On *p*-almost direct products and residual properties of pure braid groups of nonorientable surfaces

PAOLO BELLINGERI Sylvain Gervais

We prove that the n^{th} pure braid group of a nonorientable surface (closed or with boundary, but different from \mathbb{RP}^2) is residually 2–finite. Consequently, this group is residually nilpotent. The key ingredient in the closed case is the notion of p-almost direct product, which is a generalization of the notion of almost direct product. We also prove some results on lower central series and augmentation ideals of p-almost direct products.

20F14, 20F36, 57M05; 20D15

1 Introduction

Let *M* be a compact, connected surface (orientable or not, possibly with boundary) and $F_n(M) = \{(x_1, ..., x_n) \in M^n \mid x_i \neq x_j \text{ for } i \neq j\}$ its *n*th configuration space. The fundamental group $\pi_1(F_n(M))$ is called the *n*th *pure braid group* of *M* and shall be denoted by $P_n(M)$.

The mapping class group $\Gamma(M)$ of M is the group of isotopy classes of homeomorphisms $h: M \to M$ which act as the identity on the boundary. Let $\mathcal{X}_n = \{z_1, \ldots, z_n\}$ be a set of n distinguished points in the interior of M; the pure mapping class group $P\Gamma(M, \mathcal{X}_n)$ relative to \mathcal{X}_n is the group of isotopy classes of homeomorphisms $h: M \to M$ satisfying $h(z_i) = z_i$ for all i: since this group does not depend on the choice of the set \mathcal{X}_n but only on its cardinality we can write $P_n\Gamma(M)$ instead of $P\Gamma(M, \mathcal{X}_n)$. Forgetting the marked points, we get a morphism $P_n\Gamma(M) \to \Gamma(M)$ whose kernel is known to be isomorphic to $P_n(M)$ when M is not a sphere, a torus, a projective plane or a Klein bottle (see Scott [28] and Guaschi and Juan-Pineda [20]).

Now, recall that if \mathcal{P} is a group-theoretic property, then a group G is said to be *residually* \mathcal{P} if, for all $g \in G$, $g \neq 1$, there exists a group homomorphism $\varphi: G \to H$ such that H satisfies \mathcal{P} and $\varphi(g) \neq 1$. We are interested in the following properties: to be nilpotent, to be free and to be a finite p-group for a prime number p (mostly p = 2). Recall that, if for subgroups H and K of G, [H, K] is the subgroup generated

by $\{[h,k] | (h,k) \in H \times K\}$ where $[h,k] = h^{-1}k^{-1}hk$, the lower central series of G, $(\Gamma_k G)_{k\geq 1}$, is defined inductively by $\Gamma_1 G = G$ and $\Gamma_{k+1} G = [G, \Gamma_k G]$. It is well known that G is residually nilpotent if and only if $\bigcap_{k=1}^{\infty} \Gamma_k G = \{1\}$. From the lower central series of G one can define another filtration $D_1(G) \supseteq D_2(G) \supseteq \cdots$ setting $D_1(G) = G$, and for $i \ge 2$ defining

$$D_i(G) = \{ x \in G \mid \exists n \in \mathbb{N}^* \text{ with } x^n \in \Gamma_i(G) \}.$$

After Garoufalidis and Levine [13], this filtration is called the *rational lower central series* of G, and a group G is residually torsion-free nilpotent if and only if $\bigcap_{i=1}^{\infty} D_i(G) = \{1\}.$

When M is an orientable surface of positive genus (possibly with boundary) or a disc with holes, it is proved in Bellingeri, Gervais and Guaschi [6] and Bardakov and Bellingeri [1] that $P_n(M)$ is residually torsion-free nilpotent for all $n \ge 1$. The fact that a group is residually torsion-free nilpotent has several important consequences, notably that the group is bi-orderable (see Botto Mura and Rhemtulla [8]) and residually p-finite (see Gruenberg [19]). The goal of this article is to study the nonorientable case and, more precisely, to prove the following:

Theorem 1.1 The n^{th} pure braid group of a nonorientable surface different from \mathbb{RP}^2 is residually 2–finite.

In the case of $P_n(\mathbb{RP}^2)$ we give some partial results at the end of Section 4. Since a finite 2–group is nilpotent, a residually 2–finite group is residually nilpotent. Thus, we have:

Corollary 1.2 The n^{th} pure braid group of a nonorientable surface different from \mathbb{RP}^2 is residually nilpotent.

In González-Meneses [17] it was shown that the n^{th} pure braid group of a nonorientable surface is not bi-orderable and therefore it is not residually torsion-free nilpotent. Our technique doesn't extend to $p \neq 2$; therefore the question if pure braid groups of nonorientable surfaces are residually p for some $p \neq 2$ is still open (recall that there are groups residually p for infinitely many primes p which are not residually torsion-free nilpotent; see Hartley [21]).

One can prove that finite-type invariants separate classical braids using the fact that the pure braid group P_n is residually nilpotent without torsion (see Papadima [25]). Moreover, using the residual properties discussed above it is possible to construct algebraically a universal finite-type invariant over \mathbb{Z} for the classical braid group B_n (see [25]). Similar constructions were afterwards proposed for braids on orientable

surfaces (see Bellingeri and Funar [5] and González-Meneses and Paris [18]): in a further paper we will explore the relevance of Theorem 1.1 in the realm of finite-type invariants over $\mathbb{Z}/2\mathbb{Z}$ for braids on nonorientable surfaces.

From now on, $M = N_{g,b}$ is a nonorientable surface of genus g with b boundary components, simply denoted by N_g when b = 0. We will see N_g as a sphere S^2 with g open discs removed and g Möbius strips glued on each circle (see Figure 4, where each crossed disc represents a Möbius strip). The surface $N_{g,b}$ is obtained from N_g by removing b open discs. The mapping class groups $\Gamma(N_{g,b})$ and pure mapping class group $P_n \Gamma(N_{g,b})$ will be denoted by $\Gamma_{g,b}$ and $\Gamma_{g,b}^n$, respectively.

The paper is organized as follows. In Section 2, we prove Theorem 1.1 for surfaces with boundary: following what the authors did in the orientable case (see [6]), we embed $P_n(N_{g,b})$ in a Torelli group. The difference here is that we must consider mod 2 Torelli groups. In Section 3 we introduce the notion of *p*-almost direct product, which generalizes the notion of almost direct product (see Definition 3.1) and we prove some results on lower central series and augmentation ideals of *p*-almost direct products (Theorems 3.3 and 3.6) that can be compared with similar results on almost direct products (Theorem 3.1 in Falk and Randell [12] and Theorem 3.1 in Papadima [25]).

In Section 4, the existence of a split exact sequence

$$1 \longrightarrow P_{n-1}(N_{g,1}) \longrightarrow P_n(N_g) \longrightarrow \pi_1(N_g) \longrightarrow 1$$

and results from Sections 2 and 3 are used to prove Theorem 1.1 in the closed case (Theorem 4.5). The method is similar to the one developed for orientable surfaces in [1]: the difference will be that the semi-direct product $P_{n-1}(N_{g,1}) \rtimes \pi_1(N_g)$ is a 2-almost-direct product (and not an almost-direct product as in the case of closed oriented surfaces).

Acknowledgments The research of the first author was partially supported by French grant ANR-11-JS01-002-01. The authors are grateful to Carolina de Miranda e Pereiro and John Guaschi for useful discussions and comments and to the anonymous referee for helpful remarks, in particular on a previous version of Proposition 4.3.

2 The case of non-empty boundary

In this section, $N = N_{g,b}$ is a nonorientable surface of genus $g \ge 1$ with boundary (ie $b \ge 1$). In this case, one has $P_n(N) = \text{Ker}(\Gamma_{g,b}^n \to \Gamma_{g,b})$ for all $n \ge 1$.

