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Higher Hochschild cohomology of
the Lubin–Tate ring spectrum

GEOFFROY HOREL

We construct a spectral sequence computing factorization homology of an Ed –algebra
in spectra using as an input an algebraic version of higher Hochschild homology due
to Pirashvili. This induces a full computation of higher Hochschild cohomology when
the algebra is étale. As an application, we compute higher Hochschild cohomology
of the Lubin–Tate ring spectrum.

55P43; 16E40, 55P48

This paper is devoted to higher Hochschild cohomology. Given E an E1–ring
spectrum, the Hochschild cohomology of an associative algebra A in ModE with
coefficients in a bimodule M is the derived homomorphisms object in the category of
A–A–bimodules with source A and target M . Higher Hochschild cohomology is the
generalization of this construction when A is an Ed –algebra instead of an associative
algebra. In this case, we need to replace the notion of bimodule by the notion of
operadic Ed –module and the definition becomes

HHEd .AjE;M/DRHom
ModEd

A

.A;M/;

where HomModEd
A

denotes the homomorphism object in the category of operadic
Ed –modules over A.

For practical reasons, we use a different but equivalent definition of higher Hochschild
cohomology inspired by factorization homology. For A an Ed –algebra in ModE and V
a d–dimensional framed manifold, there is a spectrum

R
V A called the factorization

homology of A over V . This construction is functorial with respect to maps of
Ed –algebras and with respect to embeddings of framed d–manifolds. Moreover,
V 7!

R
V A is a symmetric monoidal functor. This implies that

R
Sd�1�RA is an

E1–algebra in spectra. This E1–algebra serves as a universal enveloping algebra for the
category of operadic Ed –modules over A. More precisely, we prove in Proposition 3.19
the identity

HHEd .AjE;M/'RHomS
d�1�Œ0;1�

A .A;M/;
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3216 Geoffroy Horel

where the right-hand side is an explicit construction given by a homotopy limit of a
certain functor over the poset of disks on the manifold Sd�1� Œ0; 1�. In Corollary 3.15,
we prove an equivalence

RHomS
d�1�Œ0;1�

A .A;M/'RHomŒ0;1�R
Sd�1�.0;1/

A
.A;M/;

where the right-hand side is a suitable generalization of the homomorphisms between
left modules over an E1– (as opposed to associative) algebra. Thus, we reduce the
computation of higher Hochschild cohomology to the computation of the derived
homomorphisms between two left modules over an E1–algebra.

With this last description, we see that, in order to make explicit computations of higher
Hochschild cohomology, the first step is to compute

R
Sd�1�RA with its E1–structure.

In Section 5, we construct a spectral sequence that computes the factorization homology
of an Ed –algebra over any framed manifold:

Proposition 5.4 Let A be an Ed –algebra in ModE , let M be a framed d–manifold
and let K be a homology theory with a Z=2–equivariant Künneth isomorphism. There
is a spectral sequence

E2s;t D HHMs;t .K�A/D)KsCt

�Z
M

A

�
:

Let us say a few words about the E2–page. Given a commutative ring k , Pirashvili
defines a functor .X;A/ 7!HHX .A/, where X is a simplicial set, A is a commutative
algebra in k–modules and HHX .A/ is a chain complex of k–modules. When X DS1 ,
this object is quasi-isomorphic to ordinary Hochschild homology. Our spectral sequence
computing factorization homology is given by Pirashvili’s higher Hochschild homology
on the E2–page.

In Section 6, we make an explicit computation in the case of the Lubin–Tate spectrum
(also known as Morava E–theory) En . Using the étaleness of the algebra .Kn/�En ,
we can prove that for any Ed –structure on En that induces the correct multiplication
on Kn–homology, the unit map

En!

Z
Sd�1�R

En

is a Kn–homology equivalence. Using the fact that En is Kn–local, this implies the
following theorem:

Proposition 6.4 The map HHEd .En/!En is a weak equivalence.

In Section 7, we prove an étale base-change theorem for étale algebras:

Algebraic & Geometric Topology, Volume 15 (2015)



Higher Hochschild cohomology of the Lubin–Tate ring spectrum 3217

Theorem 7.9 Let T be a commutative algebra in ModE that is (K–locally) étale
as an Ed –algebra. That is to say that the Ed –version of the cotangent complex of
E defined in Definition 2.7 of Francis [6] is (K–locally) contractible. Then, for any
(K–local) Ed –algebra A over T , the base-change map

HHEd .AjE/ �!
� HHEd .AjT /

is an equivalence.

In particular, this result combined with our computation implies that for any Kn–local
Ed –algebra A over En , the base-change map

HHEd .AjEn/! HHEd .AjS/

is a weak equivalence.

The full strength of the results proved in this paper is unnecessary in the case of En
since it is known to be a commutative ring spectrum. However, we think that the
method presented here could be used in other contexts, where one has to deal with
Ed –algebras that are not commutative.

Conventions

We denote by S the category of simplicial sets with its usual model structure. We
use boldface letters to denote categories. We use calligraphic letters like A to denote
operads. All our categories and operads are enriched in S . Note that given a topological
operad or category, we can turn it into a simplicially enriched operad or category by
applying the functor Sing to each mapping space. We allow ourselves to do this
operation implicitly.

We denote by ModE the simplicial category of modules over a commutative symmetric
ring spectrum E . This category is symmetric monoidal for the relative tensor product
over E . Moreover, it has two model structures: the positive model structure, denoted
by ModCE , and the absolute model structure, denoted by ModE . We refer the reader to
Section 1 for more details. We often write C instead of ModE in the sections where
the results do not depend a lot on the symmetric monoidal model category.
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3218 Geoffroy Horel

1 Review of operads and factorization homology

We recall a few notations. We denote by Fin the category whose objects are the
nonnegative integers and with

Fin.m; n/D Set.f1; : : : ; mg; f1; : : : ; ng/:

We abuse notation and write n for the finite set f1; : : : ; ng.

To an operad M with one color, we can assign its PROP M . This is a category whose
set of objects coincides with the set of objects of Fin and with

M .m; n/D
G

f 2Fin.m;n/

Y
i2n

M.f �1.i//:

Note that Fin is the PROP associated to the commutative operad. The construction of
the associated PROP is a functor from operads to categories. In particular, the unique
map M! Com induces a map M ! Fin.

An M–algebra A in a simplicially enriched symmetric monoidal category C induces
a symmetric monoidal simplicial functor M ! C that we also denote by A.

Let E be a commutative ring in symmetric spectra. We denote by ModCE the category of
modules over E equipped with the positive model structure (constructed in Schwede [17,
Theorem III.3.2] under the name projective positive stable model structure). The
category ModCE is a closed symmetric monoidal model category for the smash product
over E (denoted by �˝E �). It is also a simplicial model category. Moreover, the two
structures are compatible in the sense that the tensor of simplicial sets and E–modules

�˝�W S �ModCE !ModCE
sending .X;M/ to .E ^†1

C
X/˝E M is a Quillen left bifunctor.

There is another model structure on ModE called the absolute model structure and
that we denote by ModE (its construction can also be found in [17, Thorem III.3.2]).
Its weak equivalences are the same as in the positive model structure but there are more
cofibrations. In particular, the important fact for us is that the unit E is cofibrant in the
absolute model structure but not in the positive model structure. The model category
ModE is also a closed symmetric monoidal simplicial model category. The advantage
of the positive model structure is that the smash product is much better behaved. In
particular, the following theorem would be false for the absolute model structure:

Theorem 1.1 The category ModCE is a closed symmetric monoidal cofibrantly gener-
ated simplicial model category satisfying the following properties:
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� For any operad M in S , the category ModCE ŒM� of M–algebras in ModCE has
a model category structure where weak equivalences and fibrations are created
by the forgetful functor ModCE ŒM�! .ModCE /

Col.M/ .

� If ˛W M!N is a is a map of operads, the adjunction

˛ŠW ModCE ŒM��ModCE ŒN� W˛
�

is a Quillen adjunction. It is, moreover, a Quillen equivalence if ˛ is a weak
equivalence.

� The forgetful functor ModCE ŒM�! .ModE /Col.M/ sends cofibrant objects to
cofibrant objects.

Proof See Theorems 3.4.1 and 3.4.3 of Pavlov and Scholbach [14].

Remark 1.2 All the operads that we consider in this work have a finite number of
colors. The only kind of weak equivalences we will have to consider are maps that
induce a bijection on the set of colors and induce weak equivalences on each space of
operations.

The little disk operad

There is a topological category whose objects are d–manifolds without boundary and
with space of maps between M and N given by Emb.M;N /, the topological space
of smooth embeddings with the weak C 1 topology.

