homology of the complex .C�.K/; d�/ is H�.K/.

� The maps induced by f�.K/ and Nf�.K/ in homology (under the identification of
the homology of .C�.K/; d�/ with H�.K/) are f�.K/ and f�.K/, respectively.

� We have f0.K/ ıf1.K/D Nf0.K/ ı Nf1.K/D 0.

� The corresponding maps

�.K/W Ker.f1.K// �! Coker.f0.K//;

�.K/W Ker.f1.K// �! Coker.f0.K//

are isomorphisms and are the inverses of the maps induced by f1.K/ and f1.K/,
respectively.

The proof of Theorem 1.1 implies that .C i
�
; d i
�
/ and the chain maps f i

�
, Nf i
�

for
� 2 f0;1g and i D 1; 2 in (17) may be replaced by other admissible data corresponding
to the knots K1 and K2 . orrespondingly, the bordered Floer complex associated with
any knot K � Y may be constructed from admissible data associated with K . More
precisely, we have the following proposition:

Proposition A.2 Suppose that the chain complexes .C�.K/; d�/, � 2 f0; 1;1g, and
the chain maps f� D f�.K/, Nf� D Nf�.K/, � 2 f0;1g, are admissible data associated
with the knot K � Y and set

M.K/D C0.K/˚C1.K/; L.K/D C1.K/˚C1.K/:
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The bordered Floer complex bCFD.YK / may then be constructed as the left module over
the differential graded algebra A.T 2; 0/ which is generated by {0:L.K/ and {1:M.K/,
and equipped with the differential @W bCFD.YK /! bCFD.YK / defined by

(26) @
�

x

y

�

D

8̂<̂
:
� d0.x/
Nf1.x/Cd1.y/

�
C �2:

� 0

x

�
if
�

x

y

�
2M.K/;� d1.x/

f0.x/Cd1.y/

�
C

� �1f1.x/

�3
Nf0.y/C�1�2�3

Nf0.f1.x//

�
if
�

x

y

�
2L.K/:

In particular, let the F–modules A� D A�.K/, � 2 f0; 1;1g, and the matrices
A�DA�.K/, B�DB�.K/, C�DC�.K/ and D�DD�.K/ be defined as in Section 3.3.
Set

.C0.K/; d0/D .A1˚A1; 0/; .C1.K/; d1/D .A1˚A0; 0/;

C1.K/DA1˚A0˚A1˚A1 and d1 D

0BB@
0 0 0 0

0 0 0 0

0 0 0 0

IA1
0 0 0

1CCA:
Correspondingly, define

f1.K/D

0BB@
0 0

0 0

I 0

0 I

1CCA; f0.K/D

�
I 0 0 0

0 I 0 0

�
and �1.K/D

0BB@
0 0 0 0

0 A1 B1 0

0 C1 D1 0

0 0 0 0

1CCA
and set Nf1.K/D �1.K/f1.K/�0.K/ and Nf0.K/D �1.K/f0.K/�1.K/. The data
associated with K consisting of .C�.K/; d�/ and f�.K/, Nf�.K/, � 2 f0;1g is then
admissible.

Corresponding to the above admissible data and associated with K � Y , we may
construct the bordered Floer complex for K via

M.K/D C0.K/˚C1.K/DA1˚A1˚A1˚A0˚A1˚A1;

L.K/D C1.K/˚C1.K/DA1˚A0˚A1˚A1˚A1˚A0;

dM D

0BBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

B1A0 B1B0 0 0 0 0

D1A0 D1B0 I 0 0 0

0 0 0 0 0 0

1CCCCCCCA
; dL D

0BBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

I 0 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

1CCCCCCCA
;
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ˆ.K/D

0BBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

1CCCCCCCA
; ‰1.K/D

0BBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

I 0 0 0 0 0

0 I 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1CCCCCCCA
;

‰2.K/D

0BBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 B1A1 B1B1 0

0 0 0 D1A1 D1B1 0

1CCCCCCCA
and ‰3.K/D‰2.K/ˆ.K/‰1.K/

as the left module over the differential graded algebra A.T 2; 0/ generated by {0:L

and {1:M and equipped with the differential @W bCFD.YK /! bCFD.YK / defined by
the equations (24) and (25).

Remark A.3 Simultaneous computation of the matrices ��.K/D
�

A�
C�

B�
D�

�
is a priori

quite difficult, as we observed in the case of trefoils in Section 6. This makes the
above description of the bordered Floer homology hard to use even for knots K � Y

where we have complete understanding of the Heegaard Floer complex associated
with K . However, it is possible to construct admissible data associated with K � Y

completely in terms of the filtered chain complex CF1.Y;KIF/, as will be discussed
in the revision of [4].
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