2.1 Notation

We will follow notation from [27]. A simple closed curve in N is an embedding $\alpha: S^1 \to N \setminus \partial N$; with a usual abuse of notation, we will call the image of a simple closed curve a simple closed curve also. Such a curve is said to be two-sided or one-sided if it admits a regular neighborhood homeomorphic to an annulus or a Möbius strip, respectively. We shall consider the following elements in $\Gamma_{g,b}$:

- If α is a two-sided simple closed curve in N with a given orientation, τ_α is a Dehn twist along α.
- Let μ and α be two simple closed curves such that μ is one-sided, α is oriented and two-sided, and such that |α ∩ μ| = 1. A regular neighborhood K of α ∪ μ is diffeomorphic to a Klein bottle with one hole, and a regular neighborhood M of μ is diffeomorphic to a Möbius strip. Pushing M once along α, we get a diffeomorphism of K fixing the boundary (see Figure 1): it can be extended to N by the identity. Such a diffeomorphism is called a crosscap slide, and denoted by Y_{μ,α}.

Figure 1: Crosscap slide.

2.2 Blowup homomorphism

Here we recall the construction of the blowup homomorphism $\eta_{g,b}^n$: $\Gamma_{g,b}^n \to \Gamma_{g+n,b}$ given in [30; 31] and [27].

Let $U = \{z \in \mathbb{C} \mid |z| \le 1\}$ and, for i = 1, ..., n, fix an embedding $e_i: U \to N$ such that $e_i(0) = z_i, e_i(U) \cap e_j(U) = \emptyset$ if $i \ne j$ and $e_i(U) \cap \partial N = \emptyset$ for all *i*. If we remove the interior of each $e_i(U)$ (thus getting the surface $N_{g,b+n}$) and identify, for each $z \in \partial U$, $e_i(z)$ with $e_i(-z)$, we get a nonorientable surface of genus g + n with *b* boundary components, that is to say a surface homeomorphic to $N_{g+n,b}$. Let us denote by $\gamma_i = e_i(S^1)$ the boundary of $e_i(U)$, and by μ_i its image in $N_{g+n,b}$; it is a one-sided simple closed curve.

Now, let *h* be an element of $\Gamma_{g,b}^n$. It can be represented by a homeomorphism $N_{g,b} \to N_{g,b}$, still denoted *h*, such that:

- (1) $h(e_i(z)) = e_i(z)$ if h preserves local orientation at z_i .
- (2) $h(e_i(z)) = e_i(\overline{z})$ if h reverses local orientation at z_i .

Such a homeomorphism h commutes with the identification leading to $N_{g+n,b}$ and thus induces an element $\eta(h) \in \Gamma_{g+n,b}$. It is proved in [31] that the map

$$\eta_{g,b}^n = \eta \colon \Gamma_{g,b}^n \to \Gamma_{g+n,b}, \quad h \longmapsto \eta(h)$$

is well defined for n = 1, but the proof also works for n > 1. This homomorphism is called the *blowup* homomorphism.

Proposition 2.1 The blowup homomorphism $\eta_{g,b}^n$: $\Gamma_{g,b}^n \to \Gamma_{g+n,b}$ is injective if $(g+n,b) \neq (2,0)$.

Remark 2.2 This result is proved in [30] for (g, b) = (0, 1), but the proof can be adapted in our case as follows.

Proof Suppose that $h: N_{g,b} \to N_{g,b}$ is a homeomorphism satisfying $h(z_i) = z_i$ for all *i* and that $\eta(h): N_{g+n,b} \to N_{g+n,b}$ is isotopic to the identity. Then *h* is isotopic to a map equal to the identity on $e_i(U)$ for all *i*. If not, *h* reverses local orientation at z_i and $h(\gamma_i)$ is isotopic to γ_i^{-1} . Then $\eta(h)(\gamma_i)$ is isotopic to μ_i and μ_i^{-1} and we get $2[\mu_i] = 0$ in $H_1(N_{g+n,b};\mathbb{Z})$, which is a contradiction. Consequently, *h* lies in the kernel of the natural map $\Gamma_{g,b+n} \to \Gamma_{g+n,b}$ induced by gluing a Möbius strip onto *n* boundary components. However, this kernel is generated by the Dehn twists along the curves γ_i (see [29, Theorem 3.6¹]). Now, any γ_i bounds a disc with one marked point in $N_{g,b}$: the corresponding Dehn twist is trivial in $\Gamma_{g,b}$ and therefore *h* is isotopic to the identity.

2.3 Embedding $P_n(N_{g,b})$ in $\Gamma_{g+n+2(b-1),1}$

Since $b \ge 1$, we'll view $N_{g,b}$ as a disc D^2 with g + b - 1 open discs removed and g Möbius strips glued on g boundary components so obtained (see Figure 2).

Proposition 2.3 For $g \ge 1$, $b \ge 1$ and $n \ge 1$, $P_n(N_{g,b})$ has the following complete set of generators (depicted in Figures 2 and 4):

$$(B_{i,j})_{1 \le i < j \le n}, \quad (\rho_{k,l})_{\substack{1 \le k \le n \\ 1 \le l \le g}} \quad \text{and} \quad (x_{u,l})_{\substack{1 \le u \le n \\ 1 \le t \le b-1}}.$$

¹This result is wrong when (g + n, b) = (2, 0).

Figure 2: Generators $x_{k,t}$ for $P_n(N_{g,b})$, $b \ge 1$. See Figure 4 for a picture of generators $B_{i,j}$ and $\rho_{k,l}$.

Proof The proof works by induction and generalizes those of [16] (closed nonorientable case) and [4] (orientable case, possibly with boundary components). It uses the following short exact sequence obtained by forgetting the last strand (see [11]):

$$1 \longrightarrow \pi_1(N_{g,b} \setminus \{z_1, \ldots, z_n\}, z_{n+1}) \xrightarrow{\alpha} P_{n+1}(N_{g,b}) \xrightarrow{\beta} P_n(N_{g,b}) \longrightarrow 1.$$

The set of generators is complete for n = 1: $P_1(N_{g,b}) = \pi_1(N_{g,b})$ is free on the $\rho_{1,l}$ and $x_{1,t}$ for $1 \le l \le g$ and $1 \le t \le b-1$. Suppose inductively that $P_n(N_{g,b})$ has the given complete set of generators. Then observe that

$$\{B_{i,n+1} \mid 1 \le i \le n\} \cup \{\rho_{n+1,l} \mid 1 \le l \le g\} \cup \{x_{n+1,t} \mid 1 \le t \le b-1\}$$

is a free generators set of $Im(\alpha)$ and

$$(B_{i,j})_{1 \le i < j \le n}$$
, $(\rho_{k,l})_{\substack{1 \le k \le n \\ 1 \le l \le g}}$ and $(x_{u,t})_{\substack{1 \le u \le n \\ 1 \le t \le b-1}}$

are coset representatives for the considered generators of $P_n(N_{g,b})$; this is a complete set of generators for $P_{n+1}(N_{g,b})$; see for instance [22, Theorem 1, Chapter 13]. Let us also remark that the above exact sequence could be used, as in [4] and [16], to find a complete set of relations for the group $P_n(N_{g,b})$.

Gluing a one-holed torus onto b-1 boundary components of $N_{g,b}$ (recall that $b \ge 1$ in this second section), we get $N_{g,b}$ as a subsurface of $N_{g+2(b-1),1}$. This inclusion induces a homomorphism $\chi_{g,b}: \Gamma_{g,b} \to \Gamma_{g+2(b-1),1}$ which is injective (see [29]).

Thus, the composed map

$$\lambda_{g,b}^n = \chi_{g+n,b} \circ \eta_{g,b}^n \colon \Gamma_{g,b}^n \to \Gamma_{g+n+2(b-1),1}$$

is also injective.

Recall that the mod p Torelli group $I_p(N_{g,1})$ is the subgroup of $\Gamma_{g,1}$ defined as the kernel of the action of $\Gamma_{g,1}$ on $H_1(N_{g,1}; \mathbb{Z}/p\mathbb{Z})$. In the following we will consider in particular the case of the mod 2 Torelli group $I_2(N_{g,1})$.