Definition 1.3 A framed d–manifold is a pair .M; �M / where M is a d–manifold
and �M is a smooth section of the GL.d/–principal bundle Fr.TM/.

If M and N are two framed d–manifolds, we define a space of framed embeddings,
denoted by Embf .M;N / as in Definition V.8.3 of Andrade [1]. We now recall this
construction. First, given a diagram

Y

v
��

X
u
// Z

in the category of topological spaces over a fixed topological space W , we define its ho-
motopy pullback as in [1, Chapter V.9] to be the space of triples .y; p; z/2X�ZŒ0;1��Y
such that p.0/ D u.x/, p.1/ D v.y/ and such that the image of p in W Œ0;1� is a
constant path. It can be shown that this is indeed a model for the homotopy pullback in
the model category Top=W .
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3220 Geoffroy Horel

Definition 1.4 Let M and N be two framed d–dimensional manifolds. The topo-
logical space of framed embeddings from M to N , denoted by Embf .M;N /, is
given by the following homotopy pullback in the category of topological spaces over
Map.M;N /:

Embf .M;N / //

��

Map.M;N /

��
Emb.M;N / // MapGL.d/.Fr.TM/;Fr.TN//

The right-hand side map is obtained as the composite

Map.M;N /!MapGL.d/.M �GL.d/;N �GL.d//ŠMapGL.d/.Fr.TM/;Fr.TN//;

where the first map is obtained by taking the product with GL.d/ and the second
map comes from the identifications Fr.TM/ŠM �GL.d/ and Fr.TN/ŠN �GL.d/
induced by our choice of framing on M and N .

Andrade explains in [1, Definition V.10.1] that there are well-defined composition maps

Embf .M;N /�Embf .N; P /! Embf .M;P /

allowing the construction of a topological category f Mand .

We denote by D the open disk of dimension d .

Proposition 1.5 The evaluation at the center of the disks induces a weak equivalence

Embf .D
tp;M/! Conf.p;M/:

Proof See [1, Proposition V.4.5] or Proposition 6.6 of Horel [10].

Definition 1.6 The little d–disk operad Ed is the one-color operad whose nth space is

Ed .n/D Embf .D
tn;D/

and whose composition is induced by composition of embeddings. We denote by Ed
the PROP of the operad Ed .

Remark 1.7 This model of the little d–disk operad was introduced by Andrade [1].
Using Proposition 1.5, it is not hard to show that this definition is weakly equivalent to
any other definition of the little d–disk operad.
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Factorization homology

From now on, until we say otherwise, we denote by .CC;˝; I/ the symmetric monoidal
category ModE with its positive model structure and by C the same category equipped
with the absolute model structure. We do this partly to simplify the notations but
mostly to emphasize that our arguments hold in greater generality modulo a few easy
modifications.

Definition 1.8 Let A be a cofibrant object of CCŒEd �. We define the factorization
homology with coefficients in A by the coendZ

M

A WD Embf .�;M/˝Ed A:

This functor sends weak equivalences between cofibrant algebras to weak equivalences.

Proposition 1.9 The functor M 7!
R
M A is a simplicial and symmetric monoidal

functor from the category f Mand to the category C .

Proof See [10, Definition 7.3] and the paragraph following it.

Let M be an object of f Mand . Let D.M/ be the poset of subsets of M that
are diffeomorphic to a disjoint union of disks. Let us choose for each object V of
D.M/ a framed diffeomorphism V ŠDtn for some uniquely determined n. Each
inclusion V � V 0 in D.M/ induces a morphism Dtn!Dtn

0

in Ed by composing
with the chosen parametrization. Therefore, each choice of parametrization induces
a functor D.M/! Ed . Up to homotopy this choice is unique, since the space of
automorphisms of D in Ed is contractible.

In the following we assume that we have one of these functors ıW D.M/!Ed . We
fix a cofibrant algebra AW Ed ! C .

Proposition 1.10 There is a weak equivalence

hocolimV 2D.M/A.ıV /'

Z
M

A:

Proof See [10, Corollary 7.7].
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2 Modules over Ed –algebras

We define the notion of an S� –shaped module. These are modules over Ed –algebras
that are studied in detail in Horel [11].

Definition 2.1 A d–framing of a closed .d�1/–manifold S is a trivialization of the
d–dimensional bundle TS˚R, where R is a trivial line bundle.

For M a d–manifold with boundary and m a point of @M , we say that a vector
u 2 TmM is pointing inward if it is not in Tm@M and there is a curve  W Œ0; 1/!M

whose derivative at 0 is u.

Definition 2.2 Let S be a closed .d�1/–manifold. An S–manifold is a d–manifold
with boundary M together with the data of

� a diffeomorphism f W S ! @M ,

� a non-vanishing section � of the restriction of the vector bundle TM on @M
which is such that �.m/ is pointing inward for any m in @M .

Definition 2.3 Let � be a d–framing of S . Let i W T @M ! TMj@M be the obvious
inclusion. A framed S� –manifold is an S–manifold .M; f; �/ with the data of a
framing of TM such that the composite

TS˚R
Tf˚R
���!T .@M/˚R

i˚�
���!TMj@M

sends � to the given framing on the right-hand side.

For E!M a d–dimensional vector bundle, we denote by Fr.E/ the GL.d/–bundle
over M whose fiber over m is the space of bases of the vector space Em . Note that a
trivialization of E is exactly the data of a section of Fr.E/.

For .M; f; �/ and .M; g;  / two framed S� –manifolds, we denote by

MapS�GL.d/.Fr.TM/;Fr.TN//

the space of morphisms of GL.d/–bundles whose underlying map M ! N sends
the boundary to the boundary and whose restriction to the boundary is fiberwise the
identity (via the identification of both boundaries with S and of both tangent bundles
with TS˚R).

Algebraic & Geometric Topology, Volume 15 (2015)
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Definition 2.4 Let .M; f; �/ and .M; g;  / be two framed S� –manifolds. Let
MapS .M;N / be the topological space of maps between M and N that commute with
the maps f W S !M and gW S !N . Similarly, let EmbS .M;N / be the topological
space of embeddings that commute with the maps from S . The topological space
of framed embeddings from M to N , denoted by EmbS�

f
.M;N /, is the following

homotopy pullback taken in the category of topological spaces over MapS .M;N /:

EmbS�
f
.M;N / //

��

MapS .M;N /

��

EmbS .M;N / // MapS�GL.d/.Fr.TM/;Fr.TN//

Recall that a right module over an operad M is an S –enriched functor M op! S . We
denote by ModM the category of right modules over M.

Definition 2.5 Let .S; �/ be a d–framed .d�1/–manifold. We define a right Ed –
module S� by the formula

S� .n/D EmbS�
f

�
Dtn t .S � Œ0; 1//; S � Œ0; 1/

�
:

Recall, that there is a symmetric monoidal structure on ModEd . If F and G are two
objects of ModEd , we can view them as contravariant functors on the groupoid † of
finite sets and bijections. Then their tensor product is the left Kan extension of the
functor

.n;m/ 7! F.n/�G.m/

along the functor †op �†op!†op sending a pair of finite sets to their disjoint union.

Construction 2.6 We give S� the structure of an associative algebra in ModEd . Let
� be an element of S� .m/ and  be an element of S� .n/. Let  S be the restriction
of  to S � Œ0; 1/. We define  �� to be the element of S� .mCn/ whose restriction
to S � Œ0; 1/tDtm is  S ı� and whose restriction to Dtn is  jDtn .

The operation
���W S� .n/�S� .m/! S� .nCm/

makes S� into an associative algebra in the symmetric monoidal category of right
Ed –modules.

Algebraic & Geometric Topology, Volume 15 (2015)
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Definition 2.7 The colored operad S�Mod has two colors a and m. Its only non-
empty spaces of operations are

S�Mod.a; : : : ; a„ ƒ‚ …
n

I a/D Ed .n/ and S�Mod.a; : : : ; a„ ƒ‚ …
n

; mIm/D S� .n/:

The composition involves the operad structure on Ed , the right Ed –module structure
on S� and the associative algebra structure on S� .

Again, .CC;˝; I/ denotes the symmetric monoidal model category ModCE and C

denotes the same category but with its absolute model structure. An algebra in C over
S�Mod consists of a pair of objects .A;M/ where A is an Ed –algebra and M is
equipped with an action of A of the form

EmbS�
f
.S � Œ0; 1/tDtn; S � Œ0; 1//˝M ˝A˝n!M:

Definition 2.8 Let A be an Ed –algebra in C . We define the category of S� –shaped
modules over A, denoted by S�ModA , to be the category whose objects are S�Mod–
algebras whose restriction to the color a is the Ed –algebra A and whose morphisms
are morphisms of S�Mod–algebra inducing the identity map on A.