Proposition 2.4 If $b \ge 1$, $\lambda_{g,b}^n(P_n(N_{g,b}))$ is a subgroup of the mod 2 Torelli subgroup $I_2(N_{g+n+2(b-1),1})$.

Figure 3: Image of the generators of $P_n(N_{g,b})$ in $\Gamma_{g+n+2(b-1),1}$.

Proof The image of the generators (see Figures 2, 4 and Proposition 2.3)

$$(B_{i,j})_{1 \le i < j \le n}$$
, $(\rho_{k,l})_{\substack{1 \le k \le n \\ 1 \le l \le g}}$ and $(x_{u,t})_{\substack{1 \le u \le n \\ 1 \le t \le b-1}}$

of $P_n(N_{g,b})$ under $\lambda_{g,b}^n$ are, respectively (see Figure 3):

- Dehn twists along curves $\beta_{i,j}$ which bound a subsurface homeomorphic to $N_{2,1}$.
- Crosscap slides $Y_{\mu_k,\alpha_{k,l}}$.
- The product $\tau_{\xi_{u,t}} \tau_{\delta_t}^{-1}$ of Dehn twists along the bounding curves $\xi_{u,t}$ and δ_t .

According to [31], all of these elements are in $I_2(N_{g+n+2(b-1),1})$.

Remark 2.5 The embedding from Proposition 2.4 is invalid for $I_p(N_{g+n+2(b-1),1})$ when $p \neq 2$: for example, the crosscap slide $Y_{\mu_k,\alpha_{k,l}}$ is not in the mod p Torelli subgroup since it sends μ_k to μ_k^{-1} .

2.4 Conclusion of the proof

We shall use the following result, which is a straightforward consequence of a similar result for mod p Torelli groups of orientable surfaces due to L Paris [26]:

Theorem 2.6 Let $g \ge 1$. The mod p Torelli group $I_p(N_{g,1})$ is residually p-finite.

Proof We use the Dehn–Nielsen–Baer theorem (see for instance [32, Theorem 5.15.3]), which states that $\Gamma_{g,1}$ embeds in Aut $(\pi_1(N_{g,1}))$. Since $\pi_1(N_{g,1})$ is free we can apply [26, Theorem 1.4] which claims that, if *G* is a free group, its mod *p* Torelli group (ie the kernel of the canonical map from Aut(*G*) to GL $(H_1(G, \mathbb{F}_p))$ is residually *p*–finite. \Box

Theorem 2.7 Let $g \ge 1$, b > 0, $n \ge 1$. Then $P_n(N_{g,b})$ is residually 2-finite.

Proof The group $P_n(N_{g,b})$ is a subgroup of $I_2(N_{g+n+2(b-1),1})$ by Proposition 2.4 and by injectivity of the map $\lambda_{g,b}^n$. Then by Theorem 2.6 it follows that $P_n(N_{g,b})$ is residually 2-finite.

3 *p*-almost direct products

3.1 On residually *p*-finite groups

Let *p* be a prime number and *G* a group. If *H* is a subgroup of *G*, we denote by H^p the subgroup generated by $\{h^p \mid h \in H\}$. Following [26], we define the lower \mathbb{F}_p -linear central filtration $(\gamma_n^p G)_{n \in \mathbb{N}^*}$ of *G* as follows: $\gamma_1^p G = G$ and, for $n \ge 1$, $\gamma_{n+1}^p G$ is the subgroup of *G* generated by $[G, \gamma_n^p G] \cup (\gamma_n^p G)^p$. Note that the subgroups $\gamma_n^p G$ are characteristic in *G* and that the quotient group $G/\gamma_2^p G$ is nothing but the first homology group $H_1(G; \mathbb{F}_p)$. The following are proved in [26]:

- $[\gamma_m^p G, \gamma_n^p G] \subset \gamma_{m+n}^p G$ for $m, n \ge 1$.
- A finitely generated group G is a finite p-group if and only if there exists some N ≥ 1 such that γ^p_NG = {1}.
- A finitely generated group G is residually p-finite if and only if $\bigcap_{n=1}^{\infty} \gamma_n^p G = \{1\}.$

Clearly, if $f: G \to G'$ is a group homomorphism, then $f(\gamma_n^p G) \subset \gamma_n^p G'$ for all $n \ge 1$.

Definition 3.1 Let

be a split exact sequence.

- If the action of C induced on $H_1(A; \mathbb{Z})$ is trivial (ie the action is trivial on $A^{Ab} = A/[A, A]$), we say that B is an almost direct product of A and C.
- If the action of C induced on $H_1(A; \mathbb{F}_p)$ is trivial (ie the action is trivial on $A/\gamma_2^p A$), we say that B is a p-almost direct product of A and C.

Let us remark that, as in the case of almost direct products [7, Proposition 6.3], the property of being a p-almost direct product does not depend on the choice of section.

Proposition 3.2 Let $1 \longrightarrow A \longrightarrow B \xrightarrow{\lambda} C \longrightarrow 1$ be a split exact sequence of groups. Let σ, σ' be sections for λ , and suppose that the induced action of C on A via σ on $H_1(A; \mathbb{F}_p)$ is trivial. Then the same is true for the section σ' .

Proof Let $a \in A$ and $c \in C$. By hypothesis, $\sigma(c)a(\sigma(c))^{-1} \equiv a \mod \gamma_2^p A$. Since σ' is also a section for λ , we have $\lambda \circ \sigma'(c) = \lambda \circ \sigma(c)$, and so $\sigma'(c)(\sigma(c))^{-1} \in \text{Ker}(\lambda)$. Thus there exists $a' \in A$ such that $\sigma'(c) = a'\sigma(c)$, and hence

$$\sigma'(c)a(\sigma'(c))^{-1} \equiv a'\sigma(c)a(\sigma(c))^{-1}a'^{-1} \equiv a'aa'^{-1} \equiv a \mod \gamma_2^p A.$$

Thus the induced action of C on $H_1(A; \mathbb{F}_p)$ via σ' is also trivial.

The first goal of this section is to prove the following theorem (see [12, Theorem 3.1] for an analogous result for almost direct products).

Theorem 3.3 Let

be a split exact sequence where B is a p-almost direct product of A and C. Then, for all $n \ge 1$, one has a split exact sequence

$$1 \longrightarrow \gamma_n^p A \longrightarrow \gamma_n^p B \xrightarrow{\lambda_n} \gamma_n^p C \longrightarrow 1,$$

where λ_n and σ_n are restrictions of λ and σ .

We shall need the following preliminary result.

Lemma 3.4 Under the hypotheses of Theorem 3.3, one has

$$[\gamma_m^p C', \gamma_n^p A] \subset \gamma_{m+n}^p A$$
 for all $m, n \ge 1$,

where C' denotes $\sigma(C)$.

Proof First, we prove by induction on *n* that $[C', \gamma_n^p A] \subset \gamma_{n+1}^p A$ for all $n \ge 1$. The case n = 1 corresponds to the hypotheses: the action of *C* on $H_1(A; \mathbb{F}_p) = A/\gamma_2^p A$ is trivial if and only if $[C', A] \subset \gamma_2^p A$. Thus, suppose that $[C', \gamma_n^p A] \subset \gamma_{n+1}^p A$ for some $n \ge 1$ and let us prove that $[C', \gamma_{n+1}^p A] \subset \gamma_{n+2}^p A$. In view of the definition of $\gamma_{n+1}^p A$, we have to prove that

$$[C', [A, \gamma_n^p A]] \subset \gamma_{n+2}^p A$$
 and $[C', (\gamma_n^p A)^p] \subset \gamma_{n+2}^p A$

For the first case, we use a classical result (see [24, Theorem 5.2]) which says

$$\left[C', \left[A, \gamma_n^p A\right]\right] = \left[\gamma_n^p A, \left[C', A\right]\right] \left[A, \left[\gamma_n^p A, C'\right]\right].$$

We have just seen that $[C', A] \subset \gamma_2^p A$, thus

$$[\gamma_n^p A, [C', A]] \subset [\gamma_n^p A, \gamma_2^p A] \subset \gamma_{n+2}^p A.$$

Then, the induction hypotheses says that $[\gamma_n^p A, C'] \subset \gamma_{n+1}^p A$, thus

$$\left[A, \left[\gamma_n^p A, C'\right]\right] \subset \left[A, \gamma_{n+1}^p A\right] \subset \gamma_{n+2}^p A.$$

The second case works as follows: for $c \in C'$ and $x \in \gamma_n^p A$, one has, using the fact that [u, vw] = [u, w][u, v][[u, v], w] (see [24]),

$$[c, x^{p}] = [c, x][c, x^{p-1}][[c, x^{p-1}], x]$$

= \dots = [c, x]^{p}[[c, x], x][[c, x^{2}], x] \dots [[c, x^{p-1}], x].

Since $c \in C'$ and $x \in \gamma_n^p A$, one has $[c, x^i] \in [C', \gamma_n^p A] \subset \gamma_{n+1}^p A$ for all $i, 1 \le i \le p-1$, which leads to

$$[c,x]^p \in (\gamma_{n+1}^p A)^p \subset \gamma_{n+2}^p A$$
 and $[[c,x^i],x] \in [\gamma_{n+1}^p A,A] \subset \gamma_{n+2}^p A.$

Now, we suppose that $[\gamma_m^p C', \gamma_n^p A] \subset \gamma_{m+n}^p A$ for some $m \ge 1$ and all $n \ge 1$ and prove that $[\gamma_{m+1}^p C', \gamma_n^p A] \subset \gamma_{m+n+1}^p A$. As above, there are two cases which work in the same way:

(i)
$$\begin{bmatrix} [C', \gamma_m^p C'], \gamma_n^p A \end{bmatrix} = \begin{bmatrix} [\gamma_n^p A, C'], \gamma_m^p C'] \begin{bmatrix} [\gamma_m^p C', \gamma_n^p A], C' \end{bmatrix} \\ \subset \begin{bmatrix} \gamma_{n+1}^p A, \gamma_m^p C' \end{bmatrix} \begin{bmatrix} \gamma_{m+n}^p A, C' \end{bmatrix} \\ \subset \gamma_{m+n+1}^p A.$$

(ii) For $c \in \gamma_m^p C'$ and $x \in \gamma_n^p A$, one has

$$[c^{p}, x] = [c, [x, c^{p-1}]][c^{p-1}, x][c, x] = \dots = [c, [x, c^{p-1}]] \dots [c, [x, c]][c, x]^{p},$$

which is an element of $\gamma_{m+n+1}^{p} A$ by induction hypotheses.

Proof of Theorem 3.3 The restrictions of λ and σ give rise to morphisms

$$\lambda_n: \gamma_n^p B \to \gamma_n^p C$$
 and $\sigma_n: \gamma_n^p C \to \gamma_n^p B$

such that $\lambda_n \circ \sigma_n = \operatorname{Id}_{\gamma_n^p C}$, λ_n is onto and $\operatorname{Ker}(\lambda_n) = A \cap \gamma_n^p B$. Thus, we need to prove that $A \cap \gamma_n^p B = \gamma_n^p A$ for all $n \ge 1$. Clearly one has $\gamma_n^p A \subset A \cap \gamma_n^p B$. In order to prove the reverse inclusion, we follow the method developed in [12] for almost semi-direct products and define $\tau: B \to B$ by $\tau(b) = (\sigma\lambda(b))^{-1}b$. This map has the following properties:

- (i) Since $\lambda \sigma = \operatorname{Id}_C$, $\tau(B) \subset A$.
- (ii) For $x \in B$, $\tau(x) = x$ if and only if $x \in A$.
- (iii) For $(b_1, b_2) \in B^2$, $\tau(b_1b_2) = [\sigma\lambda(b_2), \tau(b_1)^{-1}]\tau(b_1)\tau(b_2)$.
- (iv) For $b \in B$, setting $a = \tau(b)$ and $c = \sigma\lambda(b)$, we get a unique decomposition b = ca with $c \in C' = \sigma(C)$ and $a \in A$.

We claim that $\tau(\gamma_n^p B) \subset \gamma_n^p A$ for all $n \ge 1$. From this, we easily conclude the proof: if $x \in A \cap \gamma_n^p B$, then $x = \tau(x) \in \gamma_n^p A$.

One has $\tau(\gamma_1^p B) \subset \gamma_1^p A$. Suppose inductively that $\tau(\gamma_n^p B) \subset \gamma_n^p A$ for some $n \ge 1$, and let us prove that $\tau(\gamma_{n+1}^p B) \subset \gamma_{n+1}^p A$. Suppose first that x is an element of $\gamma_n^p B$. Then using (iii) we get

$$\begin{aligned} \tau(x^{p}) &= [\sigma\lambda(x), \tau(x^{p-1})^{-1}]\tau(x^{p-1})\tau(x) \\ &\vdots \\ &= [\sigma\lambda(x), \tau(x^{p-1})^{-1}][\sigma\lambda(x), \tau(x^{p-2})^{-1}]\cdots [\sigma\lambda(x), \tau(x)^{-1}]\tau(x)^{p}. \end{aligned}$$

Since $\sigma\lambda(x) \in \gamma_n^p C'$, and since $\tau(x^i) \in \gamma_n^p A$ for $1 \le i \le p-1$ by the induction hypothesis, we get

$$\tau(x^p) \in [\gamma_n^p C', \gamma_n^p A] \cdot (\gamma_n^p A)^p \subset \gamma_{n+1}^p A$$

Algebraic & Geometric Topology, Volume 16 (2016)

by Lemma 3.4: this proves that $\tau((\gamma_n^p B)^p) \subset \gamma_{n+1}^p A$. Next, let $b \in B$ and $x \in \gamma_n^p B$. Setting $a = \tau(b) \in A$, $y = \tau(x) \in \gamma_n^p A$ by the induction hypothesis, $c = \sigma\lambda(b) \in C'$ and $z = \sigma\lambda(x) \in \gamma_n^p C'$, we get

$$\begin{aligned} \tau([b, x]) &= (\sigma\lambda([b, x]))^{-1}[b, x] \\ &= [\sigma\lambda(b), \sigma\lambda(x)]^{-1}[b, x] \\ &= [c, z]^{-1}[ca, zy] = [z, c]a^{-1}c^{-1}y^{-1}z^{-1}cazy \\ &= [z, c](a^{-1}c^{-1}y^{-1}cya)(a^{-1}y^{-1}c^{-1}z^{-1}czya)(a^{-1}y^{-1}z^{-1}azy) \\ &= [z, c](a^{-1}[c, y]a)(a^{-1}y^{-1}[c, z]ya)(a^{-1}y^{-1}ay)(y^{-1}a^{-1}z^{-1}azy) \\ &= [z, c](a^{-1}[c, y]a)(a^{-1}y^{-1}[c, z]ya)[a, y](y^{-1}[a, z]y) \\ &= [[c, z], (a^{-1}[y, c]a)](a^{-1}[c, y]a)[z, c](a^{-1}y^{-1}[c, z]ya)[a, y](y^{-1}[a, z]y) \\ &= [[c, z], (a^{-1}[y, c]a)](a^{-1}[c, y]a)[[c, z], ya][a, y](y^{-1}[a, z]y). \end{aligned}$$

Now,

$$[c, z] \in [C', \gamma_n^p C'] \subset \gamma_{n+1}^p C'$$
 and $[y, c] \in [\gamma_n^p A, C'] \subset \gamma_{n+1}^p A$

(Lemma 3.4), thus $[[c, z], (a^{-1}[y, c]a)] \in \gamma_{n+1}^p A$. Then

$$[c, z], ya] \in [\gamma_{n+1}^p C', A] \subset \gamma_{n+1}^p A,$$
$$[a, y] \in [A, \gamma_n^p A] \subset \gamma_{n+1}^p A,$$
$$[a, z] \in [A, \gamma_n^p C'] \subset \gamma_{n+1}^p A.$$

Thus, $\tau([b, x]) \in \gamma_{n+1}^p A$ and $\tau([B, \gamma_n^p B]) \subset \gamma_{n+1}^p A$.