Remark 2.9 More generally, for any operad O, and any right module P over O, the
above construction gives a notion of modules over O–algebras. This construction is
studied in detail in [11, Section 3].

Proposition 2.10 Let A be an Ed –algebra in C . The coend

U
S�
A D S� ˝Ed A

inherits an associative algebra structure from the one on S� and there is an equivalence
of categories between the category of left modules over U S�A and the category S�ModA .

Proof See [11, Proposition 3.9].

This proposition lets us put a model structure on S�ModA in which the weak equiva-
lences and fibrations are the maps that are sent to weak equivalences and fibrations by
the forgetful functor S�ModA! C . Moreover, since C is a closed symmetric model
category, the model category S�ModA is a C –enriched model category.

Example 2.11 The unit sphere inclusion Sd�1 ! Rd has a trivial normal bundle.
This induces a d–framing on Sd�1 , which we denote by � . On the other hand we
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have the notion of an operadic module over an Ed –algebra A. This is an object M
of C with multiplication maps

Ed .nC 1/!MapC .A
˝n
˝M;M/

that are compatible with the Ed –structure on A in a suitable way (see Definition 1.1
of Berger and Moerdijk [5]). We denote the category of such modules by ModEd

A . The
two notions are related by the following theorem:

Theorem 2.12 For a cofibrant Ed –algebra A, there is a Quillen equivalence

S�ModA�ModEd
A :

Moreover, the right adjoint of this equivalence commutes with the forgetful functor of
both categories to C .

Proof This is done in [11, Proposition 4.12]. The second claim follows from the fact
that this equivalence is induced by a weak equivalence of associative algebras

U
Sd�1�

A ! U
Ed Œ1�
A ;

where U Ed Œ1�
A is the enveloping algebra of ModEd

A (ie it is an associative algebra such
that there is an equivalence of categories Mod

U
Ed Œ1�

A

'ModEd
A ).

Let S be a closed .d�1/–manifold and let � be a d–framing of S . There is a map
S� ! Embf .�; S � .0; 1// sending an embedding S � Œ0; 1/tDtn! S � Œ0; 1/ to
its restriction to Dtn .

Proposition 2.13 The map S� ! Embf .�; S � .0; 1// is a weak equivalence of right
Ed –modules.

Proof This follows from [11, Proposition A.3]

Corollary 2.14 For a cofibrant Ed –algebra A, there is a weak equivalence

U
S�
A �!�

Z
S�.0;1/

A:

Proof By the previous proposition, there is a weak equivalence of right Ed –modules

S� �!
� Embf .�; S � .0; 1//:

We prove in [10, Proposition 2.8] that, for A cofibrant, the functor �˝Ed A preserves
all weak equivalences of right Ed –modules.
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If A is an Ed –algebra, then the object
R
S�.0;1/A is an E1–algebra. Indeed, any

embedding .0; 1/tn ! .0; 1/ induces an embedding .0; 1/ � Stn ! .0; 1/ � S by
taking the product with S . Applying

R
�
A to this last embedding, we get maps

Embf ..0; 1/tn; .0; 1//!MapC

��Z
S�.0;1/

A

�̋ n

;

Z
S�.0;1/

A

�
:

We would like to say that the weak equivalence of the previous proposition is an
equivalence of E1–algebras, but it is not one on the nose. However, we show in the
next proposition that this is a map of S� –shaped modules.

Proposition 2.15 There is an S� –shaped module structure on
R
S�.0;1/A such that

the map

U
S�
A !

Z
S�.0;1/

A

is a weak equivalence of S� –shaped modules.

Proof Let us describe the S� –shaped module structure on
R
S�.0;1/A. Let � be

a point in EmbS�
f
.S � Œ0; 1/ tDtn; S � Œ0; 1//. By forgetting about the boundary,

� defines a point in Embf .S � .0; 1/tDtn; S � .0; 1// that induces a map�Z
S�.0;1/

A

�
˝A˝n!

Z
S�.0;1/

A:

Letting � vary, this gives
R
S�.0;1/A the structure of an S� –shaped module. Moreover,

the map U S�A !
R
S�.0;1/A is a map of S� –shaped modules. Since we already know

that it is a weak equivalence, we are done.

3 Higher Hochschild cohomology

In this section, we construct a geometric model for higher Hochschild cohomology.
We still denote by .C ;˝; I/ the symmetric monoidal model category ModE . Our
construction remains valid in other contexts (spaces, chain complexes, simplicial
modules) modulo a few obvious modifications. We denote by Hom the inner Hom in
the category C . This functor is uniquely determined by the fact that we have a natural
isomorphism

C .X ˝Y;Z/Š C .X;Hom.Y;Z//:

For any associative R algebra in C , the C –enrichment of C induces to a C –
enrichment of ModR . We denote by HomR the homomorphisms object in ModR .

Algebraic & Geometric Topology, Volume 15 (2015)
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Let A be an Ed –algebra that we assume to be cofibrant. Our goal is to construct a
functor

RHomS�Œ0;1�A W S�Modop
A �S�ModA! C

that is weakly equivalent to RHomS�ModA.�;�/ WD RHom
U
S�
A

.�;�/ but which is
closer to the factorization homology philosophy.

For .S; �/ a d–framed .d�1/–manifold, we denote by �� the d–framing on S

obtained by pulling back � along the isomorphism of the vector bundle TS˚R that is
the identity on the first summand and multiplication by �1 on the second summand.

In particular, S � Œ0; 1/ is naturally an S� –manifold and S �.0; 1� is an S�� –manifold.

Definition 3.1 We denote by DiskS�tS��
d

the topological category whose objects are
the S� tS�� –manifolds of the form S � Œ0; 1/tDtn tS � .0; 1� with n in Z�0 and
whose morphisms are given by the spaces EmbS�tS��

f
.

Construction 3.2 We define a functor

F.M;A;N /W .DiskS�tS��
d

/op
! C :

Its value on S � Œ0; 1/tDtn tS � .�1; 0� is Hom.M ˝A˝n; N /.

Notice that any map in .S� t S�� /Mod can be decomposed as a disjoint union of
embeddings of the following three types:

� S � Œ0; 1/tDtk! S � Œ0; 1/.
� Dtl !D (where l is possibly zero).
� Dtm tS � .0; 1�! S � .0; 1�.

Let � be an embedding S � Œ0; 1/tDtntS � .0; 1�! S � Œ0; 1/tDtmtS � .0; 1�

and let
� D �C t 1 t � � � t r t��

be its decomposition with �C of the first type, �� of the third type and  i of the
second type for each i . We need to extract from this data a map

Hom.M ˝A˝m; N /! Hom.M ˝A˝n; N /:

The action of �C and of the  i are constructed in an obvious way from the Ed –structure
of A and the S� –shaped module structure on M . The only non-trivial part is the action
of �� . We can hence assume that �D idS�Œ0;1/tDtpt�� , where �� is an embedding
Dtn tS � .0; 1�! S � .0; 1�. We want to construct

Hom.M ˝A˝p; N /! Hom.M ˝A˝p˝A˝n; N /:
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First, observe that there is a diffeomorphism S � Œ0; 1/! S � .0; 1� sending .s; t/
to .s; 1� t /. This diffeomorphism sends the framing � on S � Œ0; 1/ to the framing
�� on S � .0; 1�. Similarly, reflexion about the hyperplane xd D 0 induces a diffeo-
morphism D!D . Conjugating by this diffeomorphism, the embedding �� induces
an embedding

z��W S � Œ0; 1/tD
tn
! S � Œ0; 1/:

In fact, this construction induces a homeomorphism

EmbS��
f

.S � .0; 1�tDtn; S � .0; 1�/! EmbS�
f
.S � Œ0; 1/tDtn; S � Œ0; 1//:

Now, notice that Hom.M ˝A˝p; N / has the structure of an S� –shaped A module
induced from the one on N . Thus, the map z�� induces a map

Hom.M ˝A˝p; N /˝A˝n! Hom.M ˝A˝p; N /:

This map is adjoint to a map

Hom.M ˝A˝p; N /! Hom.M ˝A˝p˝A˝n; N /;

which we define to be the action of � .

Remark 3.3 In order to be homotopically meaningful, we need a derived version
of F.M;A;N /. We claim that the homotopy type of F.M;A;N / only depends on
the homotopy type of M , A and N as long as A is a cofibrant Ed –algebra, M is
a cofibrant object of S�ModA and N is a fibrant object of S�ModA . Indeed, these
conditions imply that

� the object M is cofibrant in C , because the forgetful functor S�ModA! C

preserves cofibrations,

� A is cofibrant in C ,

� M is cofibrant in C ,

� N is fibrant in C .

This implies that for all k , Hom.M ˝A˝k; N /'RHom.M ˝A˝k; N /.

We denote by hom the functor S op �C ! C sending .X; C / to Hom.X ˝ I; C /.
Equivalently, this is the cotensor of C with S induced from the simplicial structure.
For A a small simplicial category, F a functor from A to S and G a functor from A

to C , we denote by homA.F;G/ the endZ
A

hom.F.�/; G.�//:
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We denote by RhomA.F;G/ the derived functor obtained by taking a cofibrant re-
placement of the source and a fibrant replacement of the target in the projective model
structure of functors on A .

Definition 3.4 We define RHomS�Œ0;1�A .M;N / to be the homotopy end

Rhom
.DiskS�tS��

d
/op

�
EmbS�tS��

f
.�; S � Œ0; 1�/;F.QM;A;RN/

�
;

where QM !M is a cofibrant replacement in S�ModA and N ! RN is a fibrant
replacement.

We can now formulate the main theorem of this section.

Theorem 3.5 There is a weak equivalence

RHomS�Œ0;1�A .M;N /'RHomS�ModA.M;N /:

The rest of this section is devoted to the proof of this theorem. The reader willing to
accept this result can safely skip the proof and move directly to the last subsection of
this section.

Case of E1–algebras

The one-point space is a 0–manifold. This manifold has two 1–framings, which we
call the negative and positive framing. By definition, a 1–framing of the point is the
data of a basis of R as a R–vector space. The positive framing is the one given by 1
and the negative framing is the one given by �1. Thus, by Definition 2.5, we get two
right modules over E1 . We denote by R the one corresponding to the negative framing
and L the one corresponding to the positive framing.

Definition 3.6 A left module over an E1–algebra A is an object of the category
LModA . Similarly, a right module over A is an object of RModA .

More explicitly, an object of LModA is an object of C , M together with multiplication
maps

A˝n˝M !M

for each embedding Œ0; 1/t .0; 1/tn! Œ0; 1/ These maps are moreover supposed to
satisfy a unitality and associativity condition.

We denote by Disk�C1 the one-dimensional version of the category DiskS�tS�� defined
in Definition 3.1. As a particular case of Definition 3.4, given a cofibrant E1–algebra A
and two left modules M and N , we can define HomŒ0;1�A .M;N / and this is given by
natural transformations between contravariants functors on Disk�C1 .
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Definition 3.7 The category of non-commutative intervals, denoted by Ass�C , is a
skeleton of the category whose objects are finite sets containing f�;Cg and whose
morphisms are maps of finite sets f preserving � and C together with the extra data
of a linear ordering of each fiber which is such that � (resp. C) is the smallest (resp.
largest) element in the fiber over � (resp. C).

Note that the functor �0 , sending a disjoint union of intervals to the set of connected
components, is an equivalence of topological categories from Disk�C1 to Ass�C . In
fact, we could have defined Ass�C as the homotopy category of Disk�C1 .

Let A be an associative algebra and M and N be left modules over it. We define
F.M;A;N / to be the obvious functor .Ass�C/op! C sending f�; 1; : : : ; n;Cg to
Hom.A˝n˝M;N/. The functoriality is defined analogously to Construction 3.2.

Recall that �op can be described as a skeleton of the category whose objects are linearly
ordered sets with at least two elements and morphisms are order-preserving morphisms
that preserve the minimal and maximal element.

With this description, there is an obvious functor �op ! Ass�C sending a totally
ordered set with minimal element � and maximal element C to the underlying finite
set and sending an order-preserving map to the underlying map with the data of the
induced linear ordering of each fiber.

Recall that given a triple .M;A;N / consisting of an associative algebra A and two
left modules M and N , we can form the cobar construction C �.M;A;N /. It is a
cosimplicial object of C whose value at Œn� is Hom.A˝n˝M;N/. It is classical that
if A and M are cofibrant and N is fibrant, then C �.M;A;N / is Reedy fibrant and its
totalization is a model for the derived Hom RHomModA.M;N /.

Proposition 3.8 Let A be an associative algebra and let M and N be left modules
over it. The composition of F.M;A;N / with the functor �! .Ass�C/op is the cobar
construction C �.M;A;N /

Proof This is a straightforward computation.

We denote by P W .Ass�C/op ! S the left Kan extension of the cosimplicial space
that is levelwise a point along the map �! .Ass�C/op . Concretely, P sends a finite
set with two distinguished elements � and C to the set of linear orderings of that set
whose smallest element is � and largest element is C, seen as a discrete space.

Corollary 3.9 Let A be a cofibrant associative algebra and let M and N be left
modules over it. Then

RHomA.M;N /'RhomAss�C.P; F.M;A;N //:
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Proof Assume that M is cofibrant and N is fibrant. If they are not, we take an
appropriate replacement. The left-hand side is

Tot
�
Œn�! C n.M;A;N /D Hom.M ˝A˝n; N /

�
:

According to the cofibrancy/fibrancy assumption, this cosimplicial functor is Reedy
fibrant, therefore the totalization coincides with the homotopy limit. Hence we have

RHomA.M;N /'Rhom�.�; C �.M;A;N //'RhomAss�C.P; F.M;A;N //:

Proposition 3.10 Let A be a cofibrant associative algebra and let M and N be left
modules over it. Then there is a weak equivalence

RHomŒ0;1�A .M;N / �!� RHomA.M;N /:

Proof Again, we can assume that M is cofibrant and N is fibrant. By the previous
corollary, the right-hand side is the derived end

RhomAss�C.P; F.M;A;N //;

which can be computed as the totalization of the Reedy fibrant cosimplicial object

C �.P;Ass�C; F .M;A;N //:

Similarly, the left-hand side is the totalization of the Reedy fibrant cosimplicial object

C �
�
Emb�C.�; Œ0; 1�/;Disk�C;F.M;A;N /

�
:

There is an obvious map of cosimplicial objects

C �
�
Emb�C.�; Œ0; 1�/;Disk�C;F.M;A;N /

�
! C �.P;Ass�C; F .M;A;N //;

which is degreewise a weak equivalence. Therefore, there is a weak equivalence
between the totalizations

RHomŒ0;1�A .M;N / �!� RHomA.M;N /:

If A is an E1–algebra, it can be seen as an object of LModA as follows. The map

A˝A˝n! A;

corresponding to an embedding

�W Œ0; 1/t .0; 1/tn! Œ0; 1/

is defined to be the multiplication map A˝nC1! A corresponding to the restriction
of � to its interior.
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We denote by .A;Am/ the LMod–algebra consisting of A acting on itself in the above
way.

Corollary 3.11 Let A be a cofibrant E1–algebra and N a left module. Then

RHomŒ0;1�A .Am; N /'N:

Proof The pair .A;N / forms an algebra over LMod . The operad LMod is weakly
equivalent to the operad LMod parameterizing strictly associative algebras and left
modules. This implies that we can find a pair .A0; N 0/ consisting of an associative
algebra and a left module together with a weak equivalence of LMod–algebra

.A;N / �!� .A0; N 0/:

Using the previous proposition, we have

RHomŒ0;1�A .Am; N /'RHomA0.A0; N 0/'N 0 'N:

Let D.Œ0; 1�/ be the poset of open sets of Œ0; 1� that are diffeomorphic to

Œ0; 1/t .0; 1/tn t .0; 1�

for some n. Let us choose a functor

ıW D.Œ0; 1�/! Disk�C

by picking a diffeomorphism of each object of D.Œ0; 1�/ with an object of Disk�C .

Proposition 3.12 There is a weak equivalence

RHomŒ0;1�A .M;N /' holimU2D.Œ0;1�/opF.M;A;N /.ıU /:

Proof We can assume that M is cofibrant and N is fibrant. First, by [10, Lemma 7.8],
we have a weak equivalence

EmbS
0

f .�; Œ0; 1�/' hocolimU2D.Œ0;1�/EmbS
0

f .�; U /:

It follows that there is an equivalence

RHomŒ0;1�A .M;N /' holimU2D.Œ0;1�/opRHomıUA .M;N /:

Then we notice, using the Yoneda lemma, that U 7! RHomıUA .M;N / is weakly
equivalent as a functor to U 7! F.M;A;N /.ıU /.
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Comparison with the actual homomorphisms

In this subsection, A is a cofibrant Ed –algebra. We will compare RHomS�Œ0;1�A .M;N /

with RHomS�ModA.M;N /.