Corollary 3.5 Let

$$1 \longrightarrow A^{\longleftarrow} \xrightarrow{B \xrightarrow{\lambda} C} \longrightarrow 1$$

be a split exact sequence such that B is a p-almost direct product of A and C. If A and C are residually p-finite, then B is residually p-finite.

3.2 Augmentation ideals

Given a group *G* and $\mathbb{K} = \mathbb{Z}$ or \mathbb{F}_2 , we will denote by $\mathbb{K}[G]$ the group ring of *G* over \mathbb{K} and by $\overline{\mathbb{K}[G]}_{j}$ the augmentation ideal of *G*. The group ring $\mathbb{K}[G]$ is filtered by the powers $\overline{\mathbb{K}[G]}_{j}^{j}$ of $\overline{\mathbb{K}[G]}$, and we can define the associated graded algebra

$$\operatorname{gr} \mathbb{K}[G] = \bigoplus \overline{\mathbb{K}[G]}^j / \overline{\mathbb{K}[G]}^{j+1}$$

The following theorem provides a decomposition formula for the augmentation ideal of a 2–almost direct product (see [25, Theorem 3.1] for an analogous result in the case of almost direct products).

Let $A \rtimes C$ be a semi-direct product between two groups A and C. It is a classical result that the map $a \otimes c \mapsto ac$ induces a \mathbb{K} -isomorphism from $\mathbb{K}[A] \otimes \mathbb{K}[C]$ to $\mathbb{K}[A \rtimes C]$. Identifying these two \mathbb{K} -modules, we have the following:

Theorem 3.6 If $A \rtimes C$ is a 2–almost direct product, then

$$\overline{\mathbb{F}_2[A \rtimes C]}^k = \sum_{i+h=k} \overline{\mathbb{F}_2[A]}^i \otimes \overline{\mathbb{F}_2[C]}^h \quad \text{for all } k.$$

Proof We sketch the proof, which is almost verbatim the same as the proof of [25, Theorem 3.1]. Let

$$R_{k} = \sum_{i+h=k} \overline{\mathbb{F}_{2}[A]}^{i} \otimes \overline{\mathbb{F}_{2}[C]}^{h};$$

 R_k is a descending filtration on $\mathbb{F}_2[A] \otimes \mathbb{F}_2[C]$, and with the above identification, we get that $R_k \subset \overline{\mathbb{F}_2[A \rtimes C]}^k$. To verify the other inclusion we have to check that $\prod_{j=1}^k (a_j c_j - 1) \in R_k$ for every a_1, \ldots, a_k in A and c_1, \ldots, c_k in C. Actually it is enough to verify that $e = \prod_{j=1}^k (e_j - 1) \in R_k$ where either $e_j \in A$ or $e_j \in C$ (see [25, Theorem 3.1] for a proof of this fact); we call e a special element. We associate to a special element e an element in $\{0, 1\}^k$: let type $(e) = (\delta(e_1), \ldots, \delta(e_k))$, where $\delta(e_j) = 0$ if $e_j \in A$ and $\delta(e_j) = 1$ if $e_j \in C$. We will say that the special element e is standard if

$$type(e) = (\underbrace{0, \dots, 0}^{i}, \underbrace{1, \dots, 1}^{h}).$$

In this case $e \in \overline{\mathbb{F}_2[A]}^i \otimes \overline{\mathbb{F}_2[C]}^h \subset R_k$ and we are done. We claim that we can reduce all special elements to linear combinations of standard elements. If e is not standard, then it must be of the form

$$e = \prod_{i=1}^{r} (a_i - 1) \prod_{j=1}^{s} (c_j - 1)(c - 1)(a - 1) \prod_{l=1}^{t} (e_l - 1),$$

where $a_1, \ldots, a_r, a \in A, c_1, \ldots, c_s, c \in C$, the element $\tilde{e} = \prod_{l=1}^t (e_l - 1)$ is special and r + s + t + 2 = k. Therefore

type(e) =
$$(0, ..., 0, 1, ..., 1, 1, 0, \delta(e_1), ..., \delta(e_t)).$$

Now we can use the assumption that $A \rtimes C$ is a 2–almost direct product to claim that one has commutation relations in $\mathbb{Z}[A \rtimes C]$ expressing the difference

$$(c-1)(a-1) - (a-1)(c-1)$$

as a linear combination of terms of the form

$$(a'-1)(a''-1)c \quad \text{with } a', a'' \in A,$$

for any $a \in A$ and $c \in C$. In fact,

$$(c-1)(a-1) - (a-1)(c-1) = ca - ac = (cac^{-1}a^{-1} - 1)ac = (f-1)ac,$$

where $f = [c^{-1}, a^{-1}] \in [C, A] \subset \gamma_2^2(A)$ by Lemma 3.4. We can decompose f as $f = h_1 k_1 \cdots h_m k_m$, where, for $j = 1, \ldots, m$, h_j belongs to [A, A] and $k_j = (k'_j)^2$ for some $k'_j \in A$. One knows (see for instance [10, page 194]) that, for $j = 1, \ldots, m$, $(h_j - 1)$ is a linear combination of terms of the form

$$(h'_j-1)(h''_j-1)\alpha_j$$
 with $h'_j, h''_j, \alpha_j \in A$.

On the other hand, for j = 1, ..., m, we have also that

$$(k_j - 1) = (k'_j - 1)(k'_j - 1)$$
 with $k'_j \in A$, since the coefficients are in \mathbb{F}_2 .

Then, recalling that (hk - 1) = (h - 1)k + (k - 1) for any $h, k \in A$, we can conclude that f - 1 can be rewritten as a linear combination of terms of the form

$$(f'-1)(f''-1)\alpha$$
 with $f', f'', \alpha \in A$

and that (c-1)(a-1) - (a-1)(c-1) is a linear combination of terms of the form

$$(f'-1)(f''-1)\alpha c$$
 with $f', f'', \alpha \in A$.

Rewriting $(f''-1)\alpha$ as $(f''\alpha-1)-(\alpha-1)$, we obtain that the difference

$$(c-1)(a-1) - (a-1)(c-1)$$

can be seen as a linear combination of terms of the form

$$(a'-1)(a''-1)c$$
 with $a', a'' \in A$.

Therefore e can be rewritten as a sum whose first term is the special element

$$e' = \prod_{i=1}^{r} (a_i - 1) \prod_{j=1}^{s} (c_j - 1)(a - 1)(c - 1) \prod_{l=1}^{t} (e_l - 1)$$

and whose second term is a linear combination of elements of the form e''c, where

$$e'' = \prod_{i=1}^{r} (a_i - 1) \prod_{j=1}^{s} (c_j - 1)(a' - 1)(a'' - 1) \prod_{l=1}^{t} (ce_l c^{-1} - 1).$$

Using the lexicographic order from the left, one has type(e) > type(e') and type(e) > type(e'').

By induction on the lexicographic order, we infer that e' and e'' belong to R_k ; since $R_k \cdot c \subset R_k$ for any $c \in C$, it follows that e belongs to R_k and we are done.

4 The closed case

4.1 A presentation of $P_n(N_g)$ and induced identities

We recall a group presentation of $P_n(N_g)$ given in [16]; the geometric interpretation of generators is provided in Figure 4.