Construction 3.13 Let M be an S� –shaped module over an Ed –algebra A. We
give M the structure of a left module over the E1–algebra

R
S�.0;1/A. Let

.0; 1/tn t Œ0; 1/! Œ0; 1/

be a framed embedding. We can take the product with S and get an embedding
in f ManS�

d
,

.S � .0; 1//tn tS � Œ0; 1/! S � Œ0; 1/:

Evaluating
R
�
.M;A/ over this embedding, we find a map�Z

S�.0;1/

A

�̋ n

˝M !M:

All these maps give M the structure of a left
�R
S�.0;1/A

�
–module.

Proposition 3.14 Let M and N be two S� –shaped modules over A. There is a weak
equivalence

RHomS�Œ0;1�A .M;N /' holimU2D.Œ0;1�/opF

�
M;

Z
S�.0;1/

A;N

�
.S �U/;

where M and N are given the structure of left
�R
S�.0;1/A

�
–modules using the previous

construction.

Proof This is a variant of Proposition 3.12. We first prove that

RHomS�Œ0;1�A .M;N /' holimU2D.Œ0;1�/opRHomS�UA .M;N /:

This follows from the equivalence

hocolimU2D.Œ0;1�/EmbS�tS��
f

.�; S �U/' EmbS�tS��
f

.�; S � Œ0; 1�/

in the category Fun..DiskS�tS�� /op;S /. Then, using the Yoneda lemma, we see that
the functor

U 7!RHomS�UA .M;N /

is weakly equivalent to

U 7! F

�
M;

Z
S�.0;1/

A;N

�
.U /:

Algebraic & Geometric Topology, Volume 15 (2015)



3234 Geoffroy Horel

Corollary 3.15 There is a weak equivalence

RHomŒ0;1�R
S�.0;1/A

.M;N /'RHomS�Œ0;1�A .M;N /:

Proof Both sides are weakly equivalent to

holimU2D.Œ0;1�/opF

�
M;

Z
S�.0;1/

A;N

�
.S �U/;

one side by the previous proposition and the other by Proposition 3.12.

Proof of Theorem 3.5 We fix A and a fibrant S� –shaped module N and we let
M vary. We want to compare two contravariant functors from S�ModA to C . Both
functors preserve weak equivalences between cofibrant objects and turn homotopy
colimits into homotopy limits; therefore, it suffices to check that both functors are
weakly equivalent on the generator of the category of S� –shaped modules. In other
words, it is enough to prove that

RHomS�Œ0;1�A .U
S�
A ; N /'RHomS�ModA.U

S�
A ; N /:

The right-hand side of the above equation can be rewritten as RHom
U
S�
A

.U
S�
A ; N /,

which is trivially weakly equivalent to N .

We know from Proposition 2.15 that, as S� –shaped modules, there is a weak equivalence

U
S�
A !

Z
S�.0;1/

AI

therefore, it is enough to prove that there is a weak equivalence

RHomS�Œ0;1�A

�Z
S�.0;1/

A;N

�
'N:

According to Corollary 3.15, it is equivalent to prove that there is a weak equivalence

RHomŒ0;1�R
S�Œ0;1�A

�Z
S�.0;1/

A;N

�
'N:

This follows directly from Corollary 3.11.

A generalization

We can generalize Definition 3.4. In [11, Construction 6.9], given the data of a framed
bordism W between d–framed manifolds of dimension d�1, S� and T� , we construct
a left Quillen functor

PW W S�ModA! T�ModA:
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The best way to think of this functor is as follows. Factorization homology of A over W
is a U S�A -U T�A –bimodule. Thus, tensoring with it induces a left Quillen functor

S�ModA! T�ModA:

Construction 3.16 Let W be bordism from S� to T� . Let M be an S� –shaped mod-
ule over A and let N be a T� –shaped module. We can construct a functor F.M;A;N /
as in Construction 3.2 from .DiskS�tT�� /op to C that sends S�Œ0; 1/tDtntT�.0; 1�
to Hom.A˝n˝M;N/. We define RHomWA .M;N / to be the homotopy end

RHomWA .M;N /DRhom.DiskS�tT�� /op.EmbS�tT��
f

.�; W /;F.M;A;N //:

This construction has the following nice interpretation:

Theorem 3.17 Let W be a bordism from S� to T� . There is a weak equivalence

RHomWA .M;N /'RHomT�Œ0;1�A .LPW .M/;N /:

Proof The proof is very analogous to the proof of Theorem 3.5.

We can now introduce our definition of higher Hochschild cohomology.

Definition 3.18 Let A be a cofibrant Ed –algebra in C and let M be an Sd�1� –shaped
module over A. The Ed –Hochschild cohomology of A with coefficients in M is
defined as

HHEd .A;M/DRHomSd�1� ModA.A;M/:

We now compare this definition to a more traditional definition. Let A be a cofibrant
Ed –algebra and let M be an object of ModEd

A . By Theorem 2.12, we can see M as
an Sd�1� –shaped module over A.

Proposition 3.19 For A a cofibrant Ed –algebra and M an object of ModEd
A , we have

a weak equivalence

RHom
ModEd

A

.A;M/'RHomS�ModA.A;M/:

Proof By Theorem 2.12, we have a Quillen equivalence

uŠW S
d�1
� ModA�ModEd

A Wu
�:

Therefore, we have a weak equivalence LuŠu
�A!A in ModEd

A . This gives us a weak
equivalence

RHom
ModEd

A

.A;M/!RHom
ModEd

A

.LuŠu
�A;M/'RHomS�ModA.u

�A;u�M/:
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Thus, our definition of HHEd .A;M/ coincides with the more traditional definition
that we gave in the first paragraph of the introduction. According to Theorem 3.5,
we have a weak equivalence HHEd .A;M/'RHomS

d�1�Œ0;1�
A .A;M/. As usual, we

write HHEd .A/ for HHEd .A;A/.

Proposition 3.20 Let D be the closed unit ball in Rd seen as a bordism from the
empty manifold to Sd�1� . There is a weak equivalence

HHEd .A;M/'RHomDA .I;M/:

Proof I , the unit of C , is an object of ¿ModA (note that ¿ModA is equivalent to
the category C ) and LPD.I/ is weakly equivalent to A. Then it suffices to apply
Theorem 3.17.

This has the following surprising consequence:

Corollary 3.21 The group DiffS
d�1

f .D/ acts on HHEd .A;M/.

Remark 3.22 The group DiffS
d�1

f .D/ is weakly equivalent to the homotopy fiber of
the inclusion

DiffS
d�1

.D/! ImmS
d�1

.D;D/;

where the Sd�1 superscript means that we are restricting to the diffeomorphisms
or immersions which are the identity outside on Sd�1 D @D . In fact, the action
of DiffS

d�1

f .D/ factors through the inverse limit of the embedding calculus tower
computing this group. Since we are in the codimension-0 case, the embedding calculus
tower should not be expected to converge. Even if it does not converge, it is an
interesting mathematical object. In particular, using the work of Arone and Turchin [3]
and Willwacher [19, Theorem 1.2], we get an action of the Grothendieck–Teichmüller
Lie algebra grt on the E2–Hochschild cohomology of an algebra over HQ. We hope
to study this action further in future work.

4 Higher Hochschild homology

Let R be a commutative graded ring. We denote by Ch�0.R/ the category of non-
negatively graded chain complexes. This has a model category structure in which the
weak equivalences are the quasi-isomorphisms, the cofibrations are the degreewise
monomorphisms with degreewise projective cokernel and the fibrations are the epimor-
phisms. In particular, any object is fibrant and the cofibrant objects are the degreewise
projective chain complexes.
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The model category Ch�0.R/ is cofibrantly generated. Thus, we have the projective
model category structure on functors Fin!Ch�0.R/, in which weak equivalences and
fibrations are objectwise. The following definition is due to Pirashvili [15, Introduction,
page 151] (see also Definition 2 of Ginot, Tradler and Zeinalian [8]).

Definition 4.1 Let A be a degreewise projective commutative algebra in Ch�0.R/
and let X be a simplicial set. We denote by HHX .AjR/ the homotopy coend

Map.�; X/˝L
FinA:

Remark 4.2 In practice, we can take HHX .AjR/ to be the realization of the simplicial
object

B�.Map.�; X/;Fin; A/:

This construction preserves quasi-isomorphism between degreewise projective com-
mutative algebras. In the following, HHX .AjR/ will be taken to be this explicit
model.

This construction also sends a weak equivalence X �!� Y to a weak equivalence

HHX .AjR/ �!� HHY .AjR/:

Proposition 4.3 Let A be a degreewise projective commutative algebra in Ch�0.R/;
then the functor X 7! HHX .AjR/ lifts to a functor from S to the category of commu-
tative algebras in Ch�0.R/.

Proof The category Fun.Finop;S / equipped with the convolution tensor product is a
symmetric monoidal model category (see [13, Proposition 2.2.15]). It is easy to check
that there is an isomorphism

Map.�; X/˝Map.�; Y /ŠMap.�; X tY /:

Moreover, since AW Fin!Ch�0.R/ is a commutative algebra for the convolution ten-
sor product, the object HHX .AjR/ is a symmetric monoidal functor in the X variable.
To conclude, it suffices to observe that any simplicial set is a commutative monoid
with respect to the disjoint union in a unique way and that this structure is preserved
by maps in S . Therefore, HHX .AjR/ is a commutative algebra functorially in X .

Proposition 4.4 Let A be a degreewise projective commutative algebra in Ch�0.R/.
Let

X //

��

Z

��
Y // P
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be a homotopy pushout in the category of simplicial sets. Then there is a weak
equivalence

HHP .AjR/'
ˇ̌
B�
�
HHY .AjR/;HHX .AjR/;HHZ.AjR/

�ˇ̌
:

Proof First, notice that the maps X ! Z and X ! Y induce commutative alge-
bra maps HHX .AjR/! HHY .AjR/ and HHX .AjR/! HHZ.AjR/. In particular,
HHZ.AjR/ and HHY .AjR/ are modules over HHX .AjR/. This explains the bar
construction in the statement of the proposition.

We can explicitly construct P as the realization of the simplicial space

Œp� 7! Y tXtp tZ;

where the face maps are induced by the codiagonals and the maps X! Y and X!Z

and the degeneracies are induced by the maps from the empty simplicial set to X , Y
and Z .

For a finite set S , and any simplicial space U� , there is an isomorphism

jU S
�
j Š jU�j

S :

Therefore, there is a weak equivalence of functors on Fin,

Map.�; P /'
ˇ̌
B�
�
Map.�; Y /;Map.�; X/;Map.�; Z/

�ˇ̌
;

where the bar construction on the right-hand side is in the category Fun.Fin;S / with
the convolution tensor product.

We can form the following bisimplicial object in Ch�0.R/:

B�
�
B�.Map.�; Y /;Map.�; X/;Map.�; Z//;Fin; A

�
:

By the previous observation, if we realize first with respect to the inner simplicial
variable and then the outer one, we find something equivalent to HHP .AjR/. If we
first realize with respect to the outer variable, we find

B�
�
HHY .AjR/;HHX .AjR/;HHZ.AjR/

�
:

The two realizations are equivalent. This concludes the proof.

Corollary 4.5 Let A be a degreewise projective commutative algebra in Ch�0.R/,
then HHS

1

.A/ is quasi-isomorphic to the Hochschild chains on A.
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Proof We can write S1 as the homotopy pushout of:

S0

��

// pt

pt

If S is a finite set HHS .A/D A˝S with the obvious commutative algebra structure.
In particular, the previous theorem gives

HHS
1

.A/' jB�.A;A˝A;A/j:

Since AD Aop , the right-hand side is quasi-isomorphic to A˝L
A˝Aop A.

5 The spectral sequence

We construct a spectral sequence converging to factorization homology. Its E2–page is
identified with higher Hochschild homology. For R a Z–graded ring, we denote by
GrModR the category of Z–graded left R–modules.

Definition 5.1 Let I be a small discrete category and let F W I ! GrModR be a
functor landing in the category of graded modules over R . We define the homology
of I with coefficients in F to be the homology groups of the homotopy colimit of F
seen as a functor concentrated in homological degree 0 from I to Ch�0.GrModR/.

We write HR� .I ; F / for the homology of I with coefficients in F .

Note that since we consider graded modules, the chain complexes are graded chain
complexes. This means that each homology group is graded. We denote by HRs;t .I ; F /
the degree-t part of the sth homology group. The index s lives in Z�0 and the index t
lives in Z. There is an explicit model for this homology. We construct the simplicial
object of GrModR whose p–simplices are

Bp.R; I ; F /D
M

i0!���!ip

F.i0/:

We can form the normalized chain complex associated to this simplicial object in
GrModR and we get a non-negatively graded chain complex in GrModR . Its homol-
ogy groups are the homology groups of I with coefficients in F .

Recall that if E is an associative algebra in symmetric spectra, then E�D ��.E/ is an
associative ring in graded abelian groups and, if M is a left E–module, then ��.M/

is an object of GrModE� .
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Proposition 5.2 Let F W I ! ModE be a functor from a discrete category to the
category of left modules over an associative algebra in symmetric spectra E . There is a
spectral sequence of E�–modules

E2s;t Š HE�s;t .I ; ��.F //D) �sCt .hocolimIF /:

Proof The homotopy colimit can be computed by taking an objectwise cofibrant
replacement of F and then the realization of the bar construction

hocolimIF ' jB�.�; I ;QF.�//j:

We can then use the standard spectral sequence associated to a simplicial object

Now assume that E is commutative. Let A be an Ed –algebra in ModE . Let M
be a framed d–manifold and let D.M/ be the poset of open sets of M that are
diffeomorphic to a disjoint union of copies of D . We know from Proposition 1.10 that
the factorization homology of A over M can be computed as the homotopy colimit of
the composition

D.M/
ı
�!Ed

A
�!ModE :

Hence, we are in a situation where we can apply the previous proposition. We get a
spectral sequence of E�–modules

HE�s;t .D.M/; ��.A ı ı//D) �sCt

�Z
M

A

�
:

We want to exploit the fact that A is a monoidal functor to obtain a more explicit model
for the left-hand side in some cases.

From now on, K denotes an associative algebra in spectra whose associated homology
theory has a Z=2–equivariant Künneth isomorphism. That is, we assume that the
obvious map

K�.X/˝K� K�.Y /!K�.X ^Y /

is an isomorphism of functors of the pair .X; Y / that is equivariant with respect to the
obvious Z=2–action on both sides. Examples of such ring spectra are the Eilenberg–
MacLane spectra Hk for any field k and K.n/, the Morava K–theory of height n at
odd primes.

We just smash the simplicial object computing hocolimD.M/A.ı�/ with K in each
degree and take the associated spectral sequence. We then get a spectral sequence of
K�.E/–modules

HK�E� .D.M/;K�.A ı ı//D)K�

�Z
M

A

�
:

Now we want to identify K�.A ı ı/ as a functor on D.M/.
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Proposition 5.3 If d D1, K�.A/ is an associative algebra in K�E–modules. If d >1,
K�.A/ is a commutative algebra in the category of K�E–modules.

Proof An E1 algebra in ModE is in particular an associative algebra in Ho.ModE /
and an Ed –algebra with d > 1 is a commutative algebra in Ho.ModE /. The result
then follows from the fact that the functor

K�W Ho.ModE /!GrModK�E
is symmetric monoidal.

Now, we focus on the case where d > 1. We have an obvious functor ˛W D.M/!Fin
that sends a configuration of disks on M to its set of connected components. In
particular, we can consider the functor

D.M/
˛
�!Fin K�.A/

���!GrModK�E ;

where the second map is induced by the commutative algebra structure on K�.A/ that
we have constructed in the previous proposition. It is clear that this functor coincides
with the functor obtained by applying K� to the composite

D.M/
ı
�!Ed

A
�!ModE :

From this, we deduce the following proposition:

Proposition 5.4 There is an isomorphism

HK�E� .D.M/;K�.A ı ı//Š HHSing.M/
� .K�AjK�E/:

In particular, there is a spectral sequence

HHSing.M/
s .K�AjK�E/t D)KsCt

�Z
M

A

�
:

Proof The first claim immediately implies the second.

In order to prove the first claim, we observe that we have weak equivalences

�˝
L
D.M/K�.A ı ı/' L˛Š �˝

L
FinK�.A/;

where � denotes the constant functor with value �.

We have L˛Š � .S/D hocolimU2D.M/Fin.S; �0.U //. By [11, Proposition 5.3], this
contravariant functor on Fin coincides up to weak equivalences with S 7! Sing.M/S .

Remark 5.5 The spectral sequence above still exists if K does not have a Künneth
isomorphism as long as K�A is flat as a K�–module. We leave the details to the
interested reader.
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Multiplicative structure

Let us start with the general homotopy colimit spectral sequence.