Theorem 4.1 [16] For $g \ge 2$ and $n \ge 1$, $P_n(N_g)$ has a presentation with generators

$$(B_{i,j})_{1 \le i < j \le n}$$
 and $(\rho_{k,l})_{\substack{1 \le k \le n \\ 1 \le l \le g}}$

and relations of the following four types:

(a) For
$$1 \le i < j \le n$$
 and $1 \le r < s \le n$,
 $B_{r,s}B_{i,j}B_{r,s}^{-1}$

$$\begin{bmatrix} B_{i,j} & \text{if } i < r < s < j \text{ or } r < s < i < j, \quad (a_1) \end{bmatrix}$$

$$= \begin{cases} B_{i,j}^{-1} B_{r,j}^{-1} B_{i,j} B_{r,j} B_{i,j} & \text{if } r < i = s < j, \end{cases}$$
(a₂)

$$B_{s,j}^{-1}B_{i,j}B_{s,j} if i = r < s < j, (a_3)$$

$$\left(B_{s,j}^{-1}B_{r,j}^{-1}B_{s,j}B_{r,j}B_{i,j}B_{r,j}^{-1}B_{s,j}^{-1}B_{r,j}B_{s,j}\right) \quad \text{if } r < i < s < j.$$
(a4)

(b) For $1 \le i < j \le n$ and $1 \le k, l \le g$,

$$\left(\rho_{j,l} \qquad \qquad \text{if } k < l. \qquad (b_1)\right)$$

$$\rho_{i,k}\rho_{j,l}\rho_{i,k}^{-1} = \begin{cases} \rho_{j,k}^{-1}B_{i,j}^{-1}\rho_{j,k}^{2} & \text{if } k = l. \end{cases}$$
(b₂)

$$\left(\rho_{j,k}^{-1}B_{i,j}^{-1}\rho_{j,k}B_{i,j}^{-1}\rho_{j,l}B_{i,j}\rho_{j,k}^{-1}B_{i,j}\rho_{j,k}\right) \text{ if } k > l.$$
 (b₃)

(c) For $1 \le i \le n$,

$$\rho_{i,1}^2 \cdots \rho_{i,g}^2 = T_i$$
, where $T_i = B_{1,i} \cdots B_{i-1,i} B_{i,i+1} \cdots B_{i,n}$. (c)

(d) For $1 \le i < j \le n$, $1 \le k \le n$, $k \ne j$ and $1 \le l \le g$,

$$\rho_{k,l} B_{i,j} \rho_{k,l}^{-1} = \begin{cases} B_{i,j} & \text{if } k < i \text{ or } j < k, \quad (d_1) \\ \rho_{j,l}^{-1} B_{i,j}^{-1} \rho_{j,l} & \text{if } k = i, \quad (d_2) \\ \rho_{j,l}^{-1} B_{k,j}^{-1} \rho_{j,l} B_{k,j}^{-1} B_{k,j} \rho_{j,l}^{-1} B_{k,j} \rho_{j,l} & \text{if } i < k < j. \quad (d_3) \end{cases}$$

Figure 4: Generators of $P_n(N_g)$.

Let us denote by U the element $\rho_{n,1}\rho_{n-1,1}\cdots\rho_{2,1}$ of $P_n(N_g)$.

Lemma 4.2 The following relations hold in $P_n(N_g)$:

(1)
$$[\rho_{i,k}, \rho_{j,k}^{-1}] = B_{i,j}^{-1}$$
 for $1 \le i < j \le n$ and $1 \le k \le g$. (e)

(2)
$$[\rho_{k,1}, \rho_{1,1}\rho_{1,1}\rho_{1,2}T_1^{-1}] = 1$$
 for $2 \le k \le n$. (f)

(3)
$$[U, \rho_{1,1}\rho_{1,1}\rho_{1,2}T_1^{-1}] = 1.$$
 (g)

(4)
$$U\rho_{1,1}U^{-1} = \rho_{1,1}T_1^{-1}$$
. (h)

Proof The first and second identities can be verified by drawing the corresponding braids (see Figure 5 and 6). The third one is a direct consequence of the second one and the definition of U. We prove the last one as follows:

$$\rho_{1,1}^{-1} U \rho_{1,1} = (\rho_{1,1}^{-1} \rho_{n,1} \rho_{1,1}) \cdots (\rho_{1,1}^{-1} \rho_{2,1} \rho_{1,1})$$

= $(B_{1,n}^{-1} \rho_{n,1}) \cdots (B_{1,2}^{-1} \rho_{2,1})$ by (e)
= $B_{1,n}^{-1} \cdots B_{1,2}^{-1} \rho_{n,1} \cdots \rho_{2,1}$ by (d₁)
= $T_1^{-1} U.$

Figure 6: Identity (f).

4.2 The pure braid group $P_n(N_g)$ is residually 2-finite

Following [14], one has, for $g \ge 2$, a split exact sequence

(1)
$$1 \longrightarrow P_{n-1}(N_{g,1}) \xrightarrow{\mu} P_n(N_g) \xrightarrow{\lambda} P_1(N_g) = \pi_1(N_g) \longrightarrow 1,$$

where λ is induced by the map which forgets all strands except the first one, and μ is defined by capping the boundary component by a disc with one marked point (the first strand in $P_n(N_g)$). According to the definition of μ and to Proposition 2.3, Im(μ) is generated by $\{\rho_{i,k} \mid 2 \le i \le n, 1 \le k \le g\} \cup \{B_{i,j} \mid 2 \le i < j \le n\}$.

The section given in [14] is geometric, ie it is induced by a crossed section at the level of fibrations. In order to study the action of $\pi_1(N_g)$ on $P_{n-1}(N_{g,1})$, we need an algebraic section. Recall that $\pi_1(N_g)$ has a group presentation with generators p_1, \ldots, p_g and the single relation $p_1^2 \cdots p_g^2 = 1$. We define the set map $\sigma: \pi_1(N_g) \to P_n(N_g)$ by setting

$$\sigma(p_i) = \begin{cases} T_1^{-1} U \rho_{1,1} T_1 & \text{for } i = 1, \\ T_1^{-1} \rho_{1,1}^{-1} U^{-1} \rho_{1,1} \rho_{1,2} & \text{for } i = 2, \\ \rho_{1,i} & \text{for } 3 \le i \le g. \end{cases}$$

Proposition 4.3 The map σ is a well-defined homomorphism satisfying $\lambda \circ \sigma = \text{Id}_{\pi_1(N_g)}$.

Proof Since $\lambda(\rho_{1,i}) = p_i$ for all $1 \le i \le g$ and $\lambda(U) = \lambda(T_1) = 1$, one clearly has $\lambda \sigma = \mathrm{Id}_{\pi_1(N_g)}$ if σ is a group homomorphism. Thus, we just have to prove that $\sigma(p_1)^2 \cdots \sigma(p_g)^2 = 1$:

$$\begin{split} \sigma(p_1)^2 \cdots \sigma(p_g)^2 &= T_1^{-1} U \rho_{1,1} T_1 T_1^{-1} U \rho_{1,1} T_1 T_1^{-1} \rho_{1,1}^{-1} U^{-1} \rho_{1,1} \rho_{1,2} T_1^{-1} \\ &\times \rho_{1,1}^{-1} U^{-1} \rho_{1,1} \rho_{1,2} \rho_{1,3}^{2} \cdots \rho_{1,g}^{2} \\ &= T_1^{-1} U \rho_{1,1} \rho_{1,1} \rho_{1,2} T_1^{-1} \rho_{1,1}^{-1} U^{-1} \rho_{1,1} \rho_{1,2} \rho_{1,3}^{2} \cdots \rho_{1,g}^{2} \\ &= T_1^{-1} \rho_{1,1} \rho_{1,1} \rho_{1,2} T_1^{-1} U \rho_{1,1}^{-1} U^{-1} \rho_{1,1} \rho_{1,2} \rho_{1,3}^{2} \cdots \rho_{1,g}^{2} \\ &= T_1^{-1} \rho_{1,1} \rho_{1,1} \rho_{1,2} T_1^{-1} T_1 \rho_{1,1}^{-1} \rho_{1,1} \rho_{1,2} \rho_{1,3}^{2} \cdots \rho_{1,g}^{2} \\ &= T_1^{-1} \rho_{1,1} \rho_{1,1} \rho_{1,2} \rho_{1,2}^{2} \rho_{1,3}^{2} \cdots \rho_{1,g}^{2} \\ &= 1 \quad \text{by (c).} \end{split}$$

So, the exact sequence (1) splits. In order to apply Theorem 3.3, we have to prove that the action of $\pi_1(N_g)$ on $P_{n-1}(N_{g,1})$ is trivial on $H_1(P_{n-1}(N_{g,1}); \mathbb{F}_2)$. This is the claim of the following proposition.