Proposition 5.6 Let F W I !ModE and GW J !ModE be functors. We have the
equivalence

hocolimI�JF ˝E G ' .hocolimIF /˝E .hocolimJG/:

Proof Assume F and G are objectwise cofibrant. The right-hand side is the homotopy
colimit over �op ��op of

B�.�; I ; F /˝B�.�;J ; G/:

The diagonal of this bisimplicial object is exactly

B�.�; I �J ; F ˝E G/:

Since �op!�op ��op is homotopy cofinal, we are done.

We denote by Er��.I ; F / and Er��.J ; G/ the spectral sequence computing the homotopy
colimit of F W I !ModE and GW J !ModE . Then there is a pairing of spectral
sequences of E�–modules

Er��.I ; F /˝E� Er��.J ; G/! Er��.I �J ; F ˝E G/:

Let us specialize to the case of factorization homology. We consider an Ed –algebra
A in ModE , a homology theory with Z=2–equivariant Künneth isomorphism K and
a framed manifold M of dimension d . We denote by Er��.M;A;K/ the spectral
sequence of the previous section.

Proposition 5.7 Let M and N be two framed d–manifolds. There is a pairing of
spectral sequences

Er��.M;A;K/˝K�E Er��.N;A;K/! Er��.M tN;A;K/:

Proof We observe that D.M tN/ŠD.M/�D.N / and that A˝E A as a functor
on D.M/�D.N / is equivalent to A as a functor on D.M tN/. Then the pairing of
spectral sequences of the previous paragraph reduces exactly to the desired result.

The topological category f Mand of framed d–manifolds and framed embeddings has
a symmetric monoidal structure given by the disjoint union operation. This induces
a symmetric monoidal structure on the ordinary category �0f Mand which is the
category obtained by applying �0 to each mapping space of f Mand . We say that
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a framed d–manifold is an associative algebra up to isotopy if it has the structure of
an associative algebra in �0f Mand . Examples of manifolds with such a structure
are obtained by starting with a d–framed .d�1/–manifold N and then constructing
the framed d–manifold M DN � .�1; 1/. This manifold M has the structure of an
E1–algebra in f Mand . In particular, it is an associative algebra up to isotopy.

There is a similar story in S . This category has a symmetric monoidal structure with
respect to the coproduct t. Any object has a unique commutative algebra structure
given by the codiagonal X tX !X . In particular, if M is an associative algebra up
to isotopy, this structure reduces to the canonical multiplication on Sing.M/.

Proposition 5.8 Let M be a framed manifold of dimension d � 2 with the structure
of an associative algebra up to isotopy. Let A be an Ed –algebra. The spectral sequence
Er��.M;A;K/ has a commutative multiplicative structure converging to the associative
algebra structure on K�

R
M A. On the E2–page, the multiplication is induced by the

unique commutative algebra structure on Sing.M/ in the category .S ;t/. Moreover,
this structure is functorial with respect to embeddings of d–manifolds M ! M 0

preserving the multiplication up to isotopy.

Proof According to the previous proposition there is a multiplicative structure on the
spectral sequence converging to the associative algebra structure on K�

R
M A.

It is easy to see that the multiplication on the E2–page is what is stated in the proposition.
Since Sing.M/ is commutative, the multiplication on the E2–page is commutative.
The homology of a commutative differential graded algebra is a commutative algebra,
therefore the multiplication is commutative on each page.

The functoriality is clear.

Now we want to construct an edge homomorphism. Let S be a .d�1/–manifold with a
d–framing � . Let � be a framed embedding of Rd�1�R into S �R commuting with
the projection to R. Applying factorization homology, we get a map of E1–algebras

u� W AŠ

Z
Rd�1�R

A!

Z
S�R

A:

On the other hand, for any point x of S �R we get a morphism of commutative
algebras over K�E ,

ux W K�.A/Š HHpt.K�AjK�E/! HHSing.S/.K�AjK�E/:
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Proposition 5.9 For any framed embedding �W Rd�1 �R! S �R, there is an edge
homomorphism

K�A! Er0;�.S �R; A;K/:

On the E2–page it is identified with the K�E–algebra homomorphism

u�.0;0/W K�.A/! HHpt.K�AjK�E/! HHSing.S/.K�AjK�E/

and it converges to the K�E–algebra homomorphism

K�.u�/W K�A!K�

Z
N�R

A:

Proof The spectral sequence computing K�
R

Rd�1�RA has its E2–page K�A con-
centrated on the 0th column. For degree reasons, it degenerates. Then the result follows
directly from the functoriality of the spectral sequence applied to the map � .

Note that the edge homomorphism only depends on the connected component of the
image of � . In the case of the sphere Sd�1�R with the framing � , we have a stronger
result:

Lemma 5.10 For any framed embedding �W Rd�1 �R! .Sd�1 �R/� commuting
with the projection to R, the map

u� W A!

Z
Sd�1�R

A

has a section in the homotopy category of ModE .

Proof There is an embedding

Sd�1 �R!Rd

sending .�; x/ to ex� . This embedding preserves the framing up to isotopy. Moreover,
since Embf .Rd ;Rd / is contractible, the composite

Rd
�
�!Sd�1 �R!Rd

is isotopic to the identity. We can apply
R
�
A to this sequence of morphisms of framed

manifolds and we obtain the desired section.

Although we will not need it, this has the following immediate corollary:

Corollary 5.11 The image of the edge homomorphism in Er��..S
d�1 �R/� ; A;K/

consists of permanent cycles.
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Remark 5.12 Our geometric description of higher Hochschild cohomology (Definition
3.4) can be used to construct a similar spectral sequence calculating K�HHEd .A/ whose
E2–page is a cohomological version of the higher Hochschild cohomology defined by
Ginot [7]. However, this spectral sequence does not always converge.

6 Computations

Proposition 6.1 Let A� be a degreewise projective commutative graded algebra over
a commutative graded ring R� . Assume that A� is a filtered colimit of étale algebras
over R� . Then, for all d � 1, the unit map

A�! HHS
d

.A�jR�/

is a quasi-isomorphism of commutative R�–algebras.

Proof We proceed by induction on d . For d D 1, HHS
1

.A�jR�/ is quasi-isomorphic
to the ordinary Hochschild homology HH.A�jR�/ by Corollary 4.5. If A� is étale,
the result is well known (see for instance [18, Étale descent theorem, page 368]). If A�
is a filtered colimit of étale algebras, the result follows from the fact that Hochschild
homology commutes with filtered colimits.

Now assume that A� ! HHS
d�1

.A�jR�/ is a quasi-isomorphism of commutative
algebras. The sphere Sd is part of the following homotopy pushout diagram:

Sd�1 //

��

pt

��

pt // Sd

Applying Proposition 4.4, we find

HHS
d

.A�jR/' jB�.A�;HHS
d�1

.A�jR�/; A�/j:

The quasi-isomorphism A�! HHS
d�1

.A�jR�/ induces a degreewise quasi-isomor-
phism between Reedy cofibrant simplicial objects:

B�.A�; A�; A�/! B�.A�;HHS
d�1

.A�jR�/; A�/:

This induces a quasi-isomorphism between their realizations,

A� ' HHS
d

.A�jR�/:
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Corollary 6.2 Let A be an Ed –algebra in C such that K�.A/ is a filtered colimits of
étale algebras over K� ; then the unit map

A!

Z
Sd�1�R

A

is a K–local equivalence.

Proof The K–homology of this map can be computed as the edge homomorphism
of the spectral sequence E2.Sd�1 �R; A;K/. By the previous proposition, the edge
homomorphism is an isomorphism on the E2–page. Therefore, the spectral sequence
collapses at the E2–page for degree reasons.

Let us fix a prime p . We denote by En the Lubin–Tate ring spectrum of height n at p
and by Kn the 2–periodic Morava K–theory of height n. Recall that

.En/� ŠW .Fpn/ŒŒu1; : : : ; un�1��Œu
˙1�; jui j D 0; juj D 2;

.Kn/� Š Fpn Œu
˙1�D .En/�=.p; u1; : : : ; un�1/:

The spectrum En is known to have a unique E1–structure inducing the correct multi-
plication on homotopy groups (this is a theorem of Hopkins and Miller; see [16]) and
a unique commutative structure (see [9, Corollary 7.6]). As far as we know, there is
no published proof that the space of Ed –structure for d � 2 is contractible, although
evidence suggests that this is the case. The ring spectrum Kn has a Z=2–equivariant
Künneth isomorphism if p is odd. If pD 2, the equivariance is not satisfied in general
but it is true if we restrict .Kn/� to spectra whose Kn–homology is concentrated in
even degree, like En . Our argument works at p D 2 modulo this minor modification.

Corollary 6.3 For any positive integer n and any Ed –algebra structure on En induc-
ing the correct multiplication on homotopy groups, the unit map

En!

Z
Sd�1�R

En

induces an isomorphism in Kn–homology.

Proof By [12, Corollary 4.10], for any such Ed –structure on E we have

.Kn/�.En/Š C.�; .Kn/�/:

Here the right-hand side denotes the set of continuous maps � ! .Kn/� , where �
is the Morava stabilizer group with its profinite topology and .Kn/� is given the
discrete topology. By definition of a profinite group, the group � is an inverse limit
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� D limU�=U taken over the filtered poset of open finite index subgroups U of � .
Thus, we have

C.�; .Kn/�/D colimUC.�=U; .Kn/�/:

This expresses .Kn/�En as a filtered colimit of étale algebras over .Kn/� . Using
Corollary 6.2, we get the desired result.

Proposition 6.4 With the same notations, the map HHEd .En/!En is an equivalence.

Proof We have
HHEd .En/'RHomR

Sd�1�REn
.En; En/:

This can be computed as the end

homDisk�C

�
EmbS

0

.�; Œ0; 1�/;F

�
En;

Z
Sd�1�R

En; En

��
:

The spectrum En is K.n/–local; therefore, Hom.�; En/ sends K.n/–equivalences to
equivalences. This implies that

F

�
En;

Z
Sd�1�R

En; En

�
' F.En; En; En/:

Therefore, we have
HHEd .En/'RHomEn.En; En/:

We can prove a variant of the previous result. Let E.n/DBP=.vnC1; vnC2; : : : /Œv�1n �

be the Johnson–Wilson spectrum and let K.n/ be the vn periodic Morava K–theory
with K.n/� DE.n/=.p; v1; : : : ; vn�1/D FpŒv˙1n �. Let yE.n/ be LK.n/E.n/.

Proposition 6.5 For any Ed –algebra structure on yE.n/ inducing the correct multipli-
cation on homotopy groups, the action map

HHEd .
yE.n//! yE.n/

is a weak equivalence.

Proof The proof is exactly the same once we know that K.n/� yE.n/ is the commutative
ring

K.n/� yE.n/D C.�;K.n/�/;

where � is again the Morava stabilizer group.
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7 Étale base change for Hochschild cohomology

In this section we put the previous result in the wider context of derived algebraic
geometry over Ed –algebras. This section is inspired by Francis [6].

We let .C ;˝; I/ denote the category ModE but the arguments hold more generally.
Note however that we need C to be stable in this section.

There is a “polar coordinate” embedding Sd�1� .0; 1/!D sending .�; r/ to er�1� .

Definition 7.1 Let A be an Ed –algebra in C . The cotangent complex LA of A is
defined to be the n–fold desuspension of the cofiber of the mapZ

Sd�1�R
A!

Z
Rd
AŠ A

induced by the polar coordinate embedding.

Proposition 7.2 This coincides with the cotangent complex of A defined by Francis.

Proof Both sides of the map commute with homotopy colimits of Ed –algebras;
therefore, it suffices to check the claim for free Ed –algebras. Let AD FEd .V /. Using
[4, Proposition 5.5], we see thatZ

Sd�1�.0;1/

FEd .V /'
_
i�0

Conf.i; Sd�1 � .0; 1//˝†i V
˝i

and, similarly, Z
D

FEd .V /'
_
i�0

Conf.i;D/˝†i V
˝i :

On the other hand, it is proved in [6, Theorem 2.26] that there is a cofiber sequenceZ
Sd�1�.0;1/

A! A! LAŒn�:

Moreover, the proof of [6, Theorem 2.26] is based on an explicit computation in the
free case and an inspection of this proof shows that the first map in the above cofiber
sequence coincides with the polar embedding map.

Remark 7.3 The above definition is a bit ad hoc. Francis actually defines in [6,
Definition 2.10] the cotangent complex as the object representing the Ed –derivations.
That is, we have a weak equivalence

RHomSd�1� ModA.LA;M/'RHomC ŒEd �=A.A;A˚M/ WD Der.A;M/:

The fact that the two definitions coincide is [6, Theorem 2.26].
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Definition 7.4 We say that an Ed –algebra A is étale if LA is contractible. More
generally, given an object Z in C , we say that A is Z–locally étale if Z ˝LA is
contractible.

We say that a map X ! Y in C is a Z–local weak equivalence if the induced map
X ˝LZ! Y ˝LZ is a weak equivalence.

An equivalent formulation of the previous definition is that A is (Z–locally) étale if
the unit map A!

R
Sd�1�.0;1/A is a (Z–local) equivalence. Indeed we have shown in

Lemma 5.10 that the unit map is a section of
R
Sd�1�.0;1/A! A.

Proposition 7.5 If A is a commutative algebra and is (Z–locally) étale as an Ed –
algebra, then it is (Z–locally) étale as an EdC1–algebra.

Proof We have proved in [11, Theorem 5.8] that, for A a commutative algebra,R
M A is equivalent to Sing.M/˝ A (ie the tensor in the category of commutative

algebras in ModE ). Then the proof is the same as the proof of Proposition 6.1.

Remark 7.6 More generally, using the excision property for factorization homology
(see [4, Lemma 3.18]), we can prove that if A is EdC1 and is (Z–locally) étale as an
Ed –algebra, it is (Z–locally) étale as an EdC1–algebra.

Remark 7.7 If A is a commutative algebra, then A is étale as an E2–algebra if and
only if it is formally THH–étale (ie if the map A ! THH.A/ is an equivalence).
Indeed, for commutative algebras (and in fact for E3–algebras), THH.A/ coincides
with

R
S1�RA. Note that this is not true for E2–algebras, as the product framing on

S1 �R is not connected to the �–framing in the space of framings of S1 �R.

Recall that an object U of C is said to be Z–local if, for all Z–local weak equivalences
X ! Y , the induced map

RHom.Y; U /!RHom.X;U /

is a weak equivalence in C .

Lemma 7.8 Let uW R! S be a map of cofibrant associative algebras in C that is
a Z–local weak equivalence and let M and N be two left modules over S with N
Z–local in C . Then the map

RHomModS .M;N /!RHomModR.u
�M;u�N/

is a weak equivalence.
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Proof The left-hand side can be computed as the homotopy limit of the cobar con-
struction

Œn� 7! Hom.S˝n˝M;N/:

Similarly, the left-hand side can be computed as the homotopy limit of

Œn� 7! Hom.R˝n˝M;N/:

Since R! S is a Z–local weak equivalence, so is R˝n˝M ! S˝n˝M for each n.
Thus, since N is Z–local, the two cosimplicial objects are weakly equivalent. This
implies that they have weakly equivalent homotopy limits.

We can now state and prove the main theorem of this section.

Theorem 7.9 Let T be a commutative algebra in C that is (Z–locally) étale as an
Ed –algebra over I . Then, for any Ed –algebra A over T (that is Z–local as an object
of C ), the base-change map

HHEd .A/! HHEd .AjT /

is a weak equivalence.

Proof We write AjT whenever we want to emphasize the fact that we are viewing A
as an Ed –algebra over T .

By Proposition 2.11 of Francis [6], there is cofiber sequence

uŠLT ! LA! LAjT ;

where uW T ! A is the unit map and uŠ is the corresponding functor

uŠW S
d�1
� ModT ! Sd�1� ModA:

By hypothesis, LT is (Z–locally) contractible; therefore, LA! LAjT is a (Z–local)
equivalence. We have a base-change map of cofiber sequences:

†d�1LA

��

//
R
Sd�1�.0;1/A

��

// A

id
��

// †dLA

��

†d�1LAjT //
R
Sd�1�.0;1/AjT

// A // †dLAjT

This implies that
R
Sd�1�.0;1/A!

R
Sd�1�.0;1/AjT is a (Z–local) equivalence.
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We can form the commutative diagram

U
Sd�1�

A

��

//
R
Sd�1�.0;1/A

��
U
Sd�1�

AjT
//
R
Sd�1�.0;1/AjT;

where the horizontal maps are the maps of Corollary 2.14. These maps are weak
equivalences by Corollary 2.14. Thus, the map U S

d�1
�

A ! U
Sd�1�

AjT
is a (Z–local) weak

equivalence of associative algebras. The theorem follows from this fact and the previous
lemma.

Remark 7.10 The computation of Section 6 implies that S ! En is K.n/–locally
an étale morphism of Ed –algebras for all d . Therefore, given a K.n/–local En–
algebra A, we can compute its (higher) Hochschild cohomology over En or over S
without affecting the result. This fact is used by Angeltveit [2, Theorem 6.9] in the
case of ordinary Hochschild cohomology.
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