Proposition 4.4 For all $x \in \text{Im}(\sigma)$ and $a \in \text{Im}(\mu)$, one has

 $[x^{-1}, a^{-1}] = xax^{-1}a^{-1} \in \gamma_2^2(\operatorname{Im}(\mu)).$

Proof It is enough to prove the result for generators

$$a \in \{B_{j,k} \mid 2 \le j < k \le n\} \cup \{\rho_{j,l} \mid 2 \le j \le n \text{ and } 1 \le l \le g\}$$

and

$$x \in \{\sigma(p_1), \ldots, \sigma(p_g)\}$$

of Im(μ) and Im(σ), respectively. Suppose first that $2 \le j < k \le n$. One has:

- $[\sigma(p_i)^{-1}, B_{j,k}^{-1}] = [\rho_{1,i}^{-1}, B_{j,k}^{-1}] = 1$ for $3 \le i \le g$ by (d_1) .
- Then, one has

$$\begin{split} [\sigma(p_2)^{-1}, B_{j,k}^{-1}] &= [\rho_{1,2}^{-1}\rho_{1,1}^{-1}U\rho_{1,1}T_1, B_{j,k}^{-1}] \\ &= (\rho_{1,1}^{-1}U\rho_{1,1}T_1)^{-1}[\rho_{1,2}^{-1}, B_{j,k}^{-1}](\rho_{1,1}^{-1}U\rho_{1,1}T_1)[\rho_{1,1}^{-1}U\rho_{1,1}T_1, B_{j,k}^{-1}] \\ &= [\rho_{1,1}^{-1}U\rho_{1,1}T_1, B_{j,k}^{-1}] \quad \text{by (d}_1). \end{split}$$

But U and T_1 are elements of $\operatorname{Im}(\mu)$ and the latter being normal in $P_n(N_g)$, $\rho_{1,1}^{-1}U\rho_{1,1}T_1 \in \operatorname{Im}(\mu)$ thus $[\sigma(p_2)^{-1}, B_{j,k}^{-1}] \in \Gamma_2(\operatorname{Im}(\mu)) \subset \gamma_2^2(\operatorname{Im}(\mu)).$

• In the same way, one has

$$\begin{split} [\sigma(p_1)^{-1}, B_{j,k}^{-1}] &= [T_1^{-1} \rho_{1,1}^{-1} U^{-1} T_1, B_{j,k}^{-1}] = [\rho_{1,1}^{-1} \rho_{1,1} T_1^{-1} \rho_{1,1}^{-1} U^{-1} T_1, B_{j,k}^{-1}] \\ &= (\rho_{1,1} T_1^{-1} \rho_{1,1}^{-1} U^{-1} T_1)^{-1} [\rho_{1,1}^{-1}, B_{j,k}^{-1}] (\rho_{1,1} T_1^{-1} \rho_{1,1}^{-1} U^{-1} T_1) \\ &\times [\rho_{1,1} T_1^{-1} \rho_{1,1}^{-1} U^{-1} T_1, B_{j,k}^{-1}] \\ &= [\rho_{1,1} T_1^{-1} \rho_{1,1}^{-1} U^{-1} T_1, B_{j,k}^{-1}] \quad \text{by (d}_1), \end{split}$$

thus, as before, $[\sigma(p_1)^{-1}, B_{j,k}^{-1}] \in \gamma_2^2(\text{Im}(\mu)).$

Now, let *j* and *l* be integers such that $2 \le j \le n$ and $1 \le l \le g$, and let us first prove that $[\rho_{1,i}^{-1}, \rho_{i,l}^{-1}] \in \gamma_2^2(\operatorname{Im}(\mu))$ for all *i*, $1 \le i \le g$:

- This is clear for i < l by (b_1) .
- For i = l, the relation (b₂) gives $[\rho_{1,l}^{-1}, \rho_{j,l}^{-1}] = \rho_{j,l}^{-1} B_{1,j}^{-1} \rho_{j,l}$. But

$$B_{1,j}^{-1} = B_{2,j} \cdots B_{j-1,j} B_{j,j+1} \cdots B_{j,n} \rho_{j,g}^{-2} \cdots \rho_{j,1}^{-2} \quad \text{(relation (c))}$$

is an element of $\gamma_2^2(\operatorname{Im}(\mu))$ by (e), thus we get $[\rho_{1,l}^{-1}, \rho_{i,l}^{-1}] \in \gamma_2^2(\operatorname{Im}(\mu))$.

• If l < i then $[\rho_{1,i}^{-1}, \rho_{j,l}^{-1}] = [B_{1,j}\rho_{j,i}^{-1}B_{1,j}\rho_{j,i}, \rho_{j,l}^{-1}]$ by (b₃) so $[\rho_{1,i}^{-1}, \rho_{j,l}^{-1}] \in \gamma_2^2(\operatorname{Im}(\mu))$ since $\rho_{j,l}, \rho_{j,i}$ and $B_{1,j}$ are elements of $\operatorname{Im}(\mu)$.

From this, we deduce the following facts.

(1)
$$[\sigma(p_i)^{-1}, \rho_{i,l}^{-1}] \in \gamma_2^2(\text{Im}(\mu))$$
 for $i \ge 3$ since $\sigma(p_i) = \rho_{1,i}$.

(2) Next, one has

$$\begin{split} [\sigma(p_2)^{-1}, \rho_{j,l}^{-1}] &= [\rho_{1,2}^{-1}\rho_{1,1}^{-1}U\rho_{1,1}T_1, \rho_{j,l}^{-1}] \\ &= (\rho_{1,1}^{-1}U\rho_{1,1}T_1)^{-1}[\rho_{1,2}^{-1}, \rho_{j,l}^{-1}](\rho_{1,1}^{-1}U\rho_{1,1}T_1)[\rho_{1,1}^{-1}U\rho_{1,1}T_1, \rho_{j,l}^{-1}]. \end{split}$$

Since $\rho_{1,1}^{-1} U \rho_{1,1} T_1$ and $\rho_{j,l}$ are elements of $\operatorname{Im}(\mu)$ and $[\rho_{1,2}^{-1}, \rho_{j,l}^{-1}]$ is an element of $\gamma_2^2(\operatorname{Im}(\mu))$, we get $[\sigma(p_2)^{-1}, \rho_{j,l}^{-1}] \in \gamma_2^2(\operatorname{Im}(\mu))$.

(3) In the same way, one has

$$\begin{split} [\sigma(p_1)^{-1},\rho_{j,l}^{-1}] &= [T_1^{-1}\rho_{1,1}^{-1}U^{-1}T_1,\rho_{j,l}^{-1}] = [T_1^{-1}\rho_{1,1}^{-1}U^{-1}T_1\rho_{1,1},\rho_{1,1}^{-1},\rho_{j,l}^{-1}] \\ &= \rho_{1,1}[T_1^{-1}\rho_{1,1}^{-1}U^{-1}T_1\rho_{1,1},\rho_{j,l}^{-1}]\rho_{1,1}^{-1}[\rho_{1,1}^{-1},\rho_{j,l}^{-1}] \in \gamma_2^2(\operatorname{Im}(\mu)). \quad \Box \end{split}$$

We are now ready to prove the main result of this section.

Theorem 4.5 For all $g \ge 2$ and $n \ge 1$, the pure braid group $P_n(N_g)$ is residually 2-finite.

Proof Proposition 4.3 says that the sequence

$$1 \longrightarrow P_{n-1}(N_{g,1}) \longrightarrow P_n(N_g) \longrightarrow \pi_1(N_g) \longrightarrow 1$$

splits. Now $P_{n-1}(N_{g,1})$ is residually 2-finite (Theorem 2.7). It is proved in [2] and [3] that $\pi_1(N_g)$ is residually free for $g \ge 4$, so it is residually 2-finite. This result is proved in [23, Lemma 8.9] for g = 3. When g = 2, $\pi_1(N_2)$ has presentation $\langle a, b | aba^{-1} = b^{-1} \rangle$ so is a 2-almost direct product of \mathbb{Z} by \mathbb{Z} . Since \mathbb{Z} is residually 2-finite, $\pi_1(N_2)$ is residually 2-finite by Corollary 3.5. So, using Proposition 4.4 and Corollary 3.5, we can conclude that $P_n(N_g)$ is residually 2-finite.

4.3 The case $P_n(\mathbb{RP}^2)$

The main reason to exclude $N_1 = \mathbb{RP}^2$ in Theorem 4.5 is that the exact sequence (1) doesn't exist in this case, but forgetting at most n-2 strands we get the following exact sequence $(1 \le m \le n-2; \text{ see } [9])$:

$$1 \longrightarrow P_m(N_{1,n-m}) \longrightarrow P_n(\mathbb{RP}^2) \longrightarrow P_{n-m}(\mathbb{RP}^2) \longrightarrow 1.$$

This sequence splits if and only if n = 3 and m = 1 (see [15]). Thus, what we know is the following:

- $P_1(\mathbb{RP}^2) = \pi_1(\mathbb{RP}^2) = \mathbb{Z}/2\mathbb{Z}$: $P_1(\mathbb{RP}^2)$ is a 2-group.
- $P_2(\mathbb{RP}^2) = Q_8$, the quaternion group (see [9]): $P_2(\mathbb{RP}^2)$ is a 2-group.
- One has the split exact sequence

$$1 \longrightarrow P_1(N_{1,2}) \longrightarrow P_3(\mathbb{RP}^2) \longrightarrow P_2(\mathbb{RP}^2) \longrightarrow 1,$$

where $P_1(N_{1,2}) = \pi_1(N_{1,2})$ is a free group of rank 2, thus is residually 2–finite. Since $P_2(\mathbb{RP}^2)$ is 2–finite, we can conclude that $P_3(\mathbb{RP}^2)$ is residually 2–finite using [19, Lemma 1.5].

References

 V G Bardakov, P Bellingeri, On residual properties of pure braid groups of closed surfaces, Comm. Algebra 37 (2009) 1481–1490 MR2526317

- B Baumslag, *Residually free groups*, Proc. London Math. Soc. 17 (1967) 402–418 MR0215903
- [3] G Baumslag, On generalised free products, Math. Z. 78 (1962) 423–438 MR0140562
- P Bellingeri, On presentations of surface braid groups, J. Algebra 274 (2004) 543–563 MR2043362
- [5] P Bellingeri, L Funar, Braids on surfaces and finite type invariants, C. R. Math. Acad. Sci. Paris 338 (2004) 157–162 MR2038286
- [6] P Bellingeri, S Gervais, J Guaschi, Lower central series of Artin–Tits and surface braid groups, J. Algebra 319 (2008) 1409–1427 MR2383053
- [7] **P Bellingeri, E Godelle, J Guaschi**, *Exact sequences, lower central series and repre*sentations of surface braid groups, preprint (2011) arXiv:1106.4982
- [8] R Botto Mura, A Rhemtulla, Orderable groups, Lecture Notes in Pure and Applied Mathematics 27, Marcel Dekker, New York (1977) MR0491396
- J van Buskirk, Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc. 122 (1966) 81–97 MR0189013
- [10] **K-T Chen**, *Extension of* C^{∞} *function algebra by integrals and Malcev completion of* π_1 , Advances in Math. 23 (1977) 181–210 MR0458461
- [11] E Fadell, L Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111–118 MR0141126
- [12] M Falk, R Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985) 77–88 MR808110
- [13] S Garoufalidis, J Levine, Finite type 3-manifold invariants and the structure of the Torelli group, I, Invent. Math. 131 (1998) 541–594 MR1614551
- [14] DL Gonçalves, J Guaschi, On the structure of surface pure braid groups, J. Pure Appl. Algebra 186 (2004) 187–218 MR2025598
- [15] DL Gonçalves, J Guaschi, The braid groups of the projective plane and the Fadell– Neuwirth short exact sequence, Geom. Dedicata 130 (2007) 93–107 MR2365780
- [16] DL Gonçalves, J Guaschi, Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence, J. Pure Appl. Algebra 214 (2010) 667–677 MR2577674
- [17] J González-Meneses, Ordering pure braid groups on compact, connected surfaces, Pacific J. Math. 203 (2002) 369–378 MR1897904
- [18] J González-Meneses, L Paris, Vassiliev invariants for braids on surfaces, Trans. Amer. Math. Soc. 356 (2004) 219–243 MR2020030
- [19] K W Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. 7 (1957) 29–62 MR0087652

- [20] J Guaschi, D Juan-Pineda, A survey of surface braid groups and the lower algebraic K-theory of their group rings, from: "Handbook of group actions, Vol. II", (L Ji, A Papadopoulos, S-T Yau, editors), Adv. Lect. Math. 32, Int. Press, Somerville, MA (2015) 23–75 MR3382024
- [21] B Hartley, On residually finite p-groups, from: "Convegno sui Gruppi Infiniti, IN-DAM, Roma, 1973", Symposia Mathematica 17, Academic Press, London (1976) 225–234 MR0419611
- [22] DL Johnson, Presentations of groups, London Math. Soc. Lect. Notes Ser. 22, Cambridge Univ. Press (1976) MR0396763
- [23] G Levitt, A Minasyan, Residual properties of automorphism groups of (relatively) hyperbolic groups, Geom. Topol. 18 (2014) 2985–3023 MR3285227
- [24] W Magnus, A Karrass, D Solitar, Combinatorial group theory, 2nd edition, Dover, New York (1976) MR0422434
- [25] Ş Papadima, The universal finite-type invariant for braids, with integer coefficients, Topology Appl. 118 (2002) 169–185 MR1877723
- [26] L Paris, Residual p properties of mapping class groups and surface groups, Trans. Amer. Math. Soc. 361 (2009) 2487–2507 MR2471926
- [27] L Paris, B Szepietowski, A presentation for the mapping class group of a nonorientable surface, Bull. Soc. Math. France 143 (2015) 503–566 MR3417732
- [28] G P Scott, Braid groups and the group of homeomorphisms of a surface, Proc. Cambridge Philos. Soc. 68 (1970) 605–617 MR0268889
- [29] M Stukow, Commensurability of geometric subgroups of mapping class groups, Geom. Dedicata 143 (2009) 117–142 MR2576298
- [30] B Szepietowski, Embedding the braid group in mapping class groups, Publ. Mat. 54 (2010) 359–368 MR2675928
- [31] **B Szepietowski**, *Crosscap slides and the level 2 mapping class group of a nonorientable surface*, Geom. Dedicata 160 (2012) 169–183 MR2970047
- [32] H Zieschang, E Vogt, H-D Coldewey, Surfaces and planar discontinuous groups, Lecture Notes in Mathematics 835, Springer, Berlin (1980) MR606743

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen CNRS UMR 6139, F-14000 Caen, France Laboratoire de Mathématique Jean Leray, Université de Nantes CNRS UMR 6629, 2, rue de la Houssinière, BP 92208, F-44322 Cedex 3 Nantes, France paolo.bellingeri@math.unicaen.fr, sylvain.gervais@univ-nantes.fr http://www.math.unicaen.fr/~bellinge/, http://www.math.sciences.univ-nantes.fr/~gervais/

Received: 27 January 2015 Revised: 7 July 2015